
1) Let M be an A-module. Prove that the following are equivalent:
(1) M is projective.
(2) M is a direct summand of a free module.
(3) For any surjection N � L, the natural map Hom(M,N)→ Hom(M,L) is

surjective.
(4) Every surjection α : N � M splits.

Proof: (3) is just a trivial restatement of (1). Now, (1) ⇒ (4) since splitting is the
same as lifting idM : M →M to N . To show (4) ⇒ (2), start with the map

ϕ : F = ⊕m∈MA→M

given by sending the mth basis vector on the left to m. It’s trivially surjective,
so by hypothesis, it splits, say by s : M → F . Then the map M ⊕ ker(ϕ) → F
given by (m,x) 7→ s(m) + x is an isomorphism, having inverse f 7→ (ϕ(f), f −
s(ϕ(f))). I did something more general than this in section; remember split short
exact sequences? Finally, we need (2) ⇒ (1). We will show that whenever M =
⊕i∈IMi, then M is projective if and only if each Mi is. When we apply this to the
case where all the Mi are A (which is trivially projective, since Hom(A,N) ' N
naturally), we deduce that all free modules are projective; then applying it again,
we see direct summands of free modules are too. To prove the claim, recall the
natural isomorphism Hom(⊕i∈IMi, N) '

∏
i∈I Hom(Mi, N); this gives, for N �

L, a commutative diagram (the horizontal maps are the obvious ones, given by
composition)

Hom(⊕i∈IMi, N) //

∼
��

Hom(⊕i∈IMi, L)

∼
��∏

i∈I Hom(MiN) // //
∏
i∈I Hom(Mi, L),

which shows that the top map is surjective if and only if the bottom one is; but
the bottom one is if and only if each of its terms is, and this is exactly the desired
statement.

2) Prove that a projective module is flat.

Proof: We’ll use (2) above. Just as in the above problem, if we show that
whenever M = ⊕i∈IMi, then M is flat if and only if each Mi is, then we will see
that flatness of projective modules is equivalent to flatness of A, which is, dare I
say, obvious. Well, let N ↪→ L. We have a commutative diagram with vertical
maps isomorphisms (expressing bilinearity of ⊗ over ⊕) and the horizontal maps
the obvious ones:

N ⊗ (⊕i∈IMi) //

∼
��

L⊗ (⊕i∈IMi)

∼
��

⊕i∈IN ⊗Mi
// ⊕i∈IL⊗Mi,

so the top map is injective if and only if the bottom one is; the bottom one being
injective trivially comes down to each Mi being flat.
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3) Suppose A = (A,m) is a Noetherian local ring and M is a finitely generated
projective A-module. Prove that M is free.

Proof: By Nakayama’s lemma, there are m1, . . . ,mn ∈M which generate M and
whose images in M/mM form a basis (as an A/m-module). Define ϕ : An → M
by sending the ith basis vector to mi; then this surjective, so by the argument
of the first problem, there is an isomorphism An

∼−→ M ⊕ ker(φ) given by x 7→
(ϕ(x), whatever). Reducing mod m, we get kn ∼−→ (M/mM)⊕ (ker(φ)/mker(φ)).
But here we know the map is an isomorphism on the first factor, since it matches up
the basis vectors; thus the second factor must be trivial. But ker(φ) is a submodule
of An and is thus finitely generated, since A is noetherian; so Nakayama implies
that ker(φ) = 0, and hence φ is an isomorphism.

Actually, as many of your solutions showed, the noetherian hypothesis is unnec-
essary: since An ∼−→ M ⊕ ker(φ), the module ker(φ) ' An/M is automatically
finitely generated.

4) Suppose A is Noetherian and M is a finite A-module. Then M is projective
if and only if MP is a free AP module for each prime P ⊆ A.

Proof: First suppose M is projective. Then it is the direct summand of a free
module, say M ⊕M ′ = F ; tensoring with AP we see that MP is also the direct
summand of a free AP -module, so it is projective. It’s also finite, so by the previous
problem it’s free, as desired.

For the hard direction, I reserve the right to amuse myself by proving something
stronger: we’ll go through the intermediary statement that there exist f1, . . . , fn ∈
A with Spec(A) = ∪iD(fi) such that Mfi

is a free Afi
-module for each i. This is

“locally free” in the true geometric sense. Remark, we will also only need that MP

is free for every maximal ideal P .

Lemma 1: Let M be a finite A-module (A Noetherian) and P a prime of A. If
MP is free, then so is Mf for some f 6∈ P .

