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Porphyry ore deposits source much of the copper, molybdenum, gold and silver utilized by
humankind. They typically form in magmatic arcs above subduction zones via a series of linked
processes, beginning with magma generation in the mantle and ending with the precipitation of
metals from hydrous fluids in the shallow crust. A hierarchy of four key “triggers” involved in the
formation of porphyry deposits is outlined. Trigger 1 (10%-10° km scale) is a process of cyclic
refertilization of magmas in the deep crust. Trigger 2 (10'-10% km scale) is the process of sulfide
saturation in magmas that can both enhance and destroy ore-forming potential. Trigger 3 (10°-10"
km scale) relates to the efficient transfer of metals into hydrothermal fluids exsolving from
porphyry magmas. Trigger 4 (~10° km scale) identifies processes that lead to the final precipitation
of ore minerals. Although all processes are required to a greater or lesser degree, it is argued that
trigger 3, as an over-riding mechanism, can best explain the restriction of large deposits to specific
arc segments and time periods. Consequently, recognition of the fingerprint of sulfide saturation
in igneous rocks may help mineral exploration companies to identify parts of magmatic arcs
particularly predisposed to ore formation.

Ore deposits are scarce. Their discovery consumes considerable time and resources and only about
one in every one thousand prospects explored by companies is eventually developed into a mine.
Deposits often occur in clusters and formed within specific time intervals. This non-uniform pattern
provides keys to understanding how and why metals accumulate in some places and not in others
and its explanation is fundamental for mineral exploration.

The most important metalliferous ore deposits are hydrothermal deposits, formed from hot
waters circulating in Earth's crust. Such deposits represent a highly efficient trap where fluids were
focused into a limited volume of rock, became supersaturated and precipitated ore minerals. In
theory, this does not require unusual fluid compositions™? as long as fluid focusing, sufficient fluid
flux and efficient precipitation conditions can be maintained. Recently, this paradigm has been
challenged by the recognition that ore fluids in sediment-hosted*”, epithermal®’ and porphyry-
related®*® hydrothermal deposits can carry orders of magnitude more metal than previously
considered probable, or measured in modern fluid samples. This suggests that our understanding of
metal extraction and transport processes is incomplete.
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Here, this theme is explored by consideration of porphyry ore deposits
geochemical anomalies that can contain up to 1 Gt of sulphur'®, 200 Mt copper, 2.5 Mt molybdenum
and 2600 t gold'’. The most copper-rich examples include the 4-5 million-year old El Teniente and
Rio Blanco-Los Bronces deposits in Central Chile, and the most gold-rich is the 3 million-year old
Grasberg deposit in Irian Jaya, Papua New Guinea®’.

Porphyry deposits typically form in oceanic or continental arcs above subduction zones (Fig. 1).
As the oceanic plate and overlying sediment subduct, increasing pressures expel water from the
sediment, and hydrous minerals in the oceanic plate start to break down. Fluids are released into the
overlying mantle wedge causing it to melt (Fig. 1). The magmas produced migrate up into the
continental crust and crystallize to form plutons or erupt at the surface to form volcanic rocks'®.
Somewhere along the way, some of these magmas are transformed, and become capable of
generating porphyry ore deposits.

Porphyry deposits form at several kilometres depth in the crust, associated with pipe- or dyke-
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like porphyritic intrusions (See Supplementary Information). Ore-forming fluids are thought
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to be released from an underlying magma chamber, deriving metals from either the magma
itself**?*?* or by leaching them from surrounding rocks. Fractures above the intrusion allow volatiles

to separate and escape from the magma******

and depressurization causes the fluids to undergo
phase separation into coexisting hypersaline brine and vapour. These fluids then migrate upwards
and outwards, cooling and possibly mixing with circulating ground waters, resulting in precipitation
of metal sulfides.

