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Mankind always sets itself only such problems as it can solve.
Karl Marx, The Introduction to “A Critique
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Variety’s the very spice of life.
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1 Prologue

1.1 Motivation

This survey is about the synthesis of two big parts of modern algebra: algorithmic
problems and the theory of varieties. Each of these parts has a rich history and
remarkable achievements reflected in numerous books and surveys. The algorithmic
nature of varieties and the semantic nature of algorithmic problems make these two
parts a perfect match. Their synthesis gave birth to new interesting problems and
results which are the subject of this survey.

We will be mainly concerned with varieties of “classical” algebras — groups, semi-
groups, associative and Lie algebras. But we will try to present results in the most
general form, so when possible, we will formulate statements for arbitrary universal
algebras.



In addition to algorithmic problems themselves, we will be dealing with their
good neighbors and relatives like residual finiteness, the Higman embedding property,
the finite basis property, etc. We will also discuss the computational complexity of
solvable algorithmic problems.

1.2 Overview

The survey has 7 sections. In the Introduction, we present the main algorithmic
problems, their neighbors, and general connections between them. Sections 3-6 are
“local surveys”. There we present results about semigroups, associative algebras, Lie
algebras, and groups respectively.

The seventh section, “Methods”, is the biggest and the most non-standard part
of the survey. It contains a description of the main ideas employed in the proofs of
some important results reviewed in the survey. We not only extract the main ideas
of the proofs, but also try to reconstruct the path that lead to these ideas. We show
how to prove that the word problem is decidable in a variety and how to use Minsky
machines and systems of differential equations in order to prove the undecidability
of an algorithmic problem, or in order to prove that a decidable problem is compu-
tationally “hard”. We present the essence of Mursky’s and Kleiman’s proofs of the
undecidability of equational theories. We even try to explain why one method of
proving undecidability is stronger than another. In general, we think that surveys
must present not only results but also the intuition of the authors, and Section 7 is
the place where we share our intuition with the reader.

We hope that the following thing will become apparent to the reader: the deeper
one investigates algorithmic problems, the more different types of algebras seem alike.
The formulations of results for different classes are getting more and more similar and
the methods of proofs are getting more and more universal. Often one and the same
method is used to obtain results in groups, semigroups, Lie and associative algebras.
Of course, some specifics in the proofs remain. For example a result about groups
usually is more difficult than a similar looking result about Lie algebras. But the main
methods are basically the same and (what should be important for the reader) the
proof of the more difficult result is easier to understand after reading the proofs of its
simpler brothers for other types of algebras. But common formulations and methods
do not exhaust all connections between different classes of algebras. Perhaps more
important are common ideas, common parts of constructions and even a common
mood arising there. This allows us to speak about the unified theory “Algorithmic
problems in varieties.”

We do not pretend that we have considered all possible algorithmic properties in
this survey. We concentrated mainly on neighbors and relatives of the word problem.
Besides we preferred properties which make sense for different types of algebras. If
a property that we consider here has not been investigated in some natural class of
algebras, then we think that it is obviously natural to investigate it in this class. We



do not always explicitly pose the corresponding open problem. The list of references,
though relatively big, does not pretend to be comprehensive.

Many results presented here are not in their original form. We wanted to show
connections between different results, and sometimes this required reformulation. We
also wanted to show the algorithmic nature of results that are presented. Original
formulations often did not make this clear.

We tried to make the survey interesting not only for specialists in algorithmic
problems and varieties, but also for the general mathematical public. We expect
the reader to know the basic concepts from standard undergraduate algebra and logic
courses. Some of the basic definitions are collected in Section 2.10. There are separate
subsections with definitions in each of the “local surveys”.

The sections titled “Semigroups” and “Associative algebras” and the related sub-
sections in “Methods” as well as most of the text in the “Introduction” were written
by the second author. The sections titled“Lie algebras” and “Groups” were written
jointly, although most of the material there was collected by the first author.

1.3 Acknowledgements

We are very much obliged to our teacher L.N. Shevrin who has influenced our work
over many years. He suggested that we write this survey, read the manuscript, and,
as usual, gave us his criticism and advice. Many of the topics presented here were
discussed during the last 20 years at the Algebraic Systems seminar in Sverdlovsk,

headed by L.N. Shevrin.

We thank all those who helped us by discussing, explaining, correcting, and ad-
vising. In particular we mention S. I. Adian, J-C. Birget, Yu. A. Bahturin, L. A.
Bokut’, V. S. Drensky, D. Gildenhuys, V. Guba, N. Gupta, Yu. Gurevich, P. Jones,
A. do Lago, S. Margolis, E. Mayr, G. McNulty, J. Meakin, M. Minsky, A. Razborov,
V. N. Remeslennikov, J. Rhodes, P. Trotter, M. Volkov, and M. Zaitsev.

The referee found and fixed lots of misprints in the text, partially solved Problem
2.4, and gave us many useful comments. We are very grateful to him/her for that.

The survey was started in 1990 when both authors worked at the Ural State
University (Sverdlovsk, U.S.S.R, now - Ekaterinburg, Russia). We continued working
on the survey after the first author moved to McGill University and the second author
moved to the California State University at Chico and then the University of Nebraska
at Lincoln. In all these places we enjoyed stimulating intellectual environments.



2 Introduction

2.1 The World of Algorithmic Problems in Algebra

Some histories of mathematics say that the world of algorithmic problems in algebra
has existed over an indefinitely long time, and even “prehistoric” mathematicians like
Diophantus dealt with algorithmic problems. Some people claim that this world was
created by Gauss, because he created the elimination method, from which all other
methods descended. Nevertheless, we subscribe to the popular myth that the world of
algorithmic problems in algebra rests on three papers by Thue [397], Tietze [399] and
Dehn [80]. These authors studied the problem of deducibility of relations in associative
calculuses (Thue systems), the homeomorphism problem for topological manifolds,
and the problem of homotopy equivalence of a curve to a point or to another curve on
a finite dimensional manifold. In spite of the fact that the first of these problems came
from logic and the others came from topology, all of them turned out to be closely
related to algebraic problems: the word problem in finitely presented semigroups and
groups, the isomorphism and conjugacy problems for finitely presented groups (see
Haken [135] for details).

Recall that the word problem is said to be decidable (we shall also use the word
“solvable”) in an algebra S presented by a set of generators X and a set of defining
relations Y., if there exists an algorithm which, given any pair of terms in the alpha-
bet X, answers whether or not these terms represent the same element in S. The
conjugacy problem for groups and the isomorphism problem may be introduced in a
similar way.

As is well known the unsolvability of the word problem for semigroups was proved
in 1947 by A.A.Markov [249], [250] and Post [303], and significantly more difficult
results on the undecidability of the three group problems: the word problem, the
conjugacy problem and the isomorphism problem — were proved by P.S.Novikov [285]
at the beginning of the fifties. A few years later Boone ([48], [49],[50], [51], [52],[53])
gave another proof of the unsolvability of the word problem in groups. There are
several other proofs of Novikov’s result (see surveys [317], [6], [46]). One of the most
beautiful proofs has been found by E. Rips and is yet unpublished. Actually this is
perhaps the first proof which can be explained to a (smart) high school student. Rips
uses the relations of Boone [54] and van Kampen diagrams [229]. The main idea is to
show that certain labeled n-gons can be filled by certain labeled n;-gons in only one,
canonical, way. This is done by using some high school combinatorics on the plane.
A trace of Rips’ proof can be found in a book by Rotman [330] (see pictures on pages
372-378, and the two colored plates on the inside front covers of this book).

The results of Markov, Post, and Novikov stimulated and largely determined fur-
ther progress in the study of algorithmic problems, both algebraic and topological.
For example, soon after Novikov’s results were published, S.I.Adian [3] proved the un-
solvability of the problem of isomorphism to any given finitely presented group, and



Markov proved the unsolvability of the homeomorphism problem for n-dimensional
manifolds (n > 4) [248]. See the survey by Haken [135] for an excellent discussion of
these and other algorithmic results in algebra and topology.

The existence of a semigroup and a group with undecidable word problem allowed
one to prove the undecidability of many properties of finitely presented semigroups
and groups. Here are some examples of such properties: finiteness, triviality, com-
mutativity and so on. All these properties and many others satisty the following
condition: They hold in some finitely presented algebra (G; and do not hold in any
algebra containing some finitely presented algebra Gy (G and G2 may be different
for different properties). Such properties have been called Markov properties after
A.A.Markov proved the undecidability of each of them for finitely presented semi-
groups [249], [250]. In the class of groups, the undecidability of an arbitrary Markov
property was proved by Adian [3] and Rabin [308]. Similar results were obtained for
associative and Lie algebras by L.A.Bokut’ [45], [43].

The investigation of algorithmic problems, arising from the needs of logic and
topology, is now largely motivated by internal needs of algebra. Perhaps every alge-
braist has either proved the decidability (undecidability) of the word problem in some
concrete algebra or used somebody else’s results of this kind. Algorithmic problems
often lie in the very kernel of difficult algebraic problems. It is enough to mention
super-works on Burnside problems. The kernel of these works is the solution of the
word and conjugacy problems in free Burnside groups [286], [4], [288], [153].

Algorithmic problems are important from a general, “philosophic”, point of view
too. Thus, the decidability of the word problem in a class of algebraic systems usually
means that the study of structural properties of algebras in this class is not hopeless.
And conversely, the undecidability of the word problem usually means big difficulties
are to be expected in the investigation of this class “as a whole”. See also the survey
[46] where interesting general thoughts about algorithmic problems are presented.

Among all possible classes of algebras, the most natural and important ones are,
of course, varieties. Indeed, first of all varieties are given by syntactically very simple
formulas — identities. Varieties play the classifying role in algebra, a description
of varieties of algebras in a given class may be considered as a rough description of
algebras in this class. Furthermore varieties are precisely the classes of algebras closed
under the three most popular algebraic operations: taking subalgebras, taking direct
products, and taking homomorphic images. Therefore if we work with algebras in a
variety and use just these three operations, we will never need any algebra outside
the variety. Every variety has free objects, so the concepts of free algebras, finitely
presented algebras, etc. are applicable for any variety. Therefore every algorithmic
problem about finitely presented algebras makes sense for every variety of algebras.
And, finally, many important classes of algebras are varieties. For example, the
following classes are varieties: the class of all commutative semigroups (groups, Lie
and associative algebras), the class of solvable groups (Lie algebras) of a given degree,
the class of nilpotent groups (Lie or associative algebras) of a given degree, the class



of Burnside groups (semigroups) of a given exponent (index and period). All these
factors have created a big and robust interest in algorithmic problems in varieties
during the last 15-20 years. This subject occupies large parts in most surveys devoted
to algorithmic problems in algebra (see e.g.[317], [6],[252], [46], [150]). However the
last five or six years have given us many important new results which have not been
previously analyzed. In a sense, these results lead us to a new, higher, level of
understanding: One can say that the period of examples has been followed by a
period of descriptions. In this article we are trying to comprehend this new period.

2.2 Two Variants of Formulations

Let V be a variety. There are two types of formulations of algorithmic problems
concerning finitely presented algebras in V. The first type deals with algebras finitely
presented inside V, i.e. those given by a finite number of generators, a finite number
of defining relations, and by all of the identities of V (the class of these algebras will
be denoted by F'P(V). The second type of formulation deals with algebras which are
finitely presented in some fixed “large” variety U (say, the variety of all groups) and
considers algebras from the intersection F'P(U) NV. It will usually be clear from the
context what U is, and we will write F'/P NV instead of FP(U)N V.

If some algorithmic problem is decidable in every algebra from FP(V) then we
say that it is decidable (solvable) in'V or decidable (solvable) forV. If we consider the
smaller class F/P(U) NV and a problem « is decidable there, then we say that « is
weakly decidable (solvable) in V (relative to U). By the same reasoning it is natural
to call the undecidability of the problem « in the second variant of the formulation
strong undecidability of a in V (with respect to U).

