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Stochastic theory of large-scale enzyme-reaction networks: Finite copy
number corrections to rate equation models
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Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtoliters.
Physiological concentrations realized in such small volumes imply low copy numbers of interacting
molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate
equation models are based on the implicit assumption of infinitely large numbers of interacting
molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic
concentrations. In this article we compute the finite-volume corrections �or equivalently the finite
copy number corrections� to the solutions of the rate equations for chemical reaction networks
composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a
small subcellular compartment. This is achieved by applying a mesoscopic version of the
quasisteady-state assumption to the exact Fokker–Planck equation associated with the Poisson
representation of the chemical master equation. The procedure yields impressively simple and
compact expressions for the finite-volume corrections. We prove that the predictions of the rate
equations will always underestimate the actual steady-state substrate concentrations for an
enzyme-reaction network confined in a small volume. In particular we show that the finite-volume
corrections increase with decreasing subcellular volume, decreasing Michaelis–Menten constants,
and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the
topology of the network. The predictions of the theory are shown to be in excellent agreement with
stochastic simulations for two types of networks typically associated with protein methylation and
metabolism. © 2010 American Institute of Physics.
�doi:10.1063/1.3505552�

I. INTRODUCTION

Recent years have seen a distinctive surge in the formu-
lation and application of stochastic models of biochemical
reaction kinetics. This trend has resulted from a deeper, on-
going appreciation of the conditions characteristic of the in-
tracellular environment1 and of their dissimilarity from in
vitro conditions. Typical in vivo concentrations are in the
range of nanomolar to millimolar; such concentrations real-
ized in a macroscopic volume imply very large copy num-
bers of interacting molecules whereas the same concentra-
tions in the small volume of a cell frequently imply copy
numbers ranging from few tens to at most few thousands �for
a detailed experimental protein abundance study see for ex-
ample Ref. 2�. Reaction kinetics is inherently a stochastic
process;3 this noisiness is not apparent in macroscopic con-
ditions due to an implicit averaging over a very large number
of molecules but cannot be overlooked when we are studying
the kinetics of a system in which the copy number of at least
one species is small. This is frequently the case of intracel-
lular kinetics.

The introduction of the stochastic simulation algorithm
by Gillespie4 has popularized the numerical study of stochas-
tic reaction kinetics. However to-date the analytical study of
the properties of such systems has received comparatively

very little attention principally because the mathematical for-
malism of stochastic kinetics �i.e., chemical master equa-
tions, �CMEs�� is very different than that of deterministic
kinetics �i.e., rate equations �REs� which are based on ordi-
nary differential equations� and is less amenable to analysis.
This problem is augmented by the fact that many biological
networks of interest are considerably large.

One of the main analytical methods for systematically
exploring the stochastic properties of these networks has
been the linear-noise approximation.5,6 The advantage of this
method is the relative ease with which one can compute the
magnitude of intrinsic noise �i.e., coefficients of variation
and Fano factors�. The major drawback is that the linear-
noise approximation gives only meaningful results provided
the copy number of molecules is not small or to be more
precise it is correct in the limit of infinitely large reaction
volumes, i.e., the same limit in which the REs are valid.
Since intracellular reactions occur in the opposite limit of
small volumes, it is highly desirable to calculate the finite-
volume corrections to the concentrations and moments of
intrinsic noise.

Developing a theory of finite-volume corrections pre-
sents a considerable analytical challenge. One way to obtain
the latter is via the system-size expansion of the CME.5 The
linear-noise approximation comes about by evaluating the
first term �of order V0 where V is the reaction volume� in thisa�Electronic mail: ramon.grima@ed.ac.uk.
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expansion. The next term is proportional to V−1/2 and hence
consideration of this term will necessarily give a finite-
volume correction. Grima7,8 calculated the first such correc-
tions for the mean concentrations of species involved in
single-substrate enzyme reactions and recently also for a
general chemical reaction network of arbitrary complexity.9

The general result is that the kinetics of a reaction pathway
confined in a volume V can be described by the usual REs
plus new terms which are proportional to V−1. These equa-
tions are referred to as effective mesoscopic rate equations
�EMREs�. The differences between the solution of EMREs
and the corresponding REs for finite volumes stems from a
coupling between the mean concentrations and the fluctua-
tions about them. EMREs can be explicitly solved for path-
ways characterized by a handful of chemical species, but
otherwise one has to resort to numerical solution. In the latter
cases, one obtains a solution at the expense of losing the
insight which typically comes from analytical results.

In this article we develop an alternative, powerful
method of calculating finite-volume corrections to the solu-
tions of the REs. Note that in the context of this article,
finite-volume corrections exclusively refer to corrections to
the mean concentrations not to the moments of intrinsic
noise. The method is based on the Poisson representation of
the CME rather than the system-size expansion used in the
derivation of EMREs. This method unlike the system-size
expansion has been applied to study systems of biochemical
or biological relevance in only a handful of cases �see for
example Refs. 10 and 11� but as we shall show it is a tool
with great potential for this field. We focus on chemical re-
action networks which are composed of enzyme-catalyzed
reactions, a commonly encountered case in intracellular
biochemistry.12 We show that when the timescales of com-
plex and substrate fluctuations are well-separated, it is pos-
sible to obtain explicit and impressively simple equations for
the finite-volume corrections. For simple reactions these cor-
rections are shown to be the same as given by the EMRE.
The distinct advantage of the new method over the EMRE is
that it provides analytically simple results even for complex
networks with hundreds or thousands of species. This is in-
herently possible because of the large reduction in the effec-
tive dimensionality of the CME when timescales are well
separated.

The paper is organized as follows. In Sec. II, we derive
the Poisson representation for a general enzyme-reaction net-
work and use the resulting Fokker–Planck equation �FPE� to
obtain an exact Liouville equation encoding all information
about deviations from the deterministic solution of the REs.
In Sec. III we show that in the limit of well-separated times-
cales of complex and substrate species, the Liouville equa-
tion simplifies to a compact approximate form. This is used
in Sec. IV to compute explicit expressions for the finite-
volume corrections of a general network. In the latter section
we show that the corrections for a simple Michaelis–Menten
type reaction agree with those previously derived using the
EMRE formalism. More importantly we apply the theoretical
results to two common types of large-scale networks and
confirm the predictions using simulations. We finish by a
discussion in Sec. V.

