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Abstract

Although, for homogeneous columns, the differences between Engesser’s and Haringx’s formulas for shear buckling have been explained

in 1971 by the dependence of shear modulus on the axial stress, for soft-core sandwich columns the choice of the correct formula has baffled

engineers for half a century. Recently, Bažant explained this difference by a variational analysis which showed that an agreement is achieved

if the shear modulus of the light core is considered to depend on the compressive stress in the skins even when small-strain elasticity applies.

To clarify this paradoxical dependence, first the variational framework is briefly reviewed. Subsequently, the mathematical results from

Bažant’s recent study are physically reinterpreted, with the conclusion that only the Engesser-type theory (rather than Haringx-type theory)

corresponds to constant shear moduli as obtained, for example, by the torsional test of a tube made from the foam. This is a rather

fundamental point for applications because the discrepancy between these two theories can be very large in the case of short columns with

thin skins. The implications for standard finite element programs are then explored by computing the critical loads of several sandwich

columns with different material and geometric properties. The finite element computations show agreement with the Engesser-type formula

predictions, while the Haringx-type prediction can be obtained with the finite element program somewhat artificially—by updating the core

modulus as a function of the axial stress in the skins.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The load capacity of sandwich structures has been

studied for over half a century and major advances have

been achieved. However, the existing theories in the

literature do not give an unambiguous picture. With the

recent introduction of composites into construction of large

structures, such as the hulls, decks, bulkheads, masts and

antenna covers for very large ships (a problem of

considerable interest to the Navy), the problem recently

gained in importance and the remaining problems must now

be resolved.

Sandwich shell failures caused by fracture of the skins,

cores and interfaces are often combined with the loss of

stability, and therefore the problems of buckling, face

wrinkling, delamination, fracture, damage and scaling

cannot be separated. In the field of elastic stability analysis,

there still exists one fundamental unresolved problem that

impinges on all the failure problems of sandwich struc-

tures—namely the role of shear of highly deformable

sandwich cores. This problem is particularly acute for

sandwich plates and shells with stiff fiber-composite

laminate skins and very light polymeric foam cores, for

which the skin-to-core elastic moduli ratio can be as high as

2000 (which is the case for Divinycell 100 foam).

Some fundamental questions arise in the calculation of

critical loads of sandwich structures with a very high skin-

to-core elastic moduli ratios:

1. How to explain the differences between the predictions

of the Engesser-type and Haringx-type buckling for-

mulae?

2. Which formula corresponds to a constant shear modulus

as identified, for example, from the torsional test of a

circular tube in small strain?

3. Can finite element programs predict the correct critical

load?
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The first problem has recently been successfully resolved

in Refs. [7,8], based on variational analysis associated with

different finite strain measures. As part of the solution, a

seemingly paradoxical behavior, consisting in an apparent

influence of the stress in skins on the stiffness of core, has

been explained. However, the physical interpretation of the

analytical results in Ref. [8] has been oversimplified and

needs a reinterpretation. So, the last two aforementioned

problems remain, and will be dealt with in this paper.

Therefore, the purpose of the paper is: (1) to decide which

theory (i.e. a theory of Engesser type, Haringx type, or

another type) corresponds to constant shear moduli; and (2)

to match the theory to critical loads computed by finite-

strain finite element analysis of sandwich columns.

It will be shown by means of an energetic argument that,

in the case of sandwich structures, the Engesser-type theory

is the only one that allows using for the core a constant

tangential shear modulus when the strains are small enough

for the core to remain in the elastic range. Then it will be

demonstrated that the standard finite element programs,

based on the updated Lagrangian algorithm, capture the

critical load correctly. Some details of the finite element

algorithm for finite strain will also be discussed to give a

deeper insight into the problem.