Generally speaking, weak decidability depends on the choice of the large variety i.
For example if ¢/ is the variety of all groupoids and V is the variety of all semigroups
then the word problem is weakly decidable in V with respect to U since it is solvable
in every finitely presented groupoid [429], however it is undecidable in V with respect
to V itself.

It is clear that the decidability of an algorithmic problem for a variety V implies
the weak decidability of this problem relative to every bigger variety. An important
fact is that weak decidability is always hereditary for subvarieties. At the same time
— and the above example of the variety of semigroups and the variety of groupoids
shows it — “ordinary” decidability sometimes fails to be hereditary for subvarieties.
Thus general observations from the theory of varieties (see, for instance, the survey
by Bakhturin and Ol’shansky [19]) hint that, for example, the study of varieties
with solvable word problem should be a much more difficult thing than the study
of varieties with weakly solvable word problem. It is amazing that these predictions
are often false! The main reason for this is that it is usually much more difficult
to construct an algebra with, say, an undecidable word problem, in F'/P NV than in

FP(V). Indeed, in the first case the identities of V should follow from the defining



relations. This means that the defining relations must be strong. But at the same time
they should be weak enough to ensure the undecidability of the word problem: it is
intuitively clear that an algebra with undecidable word problem must contain “many”
elements, so its defining relations cannot be too strong. Another cause is that it is
relatively rare that a subvariety does not inherit the undecidability of an algorithmic
problem, and even if it does not, this is compensated for by other properties (see
Section 6 for details).

The arguments from the previous paragraph show that it is not easy to construct
an algebra with an undecidable algorithmic problem and a non-trivial identity, or
equivalently — to construct a variety where an algorithmic problem is strongly un-
decidable.

The first example of a proper variety of groups with strongly undecidable word
problem was found in 1979 by the first author of this survey. She constructed a
finitely presented group with undecidable word problem which is soluble of degree
3 [175]. Analogous examples in classes of semigroups, associative algebras and Lie
algebras may be found in [268] or in [27] (see further sections of this survey).

2.3 The Special Role of the Word Problem

Algebras with undecidable word problem usually play central roles when one proves
the undecidability of other algorithmic properties. We can refer, for example, to the
proofs of results on the Markov properties cited above.

Another feature which makes the word problem special is that if the word problem
is undecidable in a variety then many other algorithmic problems almost surely are
undecidable there. This is not a “scientific fact”, of course, just a part of the intuition.
Every branch of mathematics has such non-scientific facts. They are sometimes much
more helpful than strictly proved theorems.

Here we would like to present the following connection between the word problem
and the isomorphism problem. Other connections will be mentioned later. Recall that
an algebra is called Hopfian if it is not isomorphic to any of its proper homomorphic
images.

Connection 2.1 [f the class F'P(V) contains a Hopfian algebra S with an unde-
cidable word problem then the isomorphism problem is undecidable in V. Moreover
the problem of whether a given finitely presented algebra in 'V is isomorphic to S is

undecidable. If S is finitely presented in a bigger variety U then the isomorphism
problem for algebras from FP(U) NV is undecidable.

Proof. Indeed, let w and w’ be two elements in S and let v be the smallest
congruence which glues w and w’ together. Then, since S is Hopfian, S is isomorphic
to S/~ if and only if w = w'. But S has an undecidable word problem and all algebras
S/~ belong to our variety. Hence the isomorphism problem is undecidable there. The
connection is established.

10



It is worth adding that every known variety with undecidable word problem con-
tains a Hopfian algebra with an undecidable word problem. Thus we do not know
any example of a variety of universal algebras with decidable word problem and un-
decidable isomorphism problem. It would be very interesting to construct such an
example and even more interesting to prove that there exist no such examples. So we
formulate the following problem.

Problem 2.1 Is there a variety of universal algebras (groups, semigroups, asso-
ciative and Lie algebras) with decidable word problem and undecidable isomorphism
problem?

There are some important algorithmic problems which are often weaker than the
word problem. The finiteness problem is one of them. Recall that this problem asks
for an algorithm to decide if a finitely presented algebra is finite. For example, in the
variety of all solvable of class 5 groups the word problem is undecidable [315] and the
finiteness problem is decidable [25].

2.4 Connections With the Decidability of Fragments of the
Elementary Theory

Algorithmic problems in varieties have deep connections with fragments of the ele-
mentary theories of these varieties. Let us recall some necessary definitions. Suppose
we are given a class K of universal algebras. The set EX of all first order formulas of
the corresponding type which hold in this class is called the elementary theory of this
class. The set AKX of all universal formulas (i.e. sentences without existential quanti-
fiers) from KK is called the universal theory of K. The set QK of all quasi-identities,
i.e. formulas of the following form:

(Vaq,...,Ve,)(s1 =& .. . &spy=t, = s=1)

where s;, t;, s, t are terms in the signature of K, over the alphabet {zi,...,z,}, is
called the Q)-theory of K. The set IK of all identities of K is called the equational
theory of K. Finally consider yet another set of formulas of the following form:

&Y s u=wv (1)

where ¥ = {s; = t1,...,8, = t,} is a set of identities and v = v is an identity.
Formula (1) may be written in full as follows:

(Vaq,...,Va,)(s1 =& ... &sp =t;)) — (Y, ..., Va,)(u=v).

By definition, formula (1) holds in K if the identity v = v holds in every algebra
from K which satisfies all identities of ¥, that is if the identity u = v follows from
identities of X in the class K. The set of all formulas from KK of this form is called

11



the identity theory of K. For each of these (and other) theories one can ask, given a
first order sentence, does it belong to this theory? The corresponding problem will
be called the elementary problem, the universal problem, the Q)-problem, the identity
problem, etc. The identity problem for varieties is also called the Tarski-Mal’cev
problem. The identity problem for classes of finite algebras in varieties will be called
also the Rhodes problem.

If a class V is closed under homomorphisms, subalgebras and finite direct products
(i.e. it is a pseudovariety [89]) then the universal problem for V is equivalent to
the Q-problem of V (see [261], [277]) and both of them are equivalent to the so
called uniform word problem which asks if there exists a uniform algorithm which
solves the word problem simultaneously in all algebras from F P(V). This means that
given a finitely presented algebra S € FP(V) and a relation v = v, this algorithm
decides if this relation holds in S. Thus the difference between the word problem
and the uniform word problem is that the instance of the word problem is a pair of
words (terms), and the instance of the uniform word problem is the triple: a pair
of words and a set of defining relations. In particular the decidability of the word
problem in a pseudovariety follows from the decidability of the uniform word problem
of this pseudovariety. It is interesting that the converse implication does not hold for
arbitrary algebras: A recent result by Mekler, Nelson, and Shelah [265] shows that
there exists a variety V of universal algebras with finitely many operations which
has solvable word problem and unsolvable uniform word problem. A similar example
of a variety of algebras with infinitely many operations was constructed earlier by
Wells [265]. It is known also that even if both the word problem and the uniform
word problem are decidable in a variety, the uniform word problem is in general more
complex. For example, the word problem in commutative semigroups may be solved
in polynomial time, while any algorithm, solving the uniform word problem, needs at
least exponential time (see [253], and Sections 2.8, 3.4.1, 7.3 of this survey). There
exists an important connection between the uniform word problem in a pseudovariety
and finite partial algebras. This connection was found by Evans (see [96]). Recall that
a partial universal algebra is a set with a partial operations. If A is a partial universal
algebra, B is a universal algebra of the same type, A C B and every operation of A is
a restriction of the corresponding operation of B then we say that the partial algebra

A is embedded into the algebra B.

Connection 2.2 Let V be a pseudovariety of universal algebras. The uniform
word problem ts solvable in'V if and only if the set of finite partial algebras embeddable
into algebras from V is recursive.

The first example of a variety with an undecidable equational theory was found
by Tarski in 1943-1944 and published in 1953 (see [69], [393], [394]). It was a variety
of relational algebras. Mal’cev [234] found such examples among varieties of quasi-
groups and algebras with two unary operations. The undecidability of the equational
problem in a variety is harder to prove than the undecidability of the word problem
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there. Indeed, the consequences of identities are harder to trace than the consequences
of relations. But in fact, as G.McNulty has pointed out to the second author of
this survey, every example of a finitely presented algebra with an undecidable word
problem can be easily turned into an example of a finitely based variety with an
undecidable equational problem.

Indeed, let us take an algebra S with an undecidable word problem. Suppose
S is given by a finite set of generators X and a finite set of defining relations R
inside a finitely based variety V. Consider a new similarity type of universal algebras
consisting of all operations of S and all elements of X as constants. Let S be the
algebra S considered as an algebra of this new similarity type. The relations of the
algebra S are identities of the algebra S. The variety U generated by S is defined by
the identities of R plus the identities of the variety V, and Sisa relatively free algebra
of this variety! Since we cannot algorithmically decide whether or not a relation u = v
holds in S, we cannot algorithmically decide whether an identity v = v holds in the
variety V. Therefore U has an undecidable equational problem.

The argument from the previous paragraph shows that there exists yet another
connection between the equational problem and the word problem.

Connection 2.3 The equational problem of a variety V is solvable if and only if
the word problem in every free algebra in this variety is solvable.

Therefore if the equational problem is unsolvable in a variety V then the word
problem is also unsolvable there. Thus the Tarski variety of relational algebras was
probably the first finitely based variety of universal algebras with an unsolvable word
problem.

The connection between the equational problem and the identity problem is similar
to that between the word problem and the uniform word problem. The identity
problem in V is solvable if there exists a uniform algorithm which solves the equational
problem in all finitely based subvarieties of V simultaneously. This means that given
a subvariety of V defined by finitely many identities, and an identity «, this algorithm
decides if @ holds in this subvariety. But in the case of identities, it is not known
whether or not the existence of the uniform algorithm is equivalent to the existence of
all particular algorithms, i.e. whether or not the decidability of the identity problem
in V is equivalent to the decidability of the equational problem for every finitely based
subvariety of V. Thus we formulate the following very interesting problem.

Problem 2.2 Is there a finitely based variety V of universal algebras (groups,
semigroups, associative and Lie algebras) with undecidable identity problem and such
that every finitely based subvariety of V has decidable equational problem?

Notice that the identity problem is equivalent to the problem of coincidence of
varieties. Indeed, it is easy to show that the identity problem for a variety V is
solvable if and only if there exists an algorithm which, given any pair of systems of
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identities, says if these systems define the same variety inside V. Thus the role the
identity problem plays in the study of varieties given by identities is the same as the
role of the isomorphism problem in the study of algebras given by defining relations.

2.5 Algorithmic Problems for Pseudovarieties

Varieties may contain some weird infinite algebras. If we want to concentrate on finite
algebras, then it is better to consider pseudovarieties of finite algebras — classes
of finite algebras closed under homomorphic images, subalgebras and finite direct
products.

The classes of all finite semigroups, of all finite groups, of all nilpotent semigroups
(groups, associative or Lie algebras), all finite aperiodic semigroups’, etc., are exam-
ples of pseudovarieties. For every variety V the class of all finite algebras from V is a
pseudovariety, called the finite trace of V and denoted by Vg . Every pseudovariety
is a union of an increasing sequence of finite traces [89)].

There are many interesting connections between pseudovarieties and the theory
of profinite algebras, automata theory, and the theory of formal languages. The last
two theories correspond to the theory of pseudovarieties of semigroups and this is one
of the reasons why pseudovarieties of semigroups have been studied very intensively
during the last 10 years. One of the main questions in the theory of formal languages
(finite automata) is the following: Does a given language (automaton) belong to a
class of languages (automata) which is constructed from some special kind of lan-
guages (automata) in a special way? This question may be formulated in terms of
semigroup pseudovarieties in the following way: does a finite semigroup belong to
a pseudovariety constructed from some special pseudovarieties in some special way.
We do not explain the word “special” here — see Section 3.7.2 for more details. But
one can see that we run into a kind of algorithmic problem again — the problem of
decidability of membership in pseudovarieties.