II. THE POISSON REPRESENTATION FOR THE
ENZYME REACTION NETWORK

In this section we use the Poisson representation to de-
rive a general FPE for an enzyme reaction network. The
latter while being exactly equivalent to the CME is much
more amenable to analysis and hence is a very convenient
starting point for detailed calculation purposes.

We consider a generic type of enzyme network com-
posed of two major types of chemical processes: �i� the input
of a substrate species A0 into a subcellular compartment; �ii�
the transformation of A0 into some final product AN via N
consecutive enzyme-catalyzed reactions of the type

Ei + Ai�
k−1

i

k1

Ci→
k2

i

Ei + Ai+1, �1�

where Ai, Ci, and Ei denote the ith substrate, complex, and
enzyme species, respectively; the index i takes values from 0
to N−1 and the k’s denote the relevant macroscopic rate
constants. Note that we have assumed here that the bimo-
lecular reaction rate, k1, is the same for all substrates. Note
also that in such types of networks there are N distinct sub-
strate species, an equal number of distinct complex species
and a number of enzyme species varying between 1 and N.
The freedom in choosing the number of enzyme species
comes from the fact that an enzyme can generally bind to
more than one type of substrate.

If we assume that we have well-mixed conditions inside
the compartment then the instantaneous description of the
state of a chemical system at time t is simply given by the
vector of the absolute number of molecules of each species,
n= ��nAi

� , �nEi
� , �nCi

��. Since the mesoscopic kinetics are sto-
chastic, a full description of the system is necessarily proba-
bilistic and is achieved by defining the probability density
function P= P�n , t� and its time-evolution equation, which is
commonly referred to as the CME �Refs. 5 and 13�

�tP = �
i=0

N−1

�iP + �P , �2�

�i =
k1

V
��Ai

�Ci

−1 − 1�nAi
nEi

+ k−1
i ��Ci

�Ai

−1 − 1�nCi

+ k2
i ��Ci

�Ai+1

−1 − 1�nCi
, �3�

� = kinV��A0

−1 − 1� , �4�

where V is the compartment volume, � is the contribution
due to the input of substrate species A0 into the system at a
rate kin while �i describes the ith catalytic reaction step, Eq.
�1�, in the reaction network. The CME is compactly ex-
pressed using Van Kampen’s step operators defined as
�Xi

�1g�nXi
�=g�nXi

�1�.
Substantially, the CME depends only on the set of vari-

ables �nAi
� and �nCi

� since an enzyme molecule can be either
in the free state or in the complexed state and hence the
variables �nEi

� are redundant. We can express this conserva-
tion law by writing nEi

=ET
i −� jGijnCj

where the matrix Gij is
defined by construction to be
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Gij = �êi� j = 	1 enzyme i binds substrate j

0 otherwise.

 �5�

The N-dimensional vector êi is associated with the enzyme
binding substrate in the ith catalytic reaction. Its jth entry is
chosen to be equal to one if the enzyme can form a complex
with the jth substrate and zero otherwise. Hence the connec-
tivity of the network is explicitly encoded in the form of
these vectors.

We define the moment generating function, parameter-
ized by the vector of continuous variables, z= ��zAi

� , �zCi
��, as

G�z� = �
n

�
i

zAi

nAizCi

nCiP�n� . �6�

Multiplying the CME, Eq. �2�, by �izAi

nAizCi

nCi, performing the

summation over all values of the variables n and expressing
the resulting equation in terms of the moment generating
function G�z�, we obtain the moment generating function
equation

�tG�z� = �k1�i
Ri

G + SG�G , �7�

SG = kinV�zA0
− 1� , �8�

Ri
G = �zCi

− zAi
��Êi�z

Ai − KM
i �z

Ai� + K2
i �zAi+1

− zAi
��z

Ci, �9�

where Êi abbreviates �ET
i �−V−1�zCi

�C
i and �ET

i �=ET
i /V is the

total enzyme concentration associated with the enzyme bind-
ing substrate in the ith catalytic reaction step. Furthermore
we set K1

i =k−1
i /k1, K2

i =k2
i /k1, KM

i =K1
i +K2

i �commonly re-
ferred to as the Michaelis–Menten constant�, and �z

X=� /�zX.
Note that in Eq. �9� all derivatives are to the right.

We proceed by making use of Gardiner’s Poisson repre-
sentation. At the heart of this method is the assumption that
the probability density function P�n , t� can be expanded as a
superposition of multivariate uncorrelated Poissons13,14

P�n,t� =� d��
i

e−�Ai
V��Ai

V�nAi

nAi
!

e−�Ci
V��Ci

V�nCi

nCi
!

f��,t� ,

�10�

where the function f�� , t� is usually referred to as the quasi-
probability density function. The vector � is defined to be
���Ai

� , ��Ci
��. It has been shown that this superposition al-

ways exists if the range of � is extended to the complex
plane by analytic continuation of the Poisson kernel. We
have explicitly introduced V in our superposition definition,
which is not customarily done in the Poisson representation.
In doing so, we obtain the representation in intensive vari-
ables, i.e., in units of concentrations, as those encountered in
the theory of REs. The above expansion is equivalent to
writing the moment generating function as

G�z,t� =� d�f��,t�e��zAi
−1��Ai

Ve��zCi
−1��Ci

V. �11�

It follows from Eqs. �7� and �11� �see Appendix A for de-
tails�

− �t f = �R + S�f , �12�

S = kin�A
0 , �13�

R = k1�
i=0

N−1

Ri,

Ri = ��C
i − �A

i ���Ai
Ei − KM

i �Ci
� + K2

i ��A
i+1 − �A

i ��Ci
, �14�

where we have utilized the notation �=V−1/2, �X
i =� /��Xi

.
Note that �AN

=�P is the variable for the product formed after
N catalytic steps. Note also that Ei is not a constant, but is
given by the operator

Ei = �ET
i � − � j

Gij�1 − �2�Cj
��Cj

�15�

which is essentially the Poisson representation of the conser-
vation of total enzyme molecules. The above equation gen-
erally differs from the corresponding deterministic conserva-
tion law in terms of concentrations; the latter is described
only by its average, while the former exhibits finite-volume
corrections due to the finite copy number of enzyme mol-
ecules. Given Eq. �15�, we see that the Poisson representa-
tion, Eq. �12�, yields a FPE in terms of substrate and com-
plex variables. Note also that for the case of N=1 we obtain
the representation for the single-substrate single-enzyme re-
action, which is usually referred to as the Michaelis–Menten
reaction.