Although there is a convergence of opinion on ore-forming processes, it is unclear what makes

some systems fertile, i.e. capable of generating large ore deposits®>*

. Many systems that appear to
have very similar geology to ore deposits produce altered rocks that are only weakly mineralized or
barren. Explaining the rarity of large deposits is a challenging scientific problem. The search for such
deposits often requires companies to use costly techniques to probe beneath up to a kilometre of
barren rock so a clearer understanding of what controls their localization is a pre-requisite for more
efficient and environmentally-friendly exploration. This is particularly pertinent given current
concerns over mineral-resource supply and the potential conflicts between the need to secure the
resources required for socio-economic and clean technology development, and the impacts of
resource extraction on the Earth's environment and climate.

Here, four key stages in the formation of porphyry deposits are outlined. It is argued that one of
these, sulfide saturation in silicate magmas, leads to a critical pre-enrichment in metals without
which large porphyry deposits cannot form, and that this process can account for the heterogeneity
in the spatial and temporal distribution of these ores.

Mantle origins of porphyry magmas

The magmas that crystallize to generate porphyry orebodies have their origins in the sub-arc
mantle (Fig. 1). Melt generation in this region is linked to dehydration and/or melting of the
subducting oceanic crust and its veneer of sediment®’, and melting of the overlying mantle wedge
triggered by the infiltration of slab-derived fluids. The nature of these fluids and how they may vary
with depth are still a matter of debate?, but conventionally it is believed that dehydration of the
slab is a principal mechanism for transfer of water-soluble components into the wedge in the
shallower parts, whereas melting of the slab sediment, and the basaltic crust itself, may be
increasingly important behind the volcanic front?*. This picture has been complicated by the
recognition from experimental studies that a continuum exists between silicate melts and aqueous
liquids under subduction zone conditions*'. The chemical and physical properties of these
hydrosilicate fluids are controlled by the polymerization of solutes into melt-like species and they
provide an alternative mechanism for transfer of components from the subducting slab to the
mantle®. Direct evidence of fluids of this kind in nature is provided by unusual silica- and volatile-
rich inclusions in diamond** and mantle xenoliths***°.

To explain the oxidized nature of arc magmas, transfer from the subducting slab to the mantle of
oxidizing components such as H,0, CO, and possibly ferric iron®® has been proposed. Other mobile
species are the large ion lithophile (e.g. Sr, Pb) and high field strength elements (U, Th)*?, and
components derived from subducted sediment (B and Be)***, sulfate®’, and possibly chlorine®. It is
not thought likely that the downgoing slab contributes significant copper or gold™®.

Parental arc magmas are mostly thought to be produced by partial melting of the altered mantle
wedge above the subducting plate (Fig. 1). In order to concentrate metals during partial melting they
must preferentially partition into this melt. The minerals present in the mantle source comprise
silicates (98%), spinel (2%), sulphides (0.07%) and possibly metal alloys (<0.05%)% and it is likely that
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the behaviour of copper, silver, gold and other chalcophile or siderophile metals will be controlled by
sulfides. It has been postulated that around 25% partial melting of “normal” mantle would be
required to extract all the sulfides present® although less (~6%) melting may be required if the
mantle has been oxidized by subduction zone fluids*!. Melting also occurs at lower temperatures if
the mantle has been oxidized and hydrated by volatile species derived from the downgoing slab; this
is potentially one of the reasons why subduction-related arc magmatism favours the formation of
ore deposits in contrast to other parts of the Earth. However, a recent study has suggested that the
source region for typical arc magmas is not unusually oxidized, nor enriched in economic elements of
interest like copper®. Consequently, there is, as yet, little evidence to suggest that selective metal
enrichment to form fertile porphyry magmas occurs in the mantle.

Stewing up magmas in the deep crust

The melts produced in the mantle wedge are high alumina, hydrous basalts. Interaction of these
melts with the continental crust produces the more silica-rich, typically andesitic to dacitic, magmas
that form porphyry deposits and build arc volcanoes. This interaction is thought to occur primarily in
“hot zones” in the lower crust of the over-riding plate (Fig. 1) where underplating and/or intrusion of
the basaltic melts takes place. In these zones, melting and assimilation of lower crustal rocks and
differentiation of the magmas by fractional crystallization produce more silica-rich compositions***.
Further modifications to magma composition may occur on ascent, but it is thought that the base
level geochemical signature is established primarily in this zone*, and it is possibly here that the
fertility of magmas that go on to form porphyry deposits is established (Box 1).