It is interesting that, as was shown by Albert, Baldinger and Rhodes [9], these
problems are very closely connected with the identity problem in pseudovarieties. See
for example Theorem 3.18 in Section 3.3.2. This is actually how the identity problem
for pseudovarieties first arose in works of Rhodes and his students; as a problem
related to the theory of finite automata.

Unlike the identity problem, the uniform word problem (the Q-problem or the
universal problem) for classes of finite algebras was introduced for purely algebraic
reasons. Indeed finite algebras often come into the world given by generators and
defining relations. The uniform word problem for classes of finite algebras was formu-
lated for the first time by Yu.Gurevich in 1967 [133]. He proved that the class of all
finite semigroups has undecidable uniform word problem. Later Slobodskoj proved
the undecidability of this problem in the class of finite groups [378]. And only a
few years later these results found their applications — in the theory of data bases

LA finite semigroup is called aperiodic if it does not contain non-trivial subgroups.
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[134], [143]. Notice that Connection 2.2 shows a relationship between the uniform
word problem for a pseudovariety V and the membership problem for the class of
finite partial algebras embeddable into algebras in V. This class of partial algebras
is not a pseudovariety but it is closed under taking finite direct products and partial
subalgebras.

2.6 Neighbors of Algorithmic Problems

The algorithmic direction in the theory of varieties is not an isolated point in the
space of directions. There is a close and mutually beneficial connection between this
direction and the rest of the theory.

The connection between the decidability of the word problem in a variety and the
residual finiteness of its finitely presented algebras is the most celebrated one. Recall
that an algebra is called residually finite if it has enough homomorphisms onto finite
algebras to separate every pair of distinct elements.

Connection 2.4 Let A be an algebra finitely presented in a finitely based variety
V. If A is residually finite then A has a decidable word problem.

Proof. The algorithm for solving the word problem essentially belongs to McK-
insey [261]. Let A =< X > be given by a finite system of identities and relations %
and u and v be two terms over X. In order to check if u = v in A let us start two
enumeration processes. The first process lists, one by one, all relations which follow
from X. The second process lists all finite algebras generated by X which satisfy X.
If w = v in A then the first process will give us this equality. If v # v then this
equality does not hold in one of the finite algebras because A is residually finite, and
the second process will give us this finite algebra.

Therefore, after a finite number of steps, one of these processes will end and we
will decide if u = v in A.?

Thus if, in a variety V, all finitely presented algebras are residually finite then the
word problem is solvable in V. Moreover the McKinsey algorithm is “uniform”: it
does not depend on the presentation of an algebra and so it solves the uniform word
problem also. By virtue of a result by Mekler, Nelson, Shelah, and Wells [265], this
implies that the decidability of the word problem is weaker than residual finiteness:
the varieties constructed in [265] have solvable word problem and unsolvable uniform
word problem. There are also examples of varieties of groups, associative and Lie
algebras where the word problem is solvable but not all finitely presented algebras
are residually finite. Semigroup varieties are an exception: we do not know examples
of semigroup varieties with solvable word problem which contain non-residually finite

2The idea of McKinsey’s algorithm (the simultaneous listing of finite homomorphic images and
all consequences of the system of relations) is applicable not only to the word problem. The same
idea works for the conjugacy problem [236]. In this case, instead of residual finiteness we have to
assume residual finiteness with respect to conjugacy.
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finitely presented semigroups. Moreover there are strong reasons to believe that such
examples do not exist (see details in Section 3).

A similar connection exists between residual finiteness and the solvability of the
identity problem.

Connection 2.5 If every relatively free algebra in every subvariely of a variely
V s residually finite then the identity problem in 'V is solvable.

Indeed, as we mentioned before, the identity problem is a “uniformization” of the
equational problem, and the McKinsey algorithm is uniform.

Residual finiteness has close ties also with the solvability of the uniform word
problem for finite algebras in a variety.

Connection 2.6 IfV is a finitely based variety and every finitely presented alge-
bra in 'V s residually finite, then the uniform word problem is solvable in Vﬁn'

Proof. Indeed, let ¥ be a finite set of relations over an alphabet X, v and v be two
terms over X. Suppose we want to know if u = v in every finite algebra A =< X >
from V which satisfies ¥. Take the algebra S =< X > given by ¥ inside V. This
algebra is residually finite. Hence it has solvable word problem (see Connection 2.4).
Thus we can decide if u = v in S. If v and v are equal in S then they are equal in
any algebra A =< X > from V satisfying 3. On the other hand, if u # v in S then,
since S is residually finite, there exists a finite homomorphic image A =< X > of
S where these terms also represent different elements. Therefore ¥ implies v = v in
Vg if and only if w = v in S. This gives us the algorithm solving the uniform word
problem in the class of finite algebras from V. The Connection is established.

There is a connection between residual finiteness and the isomorphism problem.
This connection, first noticed by Pickel [296], is based on the following observation.
Let us call two algebras quasi-isomorphic if they have the same set of finite homo-
morphic images. It is clear that if two algebras are isomorphic then they are quasi-
isomorphic. The converse implication does not hold [430]. Suppose that a finitely
presented algebra A is such that there are only finitely many finitely presented alge-
bras {Ay,..., A,} which are quasi-isomorphic to A. Take another finitely presented
algebra B = < X|X >. Let us start three parallel processes. The first process lists
all consequences of the set of defining relations ¥, and of the sets of defining relations
of the algebras A;, + = 1,...,n. The second process lists all finite homomorphic
images of B and checks if they belong to the set of finite homomorphic images of
A. The third process lists all finite homomorphic images of A and checks if they are
homomorphic images of B: it is clear that the set of finite homomorphic images of
any finitely presented algebra is recursive. Then either the first process will tell us
that one of the algebras A; is isomorphic to B (all relations of A; are consequences
of relations of B and vise versa) or the second process will find a finite homomorphic
image of B which is not a homomorphic image of A, or the third process will find
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a finite homomorphic image of A which is not a homomorphic image of B. In the
first case B is isomorphic to A if A; is A, and B is not isomorphic to A if A; is not
A. In the second case and in the third case B is not isomorphic to A. Therefore for
every such A there is an algorithm which decides if a finitely presented algebra B is
isomorphic to A.3

There are some important cases (for example the case of finitely generated nilpo-
tent groups [296]) when this method works well (see Section 6). If we want to use
Pickel’s method to solve the ordinary isomorphism problem in a variety V then we
must have two conditions:

1. For every algebra A finitely presented in V there are only finitely many finitely
presented algebras A;,..., A, in V which are quasi-isomorphic to A,

2. These algebras {A;1,..., A,} must be constructed effectively, given a presenta-
tion of A.

It A€V is a finite algebra and every finitely presented algebra in V is residually
finite then there are only finitely many finitely presented algebras in V which are
quasi-isomorphic to A. Therefore we have the following connection.

Connection 2.7 If every finitely presented algebra in a variety V is residually
finite, then for every finite algebra A € V there exists an algorithm which decides if
a finitely presented algebra from V s isomorphic to A. In particular, the triviality
problem is solvable in YV

We expect a strong connection between residual finiteness and the decidability of
the finiteness problem.

Problem 2.3 Suppose that all finitely presented algebras of a finitely based variety
V are residually finite. Is the finiteness problem for V decidable?

There is a strong connection between residual finiteness and the equational prob-
lem. As was mentioned above (see Connection 2.3) this problem is equivalent to the
word problem in relatively free algebras. Thus if all relatively free algebras in a given
variety are residually finite (or, equivalently, this variety is generated by its finite alge-
bras) then the equational problem is solvable in this variety and in the corresponding
finite trace — the set of all finite members of this variety.

Another neighbor of algorithmic properties is the Higman property. A variety
is said to have the Higman property (to be a Higman variety) if every recursively
presented algebra in this variety is embeddable into a finitely presented algebra from
the same variety. Recall that an algebra is called recursively presented if it can be given
by a finite set of generators and a recursively enumerable set of defining relations.
The variety of all groups was the first one which was proved to be a Higman variety
(Higman, [144], a simpler proof in Aanderaa [1]).

3This proof is yet another implementation of the McKinsey’s idea.
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Connection 2.8 If a Higman variety V contains any algebra given by an infinite
independent set of defining relations (no one relation follows from others) then the
word problem is not solvable in this variety.

Proof. Indeed, this set of defining relations contains a recursively enumerable but
non-recursive subset. An algebra given by this subset of relations inside V is embed-
dable into a finitely presented algebra from the same variety. The word problem in
the last algebra is undecidable, so V has undecidable word problem. The Connection
is established.

However the Higman property does not always imply undecidability of the word
problem. In particular, if every finitely generated algebra from a variety is finitely
presented there (let us call this property F'G = F'P ) then this variety clearly satisfies
the Higman property. For example the variety of all Abelian groups satisfies F'G =
F P and so it is a Higman variety! The variety of all commutative rings, the variety of
metabelian groups and the variety of commutative semigroups are perhaps the most
famous varieties which satisfy F'G = FP. Notice that this property is equivalent
to the ascending chain condition for congruences on every finitely generated algebra
in a variety. The class of varieties of associative rings was the first one where the
FG = FP property was intensively studied (see Section 4.7).

The next neighbor is at first glance very unexpected while it is one of the oldest
inhabitants in the theory of varieties. We mean the “finite basis property.” There
exists the following connection between this property and the decidability of the
identity problem.

Connection 2.9 If all subvarieties of V are finitely based then the equational
problem in the finite trace Vﬁn is solvable.

Proof. Indeed, consider the subvariety U generated by all finite members of V.
This subvariety is finitely based by the condition. Since it is generated by finite alge-
bras, all its free objects are residually finite and so they have solvable word problems.
Now consider an identity u = v. Obviously, u = v holds in Vg, iff it holds in ¢ iff u
coincides with v in the free algebra of ¢ with the corresponding number of generators.
The Connection is established.

Notice that, by definition, the solvability of an algorithmic problem means that
the algorithm solving the problem exzists, but it does not mean that we can actually
find it in all cases. In particular, Connection 2.9 means that the algorithm solving
the equational problem exists, but does not say how to find it.

There is yet another direction in the theory of varieties whose connection with al-
gorithmic problems was discovered only recently. This connection appears to be even
stronger than that with residual finiteness and the Higman property. We mean the
direction concerned with Burnside properties of algebras. By Burnside properties we
understand those that figure in the three Burnside problems about groups: bounded,

18



unbounded and restricted Burnside problems. Similar problems exist in all classical
types of algebras.

The bounded problem for general algebras asks if a finitely generated algebra is
finite provided the orders of its one-generated subalgebras are finite and bounded by a
natural number. The unbounded problem asks if a finitely generated algebra is finite
provided all its one-generated subalgebras are finite. The restricted problem asks if
there are only finitely many finite algebras with any given number of generators and
any given bound for orders of one-generated subalgebras. In the case of linear algebras
over an infinite field, we have to replace in these definitions the word “order” by the
word “dimension”. In the case of Lie algebras, where every 1-generated subalgebra is
automatically finite, we have to consider 2-generated subalgebras instead.