This completes the derivation of the Poisson representa-
tion of our general enzyme-reaction network. Note that this
is not the same FPE as that which arises from the system-size
expansion method of Van Kampen.5 In the latter case, the
FPE is an approximation to the CME in the limit of large
volumes whereas the FPE obtained from the Poisson repre-
sentation is exactly equivalent to the CME.

A further boon of the Poisson representation is that once
we have calculated the moments of the continuous variables,
�Xi

, using the FPE, we can very easily find the corresponding
moments of the copy number of molecules, nXi

, using the
following simple relationships:14


nXi
�

V
= 
�Xi

� , �16�


nXi
nXj

�

V2 = 
�Xi
�Xj

� +
1

V
�i,j
�Xi

� , �17�

where the angled brackets imply the statistical average: on
the left hand side of the above equations these are given by

..�=�dn . . P�n , t� while those on the right hand side imply

..�=�d� . . f�� , t�.

A. The mesoscopic equation

The kinetics becomes deterministic in the macroscopic
limit of infinitely large volumes. This can be easily verified
by noting that all second-order derivatives in the FPE are
multiplied by a factor proportional to the inverse of the vol-
ume. To compute the finite-volume corrections we will need
to separate the mesoscopic and macroscopic evolution equa-
tions. We now show that this can be done by applying a
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suitable change of variables to the Poisson representation.
The macroscopic corresponds to a shot noise contribution,
which agrees on average with the mean-field result i.e., with
the solution of the REs for the substrate-enzyme network.
The mesoscopic contribution reflects the nonequilibrium
properties of the network due to the bimolecular character of
the substrate-enzyme interaction, and depends parametrically
on the mean-field expectation.

We express the deviation from the deterministic path by
the following change of variables:

��Ai
,�Ci

� → ��Ai��t� + �	Ai
,�Ci��t� + �	Ci

� . �18�

We shall refer to 	Xi
as the mesoscopic correction to the

deterministic, macroscopic concentration �Xi� of species Xi.
Note that the above equation has the same apparent form as
the Van Kampen �VK� ansatz,5,6 at the heart of the system-
size expansion, but the context of the application is com-
pletely different. The VK ansatz is applied to the integer
number of particles in the CME leading to an infinite series
in powers of the inverse square root of the volume, which
has to be truncated; the first term of this expansion �the one
proportional to V0� gives a linear FPE which is an approxi-
mation to the CME. In our case the change of variables, Eq.
�18�, is applied on the FPE arising from the Poisson repre-
sentation which leads to a finite series and allows for exact
analytical treatment; as we shall show now, this divides the
exact FPE into a macroscopic term and a term which cap-
tures all deviations from the macroscopic.

The transformation applied to the FPE transforms the
time derivative into

� �

�t
�

�

f��,t� = � �

�t
�

	

f��X� + �	,t�

+ �d	

dt
�

�

· �	 f��X� + �	,t� , �19�

where � /�t �x denotes taking the derivative with x held con-
stant. It follows from Eq. �18� that d	 /dt ��=−�−1d�X� /dt.
Finally by expressing the right hand side of Eq. �12� in terms
of the new variables 	 and equating the result to Eq. �19�, we
find that the FPE takes the form

−
�

�t
g�	� = k1Lg�	� + �−1�k1Rmacro + Smacro

−
��A�
�t

· �	A
−

��C�
�t

· �	C
�g�	� , �20�

where the relevant operators are

Smacro = kin
�

�	A0

, �21�

Rmacro = �
i

��Ei��Ai� − KM
i �Ci��

�

�	Ci

+ �
i

�K1
i �Ci� − �Ei��Ai��

�

�	Ai

, �22�

L = �i
���C

i − �A
i ���Ei�	Ai

+ �Ai��Ei + �	Ai
�Ei − KM

i 	Ci
�

+ K2
i ��A

i+1 − �A
i �	Ci

� . �23�

Note that the new probability density function necessarily
satisfies g�	�d	= f���d�. Note also that the notation �X

i now
denotes the derivative � /�	Xi

. The quantity �Ei�= �ET
i �

−� jGij�Cj� is the macroscopic concentration of the free en-
zyme species associated with binding substrate in
the ith catalytic reaction step. The operator �Ei=−��Ei�
−Ei� /�=−� jGij�	Cj

−�C
j �Cj�−��C

j 	Cj
� is the contribution of

the enzyme-operator Eq. �15�.
Note that the resulting form of the FPE is clearly divided

into two parts. In the macroscopic limit the terms propor-
tional to �−1 dominate and their sum must equate to zero; this
leads to the macroscopic equations. It also then follows that
the mesoscopic equation is simply given by

�
g�	,t� = − Lg�	,t� , �24�

where we have renormalized time to 
=k1t. Note also that
due to the Poissonian nature of the substrate input process, it
only contributes to the macroscopic part, a feature which is
unique to the Poisson representation. We emphasize that up
until this point, we have made no approximations and hence
the resulting mesoscopic equation is exact.

III. ADIABATIC ELIMINATION OF THE COMPLEX
SPECIES VARIABLES

In this section we show how to rigorously eliminate the
fast variables from our description. This will be done in two
steps: on the macroscopic contribution of the FPE and on the
mesoscopic contribution including terms up to order � �i.e.,
finite-volume corrections�. As we shall see later on, the re-
duced mesoscopic description does depend on the reduced
macroscopic description and hence the need to treat the latter
first.

A. The reduced macroscopic equations

The macroscopic equations are obtained from Eq. �20�
by taking the limit �→0, leading to

d�Ai�
dt

= k−1
i �Ci� − k1�Ei��Ai� + �i,0kin,

d�Ci�
dt

= k1�Ei��Ai� − �k2
i + k−1

i ��Ci� ,

�25�
d�AN�

dt
= k2

N−1�CN−1� ,

�Ei� = �ET
i � − �

j

Gij�Cj� .

These agree exactly with those that can be obtained from the
RE approach. The elimination of the complex species from
the macroscopic equations is a well-known procedure com-
monly referred to as the quasisteady-state approximation
�QSSA�.15,16 Briefly speaking the approximation is tanta-
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mount to assuming that the complex equilibrates on a much
shorter timescale than the substrate. This is implemented by
imposing the approximation d�Ci� /dt=0 on the macroscopic
equations. The resulting reduced equations �commonly re-
ferred to as the Briggs–Haldane equations� are then given by
replacing �Ci� in the full time-evolution equations for the
substrate concentrations by

�Ci� =
�Ei��Ai�

KM
i . �26�

B. The reduced mesoscopic equation

Now we are interested in deriving the reduced mesos-
copic equation corresponding to the reduced macroscopic
equations that we just considered. Timescale separation on
the mesoscopic scale is nontrivial because of the inherent
correlations between the mesoscopic fluctuations of the vari-
ous species. Our presentation shall be as follows. First we
shall show that the mesoscopic Liouvillian, Eq. �23�, can be
generally cast into an asymptotic form of the interaction rep-
resentation which is typically encountered in the theory of
adiabatic elimination of fast fluctuating variables.17,18 The
latter yields a particularly simple result for the reduced me-
soscopic equation.