Proof: Let m1/a1, . . . ,mn/an generate MP , with the mi ∈M and the ai ∈ A\P .
Then the mi define a map ϕ : An →M which is an isomorphism after localizing at
P (the ai are all units there); we want it to be an isomorphism after inverting some
f ∈ A \ P . Let K = ker(ϕ) and C = coker(ϕ); since localizing is exact, we must
have KP = 0 and CP = 0. Both K and C are also finite modules (the former since
we’re noetherian), so the lemma will follow if we can just show that if N is a finite
A-module with NP = 0, then Ng = 0 for some g 6∈ P (for then we can apply this
to K and C and take the product of the resulting g’s). But NP = 0 means that
each generator is killed by something not in P ; we can take the product of those el-
ements and call it g, and that will kill the generators too, so Ng = 0, as desired. �

This lemma shows us that, if MP is free for each maximal M , there is a col-
lection of elements fi with Mfi a free Afi-module and Spec(A) = ∪iD(fi). By
quasi-compactness, we can even assume the fi are a finite set. Now,
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Lemma 2: Let A→ B be faithfully flat, and M a finite A-module (A noether-
ian). Then M is projective if and only if MB is a projective (as a B-module, of
course).

Proof: The “only if” follows from the same argument as the easy direction of
this problem, and doesn’t require anything to do with faithful flatness. For “if”,
recall I proved a lemma in the previous solutions which says that HomA(M,N)B
is naturally isomorphic to HomB(MB , NB) (given the hypotheses on M and A).
If N → L is a surjection of A-modules, then NB → LB is a surjection of B-
modules, so since MB is projective, HomB(MB , NB) → HomB(MB , LB) is sur-
jective, so HomA(M,N)B → HomA(M,L)B is surjective, so by faithful flatness,
HomA(M,N)→ HomA(M,L) is surjective, as desired. �

So, recall from the above that we have a finite cover Spec(A) = ∪iD(fi) such
that each Mfi

is a free Afi
-module. I claim that the B :=

∏
iAfi

-module
∏
iMfi

is
projective. Indeed, if Mfi

' Ani

fi
, then

∏
iMfi

'
∏
iA

ni

fi
as B-modules; for n large

enough it’s clear how to make this a direct summand of
∏
iA

n
fi

= Bn: just fill out
the deficient Ani

fi
’s. Now, we have the obvious map A → B, and I claim that it’s

faithfully flat and that
∏
iMfi = MB . If this is true, we’ll be done by Lemma 2.

The second claim is easy, since B =
∏
iAfi

= ⊕iAfi
and tensor is bilinear over ⊕.

For the first claim (faithful flatness), we will check flatness, and that the map on
Spec is surjective.

Flatness is again easy since B is a direct sum of flat modules (localizations are
flat). To see faithful flatness, we just need this lemma:

Lemma 3: Let Ai be finitely many rings. Then Spec(
∏
iAi) =

∐
i Spec(Ai)

canonically; via this identification, if φ : A →
∏
iAi is any map of rings, say with

ith component φi, then the induced map of φ on Spec is the same as the map∐
i Spec(Ai)→ Spec(A) induced by the maps φi separately.

Proof: Good exercise. The idea is that if P is a prime of Ai, then we get a prime
of

∏
iAi by taking

∏
j over Aj for j 6= i and P for j = i, and this gives the desired

identification. Every prime is of that form since a prime ideal of
∏
iAi can miss at

most one of the “standard basis vectors” (idempotents, in this context), since the
product of any two distinct of them is zero. The claim about the induced maps is
pretty trivial once you have the correspondence. �

This lemma finishes the proof: it shows that the image of the map on Spec of
A→ B is ∪iD(fi) = Spec(A).

For the problems about complexes, I’ll use unbounded complexes, i.e. indexed
by the integers instead of just the nonnegative integers. This is more general (you
can just make all the negatively indexed modules 0 if you like) and just as easy.
Then we also have homology groups in negative dimensions, a.k.a. cohomology
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groups.

I’ll also call the ring R instead of A, so I can use A for other things.

4’) Prove that a map α : C → C ′ of complexes induces a map α∗ : Hi(C) →
Hi(C ′) on homology for each i.

Proof: Well, the commutativity of the squares immediately implies that α sends
im(di+1) to im(d′i+1) and ker(di) to ker(d′i), which is exactly what we need to get
an induced map.

5) a) Prove that a short exact sequence 0 → C ′ → C → C ′′ → 0 of complexes
gives a long exact sequence in homology

· · · → Hi(C ′)→ Hi(C)→ Hi(C ′′)→ Hi−1(C ′)→ · · ·

The maps Hi(C ′)→ Hi(C)→ Hi(C ′′) are induced by C ′ → C → C ′′ as in 4), and
the “connecting map” Hi(C ′′)→ Hi−1(C ′) is TBD.