It is generally believed that copper and gold are likely to be derived from the mantle, although
an anomalously enriched lower crust due to the presence of pre-existing ore deposits*® or copper-
rich cumulates from an earlier subduction cycle*? would have a major impact on the fertility of the
magmas formed. Although molybdenum is generally considered to have a crustal origin®’, derivation
from lithospheric mantle (Fig. 1) with a long history of pre-enrichment has also been proposed®.

Ascent of magmas and volatile saturation

Ultimately, separation of a magmatic volatile phase (MVP) enriched in H,0, CO,, HCl, H,S, SO,
and other volatile components is a key step in the transfer of metals from arc magmas into the
highly mobile and buoyant hydrothermal fluids from which porphyry and related epithermal

orebodies form*%

. Significant advances in understanding this complex process have been made in
the past two decades via experimental studies, e.g.*®, but the large number of variables involved in
natural systems hinders a complete understanding of all the potential interactions.

Saturation of a melt with a volatile phase, normally primarily composed of H,0, occurs in
response to changes in crystallization state, temperature, and most importantly pressure of the
magma. These parameters, in buoyant magmas, are controlled largely by ascent through the crust.
Assuming an andesitic melt derived from a deep crustal hot zone initially contains ~10 wt% H,0*,
then it would saturate at about 14 km depth in the crust. At this point, bubbles of aqueous fluid
would begin to exsolve and, due to their low density, would start to percolate towards the upper
parts of the melt body. Crystallization would begin at around 7-8 km depth by which point the melt
would have lost about half of its dissolved water®. The likely presence of CO, in the melt® would
increase the depth of the onset of degassing with the earliest fluids released being the most CO,-
and possibly also SO,-rich, with an evolution toward H,0-rich compositions on ascent. Other
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chemical modifications will be limited because little crystallization will occur and viscosity and
density will remain low and approximately constant®.

The fate and metallogenic significance of volatiles lost at this stage of magma evolution remains
a major unknown. Early exsolution of carbonic fluids may have important implications for metal
availability in the later stages of porphyry formation. This is because covalently-bonded sulfur
complexes of “soft” metals such as copper or gold may be unusually stable in a weakly ionized H,0-
CO, solvent™. Such fluids could help to defertilize a melt by stripping it of metals. However, if large
faults focus the flow of these fluids to shallower crustal levels, they could play a role in the transfer
of metals to form pre-ore enrichments in rocks subsequently intruded by porphyry systems, or to
form mesothermal or epithermal gold deposits. For example, the degassing of copper-rich fluids
from a deep magma chamber (>15 km) was recently suggested based on a study of the Pleistocene
Pilavo volcano in Ecuador®. In addition, some of the near-surface intense alteration of rocks that
occurs when acidic magmatic volatiles dissolve in groundwaters could have formed from fluids
released early from rising magmas. These alteration zones are important for exploration because
they are typically spatially associated with porphyry systems and may host epithermal ores.

Crustal staging chambers for porphyry magmas
Magmas that source porphyry intrusions are thought to be derived from crustal magma
chambers located at 4-10 km depth where, subject primarily to initial water content, andesitic

a5
I

magmas are likely to stall™. The lifespan of these chambers, in which magmas fractionate and

crystallize to form granitic plutons, is probably from 100,000 to >5 million years based on dating of

plutonic phases®**® 56-58

and the age range of associated overlying porphyry and/or volcanic systems
This longevity is not possible without thermal rejuvenation, implying that the chambers grow by
input of multiple batches of andesitic and/or more mafic magma from the deep crustal melt
reservoir>. This can lead to complex evolution pathways, reflected in the variety of volcanic rocks
observed at surface. It is in this environment that sulfide saturation could occur (Box 2) leading to
the production of metal-enriched regions within the chamber that could later be cannibalized by
exsolving aqueous fluids.