We will now show that the Liouvillian can be rewritten
in the general form

L��� = �L1 + �1/2L2 + L3, �27�

where �−1 is the characteristic fast timescale of the complex
fluctuations which will be specified later on. We now pro-
ceed to derive the operators L1, L2, and L3 for the general
enzyme-reaction network under study. We start by grouping
all terms containing only the pair of complex variables
�	Ci

,�C
i � into L1, terms concerning solely the substrate ones

�	Ai
,�A

i � into L3, while treating the remaining terms as inter-
action L2. Thus we have

L1 = �
i

L1
�i�, L2 = �

i

L2
�i�, L3 = �

i

L3
�i�, �28�

L1
�i� = �C

i ��Ai��Ei − KM
i 	Ci

� , �29�

L2
�i� = − �A

i ��Ai��Ei − KM
i 	Ci

� + K2
i ��A

i+1 − �A
i �	Ci

+ ���C
i − �A

i �	Ai
�Ei, �30�

L3
�i� = − �A

i �Ei�	Ai
. �31�

It is instructive to rescale all complex variables by their char-
acteristic timescale �

zi = �1/2	Ci
, xi = 	Ai

. �32�

The operator L3 is trivially obtained

L3
�i� = − �x

i �Ei�xi. �33�

Note that �x
i denotes the derivative � /�xi whereas �X

i stands
for the derivative � /�	Xi

. Next we observe that the enzyme
operator transforms as

�1/2�Ei = − �
j

Gij�zj − ��z
j�Cj� − ��1/2�z

jzj� . �34�

Plugging this into Eq. �29� and putting L1
�i�→�L1

�i� we find
that the last term in Eq. �34� can be asymptotically neglected.
Hence the dominant contribution in the limit of large � is
given by

L1
�i� = − �z

i� j
Mijzj + �z

i� j
Dij�z

j , �35�

where we have utilized the abbreviations

Jij = ��Ai�Gij + KM
i �ij�, Mij = �−1Jij, Dij = Gij�Ai��Cj� .

�36�

Thus the asymptotic form of the complex fluctuations is de-
scribed by an Ornstein–Uhlenbeck process, centered on the
deterministic expectation Eq. �26�. It is clear, by virtue of the
fluctuation-dissipation theorem, that the matrix J� �constant
matrices, i.e., those independent of the 	Ai

and 	Ci
variables

and of the associated partial derivatives are underlined
throughout the rest of the article� must correspond to the
Jacobian of the complex species while the matrix D� deter-
mines the strength of the fluctuations in the Poisson repre-
sentation. Note that throughout the article by Jacobian of a
species we mean the negative of the Jacobian matrix as ob-
tained from the macroscopic rate equations of that species
with the time scaling 
=k1t.

The characteristic timescale �−1 can be inferred from the
explicit form of the Jacobian. We choose �� tr�J�� giving the
relaxation rate of the complex vector z. Consequently M� is
finite, as required by the stability of L1, and is given by the
Jacobian of unit trace. Equally we observe that the Jacobian
of the substrate vector x is given by the diagonal matrix
E� =diag��Ei��, such that its relaxation rate is proportional to
its trace. Thus under the condition where �� tr�E� �, we can
assume that the timescales of substrate and complexes are
well-separated. The result can be interpreted as follows: L1

represents the fast nonequilibrium fluctuations of the com-
plex and L3 reflects the slow Poissonian decay of the sub-
strate fluctuations.

Finally we turn our attention to the interaction, we put
L2→�1/2L2 and rearrange to emphasize its dependence on
the complex variables

L2
�i� = � j


ijzj + � j
�ij�z

j ,


ij = �x
i Mij +

1

�
��ijK2

i ��x
i+1 − �x

i � + ��x
i xi� ,

�ij = ��ij�Ei�xi − �x
i Dij − ��x

i xiGij�Cj�� . �37�

For notational convenience, we have considered only terms
proportional to z and �z, namely, those which give nonvan-
ishing contributions in the following. We emphasize that
Eqs. �33� and �37�, together with Eq. �35� yield the contribu-
tion to the mesoscopic equation under the condition of well-
separated substrate- and complex timescales.

It is clear that the reduced substrate density function
h�x�=�dzg�x ,z� cannot simply be deduced from L3, but
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must retain a contribution from the inherent coupling to the
rapid fluctuations of the complex species. However, it is
known13 that in the limit of well-separated timescales, a par-
ticularly simple result can be obtained by projecting the evo-
lution equation on the steady-state of the fast variables. The
technique is the adiabatic elimination of the fast variables
and can be accomplished by the use of the projector Pg
=��z��dzg�x ,z�, with � being the steady-state distribution of
the fast variable vector z, determined by the steady-state con-
dition L1�=0.

The applicability of the method follows directly from the
asymptotic form Eq. �27�, which has been derived here ex-
plicitly for the large-scale enzyme-reaction networks under
consideration, together with the conditions PL3=L3P, PL1

=L1P=0, PL2P=0,13 which can be easily verified from Eqs.
�33�, �35�, and �37�. The result in the limit of large � has
been formally derived by Gardiner13 and reads

− �t�Pg� = lim
�→�

PL���g = �L3 − PL2L1
−1L2��Pg� . �38�

Integration over z yields the reduced evolution equation

− �th�x,t� = L�h�x,t� , �39�

L� = lim
�→�

L��� = L3 − 
L2L1
−1L2��. �40�

The mesoscopic description is now reduced to that of the
substrate only. The angled brackets 
 · �� denote the trace
�dz ·��z� taken over the rapid steady-state fluctuations of the
complex species. We now substitute Eq. �37� into Eq. �40�

L� = L3 − �
ij

�

zL1
−1zT��
T�ij − �

ij

�

zL1
−1�z

T���T�ij .

�41�

The explicit form of the correlators involved has been de-
rived in Appendix B using the steady-state condition. The
result is

− 
zL1
−1zT�� = S� � M� −1D� TM� −T, − 
zL1

−1�z
T�� = M� −1.