Proof: I’m going to introduce a framework for working with complexes which is
extremely useful before doing this problem. The idea as it pertains to this partic-
ular problem is to first work with a class of sequences, not short exact, for which
the connecting homomorphism will be obvious, and then deal with short exact se-
quences by relating them to these. The techniques and language are modeled on
algebraic topology.

Given a complex A and n ∈ Z, define a shifted complex A[n] by (A[n])i = An−i
and dA[n] = (−1)ndA; given a map f : A → B, define the map f [n] : A[n] → B[n]
by f [n]i = fn−i. Given two complexes A and B, define a tensor product complex
A⊗B by (A⊗B)n = ⊕i+j=nAi⊗Bj with differential defined by the “Leibniz rule”:

d(ai ⊗ bj) = d(ai)⊗ bj + (−1)iai ⊗ d(bj).

Note that, with this definition, A[n] = R[n]⊗A, where R[n] is the complex with R
in the nth slot and zero elsewhere (so the differential is necessarily always zero).

Now, we want to set up a notion of homotopy between maps of chain complexes
modeled on the case of topological spaces. For this let I denote the chain complex
of the unit interval simplicial set, i.e. I0 is the free R-module on two elements, p0

and p1; I1 is the free R-module on one element e; every other In is zero; and the
differential is defined by d(e) = p1 − p0. We have two maps of chain complexes
R → I where R is given by R in degree 0 and zero elsewhere (in general, if M is
an R-module, we’ll just use M to denote the complex with M in degree 0 and 0
elsewhere; for these things a map between chain complexes is the same as a map
between the original modules, which shows that this is reasonable). The two maps
are pi : R→ I defined by r 7→ rpi.

For any complex A, these give two maps A = R⊗A pi⊗A−→ I ⊗A, which we’ll also
denote by pi. Now, given two chain complexes A and B and two maps f, g : A→ B,
we say that f and g are homotopic, and write f ∼ g, if there is an h : I ⊗ A → B
with h◦p0 = g and h◦p1 = f . If you unravel this, it comes down to saying that there
are maps of R-modules hn : An−1 → Bn for each n ∈ Z such that f − g = dh+ hd.
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If you didn’t follow the above discussion of tensor products, you can just remember
this definition and be OK.

Now, using either of the two definitions, you can easily check things like:

• Homotopy is an equivalence relation;
• f ∼ g if and only if f − g ∼ 0;
• The set of f ∼ 0 is an R-submodule of Hom(A,B);
• For any f : A→ B and g : B → C, if f ∼ 0 or g ∼ 0, then f ◦ g ∼ 0.

This lets us define an R-module [A,B] = Hom(A,B)/ ∼, and R-bilinear composi-
tion laws [A,B] × [B,C] → [A,C]. We can talk about diagrams commuting up to
homotopy, and define a homotopy equivalence to be a map f : A → B such that
there is a g : B → A with f ◦ g ∼ idB and g ◦ f ∼ idA; equivalently, for every K,
the map [K,A] → [K,B] induced by composing with f is a bijection, or for every
K the map [B,K]→ [A,K] is a bijection.

Let’s note a special case of the notion of homotopy. What is [R,A]? Well, giving
a map of complexes from R to A is the same as giving an element a0 of A0, but
not just any element: because maps of complexes commute with the differential,
it has to satisfy da0 = 0, i.e. it must be a cycle. You can work out that two
such things are homotopic as maps if and only if they are coboundaries, so in fact
[R,A] = H0(A). And if you believe that, you also shouldn’t have trouble believing
that [R[n], A] = Hn(A) for all n ∈ Z (or again, [R,A[−n]] = Hn(A)). So the
homology groups are special cases of homotopy classes of maps into complexes. Note
also that, under this correspondence, the composition law [R[n], A]→ [R[n], B] for
a given f : A → B is just the induced map on Hi as in problem 4’. In particular,
we deduce that homotopic maps induce the same map on homology, an important
thing to remember. It implies that homotopy equivalences induce isomorphisms on
homology.

Another definition by analogy with topological spaces: given a map f : A→ B,
define a complex C(f), called the mapping cone of f , as the colimit of the following
diagram:

A
f //

p1

��

B

A
p0 //

��

I ⊗A

0

Thus, giving a map C(f) → K is the same as giving a map B → K together
with a homotopy between its composition with f and the zero map. If you work
it out explicitly, you’ll see that (C(f))n = Bn ⊕ An−1 with differential d(b, a) =
(db+ f(a),−da). Again, if you don’t know anything about colimits in the category
of complexes (and why should you?), you can just remember this definition and
be perfectly fine. In that case, though, make sure to check that this actually does
define a complex, i.e. d2 = 0.