2. Variational analysis of critical loads of columns

with shear

2.1. Apparent paradox in shear-beam theories

for sandwich buckling

There used to be lively polemics among the proponents

of different three-dimensional stability formulations associ-

ated variationally with different finite strain measures (see,

e.g. the preface of Biot’s book [10]), with different objective

stress rates, and with different incremental differential

equations of equilibrium (particularly those proposed

by Hadamard, Biot, Trefftz, Truesdell, Pearson, Hill,

Biezeno, Hencky, Neuber, Jaumann, Southwell, Cotter,

Rivlin, Engesser, Haringx, etc.—see Ref. [9] (p. 732 and

chapter 11) and Ref. [3]). These polemics were settled in

1971 by the demonstration [4] that all these formulations

become equivalent if it is realized that the tangential elastic

moduli of the material cannot be taken the same but must

have different values in each formulation. It was also

concluded that these differences matter if initial stresses at

the critical state of buckling are not negligible compared to

the elastic moduli ([9] Sec. 11.4).

The differences between various stability criteria are, for

most buckling problems, insignificant because the initial

stresses are negligible compared to the tangential moduli.

However, there are some important exceptions. A very

important one is the buckling of sandwich plates with a very

soft core. Another is the buckling of fiber composites with a

highly orthotropic fiber reinforcement and a very soft matrix.

In sandwich plates, which are highly sensitive to buckling

[1,11,15,16,25–27], the initial (i.e. pre-buckling) axial stress

in the skins of a sandwich column is negligible compared to the

elastic modulus of the skins, and the initial axial stress in the

foam core is zero. Consequently, it may at first seem that the

shear stiffness of the core should be constant, independent of

the initial axial force in the skins, which would imply that there

should be no differences among the critical load formulae

associated with different finite strain measures.

Consequently, it came as a surprise that the Engesser-

type [12–14] buckling formula for sandwich columns,

which is associated with the Doyle-Ericksen finite strain

tensor of order m ¼ 2; gave, for short sandwich columns,

much smaller critical loads than the Haringx-type [18,19]

formula, which is associated with the Doyle-Ericksen tensor

of order m ¼ 22:

The differences between the Engesser-type and Haringx-

type buckling formulae for sandwich columns, shown in

Fig. 1, have been analyzed in detail in a recent paper [7,8]

and will now be reviewed. The discussions of these

differences began about 60 years ago [2,4–6,17,28,29,31,

32,34–36]. However, no consensus on the theory has yet

emerged [5,6].

First let us recall the class of Doyle-Ericksen finite strain

tensors e ¼ ðUm 2 IÞ=m (where m ¼ real parameter, I ¼

unit tensor, and U ¼ right-stretch tensor). These tensors,

which include virtually all the strain measures ever used,

have the second-order approximation

e
ðmÞ
ij ¼ eij þ

1

2
uk;iuk;j 2 aekiekj; eki ¼

1

2
ðuk;i þ ui;kÞ;

a ¼ 1 2
1

2
m

ð1Þ

[4]; eij ¼ small (linearized) strain tensor and the sub-

scripts refer to Cartesian coordinates xi; i ¼ 1; 2; 3: The

stability criteria expressed in terms of any of these strain

Fig. 1. Difference between the Engesser-type and Haringx-type formulae

for a sandwich with Eskin=Gcore < 1400:
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measures are mutually equivalent if the tangential moduli

associated with different m-values satisfy Bažant’s [4]

relation:

CðmÞ
ijkl ¼ Cijkl þ

1

4
ð22mÞðSikdjl þ Sjkdil þ Sildjk þ SjldikÞ ð2Þ

(see also Ref. [9], p. 727); Cijkl ¼ tangential moduli

associated with Green’s Lagrangian strain ðm ¼ 2Þ; and

Sij ¼ current stress (Cauchy stress).

Engesser [12–14] and Haringx [18] presented different

formulae for the first critical load in buckling of columns

with significant shear deformations (Fig. 2). They read:

Pcr ¼
PE

1 þ ðPE=GAÞ
ðEngesserÞ ð3Þ

Pcr ¼
GA

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

4PE

GA

r
2 1

 !
ðHaringxÞ ð4Þ

where

PE ¼ ðp2
=l2ÞEI ð5Þ

Here E; G ¼ elastic Young’s and shear moduli, PE ¼

Euler0s critical load, l ¼ effective buckling length, and EI;

GA ¼ bending stiffness and shear stiffness of cross-section.