�42�

Hence using Eq. �41� together with Eq. �42�, we get the
final form for the reduced Liouvillian in a convenient matrix
form, which yields the mesoscopic implementation of the
QSSA

L� = L3 + �
ij

�
S� 
T�ij + �
ij

�
M� −1�T�ij . �43�

IV. FINITE-VOLUME CORRECTIONS

In this section we will use the reduced mesoscopic de-
scription to compute the finite-volume corrections to the
macroscopic steady-state concentrations of all substrate spe-
cies in the network. By definition, the concentration of spe-
cies A� according to the stochastic model is given by ��

= 
n� /V�. Using Eq. �16� together with Eq. �18� it is straight-
forward to show that

�� = �A�� + �
x�� . �44�

Hence the size of the finite-volume correction to the macro-
scopic concentration of species A� is simply given by 
x��.
The time-evolution equation for the latter can be computed
directly from our reduced mesoscopic equation, Eq. �39� to-
gether with Eq. �43�, yielding

− �

x�� =� dx x�L�h�x� . �45�

We evaluate the corrections associated with the substrate,
��N, to leading order in x and �. Defining the transfer
matrix T� �,i=K2

i ��i+1,�−�i��, one can show the following re-
sults:

� dx xL3h = E� 
x� , �46�

−� dx x�
ij

�
M� −1�T�ijh = �1� + T� M� −1�E� 
x� +
�

�
M� S ,

�47�

� dx x�
ij

�
S� 
T�ijh =
�

�
�M� + T� �S , �48�

where S is the vector obtained by summing over all rows of
the matrix S� , i.e., �S�i=� jSij

T . Summing up these equations,
we obtain

�

x� = T� �M� −1E� 
x� −
�

�
S� �49�

which has the steady-state solution 
x�= �� /��E� −1M� S. Note
that the result is virtually independent of �, if we rewrite


x�� = ��
i

�E� −1D� J�−T��i. �50�

Hence it is clear that the finite-volume corrections for sub-
strate species are nonzero; this indeed signals the breakdown
of the law of mass action on mesoscopic length scales or
equivalently for low copy number of molecules.

It can also be shown that the elements of the inverse
Jacobian of the complex are given by

Jij
−1 =

1

KM
j ��ij −

aiGij

1 + êi
Ta� êi

� , �51�

where a� =diag��Ai� /KM
i � and ai is the ith diagonal element of

the latter matrix with value �Ai� /KM
i �the reduced macro-

scopic substrate concentration of species i�. Given the defi-
nition, Eq. �5�, it is straightforward to verify from the above
equation that the elements of the inverse Jacobian are always
positive-valued. Since both matrices D� and E� −1 are also posi-
tive it then follows that the finite-volume corrections to the
substrate concentration, Eq. �50�, are always positive. In
other words, the predictions of the REs will always underes-
timate the steady-state substrate concentrations for a
substrate-enzyme network confined in a small volume.

The equations for the finite-volume corrections can be
conveniently expressed in a form which is useful for obtain-

195101-6 Thomas, Straube, and Grima J. Chem. Phys. 133, 195101 �2010�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  155.198.8.192 On: Mon, 03 Oct 2016

13:03:42



ing insight about the physical origin of the corrections and
also for their numerical computation. We write the matrix
D� =A� G� C� where A� =diag��Ai�� and C� =diag��Ci��. The Jaco-
bian of the free enzyme is simply the transpose of the Jaco-
bian of the complex such that �JE

−1�i=� jJji
−1; this can be di-

rectly computed using Eq. �51�. These two equations
together with the steady-state condition, Eq. �26�, written
here as C� =E� a� , the identity �E� −1G� E� ��j = �ê�� j and Eqs. �44�
and �50�, allow us to write a simple, final equation for the
steady-state substrate concentration as predicted by the sto-
chastic model

��

�A��
= 1 + R�, �52�

where

R� =
1

V
ê�

Ta�JE
−1. �53�

The parameter R� is proportional to the product of the relax-
ation time of the enzyme species and the corresponding re-
duced macroscopic substrate concentration, summed over all
substrates which can bind to the same enzyme. It is also
straightforward to derive expressions for the relative error
made by the RE model, for the absolute differences between
the reduced mesoscopic and macroscopic concentrations and
for the absolute differences between the sum of the reduced
mesoscopic and macroscopic concentrations, respectively

Rerror
� =

�� − �A��
��

=
R�

1 + R�

, �54�

�� − �A��
KM

� = R�a�, �55�

�
�

�� − �A��
KM

� = �
�

R�a�. �56�

In the following subsections, we will apply the general re-
sults developed so far, to three different cases which are
commonly encountered in biology. We will verify the main
theoretical predictions, i.e., Eqs. �54�–�56�, by comparison
with detailed stochastic simulations.

A. Single-substrate reaction with single-enzyme
species

The reaction where a single-enzyme species catalyzes
only a single-substrate is the classical Michaelis–Menten re-
action textbook example

→
kin

A0, E0 + A0�
k−1

0

k1

C0→
k2

0

E0 + A1. �57�

The enzyme only binds to a single substrate species and
hence G00=1. It then follows that Eq. �53� evaluates to

R0 =
1

KM
0 V

a0

�a0 + 1�
, �58�

where a0= �A0� /KM
0 . Substituting the above in Eq. �52� gives

an expression for the ratio of the mesoscopic and macro-
scopic substrate concentrations; this agrees exactly with that
obtained by taking the limit of well-separated timescales
�i.e., �= ��A0�+KM

0 �� �E0�� of the finite-volume correction
previously calculated by Grima8 using the system-size ex-
pansion including terms of order V−1/2. Note that the finite-
volume corrections are significant for large steady-state sub-
strate concentrations, i.e., when the enzyme is working in
saturated or near-saturated conditions. The predicted depen-
dence of the relative error �i.e., Eq. �54� together with Eq.
�58�� on the size of the finite volume was tested using sto-
chastic simulations �Fig. 1�. Numerics and theory agree very
well over at least three orders of magnitude of the compart-
ment volume, or equivalently over the whole typical physi-
ological range of enzyme copy numbers �from 1 to 1000�.

B. Multisubstrate network with single-enzyme
species

We now consider a network where different substrates
compete for catalysis by a single-enzyme species

→
kin

A0, E0 + A0�
k−1

0

k1

C0→
k2

0

E0 + A1,

E0 + A1�
k−1

1

k1

C1→
k2

1

E0 + A2,

. . .