This notion of cone is the one that we’ll be exploiting. Define a triangle to be a
system of maps

A
f−→ B

g−→ C
e−→ A[1]
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Of course, such a thing can be extended in both directions just by shifting:

. . . −→ B[−1]
g[−1]−→ C[−1]

e[−1]−→ A
f−→ B

g−→ C
e−→ A[1]

f [1]−→ B[1] −→ . . .

In particular, for any complex K, it gives a long sequence (what once was f now
denotes pre-composition with f , and so on):

. . . −→ [K,C[−1]]
e[−1]−→ [K,A]

f−→ [K,B]
g−→ [K,C] e−→ [K,A[1]]

f [1]−→ . . .

Even more particularly (K = R), it gives a long sequence of homology groups

. . . −→ H1(C) e−→ H0(A)
f−→ H0(B)

g−→ H0(C) e−→ H−1(A)
f−→ . . .

Now, using mapping cones, let’s introduce a class of triangles for which these long
sequences are guaranteed to be exact.

Any map f : A→ B gives a triangle

A
f−→ B

g−→ C(f) e−→ A[−1],

where g(b) = (b, 0) and e(b, a) = a. Call such a triangle “pre-distinguished”. I claim
that for any pre-distinguished triangle, the associated long sequence on [K,−] is
exact. In particular, the long sequence of homology groups is exact. First we check
exactness at [K,B] by hand, then we use a trick.

Exactness at [K,B] amounts to saying that for φ : K → B, the condition g◦φ ∼ 0
is equivalent to the condition that there exist a map ψ : K → A with φ ∼ f ◦ ψ.
But saying g ◦ φ ∼ 0 is saying there’s a map h : Kn−1 → C(f)n = Bn ⊕ An−1

satisfying certain conditions; similarly saying φ ∼ f ◦ ψ for some ψ : K → A is
saying there are Kn−1 → An−1 and Kn−1 → Bn satisfying certain conditions; it’s
clear how to make the data correspond, and as for the conditions, if you write them
out explicitly you’ll see they then coincide. In brief, this is trivial.

Now, the trick is this. Exactness at [K,B] clearly gives exactness at [K,B[n]]
for all n ∈ Z; we could either argue by replacing K by K[−n] or by noting that the
triangle

A[n]
f [n]−→ B[n]

g[n]−→ C(f)[n] = C(f [n])
h[n]−→ A[n+ 1]

is also pre-distinguished. So what we need to check is exactness at [K,A] and
[K,C(f)]; if we get those, by a similar shifting argument we’ll be done. But we can
also do those by a shifting argument! The idea is this: though the rotated triangles

B
g−→ C(f) e−→ A[1]

−f [1]→ B[1]

and

C(f)[−1]
e[−1]−→ A

−f−→ B
g−→ C(f)

are not pre-distinguished triangles, they are close enough to the pre-distinghuished
triangles (respectively)

B
g−→ C(f)→ C(g)→ B[1]

and

C(f)[−1]
e[−1]−→ A→ C(e[−1])→ C(f),
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in the following sense: we have diagrams of chain complexes

B
g // C(f) e // A[1]

		

−f [1] // B[1]

B
g // C(f) // C(g)

II

// B[1]

where the map A[1] → C(g) is a 7→ (0, a,−f(a)) and the map C(g) → A[1] is
(b, a, b′) 7→ a (you should check that these commute with the differential), and

C(f)[−1]
e[−1] // A

−f // B
g //

		

C(f)

C(f)[−1]
e[−1] // A // C(e[−1]) //

HH

C(f)

where the map B → C(e[−1]) is b 7→ (0, b, 0) and the map C(e[−1]) → B is
(a, b, a′) 7→ b − f(a) (again, check that these commute with the differential). The
property we care about for these diagrams is that they are commutative up to
homotopy, and that the curved vertical maps are mutually inverse homotopy equiv-
alences.

Assuming this, applying [K,−] we get a diagram which is literally commutative
and for which the vertical arrows are all literally isomorphisms, so the first diagram
then reduces exactness at C(f) in the long sequence for the original triangle to
exactness at C(f) in the predistinguished triangle for g, which we checked above,
and similarly for the second diagram and exactness at A. To check the claim, note
that it suffices to simply see that the curved arrows are mutually inverse homo-
topy equivalences, since it’s trivial to check that the up arrows make the middle
squares commute and the down arrows make the right arrows commute, let alone
up to homotopy; thus everything will commute (up to homotopy) provided they’re
inverse (up to homotopy). Now, in both cases, going down then up is already the
identity, so we just need to check that going up then down is homotopic to the
identity. For the first diagram, define h(b, a, b′) = (0, 0, b) (all you really can do
if you want to map degree n to degree n + 1), and for the second diagram define
h(a, b, a′) = (0, 0, a) (ditto). It’s easy to check that these give homotopies between
the identity map and the map given by going up and then down, which checks the
claim, and finishes the proof that a pre-distinguished triangle gives a long exact se-
quence in [K,−] for any complex, and in particular in homology. Here’s a corollary:

Corollary: A map f : A→ B between chain complexes induces an isomorphism
on [K,−] if and only if [K,C(f)[n]] = 0 for all n (or [K[n], C(f)] = 0 for all n). In
particular, f induces an isomorphism on homology if and only if C(f) has trivial
homology.