Episodically, magma can escape from apophyses on the top of the magma chamber to form
cylindrical intrusions and dyke swarms that rise to depths of 1-4 km. It is at these depths that
porphyry-related mineralization develops (see Supplementary Information). It is possible that these
escape events are triggered by hotter mafic intrusions into the chamber, e.g.®® which could cause
volatile saturation in the chamber and the rise of plumes of low-density, bubble-rich magma®. If
such an event should coincide with a region of prior sulfide saturation, conditions may be optimized
for porphyry ore formation.

Volatile exsolution and ore formation

The extraction of metals from the melt into a separating volatile phase is a key stage in the
evolution of mineralized porphyry systems®. The efficiency of this process could make the difference
between systems that generate highly metalliferous ore fluids and ultimately form large ore
deposits, and those that just produce weak mineralization (Box 3). Many experimental studies have
investigated partitioning behaviour of metals*® and sulfur® between melt and MVP but the number
of competing variables makes it difficult to establish the most important factors. Melt reduction is a
potentially important trigger process that may significantly enhance transfer of metals into exsolving
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aqueous, sulfur-bearing fluids, assuming that the bulk of copper and gold are transported by
reduced sulfur species®'?, rather than halogens***.

The final step in the formation of porphyry ore deposits involves the escape of magmatic-
hydrothermal fluids upwards and/or outwards from the lithostatically-pressured magmatic source®,
primarily through fractures, where they undergo cooling, depressurization and react with
surrounding wall rocks. The processes involved are complex®. Recent models have proposed that
cooling and expansion of vapour-like fluids is the primary control of ore deposition® as solubility of

6657 Numerical

sulfides is strongly related to temperature and the density of transporting fluids
modeling suggests that the dynamic evolution of permeability in the fracture network that develops
above a porphyry intrusion is probably an important control on the localization of the precipitation
front®®. An additional sulfide precipitation mechanism, particularly in the later stages of
hydrothermal evolution, is related to the neutralization of acidity in increasingly dissociated, cooling
magmatic fluids by reaction with feldspars to form fine-grained white mica, illite and clays®. In order
to form an economically exploitable porphyry orebody, fluids must be channelled through a
relatively small volume of rock and the precipitation of metal sulfides must be very efficient within

this volume (Box 4).

Episodicity and rarity of ore formation

The conventional view of the hydrothermal ore deposit as a zone of highly efficient
precipitation from unexceptional fluids poses an interesting mass balance conundrum for ore
deposit modellers because low metal concentrations require very large fluid fluxes for the formation
of giant deposits. This typically requires the existence of stable flow systems over hundreds of
thousands to millions of years, for which there is rarely good evidence. In the case of porphyry
systems, numerical models and detailed geochronology suggest that an individual hydrothermal

system linked to an intrusion is likely to be active for no more than 50-100 ky>*°

. The recognition
that porphyry ore fluids commonly contain up to 1 wt% copper (and possibly several times more
than this in some cases), means that the mass of fluid required to form giant deposits is actually
rather modest. If the source magma contained around 5 wt% fluid by mass, only ~50 km® of magma
in the crustal chamber, equivalent to a sphere of radius ~2.3 km, is all that would be needed to
provide the requisite metal-rich fluid for a giant (10 million tonnes of Cu metal) orebody.