�

�

�

�
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FIG. 1. Single-substrate, single-enzyme reaction. Finite-volume scaling of
the relative error in the substrate concentration as predicted by the RE
model, i.e., Rerror

0 = ��0− �A0�� /�0. The error stems from a finite-volume cor-
rection to the mean concentration due to intrinsic noise. The solid line shows
the theoretical estimate as given by Eq. �54� together with Eq. �58� in the
text. The data points are obtained from simulations carried out using
Gillespie’s stochastic simulation algorithm under steady-state conditions.
The parameters are KM

0 =1 /5 �k1=5, k2
0=0.5, k−1

0 =0.5� and �ET
0�=0.5. Time-

scale separation is guaranteed since �= ��A0�+KM
0 �=10�E0� and near-

saturation conditions ensue since kin / �k2
0�ET

0��=0.8 �a value of 1 indicates
complete saturation�. The upper x-axis indicates the corresponding discrete
number of enzyme molecules �ET

0�V used in the simulation. Note that the
agreement between theory and simulation is excellent even when there is
just one enzyme molecule in the compartment.
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E0 + AN−1 �
k−1

N−1

k1

CN−1 →
k2

N−1

E0 + AN. �59�

Such type of reactions is commonly associated with the
methylations of proteins, DNA, and RNA by the methyl-
transferase class of enzymes. A strictly unidirectional methy-
lation occurs for instance in the nitrogen trimethylation of
Lys.19 A single amino acid, embedded in a protein, can typi-
cally be methylated only a few times �e.g., three times in the
case of Lys�. But the mere large number of amino acids
composing proteins means that the number of methylations
can generally be very large. The modification of the protein
from the unmethylated �or even partially methylated� form
A0 to the fully methylated form AN is processed by the en-
zyme within N catalytic steps. Partially methylated interme-
diate states are then described by A1 , . . . ,AN−1. This type of
network has also been proposed as a candidate for explaining
the kinetics of protein digestion.20

The enzyme can now bind to all the substrate species
and hence Gij =1. It also follows that since we have one
enzyme species then �ET

i �= �ET
0�= �ET�. It can then be shown

that Eq. �53� evaluates to

Ri =
1

V
�

j

1

KM
j

aj

a + 1
, �60�

where a=�iai is the sum of reduced macroscopic concentra-
tions. To obtain further insight into the above equation and to
evaluate Eqs. �54�–�56� it is necessary to obtain expressions
for the reduced macroscopic substrate concentrations. Using
the REs, Eq. �25�, and applying the QSSA to the complex
concentration variables we find that the reduced macroscopic
equations are

d�A0�
dt

= kin − v0,
d�Ai�

dt
= vi−1 − vi, �61�

where vi=k2
i �ET�ai / �1+a�, i.e., the catalytic velocity of step

i. Imposing the steady-state condition on the macroscopic
substrate concentration equations, Eq. �61�, we find that the
catalytic velocities of all steps must be the same and equal to
the input rate, vi=kin. It follows that the reduced macroscopic
substrate concentrations are ai=�i�1−��−1 and their sum is
a=��1−��−1 where �i is the dimensionless parameter de-
fined as

�i =
kin

�ET�k2
i �62�

and �=�i�i. Note that �i is the ratio of the input rate and of
the maximum rate at which the enzyme can catalyze sub-
strate Ai into substrate Ai+1. Similarly � is the ratio of the
input rate and of the overall maximum rate at which the
enzyme can catalyze the initial substrate A0 into the product
AN. Hence both �i and � have a value between 0 and 1. It
follows also that � is a measure of enzyme saturation.

Given the above results one can now evaluate Eqs. �55�,
�56�, and �60� which leads to

Ri =
1

V
�

j

� j

KM
j , �63�

�i − �Ai�
KM

i = Ri
�i

1 − �
, �64�

�
i

�i − �Ai�
KM

i = Ri
�

1 − �
. �65�

From Eqs. �52�, �62�, and �63� one can deduce that: �i� the
concentration of each different substrate species is amplified
�from the deterministic concentration� by the same factor;
�ii� the deviation from the predictions of the deterministic
model increases with decreasing volume, decreasing
Michaelis–Menten constants, increasing enzyme saturation,
and increasing network size N. The latter stems from the fact
that increasing the number of substrates will increase com-
petition for the single enzyme species meaning that the copy
number of free enzyme molecules at any one time becomes
smaller and hence leads to increased noise-induced effects.

We have carried out extensive stochastic simulations us-
ing the Gillespie algorithm4 to test the accuracy of our pre-
dictions. The four tests are as follows:

Test 1: Dependence of the finite-volume corrections with
network size. We first impose homogeneous rate constants
i.e., a fixed set of rate constants for all enzyme reactions in
the network. It then follows that if we make the scaling
kin=kin

0 /N, the quantity �=�i�i will be independent of the
network size. Consequently under this scaling, Ri is pre-
dicted to be independent of the size and so is the sum of the
absolute reduced concentrations, Eq. �65�. Stochastic simu-
lations show perfect agreement with this prediction �Fig. 2�
which implicitly proves that the theory correctly predicts that
finite-volume corrections increase with network size. The
relevant simulation parameters are: V=500, k1=1000,
k−1

i =0.5, k2
i =20, �KMV�−1=0.1, �ET�V=5, kin

0 =0.1, �=0.5,
and �=10 tr�E� �.

Test 2: Dependence of the relative error with enzyme
saturation. We fix the Michaelis–Menten constant, KM

i =KM,
and the size of the network. It then follows from Eqs. �54�
and �63� that the relative error is simply given by Rerror

i

=� / ��+KMV�, i.e., the relative error increases with increas-
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FIG. 2. Scaling of the finite-volume corrections with network size for a
multisubstrate network with single-enzyme species. Plot of the absolute dif-
ference between the sum of the reduced mesoscopic and macroscopic sub-
strate concentrations vs the network size N, for a homogeneous set of rate
constants, k−1

i =k−1
0 , k2

i =k2
0. Theory predicts that if the input rate is rescaled

by the network size, kin=kin
0 /N, then the absolute error in steady-state con-

ditions �as given by Eq. �65�� should be independent of network size. Data
points are obtained from stochastic simulations using Gillespie’s algorithm
�with a rescaling of kin as mentioned above� and solid lines are the theoret-
ical estimates using Eq. �65�. Note that in the y-axis label we have used � to
mean �i�i and �AT� to mean �i�Ai�. Parameter values are found in the text.
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ing enzyme saturation. The prediction is verified by stochas-
tic simulation �Fig. 3�a��, where the rate constants were cho-
sen so that k2

i =k2
0 for i even and k2

i = f−1k2
0 for i odd and the

specific parameter values used were: V=500, k1=1000,
N=6, f =0.5, kin=1 /6, k2

0=10, ��10 tr�E� �, �KMV�−1=0.05,
�ET�V=5.