Proof: Immediate from the long exact sequence.
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Now, let’s finally tackle short exact sequences of complexes. Let 0 → A
f−→

B
g−→ C → 0 be one. Then we have a commutative diagram

A
f // B // C(f)

ϕ

��
A

f // B
g // C

where ϕ : (b, a) 7→ g(b) (to check this commutes with the differential, just need
that g does and that g ◦ f = 0). I claim that this map ϕ is an isomorphism on
homology. Assuming this, the fact that the top line has a connecting map and a
long exact sequence is homology (seen above) implies that the bottom one does
as well. To check the claim, we use the corollary: it suffices to see that C(ϕ) has
trivial homology.

We easily compute the differential on C(ϕ) as (c, b, a) 7→ (g(b) + d(c), f(a) −
d(b), d(a)); what we need, then is that if g(b) + d(c) = 0, f(a) − d(b) = 0, and
d(a) = 0 then there are (c′, b′, a′) such that g(b′) + d(c′) = c, f(a′) − d(b′) = b,
and d(a′) = a. Take c′ = 0, b′ arbitrary in the fiber g−1({c}), and a′ the unique
element of f−1({b + d(b′)})—which exists since g(b + d(b′)) = g(b) + g(d(b′)) =
g(b) + d(g(b′)) = d(b) + d(c) = 0. Then the first two equations are obvious from
choice, and to check the last we can check after applying f , since this is injective,
and indeed

f(d(a′)) = d(f(a′)) = d(b+ d(b′)) = d(b) + d(d(b′)) = d(b) = f(a).

This (finally) finished the proof. �

Remark: It’s also true that if A → B → C(f) → A[1] is a pre-distinguished
triangle, then for any complex K there is a long exact sequence for [−,K] applied
to the triangle as well (by the same argument, it suffices to check exactness at A;
you can do this without trouble). I could use this to streamline the proof of the
lemma in the following problem, following the technique of the lemma of problem
8, but... why don’t I leave the fun to you. You might also enjoy showing that
if 0 → A

f−→ B → C → 0 is a short exact sequence which is degree-wise split,
then the map C(f)→ C defined above is not just a homology isomorphism, but a
homotopy equivalence.

6) Let C (resp. C ′) be a projective resolution of M (resp. M ′). Prove that a
map α : M →M ′ induces a map of complexes α̃ : C → C ′.

Proof: Let’s reinterpret and generalize the question. Recall that, for a module
M , we also denote by M the complex which is M in degree zero and 0 elsewhere.
Then a projective resolution of M is just a complex P consisting of projective
modules living in non-negative degrees together with a map of complexes P → M
which is a quasi-isomorphism, i.e. an isomorphism on homology. What we want is
that a map M →M ′ induces a map P → C ′ making the obvious diagram commute.

Lemma: Let P be a complex consisting of projective modules and A and B
two complexes which are bounded above, i.e. An = Bn = 0 for n small enough. If
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f : A→ B is a quasi-isomorphism, then every map P → B has an up-to-homotopy
lift to P → A; furthermore this lift is unique up to homotopy.

Proof: The desired conclusion is that [P,A] → [P,B] is a bijection, so by the
corollary of the previous problem what we need is that [P,C(f)] = 0. By the same
lemma, we know that C(f) has trivial homology. And C(f) is certainly bounded
above if A and B are, so we’ve reduced to showing that if A is bounded above and
has trivial homology, then [P,A] = 0, i.e. every map f : P → A is homotopic to
zero.

So we need maps hn : Pn−1 → An such that f = hd+dh. If An = 0 we just take
hn = 0, as we must; now we proceed inductively. Suppose we have hn, and we want
hn+1, which needs to satisfy dhn+1 = fn − hnd. If we can just show that fn − hnd
lands in im(d), this will follow from Pn being projective: it’s just a lifting question.
But since A has trivial homology, it will suffice to check that d(fn−hnd) = 0. And
indeed,

d(fn−hnd) = dfn−dhnd = dfn−(fn−1−hn−1d)d = dfn−fn−1d−hn−1d
2 = 0−0 = 0.

This finishes the proof. �

Now let’s put the lemma to work. Let P →M be a projective resolution of M ,
and C ′ → M ′ an arbitary resolution of M ′. Then given a map M → M ′, we can
apply the lemma to P → M → M ′, and deduce an up-to-homotopy lift P → C ′.
But if two maps P → M ′ are homotopic, then they are equal, since P lives in
nonnegative degrees and M ′ lives in degree zero, so any hn must be the zero map.
Thus it is an actual lift, as desired.