Here, it is suggested that certain hydrothermal systems have what is referred to as a
predisposition to form ore — the enrichment of a system in metals at depth that leads to a
subsequent evolutionary path towards ore formation, involving a not unusual sequence of crustal
processes. This focuses attention on the processes by which metals are enriched in hydrothermal
fluids, and, in the case of porphyry systems, in their precursor magmas. In order to understand the
rarity of large ore deposits, it is argued that the key step is the process by which the predisposition is
developed, in the fluid / metal source region. This could either be by derivation of fluids (or melts)
from a pre-enriched source (the source rock paradigm, e.g.*®); or by unusually efficient extraction
from an un-enriched source®. The alternative argument, that large deposits are rare because they

require the random coincidence of multiple, coincident, not atypical factors®®”*

—the “perfect
storm” of ore formation —is hard to disprove, but does not satisfactorily explain the clustering of
deposits in certain belts and at certain periods of time. It is clearly necessary for all the ingredients of
ore formation to be in place, yet the existence of a dominant, overriding trigger process that
switches on or off ore-forming predisposition is a simpler explanation for deposit clustering and is

supported by emerging melt and fluid compositional data'®’*”>,
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For porphyry deposits, only two of the triggers discussed above can lead to exceptional metal
endowment on the scale required to form the major porphyry belts. Trigger 1 (Box 1) can potentially
generate fertile melts that then exsolve fertile ore fluids, predisposed to form large and/or high
grade ore deposits when they encounter the suitable trap conditions that may be intrinsic to most
porphyry systems. However, this mechanism does not easily explain the barren or low grade
intrusions that are commonly observed within fertile systems, predicting instead an evolution from
lower to higher fertility through time. The lower crustal hot zone as currently envisaged involves
chemical variations on quite a broad scale such as are recognized along segments of the Andean
arc*. Consequently, it is considered more likely that melt fertilization, if it occurs, takes place in the
mid- to shallow crustal magma chambers.

Trigger 2 (Box 2) is a highly effective process for scavenging and enriching a system in metals
and sulfur at the same time; indeed this process is known to be the fundamental trigger for the
formation of magmatic nickel-copper-platinum deposits in mafic igneous rocks. The problem with
porphyry systems is that this will result in depletion of the remaining silicate melt, so a later
remobilization process is necessary, e.g.”®. Nonetheless, this process will generate highly enriched —
but heterogeneously distributed — sources that could be scavenged later, and on the right scale to
account for observed ore deposit distributions. Unlike the mafic magmas hosting nickel-copper-
platinum sulfide deposits, the water-rich nature of arc magmas makes this later volatile-driven
extraction process potentially viable.

Trigger 3 (Box 3) involves processes operating at scales between that of the crustal staging
chamber and the deposit itself. Although unusually efficient extraction of metals into the
hydrothermal fluid may play a role in governing ore-forming potential, the requirement of specific
geology means that it is unlikely to represent a universal control of fertility. Trigger 4 (Box 4), as
argued above, may be innate to intrusion-centred hydrothermal systems and so does not distinguish
between fertile and barren systems; it does not matter how efficient precipitation processes are if
the fluids involved contain low concentrations of metals and/or sulfur. It should be noted, however,
that the roles of fluid flux and focusing as controls of deposit size are relatively poorly constrained.

In conclusion, it is considered likely that sulfide saturation is a key step that heterogenizes melts
in the mid- to shallow crust and thereby produces regions on the scale of tens to hundreds of km
that are both enriched and depleted in ore metals. Cannibalization of sulfide-rich domains should be
traceable using a range of geochemical proxies which would only be observed within systems that
are fertile. The process by which cannibalization occurs may be related to injections of more
primitive, mafic melts into the crustal chamber; the presence of such magmas has been noted in
many porphyry systems but their role in ore formation has remained enigmatic. It is suggested here
that such intrusions, and release of their contained volatiles, may trigger sudden, local sulfide
undersaturation in the chamber, producing a flush of metalliferous, sulphur-rich volatiles and, at the

60,74

same time, initiating emplacement of a porphyry intrusion”"". A number of previous workers have

proposed that such mafic intrusions could themselves add sulfur and metals during such a
process®’*7°,
Implications for exploration