The discrepancy between these two formulae, regarded

before 1971 as a paradox, was shown [4,9] to be caused by a

dependence of the tangential shear modulus C1212 ¼ G on

the axial stress S11 ¼ 2P=A; which is different for different

choices of the finite strain measure, i.e. for different m:

Engesser’s formula corresponds to Green’s Lagrangian

strain tensor ðm ¼ 2Þ; and Haringx’s formula to Lagrangian

Almansi strain tensor ðm ¼ 22Þ; with the shear moduli

related according to Eq. (2) as

Gð2Þ ¼ Gð22Þ þ P=A ð6Þ

(a negligible difference in the E-values is ignored). The

difference in shear moduli in Eq. (6), of course, becomes

significant only if the axial stress S11 ¼ 2P=A is not

negligible compared to G: Such a situation arises for the

continuum approximation of built-up (lattice) columns or

for highly orthotropic fiber composite columns.

For elastic sandwich columns, the motivation of this

study, a new paradox has recently been noticed, as a

consequence of the numerical and experimental studies of

Huang and Kardomateas [21], Kardomateas [22–24],

Simitses and Shen [30] and Gjelsvik [17]. Let L ¼ length

of sandwich column, l ¼ effective length, and P ¼ axial

force. The core has thickness h and shear modulus G: The

skins have axial elastic modulus E (Fig. 2a) and thickness t;

t p h and E q E-modulus of the core, and so the entire

axial force and bending moment are carried by the skins,

while the entire shear force is carried by the core. Therefore,

EI ¼ Ebtðh þ tÞ2=2 þ Ebt3=6 < Ebth2=2 ¼ bending stiffness

of the sandwich ðt p hÞ; and GA ¼ Gbh ¼ shear stiffness of

the sandwich, b being the cross-section width. With these

notations

Pcr ¼
PE

1 þ ðPE=GbhÞ
ðEngesser typeÞ ð7Þ

Pcr ¼
Gbh

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

4PE

Gbh

r
2 1

" #
ðHaringx typeÞ ð8Þ

where G ¼ Gcore ¼ shear modulus of the core, and PE ¼

ðp2=l2ÞEbth2=2 ¼ Euler load.

In similarity to Eq. (6), it may be checked that, if the

replacement

Gcore ˆ Gcore 2
2t

h
sskins ð9Þ

with sskins ¼ 2Pcr=2bt is made in the Engesser-type

formula (7), the Haringx-type formula (8) results [7]. This

replacement, however, appears paradoxical; the shear

modulus in the core cannot depend on the axial stress in

the skins. Furthermore, since the axial stress in the core is

negligible compared to the shear modulus of core, it appears

paradoxical, in view of Eq. (2), that G-moduli associated

with different strain measures need to be distinguished. We

thus have a new kind of paradox. The resolution of this

paradox, presented in Refs. [7,8], will now be reviewed and

a new analysis of the relation of shear stiffness to

experiments presented.

2.2. Finite strain variational analysis

In the sandwich beam theory, the skins and the core are

constrained by the hypothesis of planar (though non-

normal) cross-sections. Keeping it in mind, one may adapt

the general variational analysis of column buckling,

expressing the incremental potential energy of the column

accurately up to the second order in displacement

gradients [4,9].

We introduce Cartesian coordinates xi ði ¼ 1; 2; 3Þ;

Fig. 2a. The incremental displacements from the initial

undeflected configuration of the column carrying axial load

P are ui; u3 ¼ wðxÞ ¼ small lateral deflection, and u1 ¼

uðx; y; zÞ ¼ small axial displacement; c a small rotation of

the cross-section (Fig. 2c,d). The shear angle g ¼ u2 c

(Fig. 2c,d) where u ¼ w0 ¼ slope of the deflection curve.