The “Burnside trace” can be seen already in the paper by Murskii [276] where he
constructed an example of a semigroup variety with undecidable equational problem.
Murskii essentially used the fact that his periodic variety is not locally finite, that is
it contains an infinite finitely generated semigroup. And the cube free Thue-Morse-
Arshon sequence, which plays an important role in his proof, undoubtably is on the
coat of arms of the family of Burnside properties (see Section 7.7.1 below for more
details). This connection appeared most explicitly in the paper of the second author of
this survey [346] where it is proved, in particular, that if the word problem is solvable
in a nonperiodic variety of semigroups then all periodic semigroups in this variety are
locally finite (see Section 3.3). This and many other results of such kind hint that the
positive solutions of algorithmic problems are hardly possible in those varieties where
Burnside type problems are solved negatively. For example, the following statement
gives a connection between a positive solution of the so-called Restricted Burnside
problem (also known as Magnus’ problem) and the solvability of the uniform word and
identity problems in a pseudovariety. Recall that one of the equivalent formulations of
the restricted Burnside problem concerning a variety is: Do all locally finite members
in this variety form a subvariety?

Connection 2.10 If the locally finite members of a variety V form a subvariety
and one can compute the order of a free algebra of this subvariety given a number of
generators, then the uniform word (identity) problem is solvable in Vﬁn'

Proof. Let ¥ be a set of relations (identities). One needs to find out if ¥ implies
a relation (identity) v = v in Vg,. Let n be the number of letters which occur in
Y U{u = v}. Compute the order of the n-generated free algebra in the maximal
locally finite subvariety of V. Given this order, one can compute the multiplication
tables of this algebra and its homomorphic images. Then it remains to check all
these images, choose those which satisfy ¥ and verify if they also satisfy u = v. The
Connection is established.

Old and recent positive solutions of Burnside type problems in associative and
Lie algebras, groups and semigroups are very important in the study of algorith-
mic problems. And we would like to express our gratitude for all these solutions.
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We are especially grateful to Kaplansky’s Theorem on algebraic Pl-algebras [161],
Shirshov’s “height” Lemma [371], Kostrikin’s Theorem on the local finiteness of Lie
algebras with an Engel identity [202], [203], Zelmanov’s Theorem about the global
nilpotency of Lie algebras with an Engel identity (characteristic 0) [425], the Hall-
Higman-Kostrikin-Zelmanov solution of the restricted Burnside problem for groups
[139], [202], [203], [201], [428], [427], and the Bean-Ehrenfeucht-McNulty-Zimin-Sapir
description of semigroup varieties with locally finite nil-semigroups [29], [431], [346].

2.7 The Influence of the Theory of Varieties

Of course the theory of algorithmic problems in varieties is a part of the general
theory of varieties. The mere perception of this fact leads one to correct formulations
of the final goals and strategy.

For every algorithmic problem and every class of varieties C the final goal is the
“full and complete” description of all varieties from C where this problem is solvable
(weakly solvable). Of course, the word “description” is not descriptive! There exist
many ways to describe varieties (an attempt to classify those ways was made by
Shevrin and Sukhanov [368]). We believe that it would be most natural to try to get
algorithmic descriptions.

By an algorithmic description of varieties with a property « from a given class C
we mean presenting an algorithm which, given a finite set of identities ¥ that defines
a variety from the class C, says whether or not this variety satisfies «.

The first problems about algorithmic descriptions of varieties with different prop-
erties were raised by Tarski in his classic survey [392]. Every algorithmic description
is certainly limited because it deals only with finitely based varieties (recall that a
variety is finitely based if it can be defined by a finite number of identities). But
when one studies algorithmic problems for finitely presented algebras this restriction
is natural. Indeed, algorithmic problems can be considered only in constructively
presented classes and it is clear that finitely based varieties are constructively pre-
sented. Of course, one can consider, say, recursively based varieties which seem to
be constructively presented also. But in fact recursively presented varieties are much
less constructive objects than finitely based ones. For example if a variety is finitely
based then for any given finite algebra one can decide whether or not it belongs to this
variety. For recursively based varieties this problem is in general undecidable. And
it is worth noting here that algorithmic properties of varieties essentially depend on
the presence or absence of certain finite algebras in these varieties (see, for example,

It is known (see, for example, the survey by Bakhturin and Ol’shanski [19]) that
one of the most natural strategies in describing varieties with a certain property «
consists in finding as many as possible minimal non-a-varieties. A variety is called
minimal non-« if it is not an a-variety, but all its proper subvarieties satisfy a. If
the property « is such that every subvariety of an a-variety also satisfies «, then
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each minimal non-« variety is very important. Indeed, then every variety containing
this “minimal counterexample” does not satisfy «, so the area of search gets much
smaller.

Even for properties o which are not hereditary for subvarieties (in particular, for
the decidability of the word problem) minimal non-« varieties often reduce the area of
search (see [343], [184]). Notice that the problem of finding minimal non-« varieties
is interesting in itself as is every problem about boundaries between “Yes” and “No”.
The first decidability /undecidability boundary — a minimal variety with undecidable
word problem — was found in the class of semigroups (see [268], for more details see
other sections of this survey).

Another strategy has been used, for example, in the work by Groves [118]. It
consists in searching for what we call “indicator” varieties. A variety V is called
an indicator with respect to a property « if for all varieties U, U satisfies « iff the
intersection YV NU satisfies . It is clear that if we managed to find a relatively simple
indicator variety then the problem of describing all a-varieties becomes simpler. There
are some reasons to believe that for many algorithmic properties one can find relatively
simple indicator varieties.

2.8 Complexity of Algorithmic Problems

The solvability of an algorithmic problem does not mean that the problem can be
solved in practice. First of all the existence of an algorithm does not mean that it is
readily available (see the discussion after Connection 2.9). Another, more important,
obstacle is that the algorithm can be too slow. For example, if we look at the McK-
insey algorithm (Connection 2.4) from this point of view, then it will be clear that in
general this algorithm is very slow. Even for small words v and v it would take a lot
of time to decide, using this algorithm, if v = v in a given residually finite algebra.

Thus the next thing to do, after we find out that a problem is decidable, is to find
the computational complexity of this problem.

To make this more precise let us present here some concepts from Computational
Complexity Theory.

Any decision problem D may be considered as a membership problem for elements
of some set Bp in a subset Sp. For example if D is the uniform word problem for
semigroups then Bp is the set of all triples (u, v, R) where u,v are words, R is a set
of defining relations, and Sp is the subset of triples (u, v, R) such that v = v in the
semigroup defined by R.

With any element = in Bp one associates a number which is called the size of this
element. Usually the size is roughly the minimal space which is needed to write x
down. The size depends on the way we choose to represent the elements. For example
if # is a natural number then we can represent = as x units. Then the size of x will
be equal to x. If we represent = as a sequence of binary digits then the size of = will
be approximately logz(x).
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Algorithms may be realized by Turing machines that have one read/write tape
and one head. We can assume that this machine is equipped with a voice synthesizer
and can say two words “Yes” and “No”. An algorithm solving the decision problem
D starts working with an element = of Bp written on the tape of the machine. When
it ends, it says “Yes” if x € Sp or “No” if x & Sp.

With every algorithm A solving the problem D one can associate two important
functions: the time complexity function and the space complexity function.

The time complexity function ¢ 4(n) is the maximal number of steps of the machine
needed for the algorithm to decide if an element = of size < n is in Sp The space
complexity function s4(n) is the maximal number of cells of the tape visited by the
machine while it is working on an element z of size < n. If one wants to consider
less than linear space algorithms, one has to consider more complicated computing
devices [104].

The following connection is clear.

Connection 2.11 s4(n) < ta(n).

Indeed, even if at every step the algorithm used a new cell of the tape, ss(n)
would be only equal to t4(n). In reality s4(n) is always smaller than ¢4(n). On the
other hand the following connection also holds.

Connection 2.12 t4(n) < ¢*40) where ¢ is some constant depending on the ma-
chine but independent of n.

Indeed, at every particular moment the behavior of the machine depends only on
three parameters:

1. the word written on the part of the tape which is visited by the head of the
machine during its work; by definition, the length of this word can not exceed

sa(n),
2. the state of the head; the number of states does not depend on n,

3. the position of the head of the machine; the number of such positions does not
exceed s4(n).

Taking into account that there are no more than |X|*4(") possible words of length
sa(n) in the alphabet X of the machine, we can conclude that there are at most
c*4(") possible situations for some constant ¢. If one of the situations repeats during
the machine’s work, the algorithm will cycle indefinitely, which is impossible: it must
finally say “Yes” or “No”. Therefore the time complexity function cannot exceed
oAl

If there exists an algorithm A which solves D and t4(n) is bounded from above
by a polynomial (exponential) in n then we say that D can be solved in polynomial
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time (exponential time). The solvability in polynomial space (exponential space) is
defined similarly.

It is worth mentioning that if we modernize the Turing machine by, say, adding
more tapes or heads, we won’t change the complexity of the problem much. For
example a non-polynomial time (space) problem cannot become polynomial as a
result of that. The class of all problems which can be solved in polynomial time
is denoted by P.

If in the definition of the time complexity, we replace the (deterministic) Tur-
ing machines by non-deterministic Turing machines, then we obtain definitions of
the solvability in non-deterministic polynomial time, non-deterministic exponential
time, etc. Recall that a non-deterministic Turing machine is more intelligent than a
deterministic one: it does not blindly obey the commands of the program, but, at
every step, guesses itself what the next step should be. Roughly speaking a problem
D can be solved in non-deterministic polynomial time if for every element x € Sp
there exists a proof that = belongs to Sp and the length of this proof is bounded
by a polynomial of the size of . The class of all problems which can be solved in
polynomial time by a non-deterministic Turing machine is denoted by NP. It is not
known if P=NP. This is one of the central problems in Theoretical Computer Science.

On the other hand the space complexity does not change much if we use non-
deterministic Turing machines instead of deterministic Turing machines. In fact if
a problem can be solved by a non-deterministic Turing machine with a space func-
tion s(n) > log,(n) then it can be solved by a deterministic Turing machine with
space function cs(n)? for some constant ¢ [362]. In particular, a problem solvable in
polynomial space by a non-deterministic Turing machine is automatically solvable in
polynomial space by a deterministic Turing machine.

In order to prove that a problem is solvable in polynomial time it is enough to
find a polynomial time algorithm solving this problem.

In order to prove that a problem D is not polynomial (more than exponential,
etc.) one has to take a problem () which is known to be “hard” and reduce it to D.

There are several kinds of reductions used in the Computer Science literature.
One of them, polynomial reduction in the sense of Karp [104], is the following. A
reduction of a problem () to a problem D is a function ¢ from Bg to Bp such that

e An element © from By belongs to Sg if and only if ¢(x) belongs to Sp.

e The element ¢(z) can be computed in polynomial time, in particular the size
of ¢(z) is bounded by a polynomial of the size of .

It is clear that if () is “hard” and () can be reduced to D then D is “hard” as
well.

A.Meyer was probably the first who raised questions about the computational
complexity of decidable algorithmic problems in algebra. One of the first algorithmic
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problems considered by him and his students was the word problem in the variety of
commutative semigroups.

A student of A.Meyer, E.Cardoza [68], noticed that the word problem can be
solved in linear time. Mayr and Meyer [253] proved that the uniform word problem
for commutative semigroups is exponential space complete which means that there
exists an algorithm solving this problem, which needs an exponential amount of space
on the tape, and every problem which requires exponential space may be reduced to
the uniform word problem for commutative semigroups (see Sections 3.4.5, 7.3).

Notice that, when we prove the undecidability of a problem D, we usually also
reduce a problem @ known to be “hard” (which in this case means undecidable), to
D. In order to reduce () to D we find a similar mapping ¢, but we do not care about
the size of ¢(x) (see Sections 7.2.1, 7.5, 7.6 below).

It is clear for us that methods of reducing undecidable problems worked out in the
theory of algorithmic problems in algebra must help in proving that this or that de-
cidable problem is “hard”. Conversely, methods of reducing “hard” problems worked
out in Computer Science will certainly help in proving undecidability of algorithmic
problems.