So where do these ideas take us with regard to our understanding of hydrothermal systems in
general and porphyry ore deposits in particular? The proposal for the generation of a predisposition
to form ore in crustal magma chambers as an explanation for large porphyry ore deposits remains
speculative, although similar conclusions have been drawn for the development of major
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hydrothermal gold deposits®. It is hoped that the synthesis of research ideas from many authors
summarized here provides some pointers to where further work will help us to better understand
the heterogeneous distribution of porphyry and their associated epithermal ore deposits in time and
space. The potential exists to use this science in a practical way because the identification of a
predisposition represents a key step in the evaluation of belts within the Earth that may be more or
less fertile for mineralization. In theory, it should be possible to identify geochemical tracers of the
process or processes that have enriched a certain arc segment in metals. The perfect storm
paradigm implies that large ore deposits are inherently unpredictable and can only be located by
exploration that detects the direct effects of the associated hydrothermal system. The development
of geochemical or isotopic tools that can identify fertilization signatures would appear to be a key
objective that may provide companies with a greater predictive capacity to identify prospective
parts of the Earth’s crust sooner and therefore at lower economic and environmental cost.

Box 1 | Trigger 1 - Cyclic fractionation in deep crustal magma chambers. One of the distinctive characteristics
of magmas that are temporally and spatially associated with large porphyry ore deposits is that they are
enriched in a specific suite of elements, in particular displaying an unusually high Sr/Y ratio. This chemistry has
several proposed origins, but one model is that it is a fingerprint of the crystallization of hornblende * garnet

28183 The link between this process and the propensity of

from water-rich magmas in the deep or mid-crust
magmas to go on to form ore deposits is uncertain®’, but cyclic replenishment of long-lived, deep crustal
chambers by mantle-derived basalts has been suggested as a mechanism for ramping up the content of
volatiles and metals during amphibole fractionation®"®. This potentially generates fertile magmas that can
eventually migrate to shallower crustal levels and generate or deposits. Why are these magmas trapped in the
lower crust for extended time periods? One key piece of evidence is the link between times when subduction
was slowed by the presence of buoyant, topographic features such as ocean ridges on the downgoing plate
and the subsequent formation of large ore depositsn. The attempt to subduct such features would temporarily
put the arc into compression, closing faults that could provide escape pathways, and thereby trapping magmas
for unusually long periods in the deep crust. A change in plate motions could eventually release the
compressional forces and allow fertile magmas to rise. This model is elegant but two key problems remain.
Many fertile porphyry systems evolved over several million years with the emplacement of barren or weakly
mineralized intrusions as well as fertile ones™. This timescale is significantly shorter than that which relates to
the subduction processes discussed above and no consistent links have been established between changing
tectonic stress and the emplacement of barren or mineralized intrusions. Furthermore, the earliest pulses of
magma in any one cycle are typically most strongly mineralized"™, contrary to the proposal of the model. This
seems to point towards a shallower switch, active on a shorter timescale, that could control porphyry ore
formation.

Box 2 | Trigger 2 — Magmatic sulfide saturation. There is an increasing awareness of the potential importance
of magmatic sulfur in controlling metal enrichment or depletion in porphyry systems, and consequently on
their fertility84. However, the relationships between sulfur solubility and metal enrichment processes are
complex and poorly understood. High magmatic sulfur solubilities would appear to be a pre-requisite for the
formation of giant porphyry and related epithermal deposits because these deposits are, first and foremost,
sulfur anomalies. Abundant sulfur is required for the voluminous deposition of the sulfide ore minerals
themselves and it can also play a role in complexing with copper and gold to enable hydrothermal
transport51’85. The problem with high sulfide concentrations in the melt is that this may trigger sulfide
saturation, resulting in crystallization of sulfide minerals or, at higher temperatures, production of an
immiscible sulfide melt. This is particularly likely if the melt becomes reduced which can occur due to the onset
of magnetite crystallizati0n86. In either case, the strong affinity for the sulfide phase of siderophile metals such
as Fe and Au and, to a lesser extent, Cu, will cause them to be stripped very effectively from the silicate melt,
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56,72,76,87 . o . . . .s .
e.g. , as long as sufficient interaction between sulfide and silicate melt (such as by convection) occurs.