The second-order incremental potential energy d2W for

Fig. 2. Sandwich column in (a) initial state and (b) deflected state; (c) shear

force on cross-section normal to deflection curve; (d) shear force on rotated

cross-section that was normal in the initial state.
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small deflections wðxÞ and small axial displacements uðxÞ is

d2W ¼
ðL

0

ð
A

S0ðy; zÞðe ðmÞ
11 2 e11Þ þ

1

2
EðmÞðy; zÞe2

11

�

þ
1

2
GðmÞðy; zÞg2

	
dA dx

þ
ð

A

ðL

0

1

2
EðmÞðy; 0Þðu0=LÞ

2dA dx ð10Þ

([9], chapter 11); y ¼ x2 and z ¼ x3 ¼ coordinates of the

cross-section whose area is A; S0ðy; zÞ ¼ initial axial normal

stress; EðmÞðy; zÞ;GðmÞðy; zÞ ¼ tangential elastic moduli.

Imposing the condition that the cross-sections of core

remain plane, and setting

a ¼ 1 2 1
2

m;

one can obtain from Eq. (10) the following expression:

d2W ¼
1

2

ðL

0



RðmÞc02 þ

�
HðmÞ þ

1

4
ð2 2 mÞP

	

� ðw0 2 cÞ2 2 Pw02

�
dx ð11Þ

Here RðmÞ ¼ EðmÞð1=2Þbth2 ¼ bending stiffness, HðmÞ ¼

GðmÞbh ¼ shear stiffness of the cross-section. The necessary

condition of stability loss and bifurcation is that the first

variation of the second-order work d2W during any

kinematically admissible deflection variations dwðxÞ and

duðxÞ must vanish (Trefftz condition). This condition leads

to a system of two ordinary linear homogeneous differential

equations for wðxÞ and cðxÞ; with coefficients depending on

P: It is found [7] that a non-zero solution exists if and only if

1

4
ð2 2 mÞP2 þ HðmÞ þ

1

4
ð2 þ mÞPðmÞ

E

� 	
P 2 HðmÞPðmÞ

E ¼ 0

ð12Þ

where PE ¼ Euler load ¼ PðmÞ
E ¼ p2RðmÞ=L2: This quadratic

equation has, for m ¼ 2 and m ¼ 22; the following

solutions, which are analogous to Engesser’s and Haringx’s

formulae, respectively [7,8]

for m ¼ 2 : Pcr ¼
Pð2Þ

E

1 þ ðPð2Þ
E =Hð2ÞÞ

ð13Þ

for m ¼ 22 : Pcr ¼
Hð22Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

4Pð22Þ
E

Hð22Þ

s
2 1

2
4

3
5 ð14Þ

It has been shown [4,9] that the case m ¼ 2 is associated

by work with Truesdell’s objective stress rate, and the case

m ¼ 22 with Cotter and Rivlin’s (convected) objective

stress rate (or Lie derivative of Kirchhoff stress).

Further it is possible to obtain from Eq. (12) an infinite

number of sandwich buckling formulae, each associated with

any chosen value of m: Curiously, however, no investigators

has proposed critical load formulae associated with other m

values, although many investigators (e.g. Ref. [10]; or

Biezeno, Hencky, Neuber, Jaumann, Southwell, Oldroyd,

Truesdell, Cotter, Rivlin—see Ref. [9], chapter 11) intro-

duced formulations for objective stress rates, three-dimen-

sional stability criteria, surface buckling, internal buckling,

and incremental differential equations of equilibrium

associated with m ¼ 1; 0 and 21.

2.3. Paradox resolution: definition of shear stiffness

for stressed sandwich

In similarity to Eq. (6), one may expect the shear

stiffnesses for the Engesser-type and Haringx-type formulae

to be related as Hð2Þ ¼ Hð22Þ þ Ph=2t: When this relation is

substituted into Eq. (13) and the resulting equation is solved

for P ¼ Pcr; (14) indeed ensues. However, unlike homo-

geneous columns weak in shear, the foregoing transform-

ation cannot be physically justified on the basis of the

general transformation of tangential moduli in Eq. (2), nor

its special case in Eq. (6), because the axial stress S0 in the

core is negligible.