In fact, connections between Computer Science and algorithmic problems in alge-
bra are already very strong. We have mentioned connections between data bases and
the uniform word problem for finite semigroups and groups. One of the reasons to
study the complexity of the uniform word problem for commutative semigroups was
a need of the theory of Petri nets, yet another part of Computer Science. Petri nets
are used in constructing and analyzing information networks. It is an instrument in
describing the information flow in complicated systems. We will not give the Com-
puter Science definition of Petri nets, and we will not formulate “real life” problems
related to Petri nets (see [314], [63]). Let us only notice that from the algebraic point
of view Petri nets relate to presentations of commutative semigroups just like semi-
Thue systems relate to semigroup presentations (Thue systems). In Thue systems
we can apply relations both from the left to the right and from the right to the left;
in semi-Thue systems only left-right applications are allowed. Recall that to apply a
relation v = v to a word w means to represent w in the form pug where p and ¢ are
words and then replace u by v in this presentation. It is easy to see that semi-Thue
systems with symmetric sets of relations (that is reversible semi-Thue systems) are
just Thue systems. Reversible Petri nets are precisely presentations of semigroups
in the variety of commutative semigroups. Petri nets have been extensively studied
during the last 20+ years (there are more than 500 publications?).

Another connection between Computer Science and algorithmic problems in al-
gebra was found by R.Fagin [98]. He proved, in particular, the following amazing

4These are only the “open” publications. We can only guess how much classified information
about Petri nets related to military communication systems have been produced during the Cold
War. Perhaps, after this information is declassified, we will learn some sensational facts about
finitely generated commutative semigroups.
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model-theoretic characterization of classes of finite algebras whose membership prob-
lem can be solved in non-deterministic polynomial time.

Connection 2.13 The membership problem for an abstract (closed under iso-
morphisms) class of finite algebraic systems is in NP if and only if it is the class of
all finite models of a second-order formula of the following type:

30:3Q2 .. 3Q.(0)

where ); s a predicate, and O s a first-order formula.

Basically this Theorem means that the membership problem of a class of finite
algebras is in NP if and only if we can describe the structure of algebras of this
class in terms of functions and relations. Since all known methods of studying the
structure of algebras are based on studying functions (endomorphisms, polynomial
functions, etc.) and relations (congruences, etc.) we can conclude that for a class
of finite algebras, having a membership problem in NP is equivalent to admitting a
reasonable structure description.

Classes where the membership problem has other types of computational complex-
ity have similar model theoretic characterizations. Classes with membership problem
in P have been characterized by Immerman [152], Sazonov [364], [363] and Vardi
[407]. Classes with exponential time membership problem were characterized by Fa-
gin [98]. Classes with non-deterministic exponential time membership problem have
been characterized by Fagin [98] and Jones and Selman [158]. A detailed survey of
these results has been recently published by Fagin [97].

It seems obvious that these Connections will have many applications to the theory
of pseudovarieties of finite algebras.

Finally let us mention some problems which arise naturally when one tries to
analyze the complexity of algorithms related to varieties.

Problem 2.4 (Sapir) For every finite universal algebra (semigroup, group, ring)
A find the computational complexity of the following problem:

Input. An identity u = v.

Task. Check if u = v does not hold in A.

In particular, is there a finite universal algebra (semigroup, group, ring) A such
that this problem cannot be solved in polynomial time?°

It is clear that this problem is in NP and can be solved in linear space. The similar
problem for finite dimensional linear algebras is also in NP if basic operations of the

5The referee noticed that if A is the two element Boolean algebra {0, 1} then the identity u = 0
holds in A iff the formula u is identically false. It is known that the problem of verifying whether
a formula is true or false is NP complete [104]. Thus the Problem 2.4 is NP complete for the two
element Boolean algebra. For groups and semigroups this problem is still open.
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ground ring K (the addition and the multiplication) are computable in polynomial
time, say, if K is the field of rational numbers or the ring of integers. As far as we
know there are no examples of finite dimensional algebras over Q or Z for which this
problem cannot be solved in polynomial time. Problem 2.4 is important because it
happens very often that algorithmic descriptions of varieties are formulated in terms
of “forbidden algebras” (see Section 2.7).

Problem 2.5 (Margolis, Sapir). For every finite universal algebra A find the
computational complexity of the following problem:

Input. A finite algebra B.

Task. Check if B belongs to the variety generated by A.

In particular, is there an algebra A for which this problem cannot be solved in
polynomial time or in polynomial space?

2.9 Algorithmic Problems and Rewrite Systems

Rewrite systems participate crucialy in many solutions of algorithmic problems and
in many practical implementations of these solutions. There are a huge number of
papers, surveys and books devoted to these systems. See, for example, [223], [81],
[34], [47], [30]. Here we would like to mention some general connections between the
theory of rewrite systems and algorithmic problems in varieties. Our presentation
here follows paper [338] by the second author of this survey.

Let k& be a natural number, X be a k-element alphabet, and let F' be an algebra
generated by X. Suppose that we are studying finitely generated congruences on
F. For example, F' can be the free algebra over X in some variety V. Then finitely
generated congruences on F' correspond to finitely presented algebras in V. The word
problem for finitely presented algebras in V corresponds to the membership problem
for pairs from F' x F' in finitely generated congruences.

One of the possible ways to study a congruence o on F'is to find, in some sense, the
unique normal form in each congruence class (we will discuss an alternative approach
in Section 7.1). Given an algorithm for finding these normal forms, we can describe
the congruence by saying that two elements are in the same class if and only if they
have the same normal forms. From the algebraic point of view, these normal forms
and algorithms for finding them are the main personages of the theory of rewrite
systems.

In the most general form a rewrite system is just an oriented graph G, where
vertices are called objects, and an edge (a, b) means that the object b is obtained from
a by an elementary transformation. If we forget for a moment about the orientation
of the edges, we can break the graph (G into a disjoint union of connected components.
This partition is called the partition generated by the rewrite system G.

In practice we are usually given a partition of a set GG and the goal is to find a
rewrite system which generates the same partition and helps us to find the normal
forms in the way described below.
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For example, objects may be elements of F' and elementary transformations may
be the left-right applications of relations from some fixed set of relations (see [198]).
Recall that if w,p,q € F then in order to apply the relation (p,¢) to w we have to
represent w as a term ¢ in generators of F', find a subterm of ¢ which represents p,
and replace this term by a term which represents ¢. The element represented by the
resulting term is the result of the application. Sometimes, for example in the case of
rings, we need more restrictive definitions of an application of a relation (see Section
4.10). Thus with every set of pairs ¥ C F' x F one can associate a rewrite system
which we will denote by Q(F, ). The connected components of this rewrite system
are congruence classes of the congruence generated by .

Thus every semi-Thue system and every Petri net are rewrite systems. The objects
of a semi-Thue system are words, i.e. elements of the absolutely free semigroup X,
and the objects of a Petri net are elements of the free commutative semigroup, that
is commutative words. In the Computer Science literature semi-Thue systems are
called “string-rewriting systems”. There are several surveys and books devoted to
string-rewriting systems. See, for example, Book and Otto [47].

Given a rewrite system which generates a partition o, we can try to find the
normal form of objects in a connected component by taking an element a in this
component and by applying elementary transformations to this object until we get
an object which cannot be further transformed by the elementary transformations.
This procedure is usually (though not always) very fast and efficient.

It is clear, however, that we have to avoid two fundamental difficulties. First of
all, the process of applying elementary transformations to our object a might never
end. Then we would get an infinite directed path in our graph G

a— a0, — 0y — ... Uy — ....

Second, even if the process ends, we are not guaranteed that the element that we
finally get, is unique in the connected component (the normal form in a connected
component must be unique, of course). Indeed, for example, the graph G can have
the following form

Then a and ¢ are in the same connected component but our procedure applied to
a and c gives different results.

A rewrite system G is called terminating if every directed path on G is finite. A
rewrite system (' is called a Church-Rosser system if for every two elements a and
¢ from the same connected component of G there exist directed paths ¢ — ay —
ay...— ay, and ¢c —= ¢ — ¢y — ... — ¢, with a, = ¢,,,. It is clear that if a rewrite
system is terminating and Church-Rosser then the above mentioned procedure works
and gives the desired normal form in every connected component.

Terminating Church-Rosser rewrite systems were first formally introduced in [70]
and [280] (see also [147]).

Now let us consider again an algebra F' =< X >, a set of pairs ¥ = {(p;,¢:) | © =
1,2,...} from F x F and the rewrite system Q(F,¥) with elements of F' as objects
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Figure 1:

and left-right applications of relations p; = ¢; as elementary transformations.

Of course, if we want to use the rewrite system Q(F,Y) in order to actually
compute the normal forms in the congruence classes, we need the decidability of the
following two problems in F':

1. The word problem:;

2. The “applicability” problem: given an element w € F and a pair (p, ¢) decide if
the relation (p, q) is (left-right) applicable to w and if it is applicable then write
down the result of the application.

We will call the set of relations ¥ C F' x F' terminating (resp. Church-Rosser)
if the corresponding rewrite system Q(F, X)) possesses this property. There is an al-
most obvious but very important connection between the terminating Church-Rosser
presentations and the word problem.

Connection 2.14 Let the word problem and the applicability problem be decidable
in I, and let a congruence vy on F' be generated by a finite terminating Church-Rosser

system Q(F,%). Then the word problem in F/~ is decidable.

Proof. Indeed, let © and v be two elements in F. In order to decide if (u,v) € v
one has to construct two sequences:

U =Ug —> U] — Uy — ...

V=g —> U1 — Uy — ...
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where each arrow — means an application of a relation from ¥ (from left to right).
If at some step we can apply several relations, chose one of them. These processes
eventually end since the presentation is terminating. The Church-Rosser property
guarantees that (u,v) € v if and only if the final word in the first sequence coincides
with the final word in the second sequence. The connection is established.

If we want to use Church-Rosser presentations in order to study finitely presented
algebras in a variety V, then it seems natural to take the free algebra F' = Fx (V) and
to try to find terminating Church-Rosser rewriting systems which generate finitely
generated congruences on F'. This strategy works for the variety of all commutative
semigroups or rings (see Sections 3.5.2, 4.10). Sometimes, however, the free algebras
of V are not the best choice. As in [338], we shall call a finitely generated algebra F' a
pseudo-free algebra for V of rank n if the free n-generated algebra of V is isomorphic
to a factor-algebra of F' over a finitely generated congruence. Notice that F' itself
may not belong to V. This may be, for example, a free algebra in some bigger
(and better) variety (see Sections 3.5.2 and 4.10 for examples). If F' is a pseudo-free
algebra for V of rank n then every finitely presented n-generated algebra A in V is a
factor-algebra of F' over a finitely generated congruence . We shall say that A has
a terminating (resp. Church-Rosser) presentation with respect to F' if v is generated
by a terminating (resp. Church-Rosser) rewrite system Q(F, ).

We call a variety V a Church-Rosser variety if for every n there exists a pseudo-free
algebra F, of rank n such that F), has solvable word and applicability problems and
every n-generated finitely presented algebra in V has a terminating Church-Rosser
presentation with respect to Fj,.

There are many Church-Rosser varieties of algebras. For example locally finite
varieties of algebras with finitely many operations are Church-Rosser. Indeed, the
union of multiplication tables of any finite algebra gives a terminating Church-Rosser
presentation of this algebra with respect to the corresponding free algebra in the
variety.