This process may also be expected to deplete more strongly those metals with a greater affinity for the sulfides
(e.g. Au relative to Cu, Ag, Zn and Pb). If this process occurs at depth then magmas ascending to shallower
levels may be strongly depleted in ore metals®” and therefore would be de-fertilized and unlikely to form
economic deposits. Although sulfide saturation could be viewed as destroying ore potential, the concentration
of ore metals by saturation of a sulfide melt may in fact be a highly effective mechanism for converting a
magmatic system with a dispersed, low concentration of metals into one with pockets of highly enriched
sulfide melt. As long as the sulfide melt, or its crystallized products, are accessible to —and soluble in — fluids
that are subsequently exsolved from the magma72’76’88, then the potential exists to produce anomalously
metal-rich hydrothermal fluids”. Evidence for the operation of this process has been described from the active
Merapi Volcano in Indonesia where it was inferred that the injection of sulfide-saturated mafic magma into a
felsic chamber triggered volatile exsolution, dissolution of sulfide into the volatile phase and caused explosive
eruptions75. Support for this trigger for giant ore deposit formation comes from the very high metal contents
reported in porphyry ore fluids in which gold, copper and iron are unusually enriched'®”>%",

Box 3 | Trigger 3 — Melt reduction and enhanced metal partitioning. From experiments on basaltic melts
containing geologically reasonable levels of chlorine and sulfur, it was concluded that there was a clear
relationship between gold solubility in the melt and its oxidation state®. Thus, in a melt saturated with a
volatile phase, reduction in the oxygen activity and the increased formation of reduced sulfur species in the
MVP would be likely to result in effective gold and copper extraction. The crystallization of magnetite can
reduce magmas by sequestering oxidized iron. This process was invoked to account for abrupt decreases in
copper and gold with progressive fractionation in lavas from the Manus Basin, offshore Papua New Guinea”
although the link between magnetite crystallization and metal depletion could also be due to the triggering of
sulfide saturation in the melt®. The apparently constant redox state of the Manus Basin magmas, also
observed in other volcanic suites™, can be explained by buffering between the melt and the exsolving fluid,
with the escape of reduced volatile species (e.g. HS') countering the effect of Fe®' depletion by magnetite
formation. Suffice to say that the effect of volatile exsolution on melt redox state remains a complex and
unsolved problem.

An alternative mechanism for melt reduction is the assimilation of reduced rocks (e.g. organic-rich shales
or limestones) by the intruding magmags. Osmium isotope data from the Grasberg Cu-Au porphyry were
interpreted in terms of sourcing of gold from the black shale country rocks by hydrothermal Ieaching%.
However, it is more plausible that assimilation of these rocks both provided gold to the porphyry magma and
resulted in melt reduction and enhanced gold partitioning into the MVP. Other gold-enriched porphyry
deposits, such as Bingham Canyon in Utah, were also emplaced into relatively reduced sedimentary
sequences. Although melt reduction is a viable mechanism for enhancing metal partitioning into hydrothermal
fluids, in particular for gold, assimilation and reduction at depth could have the alternative effect of triggering
sulfide saturation®’ (Box 2). At present, there appears to be no systematic correlation between more reduced
porphyry melts and deposit metal endowment, although an association with gold enrichment does appear to
exist for the allied family of reduced, pluton-related gold depositsso.