Why should the shear modulus of the core be adjusted

according to the axial stress in the skins? This seems to be a

paradox. To resolve it, we must examine the definition of

the shear stiffness H of a sandwich.

Imagine a homogeneous pure shear deformation of an

element Dx of the sandwich column; u1 ¼ u1;1 ¼ u1;3 ¼

e11 ¼ 0; u3;1 ¼ g; e13 ¼ e31 ¼ g=2: Based on Eq. (10), the

second-order incremental potential energy of the element is

found to be

d2W ¼ Dx
ð

A
2

P

2bt
1
2

uk;1uk;1 2 aek1ek1

� �
þ 1

2
Gg2

� 	
dA

ð15Þ

where the superscript m is omitted for G to emphasize that,

because the core is in small strain, the shear modulus is

independent of the particular choice of finite strain measure.

Upon rearrangements, the incremental potential energy

density per unit height of the column ðDx ¼ 1Þ can be

brought to the form [7]:

d2W ¼ Gbh þ
2 2 m

4
P

� �
g2

2
2

Pw
02

2
ð16Þ

Expression (16) should be compared with the second-

order work obtained by the elementary reasoning described

in Fig. 3a–c. The deformation process of the beam element

is decomposed into two parts: bending (Fig. 3b) and shear

(Fig. 3c). Bending of the skin, considered inextensible,

causes axial shortening of the element (in the direction of P)

and thus contributes to the overall work with the second

order term 2Pw
02=2: However, because each of the skins

(like normal beams) does not deform by shear (see the detail

in Fig. 3c), no work contribution is associated with Fig. 3c.

It must be noted that the skins exhibit shear only if

considered together. Therefore, the second-order work

consists only of the strain energy contribution from the

shear of the core and the second-order work contribution of
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axial force P due to axial skin shortening, i.e.:

d2W ¼ Gbh
g2

2
2

Pw02

2
ð17Þ

Equivalence of Eqs. (16) and (17) is achieved if and only if

m ¼ 2: Therefore, the Engesser-type theory must be applied.

In this, and only in this, theory, the shear modulus is equal to

that obtained in a small-strain pure shear test, for example,

in the simple torsion test of a thin-wall tube made of

the foam. The use of Haringx-type formula is off

course equivalent but the shear modulus of the core cannot

be kept constant; rather, it must be corrected for the effect of

the axial forces F ¼ P=2 carried by the skins.

Consequently, a constant shear stiffness H corresponding

to a constant shear modulus G can be used only in the

Engesser-type formula ðm ¼ 2Þ:

2.4. Differential equations of equilibrium associated

with Engesser’s and Haringx’s theories

Alternatively, it is possible to derive Engesser’s and

Haringx’s critical load formulae from the differential

equations of equilibrium (p. 738 in Ref. [9]). Fig. 2c,d

shows two kinds of cross-sections of a sandwich column in a

deflected position: (a) the cross-section that is normal to the

deflected column axis, on which the shear force due to axial

load is Q ¼ Pw0and (b) the cross-section that was normal to

the column axis in the initial undeflected state, on which the

shear force due to axial load is �Q ¼ Pc: For a simply

supported (hinged) column, the bending moment is M ¼

2Pw in both cases. The force–deformation relations are

M ¼ Ebth2c0=2 and Q or �Q ¼ Gbhg ¼ Gbhðw0 2 cÞ in case

(a) or (b), respectively. Eliminating M; g; c and Q or �Q; one

gets the corresponding two forms of a linear homogeneous

differential equation for wðxÞ; of which the first is found to

lead to Engesser’s formula (3) and the latter to Haringx’s

formula (4). Thus it is concluded that Engesser’s formula

ðm ¼ 2Þ is obtained when the shear deformation g is

assumed to be caused by the shear force acting on the cross-

section that is normal to the deflected axis of column, and

Haringx’s formula ðm ¼ 22Þ when g is assumed to be

caused by the shear force acting on the rotated cross-section

that was normal to the beam axis in the initial state [7,8].