There are also non-locally finite Church-Rosser varieties. The variety of com-
mutative associative algebras over a field, say, K, was one of the first examples: in
1964 Hironaka [145] and in 1965 Buchberger [61] proved, in our terminology, that
every finitely generated commutative associative algebra possesses a finite terminat-
ing Church-Rosser presentation. The free algebra in this variety is the algebra of
multivariate polynomials K[X]. Commutative algebras correspond to the ideals of
K[X], presentations of algebras correspond to bases of these ideals. The bases which
correspond to terminating Church-Rosser presentations are called Grobner bases (see
more details in Section 4.10). In Section 3.5.2 and 4.10 we shall show that there are
many other non-locally finite Church-Rosser varieties. In fact we do not know even
the answer to the following problem.

Problem 2.6 Is there a (finitely based) non-Church-Rosser variety of universal
algebras with decidable word problem?
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There are finitely presented algebras, even semigroups, with solvable word problem
which do not have a finite terminating Church-Rosser presentation with respect to the
absolutely free algebra (see, for example, [380]). But these algebras generate varieties
with undecidable word problem.

Church-Rosser presentations are not only used to solve the word problem. For
example all calculations with polynomials (solving systems of polynomial equations,
integration of rational functions, etc.) in all symbolic computation packages like
Mathematica or Maple are based on using Grobner bases. Church-Rosser presenta-
tions of finite and infinite groups are used in software packages described in [146].

Unfortunately even if an algebra has a finite terminating Church-Rosser presenta-
tion with respect to a pseudo-free algebra F, it does not necessarily come with one.
Thus the problem is: given any finite rewrite system that generates a congruence v on
F find a finite terminating Church-Rosser rewrite system which generates the same
congruence.

Often it is relatively easy to find a terminating rewrite system. Indeed, usually
the free algebra F' has a natural order which satisfies the descending chain condition
and is stable under the operations of F'. If this is the case, we will call £ ordered.
For example this is true for finitely generated free semigroups and free commutative
semigroups. One can order words (commutative words) first by the length and then
the words of the same length by the lexicographic order. This order is called the
ShortLez order. If F'is ordered, then without loss of generality one can assume that
in every set of pairs ¥ = {(p;,¢;) | | <t < n} we have ¢; < p; (indeed, if p; < ¢; then
we can interchange p; and ¢; in this pair, this won’t change the congruence generated
by ¥). Therefore when we apply any relation from ¥ to an element w € F', we get a
smaller term.

It F' is ordered, then one can try to produce a Church-Rosser presentation by
using the so-called Knuth-Bendix procedure and its variations. This procedure starts
with a terminating rewrite system ¥ and creates iteratively new finite rewrite systems
Y1 =X, %,,.... If the procedure halts then the last rewrite system, say, ¥, is a finite
terminating Church-Rosser rewrite system. If it never halts, it produces an infinite
Church-Rosser rewrite system. Of course, this system may be non-recursive, and thus
useless. The system X, is obtained from ¥; by adding a new pair (¢1,a1), ¢1,a1 €
F, ¢; > ay, to X; if there exists an element b which has two different descendants a;
and ¢; such that pairs from ¥; do not apply to a; and ¢; (like in the Figure 1). If we
cannot find such a; and ¢, the procedure halts.

In practice, one does not have to check all (infinitely many) elements b, only the
“minimal” ones. For example, in the case of congruences on the free semigroup, it is
enough to consider words b which can be written in one of the following two ways:
b = ujxr = yuy or b = uy = xuyy for some words x and y and some relations u; = vy
and uy; = vy from ¥; ;. If b = uyx = yuy then we can assume, in addition, that
these occurrences of u; and uy overlap. It is clear that the number of such words b is
finite. The pair of words v1z and yv, (resp. vy and xvey), which is obtained from b by
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applying relations u; = vy and uy = vg, is called a critical pair. There is a concept of a
critical pair in the case of commutative rings and in other important cases where one
can apply the Knuth-Bendix algorithm. Notice, that the Knuth-Bendix algorithm in
an ordered algebra F'is completely determined by the following two components:

1. The definition of the applicability of a relation (pair) to an element of F
2. The definition of a critical pair.

The concept of a critical pair and the Knuth-Bendix algorithm in the case of com-
mutative rings was introduced in 1965 by Buchberger [61]. The finiteness of the
number of critical pairs is an important prerequisite for the Knuth-Bendix procedure.
Moreover the Knuth-Bendix procedure can be effectively applied only if the following
critical pair problem is decidable in F: “Given two pairs (p1,q¢1), (p2,q2) in F' x F|,
list all critical pairs of these relations”.

It is also interesting to study terminating Church-Rosser systems of identities.
Perhaps the first terminating Church-Rosser systems of identities were investigated by
T. Evans in the cases of loops and quasigroups ([95], [96]). In fact Evans used a variant
of the algorithm which later was called the Knuth-Bendix procedure. Evans used
these Church-Rosser presentations in order to get the first solutions of the equational
problem for loops and quasigroups. The original article by Knuth and Bendix [198]
was devoted to identities rather than relations. Some infinite terminating Church-
Rosser bases of identities of some important semigroup varieties were found in [281],
[79]. But as far as we know, nobody has conducted a comprehensive study of such
systems in the cases of semigroups, groups, Lie and associative algebras.

2.10 Basic Definitions

Classes of algebras

A wvariety is a class of algebras closed under taking subalgebras, direct products
and homomorphicimages. Equivalently a variety is a class of algebras given
by a set of identities.

A pseudovariety is a class of algebras closed under taking subalgebras, finite
direct products and homomorphic images.

The finite trace Vg, of a variety V is the set of all finite algebras in V. Every
finite trace is a pseudovariety.

Operations on Varieties and Pseudovarieties

For every class C of algebras the (pseudo-)variety generated by C, written
(p)varC is the class of homomorphic images of subalgebras of (finite) direct
products of algebras of C.
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A join of two (pseudo-) varieties A and B, written A + B is the (pseudo-)
variety generated by direct products A x B where A € A, B € B.

A Mal’cev product AB of two (pseudo-) varieties A and B is the (pseudo-)
variety generated by all algebras C' which have congruences o such that
the factor-algebras C'/o belong to B, and all congruence classes of o which
are subalgebras belong to A.

Algebras

An algebra is called finitely presented in a variety V if it can be given by a
finite number of generators, a finite number of defining relations plus all
of the identities of the variety V.

Class F'P(V) is the class of all algebras finitely presented in the variety V.

Class FPU)NY = FP NV is the class of all algebras finitely presented in
some bigger variety U which belong to V.

An algebra A is called residually finite if for any two distinct elements u,v € A
there exists a homomorphism ¢ : A — F' such that ¢(u) # ¢(v) and F is
finite. For groups this is equivalent to the property that the intersection
of all normal subgroups of finite index is trivial. In the cases of Lie (as-
sociative) algebras over infinite fields the role of finite algebras is played
by finite dimensional algebras. An algebra is called residually finite if the
intersection of all its ideals of finite co-dimension is finite.

An algebra is called Hopfian if it is not isomorphic to any of its proper ho-
momorphic images. Every finitely generated residually finite algebra is
Hopfian.

An algebra A is called locally finite (locally residually finite, locally Hopfian,
etc.) if every finitely generated subalgebra of it is finite (residually finite,
Hopfian, etc.).

Theories

The elementary theory of a class C is the set EC of all first order formulas of
the corresponding similarity type which hold in all algebras of this class.

The universal theory of a class C is the set AC of all universal formulas (i.e.
first order sentences without existential quantifiers) from EC.

The Q-theory of the class C is the set ()C of all quasi-identities, that is formulas
of the type

(Vay,...,Ve,)(s1 =& .. . &sp =t — s=1)

where s;, t;, s, t are terms of the type of C) from AC.
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The equational theory of a class C is the set IC of all identities of C.
The identity theory of a class C is the set of all formulas from EC of the type

&Y - u=wv,
where ¥ is a (finite) set of identities and u = v is an identity.
Algorithmic problems

The word problem for an effectively given algebra A asks if there exists an
algorithm deciding for any two terms in the alphabet of generators of A if
they are equal in A.

The isomorphism problem in the class V asks if there exists an algorithm
deciding for any two algebras in F'P(V) if they are isomorphic.

The finiteness problem asks for an algorithm to decide if an algebra in F P(V)
is finite.

The triviality problem asks for an algorithm to decide if an algebra in FP(V)
is trivial (that is l-element).

An algorithmic problem is said to be solvable in a variety V if it is solvable for

all algebras in F'P(V).

An algorithmic problem is said to be weakly solvable in a variety V if it is

solvable for all algebras in FPN V.

The elementary (universal, (-, equational, identity) problem asks for the ex-
istence of an algorithm to decide, given a first order sentence, whether it
belongs to the corresponding theory. The identity problem for varieties
is also called the Tarski-Mal’cev problem. The identity problem for finite
traces of varieties is also called the Rhodes problem. The universal problem
is also called the uniform word problem.

Neighbors of algorithmic problems

A variety is said to have the Higman property (to be a Higman variety) if every
recursively presented algebra in this variety is embeddable into a finitely
presented algebra from the same variety. An algebra is called recursively
presented if it can be given by a finite set of generators and a recursively
enumerable set of defining relations.

The property F'G = F P means that every finitely generated algebra from a
variety is finitely presented there.

A variety is called finitely based if it can be defined by a finite number of
identities.
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A variety is called hereditary finitely based if all its subvarieties are finitely
based.

If v is a property of varieties, then a variety V is called a minimal non-a variety
if it does not have property a but all its subvarieties have this property.

A variety V is called an indicator with respect to a property « if for all varieties
U, U satisfies « iff the intersection V N U satisfies a.

3 Semigroups

3.1 Basic Definitions

For basic definitions of semigroup theory we refer the reader to Clifford and Preston
[73]. Surveys Shevrin and Volkov [369] and Shevrin and Sukhanov [368] provide an
excellent introduction to the theory of varieties of semigroups.

We shall need the following basic definitions.

A monoid is a semigroup with a unit.

A semigroup where every element is an idempotent, that is 22 = z holds identically,
is called a band.

A commutative band is called a semilattice.

A semigroup with identity zy = x (resp., zy = y, xyx = z, xy = zt) is called a
left zero semigroup (resp., right zero semigroup, rectangular band, zero semigroup).

A semigroup S is called a band of semigroups S,, o € A it S is a disjoint union
of S,, and the corresponding partition is a congruence. The factor of S over this
congruence is a band. If this band is commutative (rectangular), then S is called a
semilattice (resp., a rectangular band) of semigroups .

An subset I of a semigroup S is called an tdeal if I is stable under multiplication
by elements of S from the left and from the right.

The free semigroup over a set X is the set of all words in X with the operation of
concatenation. This semigroup is denoted by X+.

A semigroup identity is a formal equality © = v where u and v are words. An
identity u = v holds in a semigroup S if this equality holds for every substitution of
elements of S for letters of u and v.

A semigroup S is periodic if all its one-generated subsemigroups are finite, equiv-
alently if for every element = € S there exist two different numbers m, and n, such
that 2™ = x"=.

A nil-semigroup is a semigroup such that a power of every element is equal to
zZero.

A nilpotent semigroup of degree n is a semigroup where any product of n elements
is zero. Every finite nil-semigroup is nilpotent (see Clifford and Preston [73]).
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3.2 Overview

The case of semigroups is the luckiest among other cases considered in this survey.
We have an almost complete map of varieties with solvable word problem, locally
residually finite varieties, etc. Basically there is only one big white spot — varieties
of periodic groups. And these varieties hardly belong to the theory of semigroups at
all.® Varieties of periodic groups form the intersection of the universe of semigroup
varieties and the universe of group varieties. It is very hard to prove that a certain
variety of periodic groups is not locally finite (see Novikov and Adian [286], Adian
[4], Olshanskii [288]). It is clearly even harder to study algorithmic problems there.

One of the main features discovered in the process of studying semigroup vari-
eties is that many different properties of semigroup varieties are equivalent or almost
equivalent. There are very few different equivalence classes. We will call them Clubs,
because each class is not a formal collection of equivalent properties, but rather an
informal association of them.