Test 3: Dependence of the relative error with species
type. As previously mentioned, an inspection of Eq. �63�
shows that the quantity Ri and hence the relative error Rerror

i

are predicted to be the same for all species in the network.
This agrees with the results of stochastic simulation �inset of
Fig. 3�b�� of a six substrate network where KM

i = �1+ i�KM
0 ,

k2
i = �1+ i�k2

0, k−1
i = �1+ i�k−1

0 , and the specific parameter values
were: V=1000, kin=1 /60, k2

0=9, k−1
0 =1, k1=1000, �ET�V=5.

Test 4: Dependence of the finite-volume correction on
the position in the network. Here we test the ability of the
theory to predict the absolute difference between the reduced
mesoscopic and macroscopic substrate concentrations as pre-
dicted by the stochastic and deterministic models, i.e., Eq.
�64�, for each individual species in the network. For rate
constants chosen as in test 3, the differences are predicted to
be proportional to �1+ i�−1, which is confirmed by simula-
tions �Fig. 3�b��. All parameter values are exactly as in the
previous test.

C. Multisubstrate network with multienzyme species

Finally we consider a sequential reaction network which
is typically associated with metabolism21

→
kin

A0, E0 + A0�
k−1

0

k1

C0→
k2

0

E0 + A1,

E1 + A1�
k−1

1

k1

C1→
k2

1

E1 + A2,

. . .

EN−1 + AN−1 �
k−1

N−1

k1

CN−1 →
k2

N−1

EN−1 + AN. �66�

This network is characterized by a different enzyme spe-
cies for each separate catalytic step and thus Gij =�ij. The
finite-volume corrections can be easily derived from Eq.
�53�, since the Jacobian of the complex species is instantly
diagonal and hence the result is

Ri =
1

KM
i V

ai

�ai + 1�
. �67�

It is useful to write the above expression in terms of the
constants defining the network by using the REs �with the
QSSA applied to the complex concentration variables�

d�A0�
dt

= kin − vM
0 ,

d�Ai�
dt

= vM
i−1 − vM

i , �68�

where vM
i =k2

i �ET
i �ai / �1+ai� is the catalytic velocity in this

case. The connectivity of the network requires that all cata-
lytic velocities must be the same and equal to the input rate,
vM

i =kin, from which it follows that the reduced macroscopic
concentrations are

ai =
�i

1 − �i
, �69�

where �i=kin /k2
i �ET

i �, a measure of saturation as before.
Hence it follows that Eq. �67� reduces to the simple form

Ri =
1

KM
i V

�i. �70�

It can be deduced from the above equation that the deviation
from the predictions of the deterministic model increases
with decreasing volume, decreasing Michaelis–Menten con-
stants and increasing enzyme saturation as for the previous
network. However unlike the previous case, for the meta-
bolic network we find no dependence on the network size N
and the factor Ri is species-specific implying that the concen-
tration of each different substrate species is amplified �from
the deterministic concentration� by a different factor. Hence
the finite-volume corrections in this network are locally de-
termined whereas in the previously studied network they are
determined by global quantities. This indeed highlights the
influence of network topology on the finite-volume correc-
tions.
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FIG. 3. Dependence of the deviations from the RE predictions with enzyme
saturation and position in the network for a multisubstrate network with
single-enzyme species. In �a� we plot the relative error as a function of �
which is a measure of enzyme saturation. In �b� we plot the absolute differ-
ences in the reduced mesoscopic and macroscopic substrate concentrations
as a function of the substrate species index and hence as a function of
position in the six substrate network. The inset shows the relative error for
all species. The data points are from stochastic simulation and the solid lines
�in �a�� and the open circles �in �b�� are the theoretical predictions. The rate
constants are heterogeneous in both cases but the Michaelis–Menten con-
stants for each reaction in the network are the same for �a� while they vary
according to position in the network in �b�. See the text for parameter values
and for a detailed discussion.
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We have carried out a set of numerical tests in order to
verify the accuracy of the theoretical predictions for the rela-
tive error �as given by Eq. �54� together with Eq. �70�� and
for the absolute differences between the reduced mesoscopic
and macroscopic concentrations �as given by Eq. �55� to-
gether with Eqs. �69� and �70��. The two tests are carried out
on a six substrate network and are as follows.

Test 1: Heterogeneous catalytic constants and homoge-
neous Michaelis–Menten constants. The catalytic constant is
chosen to vary with species i by imposing k2

i =0.5�1.32−i

while the Michaelis–Menten constants are all made equal
KM

i =0.1. The other relevant parameter values are kin=0.002,
k1=10, �ET

i �V=2, and V=200. Figure 4�a� shows a compari-
son between the theory and the stochastic simulations. Note
that the relative error for each species is different, in contrast
to that for the previous network �inset of Fig. 3�b��.

Test 2: Heterogeneous Michaelis–Menten constants and
homogeneous catalytic constants. The catalytic constants are
all made equal, k2

i =1, while the Michaelis–Menten constants
are made heterogeneous by choosing the complex dissocia-
tion constants to be substrate-specific, k−1

i =9�1.32−i. The
other parameters are kin=0.002, k1=200, �ET

i �V=1, and V
=400. Note that in this case the reduced macroscopic con-
centrations are all equal, �Ai� /KM

i =4, since Eq. �69� only

depends on the catalytic constants. In contrast, the reduced
mesoscopic concentrations are predicted and confirmed by
simulation �Fig. 4�b�� to vary from one species to another.
This is due to the explicit dependence on the Michaelis–
Menten constant in Eq. �70�.