The foregoing equilibrium reasoning, however, does not

show that the values of shear stiffness in both formulae must

be different. Especially, it does not show that only the shear

stiffness for the cross-section perpendicular to the deflected

axis can be kept constant.

For further interesting implications for buckling of

highly orthotropic fiber composites, built-up lattice col-

umns, layered elastomeric bearings and spiral springs, see

Refs. [7,8].

3. Finite element computation of critical loads

of sandwich structures

3.1. Numerical results

The consequences of the preceding variational analysis

for standard finite element programs have been explored by

computing the critical loads of sandwich columns. In the

computations, different values of Young’s modulus E of the

skin varying in the range between E ¼ 10 GPa and

E ¼ 105 GPa are considered, while Poisson’s ratio is kept

at a constant value, n ¼ 0:26: The core is characterized by

E ¼ 75 MPa, n ¼ 0:25 and G ¼ 30 MPa. Not surprisingly,

the computer results, as well as the predictions of the

Engesser-type and Haringx-type formulae, exhibit high

sensitivity to the skin-to-core moduli ratio E=G: The

columns considered are characterized by a ratio L=ðh þ 2tÞ

varying between L=ðh þ 2tÞ ¼ 10 and L=ðh þ 2tÞ ¼ 30; and

the core-to-skin thickness ratios considered are h=t ¼ 5 and

h=t ¼ 20: The column is free standing, being fixed at the

base, and so the effective length is l ¼ 2L:

The values of the bending stiffness EI and shear stiffness

GA in Eqs. (3) and (4) are replaced by the following more

accurate effective stiffnesses [21] in which the small but

non-negligible shear stiffness of the skins and the bending

stiffness of the core are taken into account

EI ¼ b Es

t3

6
þ

1

2
Estðt þ hÞ2 þ Ec

h3

12

" #
ð18Þ

GA¼
1

2b

E2
s

4EI2Gs

a4t2
2

3
a2ða3 2d3Þþ

1

5
ða5 2d5Þ

� 	(

þ
E2

s

EI2Gc

t2c2dþ
2

15

E2
c

E2
s

d5 þ
2

3

Ec

Es

tcd3

" #)21

ð19Þ

where a ¼ t þ h=2; c ¼ ðt þ hÞ=2; d ¼ h=2; Es is the Young

modulus of the skin, Ec is Young’s modulus of the core, Gs

is the shear modulus of the skin, and Gc is the shear modulus

of the core. Because the equivalent stiffness defined in

Eqs. (18) and (19) takes into account the bending and shear

stiffnesses of the skins, the skins are modeled by isopara-

metric four-node elements, and such elements are also used

to model the core. Due to its finite thickness, the skin makes

a non-vanishing but small contribution to the overall

shear stiffness of the column. The core, similarly, makes

Fig. 3. Contributions to the second order work of a column element of unit

height due to work of constant axial force P on rotation w0; and to shear

strain g in the core.
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a non-vanishing but small contribution to the overall

bending stiffness of the column. The geometry of the

columns analyzed and the mesh used in the computation are

shown in Fig. 4 on the right (the real mesh was finer than

shown).

The stresses in both the skin and the core are assumed to

be negligible compared to their respective elastic moduli,

which means that small-strain linear elasticity is followed.

Therefore, both the skin and the core are treated as Saint

Venant-Kirchhoff materials and the updating algorithm in

the analysis is the energy-momentum conserving algorithm

as described in Ref. [33]. This material definition represents

the natural extension of the small deformation elasticity

approach to finite strain. According to dimensional analysis

(Buckingham’s P-theorem), the values of Pcr=PE can

depend only on the ratios h=t and L=ðh þ 2tÞ; and on the

skin-to-core ratio E=G; and therefore the results are plotted

in these dimensionless coordinates.