Clubs of the properties that we consider in this survey form a partially ordered
set: A Club with weaker properties is higher than a Club with stronger properties.
An interesting thing is that this partially ordered set is a chain.

The highest Club is that of Burnside-type properties. The solvability of the Tarski-
Mal’cev problem and the solvability of the Rhodes problem are members of this Club
as well.

The next Club is that of the decidable word problem. The decidability of the
uniform word problem, the weak decidability of the word problem and many others
belong to this Club, as well as the residual finiteness of finitely presented semigroups.
The isomorphism problem seems to belong to this Club also, but we are not quite
sure about it.

Just below is the Club of local residual finiteness. The property “To be locally
representable by matrices”, and many other properties belong to this Club.

The lowest Club is that of solvability of the elementary theory. Residual finiteness
and other properties also belong to this Club.

We will describe these Clubs from the top to the bottom.

3.3 The Club of Burnside Problems

Permanent members: The Burnside problems (the analogs of the three well
known Burnside problems for groups), the Tarski-Mal’cev problem (the iden-
tity problem for varieties), the Rhodes problem (the identity problem for finite
traces).

Associated members: The equational problem, the finite basis problem.

SWe do not want to abandon these difficult varieties, though. We are patiently trying to include
them in the happy family of other varieties of semigroups (see Section 7.2.9 below).
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Undecided membership: The Higman property.

3.3.1 The Burnside Problems

The description of varieties where periodic semigroups are locally finite (see Theorems
3.7 and 3.8 below) plays an exceptional role in the study of algorithmic problems in
semigroup varieties. Most of the results about algorithmic problems in varieties would
be impossible to obtain without it.

The first result about Burnside-type problems in semigroup varieties was published

by Morse and Hedlund [274]. The result was the following:

Theorem 3.1 (Morse and Hedlund, [27}]). There exist an infinite 3-generated
semigroup that satisfies the identity’ z* = 0 and an infinite 2-generated semigroup
that satisfies the identity x> = 0.

Morse and Hedlund used certain infinite words W and W5 over a 2-letter alphabet
and a 3-letter alphabet, which avoid words z® and z? respectively. In general if u is
a word and ¢ is an endomorphism of a free semigroup then ¢(u) is called a value of
u. A word u is called avoidable by a word W if W does not contain values of u. A
word u is called avoidable if it is avoided by an infinite word over a finite alphabet.

We present the Thue construction of the word Wj in Section 7.2.5.

Infinite words Wi and W5 had been around long before Morse and Hedlund. It
is a common opinion that the first paper where these words were constructed was
Thue [398] (see also Arshon [13]). But recently George McNulty informed us that
this is not correct at least as far as the word Wj is concerned. This infinite word
was implicitly constructed in 1851 by M.E.Prouhet [307]. He considered a partition
of natural numbers into two sets that satisfies a nice number theoretic property. If
we list all natural numbers, and then replace the numbers from the first set of the
partition by a, and numbers of the second set by b, then we will get the word Wj.
We won’t be surprised if it eventually turns out that some of the missing books by
Diophantus and Pythagoras contain these infinite words. And who knows, maybe it
is worth studying again the paintings of prehistoric peoples and the notation of ritual
dances of some tribes.

There is a natural correspondence between infinite words over a finite alphabet
and finitely generated semigroups (see Morse and Hedlung [274], comments after
Theorem 3.12 below, and Section 7.2.5). This correspondence implies the following
connection between the avoidability of words and the Burnside-type properties.

Theorem 3.2 (Bean, Ehrenfeucht, McNulty [29]). A word u is avoidable if and
only if the variety given by the identity u = 0 is not locally finite.

"Here and later we will use the short expression u = 0 for the pair of identities uz = u, zu = u
where & does not occur in the word u.
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In 1952, Green and Rees considered identities of the form z = z™ [115].

Theorem 3.3 (Green, Rees, [115]). A semigroup satisfying an identity v = 2"
is locally finite if and only if all its subgroups are locally finite.

In particular, a variety given by an identity = z” is locally finite if n = 2,3,4,5, 7,
because every group satisfying this identity is locally finite (see Ol’'shanskii [288]).

A semigroup satisfying such an identity is a union of groups, because every one-
generated subsemigroup is a group. Semigroups which are unions of groups are called
completely reqular. Completely regular semigroups were described by Clifford in 1941
[72]. He proved that a completely regular semigroup has the following very special
structure.

Theorem 3.4 (Clifford, [72]). Every completely reqular semigroup is a semilat-
tice of rectangular bands of groups.

Now Theorem 3.3 follows from Theorem 3.4, the trivial fact that semilattices and
rectangular bands are locally finite, and the following important result of Brown [58],

[57].

Theorem 3.5 (Brown, [58]). If a semigroup S has a homomorphism onto a
locally finite semigroup T and every pre-image of an idempotent is a locally finite
semigroup then S s locally finite.

A particular case of this result where 7' is an idempotent semigroup was obtained
earlier by L.N.Shevrin [367]. Thus Theorem 3.3 also follows from Clifford’s theorem
and Shevrin’s result.

The next step was made by Bean, Ehrenfeucht, and McNulty [29], and indepen-
dently by Zimin [431] (an announcement of Zimin’s result was published in 1978 [433]).
They found algorithms for checking if a word is avoidable. In order to formulate their
results we need some more definitions.

Let u be a word over an alphabet X. Let Y, Z C X. We will say that ¥ and Z

form a fusion in u if for every 2-letter subword yz of u we have:

y €Y if and only if z € Z.

If Y, Z form a fusion in u then any subset of Y'\ Z is called a free set in u. Given a set
of letters A, we can delete all letters belonging to A from a word u. This operation
is called a deletion. A deletion of a free subset in u is called a free deletion.

We also need the definition of the words Z,, (Zimin words in our terminology):

Z1 = 1. - .,Zn_|_1 = ann—I—IZn-

Zimin words have also been around for quite some time. Zimin was the first to
discover their crucial role for the Burnside-type problems in varieties (see [431] and

37



Theorem 3.6 below). But the same words appear as an example in the paper [29].
In 1966, thirteen years earlier, these words appeared in a paper by Coudrain and
Schiitzenberger [75] as k,. Coudrain and Schiitzenberger proved that every infinite
word over a finite alphabet contains a value of 7Z,. The same result is implicitly
contained in the classic book by Jacobson [157] published ten years earlier, in 1956.
In [157] values of Z,, are called m-sequences. We will return to the discussion of the
antiquity of the Zimin words at the end of this subsection.

The following theorem is a translation of results from Bean, Ehrenfeucht, McNulty
[29] and Zimin [431] into the language of varieties.

Theorem 3.6 (Bean, Ehrenfeucht, McNulty [29], Zimin, [{31]). Let V be a va-
riety of semigroups given by a (possibly infinite) set of identities {u = 0 | u € X}.
Assume that the number of variables occurring in words of ¥ isn. Then the following
conditions are equivalent.

1.V is locally finite.
2. Z, contains a value of some word u in X.
3.V satisfies the identity Z, = 0.

4. There exists @ word u € X which can be reduced to the empty word by a sequence
of free deletions.

This theorem gives an algorithmic description of locally finite varieties defined by
identities of the form u = 0. Notice that all these varieties consist of nil-semigroups.

The next result by the second author of this survey [346] gives an algorithmic
description of arbitrary varieties where nil-semigroups are locally finite. Recall that
if F'is the free semigroup over a set X of generators then a substitution is a map from
X into F. Every substitution is extendable to an endomorphism of F'.

Theorem 3.7 (Sapir, [346]). Let V be a variety of semigroups given by a (pos-
stbly infinite) set of identities ¥.. Assume that the number of variables occurring in
words of ¥ is n. Then the following conditions are equivalent.

1. All nil-semigroups from V are locally finite.
2. All semigroups from V with the identity x* = 0 are locally finite.

3. There exists an identity u = v € ¥ such that Z, 11 contains a value ¢(u) (resp.
B(v)) for some substitution ¢ where ¢(u) # ¢(v).?

8In [346], Z, was incorrectly used instead of Z,41. The cause of this error was a mistake in the
proof of Lemma 4.8 of [346]. R.McKenzie and G.McNulty notified the author about this mistake.
It was corrected in [347].

38



4.V satisfies a non-trivial identity with one side equal Z, 1.

5. There exists an identity u = v € ¥ and a sequence of words uy, ..., ug,v1,..., Vg
such that

(a) u=1us, v=1;

(b) u; is obtained from u;,_; by a free deletion o;;
(¢c) v; is obtained from v;_1 by the same deletion o;;
(d) uy is an empty word;

(e) For some i with 1 < i < k there exists a fusion in u; (resp. v;) which is
not a fusion in v; (resp. u;).

Condition 5 of Theorem 3.7 did not appear in [346] but can be deduced from
the proof of Theorem N of [346]. This condition is easier to verify than the other
conditions of Theorem 3.7. We still don’t know the computational complexity of any
of these conditions though. The second author can show (unpublished) that there
is a polynomial time algorithm verifying whether a word is avoidable (unavoidable).
Thus there is a polynomial time algorithm verifying that a variety given by finitely
many identities of the type u = 0 is locally finite.

The next theorem, also from Sapir [346], describes varieties where all periodic
semigroups are locally finite in the class of varieties with “good” groups and in the
class of non-periodic varieties®.

Theorem 3.8 (Sapir, [346]). Let V be a variety of semigroups given by a (pos-
stbly infinite) set of identities ¥.. Assume that the number of variables occurring in
words of ¥ is n. Assume also that the variety V either s non-periodic or contains
no non-locally finite groups of finite exponent. Then the following conditions are
equivalent.

1. All periodic semigroups from V are locally finite.
2. All nil-semigroups from V are locally finite.

3. There exists an identity u = v € ¥ such that Z,4, contains a value ¢(u) (resp.
é(v)) for some substitution ¢ but ¢(u) # ¢(v).

The first announcement of Theorems 3.7 and 3.8 was published in Sapir [334].

These two theorems have many interesting corollaries and applications (see [346],
[348] and other papers by the second author). Let us present just four of them
immediately. Others will be discussed later.

9Recall that a variety of semigroups is called non-periodic if it contains a non-periodic semigroup
(equivalently, if it contains the additive semigroup of natural numbers).
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Theorem 3.9 (Sapir, [346]). A finitely based periodic semigroup variety is locally
finite if and only if all its groups and all its nil-semigroups are locally finite.

Theorem 3.10 (Sapir, [346]). If all subvarieties of a semigroup variety V are
finitely based then all nil-semigroups in 'V are locally finite.

Theorem 3.11 (Sapir, [3/6]). A locally finite variety of semigroups is not finitely
based provided it contains the following Brandt monoid B; of 2 x 2-matrices:

o) (o) (0 0)(60)(at)(an))

A finite algebra which cannot belong to a locally finite finitely based variety is
called inherently non-finitely based [293]. Theorem 3.11 actually states that Bj is an
inherently non-finitely based semigroup. See Section 3.7 for an algorithmic description
of finite inherently non-finitely based semigroups. Theorem 3.11 answered a question
by G.McNulty and C.Shallon [262]. The next application answered a question by
S.Eilenberg and M.P.Schiitzenberger [90]. It has been proved in [348].

Theorem 3.12 (Sapir, [348]). If a finite semigroup has a finite basis of identities
in the class of finite semigroups then it has a finite basis of identities in the class of
all semigroups.

We do not want to discuss the proofs of Theorems 3.7 and 3.8 in all their details.
But we should mention one important detail. As far as we know the paper [346] was
the first place where the following connection between symbolic dynamical systems
and Burnside-type problems was explored. A symbolic dynamical system is a closed
subset of the Tikhonov product X%, where X is a finite set with the discrete topology,
which is stable under the shift homeomorphism 7' (this homeomorphism shifts every
sequence from X% one position to the right).