V. DISCUSSION

In this article we have developed a new approach to the
calculation of finite-volume corrections to the substrate con-
centrations as predicted by the RE theory of enzyme-
catalyzed networks. This theory is complementary to the
general theory of EMREs recently developed by Grima.9 The
EMRE theory gives explicit analytical results only for rela-
tively simple biochemical circuits; we have verified that for
one such simple case, i.e., the single-substrate, single-
enzyme reaction, the present theory gives the same result as
the EMRE. This is an important benchmark for both theories
since they were derived using completely different methods
�the Poisson representation and the system-size expansion�.
A noteworthy achievement of the present theory over the
EMRE theory is that it can produce analytical results even
for very complex networks involving arbitrarily large num-
bers of species; this comes about by imposing a separation of
timescales of all substrate and complex species in the net-
work which results in a very substantial dimensional reduc-
tion of the CME, a result akin to that obtained from applying
the QSSA on the REs. To our knowledge, this is the first time
that the “mesoscopic QSSA” has been used to obtain a
simple analytical picture of the stochastic dynamics of large
networks in finite volumes, i.e., considering effects beyond
the conventional fluctuation-dissipation theorem or equiva-
lently beyond those which can be predicted using the linear-
noise approximation. Previous studies employing the meso-
scopic QSSA have been principally occupied with the need
to increase the speed of stochastic simulation.22–25

In particular, using our approach, we have conclusively
shown that the predictions of the RE models for the substrate
concentrations will always underestimate the real substrate
concentrations of a network confined in a finite-volume. A
generic prediction is that the size of the differences increases
with decreasing subcellular volume, decreasing Michaelis–
Menten constants and increasing enzyme saturation. The to-
pology of the network plays a determining role in the mag-
nitude of these corrections and how they vary according to
the “position” of the substrate species in the network. For
example for the multisubstrate, single-enzyme network we
find that the mesoscopic concentrations of all substrate spe-
cies are larger than the RE predictions by the same factor �a
global effect� whereas in the multisubstrate, multienzyme
network the factor is species-specific �a local effect�.

We note that in this study we have not considered the
effects of diffusion and of finite particle size on the stochas-
tic kinetics; for the case of a simple single-substrate, single-
enzyme reaction, these factors have been shown to induce a
renormalization of rate constants which is apparent even at
deterministic length scales.26 This suggests that the finite-
volume corrections that we estimated in this paper constitute
only a lower-bound on the actual differences between the
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FIG. 4. Multisubstrate network with multienzyme species. �a� Heterogeneous
catalytic constants and homogeneous Michaelis–Menten constants; �b� het-
erogeneous Michaelis–Menten constants and homogeneous catalytic con-
stants. Theoretical predictions are shown as open circles while simulation
results are the data points. Theory predicts that the relative error for this
network is generally substrate species-specific unlike for the multisubstrate,
single-enzyme network where it is the same for all species. The insets con-
firm this via simulation. For case �b� theory also predicts that the reduced
macroscopic concentrations of all substrate species are equal but the reduced
mesoscopic concentrations are different for each substrate. This is once
again confirmed by simulations which indeed show that the mesoscopic
concentrations increase as we go further “downstream” in the network. De-
tailed parameter values can be found in the text.
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real mesoscopic description �which takes into account intrin-
sic noise and noise stemming from both factors� and the
conventional RE description �which ignores both factors and
also intrinsic noise�.

Concluding we have presented a complete method of
calculation by which one can study the properties of large-
scale stochastic enzyme kinetic networks. We believe that the
ability of the method to give simple expressions describing
the kinetics of such large-scale networks is unprecedented
and hence may lead to new insight into the effects of noise in
biologically relevant networks.
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APPENDIX A: DERIVATION OF THE POISSON
REPRESENTATION FROM THE MOMENT
GENERATING FUNCTION EQUATION

Consider a birth-death Markov process with moment
generating function G�z�, which evolves as �tG�z�=RGG,
where RG�RG�z ,�z�. Note that the generic form of RG has
all the derivatives acting to the right. A complex Poisson
representation can be obtained by expanding G

G�z,t� =� d�f��,t�e��zi−1��iV. �A1�

Note that here the summation in the exponent extends over
all components of z and �. The representation is carried out
in intensive variables �i. Under the condition that f is suffi-
ciently compact, f satisfies a Liouville equation �t f���=Rf ,
where R�R�� ,���. The relation between R and RG can
be clarified by differentiating Eq. �A1� with respect to t

�tG�z� = RGG�z� =� d�f���RG�z,�z�e��zi−1��iV �A2�

=� d�f���RG�1 + V−1��,V��e��zi−1��iV. �A3�

If f is sufficiently compact, such that by partial integration
all boundary terms vanish, we obtain

�tG�z� =� d��RG�1 − V−1��,V��f����e��zi−1��iV. �A4�

Therefore the relation between RG and R is given by

R��,��� � RG�1 − V−1��,V�� . �A5�

Thus formally the Liouville operator R can be obtained by
replacing each zi by �1−V−1��

i � and each �z
i by V�i in RG.

APPENDIX B: EXPLICIT FORM OF THE
CORRELATORS

The reduced description of enzymatic networks involves
the matrix of transport coefficient, defined by
S� �−
zL1

−1zT��, where the steady-state distribution � is ob-
tained from

L1� = 0. �B1�

The quantity is related to the spectrum of the fast mesoscopic
variables z described by L1 at zero frequency. It enters the
reduced evolution as a transport coefficient as a consequence
of the fast relaxation of the variable z. To see this we follow
the derivation in Ref. 13 and consider 
zL1

−1zT��

=�dzzL1
−1�1− P�zT�, since Pz�=0, as required. Now con-

sider

�
0

�

ds exp�− L1s� =
1

L1
exp�− L1s���

0 = L1
−1�1 − P� , �B2�

where we have used that P=lims→� exp�−L1s�. Noticing fur-
ther that exp�−L1s�zT� is a solution to −�sf =L1f with initial
condition zT�, we obtain


zL1
−1zT�� = �

0

�

ds
z�s�zT�0���. �B3�

Thus if the adiabatic elimination is carried out in the Poisson
representation, the transport coefficients are connected only
to the spectrum of the mesoscopic Liouvillian L1, which is
independent of the macroscopic shot noise contribution.
Adiabatic fluctuations are necessarily of Ornstein–Uhlenbeck
form, as shown in the main text. Therefore we consider Eq.
�B1� in the form of the potential condition

�M� z − D� �z�� = 0 �B4�

from which we can easily verify that 
zzT��=−�D� M� −1�T; the
latter is supposed to yield a symmetric expression. Then us-
ing the regression theorem, we have


zL1
−1zT�� = �

0

�

ds exp�− M� s�
zzT�� = − M� −1D� TM� −T.

�B5�

Hence it follows that S� =M� −1D� TM� −T. In a similar manner,
one can also prove that 
zL1

−1�z
T��=−S� �M� −1D� �−T=−M� −1.
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