The critical loads of perfect sandwich columns have been

calculated in two ways, which give identical results: (1) a

small imperfection (very small load eccentricity e) has been

assumed and linear regression in Southwell plot has been

used to deduce the critical load from the regression slope

[9], as shown in Fig. 4. (2) The singularity of the tangential

stiffness matrix of a perfect column has been identified by a

sign change in the diagonal term of this matrix during

triangular decomposition.

The computer results obtained with a standard finite

element code (in this particular case, code FEAP, by R.L.

Taylor) are shown by the solid circles in Figs. 5–7. Because

the program is based on the standard updated Lagrangian

formulation corresponding to m ¼ 2; the results are

expected to agree with the Engesser-type formula, and this

is indeed the case (see the lower straight line). It must now

be noted that the reason for this agreement is that the

updating algorithm assumes the material moduli tensor to be

constant with respect to the beginning of each loading step.

Furthermore, in relation to the preceding variational

analysis, it has been checked what happens if the modulus

of the core is updated in each loading step on the basis of

the stress in the skins, as indicated by Eq. (9). As expected,

this causes the computational results to agree with

Fig. 4. Southwell plot (on the left) and column considered in the FEM

analysis (on the right).

Fig. 5. Critical load for short column with thick skin.

Fig. 6. Critical load for slender column with thin skin.

Fig. 7. Critical load for very slender column with thin skin.
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the Haringx-type predictions, as shown in Figs. 5–7 where

the empty circles represent the computational results, and the

dashed upper line the Haringx-type formula predictions.

The computation shows also the effect of geometry of the

column on the computation. The shorter the column, the

larger is the discrepancy between the formula prediction and

the computation, as shown in Fig. 8 for a column with

L=ðh þ 2tÞ ¼ 10 and h=t ¼ 20: This discrepancy is also

affected by the core-to-skin thickness ratio h=t; such that for

lower h=t values there is a better agreement, as shown in Fig.

5. The cause of this discrepancy lies in the end effects for

shorter columns and in non-planarity of the deformed cross-

sections near the ends (Fig. 9).

Besides, interaction between global buckling and local

wrinkling of the skins may reduce significantly the buckling

load for short column with thin skins [20]. To force the

cross-sections to remain plane and to prevent local

wrinkling, a plate with a very high longitudinal stiffness

and a very low transversal stiffness is considered to be

placed at the top. With this, close agreement with the

formula predictions is achieved, as shown in Fig. 10.

To sum up, according to the foregoing variational

analysis and the numerical results it is correct to simulate

soft-core sandwich structures with the standard finite

element programs using the Lagrangian updating algorithm,

which is based on Green’s Lagrangian strain tensor

corresponding to m ¼ 2: The results agree with the

Engesser-type critical load formula very well. The Har-

ingx-type formula can give very different critical loads, and

it has been confirmed that these critical loads are obtained

by the finite element program if the shear modulus of the

core is updated in each step according to Eq. (6).

3.2. Characteristics of the finite element algorithm

for finite strain

The case of sandwich structure gives the opportunity for

a deeper insight on how the finite element algorithm deals

with finite strain and how the two formulae (of Engesser-

type and Haringx-type) are related in the numerical

computation. In the case of finite-strain elasticity involving

mainly geometric non-linearity dominated by geometri-

cally nonlinear effects of large material rotations, the Saint

Venant-Kirchhoff elasticity model is usually applied. In

this constitutive model, the second Piola-Kirchhoff stress

tensor S depends linearly on the Green-Lagrange strain E

through the stiffness tensor C as S ¼ C : E: This approach

requires a push-forward of the second Piola-Kirchhoff

stress and of the tangent stiffness tensor to the current

configuration in each loading step. This means that, for

each loading step, starting at time tn and ending at time

tnþ1; and for each Gaussian integration point of each finite

element, the program evaluates the Green-Lagrange strain

Enþaðm ¼ 2Þ on the basis of the deformation gradient Fn at

tn and Fnþ1 at tnþ1

Enþa ¼
1

2
ðw1Enþ1 þ w2EnÞ ð20Þ

Fig. 8. Critical load for short column with thin skin (misfit is caused by the

fact that the beam theory cannot reproduce the correct deformation near the

ends).