7) Prove that Tori(M,N) does not depend on the projective resolution of M .

Proof: Let P → M and P ′ → M be two projective resolutions of M . By the
lemma of the previous problem, we get maps P → P ′ and P ′ → P , unique up to
homotopy, making the obvious diagram commute up to homotopy (or not, by the
argument in the previous problem). But then by the uniqueness up to homotopy of
the lifting in the lemma, both compositions P → P ′ → P and P ′ → P → P ′ must
be homotopic to the identity, which means that P → P ′ is a homotopy equivalence.
But then the same is true of the induced map P ⊗N → P ′ ⊗N , since we can just
define homotopies here by tensoring the original ones with N (the homotopy rela-
tion is just an identity involving the abelian group operation on morphisms, and
tensoring maps preserves this structure). Homotopy equivalences give homology
isomorphisms (recall from problem 5), so this implies, on taking homology, that
the two ways of computing Tor are isomorphic.

8) Prove that Tori(M,N) can also be computed by taking a projective resolu-
tion of N , applying M ⊗−, and taking homology.
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Proof: Kudos to some of you for sloughing out the double complex argument; I
hope you never have to do something like that again (either because you’ll know
about spectral sequences or you’ll know the argument I’m about to present). In
fact we’ll show that Tor can be computed by a flat resolution in either variable. By
problem 2, this is more general. Let E →M be a flat resolution of M , and F → N
a flat resolution of N . We want to show that E ⊗N has isomorphic homology to
F ⊗M . Here is the lemma, analogous to that of two problems ago.

Lemma: Let E be a bounded-above complex of flat modules and f : A → B
a quasi-isomorphism between bounded-above complexes. Then E ⊗ A → E ⊗ B
is also a quasi-isomorphism (see the beginning of problem 5 for the definition of
tensor product of complexes).

Proof: First note that tensoring with E commutes with mapping cones, i.e.
E⊗C(f) ' C(E⊗ f). This has nothing to do with E being flat or bounded above,
and is easy to just check (if you remember the colimit description, you can do it
essentially without work; it turns out that E⊗− has a right adjoint. Can you find
it? It’s the thing you’d want to consider if you want to do this problem with Ext
instead of Tor). Anyway, by the corollary in problem 5, this reduces us to proving
that if A (is bounded above and) has trivial homology, then so does E ⊗ A. This
is extremely plausible: flat things are supposed to preserve exactness under tensor.
But since E is a whole complex, E ⊗ A doesn’t look all that simple. So let’s be a
little more clever before digging in.

Denote by τ≤nE the complex which is Ei in degree i ≤ n and 0 elsewhere, with
E’s differentials wherever the differentials aren’t forced to be zero. Then we have
the map En[n− 1]→ τ≤n−1E given in degree n by the differential d : En → En−1;
it’s easy to check that the mapping cone of this is isomorphic to τ≤nE, so we have a
pre-distinguished triangle (or something isomorphic to one, which is just as good):

En[n− 1]→ τ≤n−1E → τ≤nE → En[n]

But just as above, since tensoring commutes with mapping cones, this is also (iso-
morphic to) predistinguished:

En[n− 1]⊗A→ (τ≤n−1E)⊗A→ (τ≤nE)⊗A→ En[n]⊗A.

Then since A is exact and En+1 is flat, En+1[n] ⊗ A exact (i.e. has trivial ho-
mology), so by the long exact sequence the map (τ≤n−1E) ⊗ A → (τ≤nE) is a
quasi-isomorphism. Thus (τ≤n−1E) ⊗ A has the same homology as (τ≤nE) ⊗ A,
and by induction all the (τ≤nE) ⊗ A have the same homology. But since E is
bounded above, some τ≤nE is zero; thus all the (τ≤nE)⊗A have trivial homology.
On the other hand, since A is bounded above, say An = 0 for n < N , right from
the definition we have

τ≤n(E ⊗A) = τ≤n((τ≤n−NE)⊗A),

which implies that Hn−1(E ⊗ A) = Hn−1((τ≤n−NE)⊗ A) = 0; this being true for
all n, we have the desired result. �
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Now, the lemma makes the problem trivial. First, a small observation: perhaps
despite initial appearances, for complexes A and B, we have A ⊗ B ' B ⊗ A; it’s
easy to see that ai ⊗ bj 7→ (−1)ijbj ⊗ ai furnishes an isomorphism of complexes.
Thus we can apply the lemma with tensoring on either side. Now, since F → N
is a quasi-isomorphism, the lemma says that E ⊗ F and E ⊗ N have isomorphic
homology; but then since E →M is a quasi-isomorphism, so do E⊗F and M ⊗F .
Thus E ⊗N and M ⊗ F have isomorphic homology, as desired.