Box 4 | Trigger 4 — Efficient precipitation at the deposit trap site. The precipitation trigger is commonly
regarded as the key process in the formation of an economic concentration of ore minerals and so much study
has been devoted to the investigation of ore deposits with the identification of such a control being a central
aim. Host rocks may play a role in enhancing ore grade, with impermeable limestones (e.g. Grasberg) possibly
preventing escape of fluids that may result of dispersion of metals in other systems and also providing a host
for high grade skarns. Mafic host rocks can also host systems of unusually high hypogene grades (e.g. El
Teniente, Resolution)™”* possibly due to the abundance of reactive mafic minerals hosting ferrous iron which
can act as a reductant. Expansion and cooling of fluids through the steep temperature gradients that will be
developed across the top of a porphyry intrusion has been proposed as an effective mechanism for the
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deposition of ore minerals in a quasi-static positiones. Chalcopyrite solubility decreases rapidly from 400-
250°C97, typical of the temperature range expected in this environment. Despite the feasibility of this
mechanism, it is important to note that these conditions may be met in any cooling magmatic-hydrothermal
system in which sufficient permeability is developed to allow significant fluxing of fluids from the magma into
the overlying fractured rock column. The volatile content of the melt and tectonic activity may be important in
this respect, as both play a role in driving rock failure. Nonetheless, the ubiquity of the depositional processes
would seem to make precipitation efficiency an unlikely key trigger for the formation of rare, large deposits.
Another way of considering this is that precipitation efficiency perhaps only varies by 1 order of magnitude in
mineralizing hydrothermal systems and, in the few cases where it has been documented, is >85%7%%. By
73,8991 Although part of this
variability may reflect analysis of fluids part way through the precipitation process, data from apparently
primary (pre-mineralization) fluids from economic porphyry deposits showed 1-3 orders higher copper
concentrations than comparable fluids from barren intrusions'. Thus, although a trap mechanism is

contrast, the metal content of fluids can vary by 4-5 orders of magnitude, e.g.

undoubtedly required, the processes that ultimately control the ore metal budget of fluids exsolving from the
melt (Boxes 2 and 3) are arguably more important in governing the total mass of ore metal and the metal
tenor of sulphides ultimately precipitated. This is supported by two key observations: (1) measurements of
metal contents in fluid inclusions believed to represent the earliest fluids exsolved from a number of
mineralized and barren porphyry intrusions show that mineralized intrusions are characterized by more metal-
rich fluids'®; and (2) metal ratios in porphyry orebodies match primary fluid compositions implying quantitative
metal precipitation (even if metals are partly separated into different zones), suggesting that the dissolved
metal budget directly controls the metal tenor of the sulfide mineralization formed”>®. Notwithstanding this
argument, the importance of total fluid flux and degree of fluid focusing in the genesis of large porphyry
deposits remain relatively poorly constrained.
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Figure Legends

Figure 1 | Supra-subduction zone setting for the formation of porphyry ore deposits (modified
after Winter'®). The four environments where key trigger processes operate that may lead to the
formation of large porphyry ore deposits are numbered 1-4 (see Boxes 1-4).
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TRIGGER 1: HOT ZONE DIFFERENTIATION

Mafic magma underplates the continental crust, triggering melting and crustal as-
similation. Magmas trapped in deep crustal sills in compressional tectonic regime
evolve to intermediate-felsic compositions. Cycles of addition of fresh mafic magma
and fractionation increase content of volatiles and metals to generate fertile magmas.
Amphibole fractionation generates fertile signature of high Sr/Y, Zr/Y.

Deep crust




TRIGGER 2: SULFIDE MELT SATURATION

Sulfide saturation of intermediate to felsic magmas leads to stripping of siderophile
and chalcophile metals into a sulfide melt phase. This produces a highly enriched
anomaly and a depleted silicate melt. If the sulfide is later remelted or dissolved by ex-
solving volatiles then a highly enriched melt or volatile phase will be generated.
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TRIGGER 3: ENHANCED PARTITIONING

Melt reduction could be triggered by magnetite crystallization
or assimilation of reducing crustal rocks. This could favor parti-
tioning of reduced sulfur species into volatiles exsolving from
the melt, efficiently extracting copper, gold and other sulfur-
complexed metals to produce highly enriched ore fluids.

Porphyry ore
deposit
Carbon-rich
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rocks
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TRIGGER 4: EFFICIENT PRECIPITATION

Efficient focusing of flow through a narrow window and cooling
across a steep thermal gradient, combined with expansion of an
ascending single phase fluid, could force sulfide mineral precipi-
tation in a limited rock volume, creating rich mineralization.
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