Fig. 9. Deformation of the cross-section at the top of the column (important

for short column with very thin skin).

Fig. 10. Critical load for short column with thin skin and stiff plate at

the top.
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where

Enþ1 ¼
1

2
ðFT

nþ1Fnþ1 2 IÞ ð21Þ

En ¼
1

2
ðFT

n Fn 2 IÞ ð22Þ

where I is the second-order identity tensor. In Eqs. (21) and

(22), the weights w1 and w2 are decided according to an

energy-momentum conserving algorithm [33]. The par-

ameter a; varying between 0 and 1, identifies the instant

within the time step at which the strain is evaluated, which

corresponds to a certain chosen integration rule (for

example, the mid-point rule, for which a ¼ 0:5).

The second Piola-Kirchhoff stress is obtained from the

tangent stiffness tensor as

Snþa ¼ Cnþa : Enþa ð23Þ

where the tangent stiffness tensor Cnþa represents the

elasticity tensor of small-strain isotropic elasticity evaluated

at time tnþa and is kept constant within the time step and

with respect to the initial (undeformed) configuration

C ¼ lI^I þ 2mI ð24Þ

Here l and m are Lamé’s constants (which depend on E

and n), and I is the fourth-order identity tensor. The tensors

Snþa and Cnþa in Eq. (23) are then pushed forward to the

current configuration through the deformation gradient Fn

and Fnþ1 to obtain the Cauchy stress snþa and the spatial

tangent stiffness cnþa; which is done according to the

relations

snþa ¼
1

Jn

FnSnþaFT
n ð25Þ

cnþa
ijkl ¼ Fn

iIF
n
jJFnþ1

kK Fn
lLCnþa

IJKL ð26Þ

where Jn is the Jacobian of the transformation (determinant

of the deformation gradient Fn) and cnþa is described in the

component form.

Whereas a standard finite element code in which the

moduli are considered as constant with respect to

the beginning of the step yields the correct result for sand-

wich structures, agreeing with the Engesser-type formula, the

Haringx-type formula, on the other hand, is known to be

the correct formula to predict the critical loads of

elastomeric bridge bearings or helical springs. If these

structures are homogenized, then the standard finite element

code cannot be used. Rather, the modulus of the core must be

updated as in Eq. (9) because of the general relation (2). An

alternative way to obtain the Haringx-type load would be to

generalize the finite element code for arbitrary m;as described

in Sec. 11.8 of Ref. [9], and then select m ¼ 22: This would

require also to first push forward the strain tensor and

then compute the stress increment in terms of Lie deriva-tive

of the Kirchhoff stress, associated with constant

moduli with respect to the end of the loading step.

However, the implications of the last point go beyond the

scope of this paper.

4. Conclusions

1. The variational analysis of the Engesser-type and

Haringx-type formulae for buckling of short soft-core

sandwich columns clarifies the relationship between

these formulae and explains the large discrepancy

between their predictions.

2. Bažant’s [8] recent explanation of a paradoxical

dependence of the shear modulus in the core on the

stresses in the skin is confirmed, however, the physical

consequences must be interpreted differently. This leads

to a fundamental argument in favor of Engesser-type

(rather than Haringx type) theory for sandwich columns.

Therefore, whenever the core of a sandwich structure is

in small strain and a constant shear modulus is

considered in calculations, the Engesser-type theory,

variationally associated with Green’s Lagrangian finite

strain tensor, is the only theory to use.

3. It is demonstrated that the critical loads given by the

Engesser-type formula can be correctly captured by the

standard finite elements programs, which use an updated

Lagrangian variational formulation associated with

Green’s Lagrangian strain tensor.
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