Note two corollaries: first, Tori(M,N) ' Tori(N,M) for all N,M , and second,
Tori(M,N) = 0 for i > 0 if either M or N is flat (a flat module has itself as a flat
resolution).

9) Let x ∈ A be a non-zerodivisor. Prove that

Tor1(A/(x),M) = {m ∈M | xm = 0}.

Proof: First we claim that a short exact sequence of modules 0 → M → N →
P → 0 gives a long exact sequence in Tor groups

. . .→ Tori(M,L)→ Tori(N,L)→ Tori(P,L)→ Tori−1(M,L)→ . . .

for all modules L. Indeed, we can just take a flat resolution F of L; then

0→M ⊗ F → N ⊗ F → P ⊗ F → 0

is a short exact sequence of complexes (simply because each term of F is flat),
and its long exact sequence in homology yields the desired. (We could also do a
different argument by taking a resolution of each of M , N , and P ... but why make
life difficult?)

Given this, consider the short exact sequence 0→ A
·x−→ A→ A/(x)→ 0, where

·x is injective precisely because x is a non-zerodivisor. A part of its long exact
sequence reads

Tor1(A,M)→ Tor1(A/(x),M)→ A⊗M ·x−→ A⊗M.

But, uh oh, I probably should check that the map A ⊗M → A ⊗M given as the
Tor0 term in the long exact sequence is actually the same as the ·x map. I would’ve
been more careful about all this, except you guys don’t know categories. Bummer.
OK, here goes.

A more general claim is that if f : M → N is a map of modules, then the induced
map on Tor0(−, L) via the above long exact sequence is identified with the map
f ⊗ L : M ⊗ L → N ⊗ L. Part of this claim should be that, in fact, there is a
natural way to identify Tor0(M,L) with M ⊗ L for any modules M and L.

This might be more naturally seen using the “different argument” I referred to
above, but I’ve made my choice, and I’m sticking to it. Take a flat resolution F
of L; part of this is saying that L is the cokernel of F1 → F0, and since tensoring
is right exact, M ⊗ L is the cokernel of M ⊗ F1 → M ⊗ F0, but this is just
the same as H0(M ⊗ F ) = Tor0(M,L). That gives the identification of M ⊗ L
with Tor0(M,L). To see that, through this identification, the map Tor0(M,L)→
Tor0(N,L) coincides with the map M ⊗ L → N ⊗ L, it suffices to stare at the
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commutative digram

M ⊗ F1
//

��

M ⊗ F0
//

��

M ⊗ L

��
N ⊗ F1

// N ⊗ F0
// N ⊗ L

where all the down maps are induced by f .
OK, to recap, we do indeed have that part of the long exact sequence written

above, with the ·x labeling justified. But Tor1(A,M) = 0 since A is flat, so that
sequence just says that Tor1(A/(x),M) is the kernel of ·x on A ⊗M , or, what is
the same, of ·x on M , as desired.

10) (AM 2.24) Let M be an A-module. Show that the following are equivalent:

(1) M is flat;
(2) Torn(M,N) = 0 for all N ;
(3) Tor1(M,N) = 0 for all N .

Proof: We remarked after the end of problem 9 that (1) ⇒ (2). That (2) ⇒ (3)
is trivial. For (3)⇒ (1), suppose M is such that Tor1(M,N) = 0 for all N . Take a
short exact sequence 0 → P → Q → N → 0; then part of the long exact sequence
is

0 = Tor1(M,N)→ P ⊗M → Q⊗M → N ⊗M → 0,

where we checked that the maps are as expected in problem 9; this shows, by defi-
nition, that M is flat.

11) (AM 2.26) Let N be an A-module. Show that N is flat if and only if
Tor1(A/I,N) = 0 whenever I is a finitely generated ideal in A.

Proof: “Only if” by the previous problem. For “if”, the key fact will be that
Tori(−, N) commutes with directed limits. Sigh. I guess I should prove this. It
comes from the same being true of − ⊗ N . In fact, that guy commutes with
arbitrary co-limits (who is responsible for a directed limit being an example of a
co-limit??), since it has the right adjoint of Hom(N,−). Now, take a directed limit
M = limMα, and choose a flat resolution F of N . Then by the result for tensors,
we have M ⊗ F = lim(Mα ⊗ F ) in the obvious (degree-wise) sense (still directed);
we want to see that the same formula holds when we take homology. What we
need to show is that if a complex C is the filtered limit of complexes Cα, then,
firstly, every element of Hn(C) comes from some element of Hn(Cα) for some α,
and secondly, that if something in Hn(Cα) gives zero in Hn(C), then it gives zero
in Hn(Cβ) for some β dominating α. For the first, if we have something in Hn(C),
it’s represented by an c ∈ Cn with dc = 0; this c comes from some cα ∈ (Cα)n, but
d(cα) might not be zero. However, it goes to zero in Cn−1, so it must be zero on
some level β dominating α, and on that level we have a cycle which goes to c. So
there you go. For the second thing, if a cycle cα ∈ (Cα)n gets sent to a boundary
in Cn, say is hit by c′, then c′ also comes from some (Cγ)n+1; then dc′ and c go to
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the same thing in the end, so on some level containing α and γ they must become
equal, as desired.

OK, that argument was probably not up to your standards of mathematical
exposition. I’m sorry. If you don’t like it you can do it yourself, geez. Actually, I
don’t buy that anyone is really reading this, so I’m not going to sweat it. Anyway,
let’s get back to the show.

Suppose Tor1(A/I,N) = 0 for all finitely generated ideals I. We’ll successively
show that Tor1(A/J,N) = 0 for all ideals J , that Tor1(M,N) = 0 for all finitely
generated modules M , and finally that Tor1(M,N) = 0 for all modules M , so that
N is flat by the previous problem. For the first step, let J be an arbitary ideal; I
claim Tor1(A/J,N) = 0. Consider

0→ J → A→ A/J → 0.

The long exact sequence in Tor(−, N) gives

0→ Tor1(A/J,N)→ J ⊗N → A⊗N,
since A is free, hence flat (or projective), implying Tor1(A,N) = 0. So we want
J ⊗N → A⊗N to be injective. But J is the directed limit of its finitely generated
sub-ideals Jα, and for those, by the long exact sequence for 0→ Jα → A→ A/Jα →
0, the hypothesis Tor1(A/Jα, N) = 0 gives that Jα⊗N → A⊗N is injective; since
−⊗N commutes with directed limits, the claim becomes trivial.

For the next step, let’s show that Tor1(M,N) = 0 for all finitely generated
modules M . We induct on the number of generators. If there’s just one, M is
isomorphic to A/I for some I (the kernel of the induced map A→M), so that case
is handled. If there’s more than one, say there are n, write M ′ for the submodule
generated some n − 1 of them. Then the quotient M/M ′ is just generated by one
element, the one we threw out. The long exact sequence for 0 → M ′ → M →
M/M ′ → 0 gives

Tor1(M ′, N)→ Tor1(M,N)→ Tor1(M/M ′, N),

and the outer guys are zero by inductive hypothesis, so the middle one is too, as
desired. Finally, an arbitrary module is the directed limit of its finitely generated
submodules, so the last step follows from the above cantankerously-proved state-
ment about Tori(−, N) commuting with directed limits.

12) Let (A,m) be a Noetherian local ring and M finitely generated over A. Show
that M is flat if and only if M is free.

Proof: Certainly free things are flat, since direct sums of exact sequences are
exact. Now suppose M flat. Just as in problem 3, we can use Nakayama’s lemma
to get a surjective map An → M which is an isomorphism on tensoring with
k = A/m. Let K be the kernel; then we have a short exact

0→ K → An →M → 0,

on which the long exact sequence gives

Tor1(M,k)→ K ⊗ k → An ⊗ k →M ⊗ k → 0.

But Tor1(M,k) = 0 since M is flat, and the map An ⊗ k → M ⊗ k is an isomor-
phism, as we guaranteed through choice; thus K⊗k = 0; since A is noetherian and
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K ⊆ An, we know that K is finitely generated, so by Nakayama we deduce K = 0,
so that our map An →M is an isomorphism, i.e. M is free.

13) Conclude from the previous problems that if A is noetherian and M finitely
generated over A then M is flat if and only if M is projective.

Proof: From problem 2, projective modules are always flat. So assume M flat.
Then for each prime P ∈ Spec(A), the AP -module MP is flat (if N is an AP -
module, then it’s also an A-module, and N ⊗AP

MP ' N ⊗AM naturally). And it
is certainly finitely generated, since M is. So the previous problem says that MP

is locally free; then problem 4 says that M is projective.

14) Assume no finiteness hypothesis. Find a ring A and a flat module M which
is not projective.

Example: Let A = Z, and M = Z(2). Localizations are flat, so M is flat. On
the other hand, it is not projective: consider the surjection Z → Z/2Z. We have
the obvious map Z(2) → Z/2Z, but it doesn’t have a lift: indeed, 1 ∈ Z(2) would
have to go to some odd (hence nonzero) integer a in Z; then if p is an odd prime
not dividing a, poor 1/p ∈ Z(2) can’t go anywhere.