There exists the following correspondence between semigroups and symbolic dy-
namics (see [346], [340], [339], [246]).

Let S =< X > be an infinite finitely generated semigroup (the same argument
may be applied for any universal algebra). Then there is an infinite set 7" of words over
X such that every element of S represented by a word of T cannot be represented
by words over X of lesser length. Such words will be called geodesic words: they
label geodesics on the Cayley graph of the semigroup. It is clear that every subword
of a geodesic word is also geodesic. Now, in every word of 7', mark a letter which
is closest to the center of this word. There is an infinite subset 73 C 7' of words
which have the same marked letters, an infinite subset 7% C T of words which have

the same subwords of length 3 containing the marked letters in the middle, ..., an

*

infinite subset T,, C T, _; of words which have the same subwords of length 2n — 1
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with the marked letters in the middle, and so on. Therefore there is an infinite (in
both directions) word W such that every subword of W is a subword of a word from
T. Thus every subword of W is a geodesic word. Infinite words with this property
will be called infinite geodesic words. The set D(S) of all infinite geodesic words is
a symbolic dynamical system because it is stable under the shift (obviously) and is
closed in the Tikhonov topology (this can be easily proved). Conversely, with every
symbolic dynamical system D one can associate a semigroup S(D) as follows: S(D)
consists of all finite subwords of infinite words from D, and 0. If v and v belong to
S(D) then u - v is equal to wv if uv belongs to S(D), or 0 otherwise. It is easy to
show that S(D) is a semigroup. It is interesting that for every symbolic dynamical
system D we have that D(S(D)) = D.

This correspondence allows one to show that some important properties of the
theory of semigroups and that of the theory of symbolic dynamical systems are in
fact closely connected. For example:

o The semigroup S is infinite if and only if D(S) is not empty;

o [f a semigroup S is periodic then the symbolic dynamical system D(S) does not
have cyclic trajectories.

One of the important concepts of the theory of symbolic dynamical systems is the
concept of uniformly recurrent word.

An infinite word U is called uniformly recurrent it for every finite subword u of U
there exists a number Ny (u) such that every subword of U of length Ny(u) contains
u as a subword. It is an easy corollary from [103] (see [346] for details) that for every
infinite word U there exists a uniformly recurrent word U’ such that every subword of
U’ is a subword of U. It is easy to see that if U belongs to D(S) then U’ also belongs
to D(5).

Therefore for every infinite finitely generated semigroup S =< X > there exists
a uniformly recurrent geodesic word over X (see [346]).

Uniformly recurrent words are much more convenient than arbitrary infinite words.
For example, in the proot of Theorem 3.7, one has to show that every finitely generated
nil-semigroup S satisfying a non-trivial identity 7,41 = W is finite. In the language
of symbolic dynamical systems this means that the symbolic dynamical system D(S)
is empty. Suppose to the contrary, that it is not empty. Then it must contain a
uniformly recurrent word U. For the sake of simplicity assume that W contains 3.
Then a simple argument shows that for arbitrary letter a occurring in U there exists
a finite subword v in U such that u = pa*q (Mod Z,41 = W) for some words p and
g. Since U is uniformly recurrent it may be represented in the form ... uviuveu. ..
where the lengths of words v; are bounded by Ny(w). Then, applying our identity
Zns1 = W we can transform this word into ... pa*quipa®quapa’q . ... Now introduce a
new finite alphabet zg, 1, ... and replace in U, a* by xq, quip by z1, quap by z2, and
so on. The word U; may not be uniformly recurrent. Let us consider the symbolic
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dynamical system generated by Uy, i.e. the closure of the set {T™(Uy) | n € Z}. This
symbolic dynamical system contains a uniformly recurrent word Uj. It is clear that
all finite subwords of U] are subwords of U/;. Then we can find a finite subword u; in
U! which is equal to pyz3g: modulo the identity Z,,; = W. Replacing letters x; by
the words labeled by these letters, we will get a subword wuy in U which is equal to
pza*qz modulo Z, 11 = W. Continuing this process we will generate bigger and bigger
powers of the letter a. This leads us to a contradiction because S is a nil-semigroup.

There are many other applications of this technique. In particular, using it, one
can very easily establish the theorem of Brown (Theorem 3.5 above). The same
idea has been used in [76] to prove other finiteness conditions for semigroups. In
Sapir [339] and Margolis and Sapir [246], it has been used to prove some properties
of varieties generated by finite inverse semigroups, and quasi-varieties generated by
finite semigroups. See also Ufnarovsky [404] where uniformly recurrent words are
used in the Lie algebra situation in order to prove the so called “sandwich Lemma”,
the key lemma in Kostrikin’s solution of the restricted Burnside problems for groups
of prime exponents.

Applications of uniformly recurrent words are very effective, but they are not
constructive. Indeed, there is no algorithm to find the number Ny (u).

The proofs of Theorems 3.7 and 3.8 have been made constructive in Sapir [347]
where the analog of the restricted Burnside problem for semigroup varieties is dis-
cussed. Recall that this problem asks if there are only finitely many finite semigroups
with given number of generators in a given variety V. Zelmanov’s solution of the orig-
inal restricted Burnside problem (modulo the Classification of Finite Simple Groups)
[428], [427], and results from [346] have been used to find the following complete algo-
rithmic description of semigroup varieties where the analog of the restricted Burnside
problem has a positive solution.

Theorem 3.13 (Sapir, [3/7]). For an arbitrary finitely based variety V of semi-
groups the following conditions are equivalent.

1. There are only finitely many finite semigroups in V with any given number of
generators.

2. There is a recursive function f(n) such that the order of every n-generated
semigroup in YV does not exceed f(n).

3. Locally finite semigroups in 'V form a variety.
4.V is a periodic variety and all nil-semigroups in 'V are locally finite.
5.V is periodic and satisfies a non-trivial identity of the form Z, = W.

This theorem plays a crucial role in the study of algorithmic properties of finite
semigroups in varieties.

42



Theorems 3.8, 3.9, 3.10, 3.13 show that properties of varieties depend very much on
the properties of the nil-semigroups in these varieties. We will meet this phenomenon
many times later.

Finishing our discussion of Burnside properties in semigroup varieties we would
like to mention a stunning similarity between Burnside properties of semigroup and
group varieties, which has been recently found by E.Zelmanov [426].

Let us define the Zelmanov word Z,, by the following rule:

Zl = T1,.. .,Zn_|_1 = (Zn,:pn_H,Zn)

where round brackets denote the group commutator: (z,y) = 2~ 'y~!

zy, (z,y,2) =
((z,y),z). One can easily see that the Zelmanov word is precisely the Zimin word
where the multiplication is replaced by the group commutator. The following theorem
is proved in [426]. It solves a long-standing problem by B.H.Neumann [279] in the

case of prime exponents.

Theorem 3.14 (Zelmanov, [{26]). For every prime number p there exists a nat-
ural number n such that a group of exponent p is locally finite if and only if it satisfies
the identity Z, = 1.

Now compare this theorem and Theorem 3.6 (see especially Condition 3 of The-
orem 3.6). We are sure that this is not just a coincidence, and if indeed there was a
word at the Beginning of the universe it was a Zimin word. We don’t think this was
a Zelmanov word because commutators are difficult to pronounce.

3.3.2 The Identity Problem and Related Problems

The following result is well known.

Theorem 3.15 FEvery non-periodic variety of semigroups has a decidable equa-
tional problem.

Indeed, every identity of a non-periodic semigroup variety is homogeneous, that is
every letter occurs the same number of times in each side of this identity. Now let #
be a relatively free semigroup in a non-periodic variety. Let [, be the ideal generated
by all words of length n in generators. Then the intersection of all these ideals is
empty and each of them has finite index (#/1, is finite). Therefore F' is residually
finite, so it has a solvable word problem. It remains to use Connection 2.3.

Notice that a similar argument will be used later (see Section 4.3), in the case
of associative algebras over an infinite field. Free algebras in these varieties have
a similar structure. This, by the way, justifies the general belief that non-periodic
semigroup varieties are semigroup analogs of varieties of associative algebras over an

infinite field.
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The identity (Tarski-Mal’cev) problem is decidable in any variety all of whose
subvarieties have decidable word problem. Therefore it is decidable in any variety
covered by Theorems 3.28 and 3.29 below.

The undecidability of the Tarski-Mal’cev problem in the class of all semigroups
was shown by Murskii in [276].

The following theorem, which is yet another application of Theorem 3.7, con-
tains an algorithmic description of non-periodic semigroup varieties and varieties
with “good” groups where the Tarski-Mal’cev problem is decidable. This theorem
was proved by the second author of this survey in [340].

Theorem 3.16 (Sapir, [340]). Let V be a finitely based semigroup variety which
is either a non-periodic variety, or a periodic variety with all groups locally finite.
Then the following conditions are equivalent.

1. The identity problem for variety V is decidable.

2. All nil-semigroups in 'V are locally finite.

The Rhodes problem for finite traces of varieties is decidable for any variety where
the analog of the restricted Burnside problem has a positive and constructive solution
(see the Introduction). Therefore it is decidable in any variety which is covered by
Theorem 3.13. The following theorem shows that there are no other varieties where
the Rhodes problem is decidable. This theorem was also proved by the second author
of this survey in [340]. The undecidability of the Rhodes problem in the class of all
finite semigroups was shown by Albert, Baldinger and Rhodes in [9].

Theorem 3.17 (Sapir, [3/0]). For an arbitrary finitely based semigroup variety
V the following conditions are equivalent.

1. The Rhodes problem in V is decidable.
2. All nil-semigroups in 'V are locally finite.

3. There is a recursive function f(k,m,n) such that the order of every n-generated
semigroup from V satisfying the identity z™ = ™™ does not exceed f(k,m,n).

The following statement gives a connection between the Rhodes problem and the
membership problem for pseudovarieties. It may be found in [340]. A particular case

was obtained by Albert, Baldinger and Rhodes (see Theorem 11 in [9]).

Theorem 3.18 I[f the Rhodes problem is undecidable in a finitely based variety of
semigroups V then there exists a finitely based subvariety £ C V such that the join
of Ein, and the pseudovariety of finite commutative semigroups has an undecidable
membership problem.

Recall that the join of two pseudovarieties ¢ and V consists of homomorphic
images of subalgebras of direct products U x V where U € U, V € V. Thus Theorem
3.18 is interesting because the membership problem is easily decidable in the finite
trace of any finitely based variety, and the join of two varieties seems easy to construct.
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3.3.3 The Equational Problem in Completely Regular Varieties

As we have mentioned in the Introduction, the equational problem in a variety is
equivalent to the word problem in free algebras of this variety. A solution of the
equational problem is often the first step in any investigation of a variety, regardless
the question we are actually interested in. Thus there are lots of results solving the
equational problem in particular varieties. We will mention only series of results
leaving sporadic results for other surveys.

There are many important results concerning the equational problem in varieties of
completely regular semigroups, that is semigroups which are unions of subgroups. The
interest in these varieties is inspired by the role which completely regular semigroups
play in the theory of semigroups. We have already mentioned that properties of
varieties depend very much on properties of their nil-semigroups. If all nil-semigroups
in a variety V are nilpotent of degree n then we call V a variety of index n. See the
paper by Sapir and Sukhanov [355] where the hierarchy of varieties of finite index is
described. Many properties of semigroup varieties imply the property “to be of finite
index” (see Shevrin and Sukhanov [368]). Varieties of completely regular semigroups
are exactly the varieties where all nil-semigroups are trivial, that is they are exactly
the varieties of index 1.

Every completely regular semigroup has a partition into subgroups [73]. Therefore
there is a unary operation ~! in every completely regular semigroup. It takes every
element to the inverse of this element in the corresponding subgroup. In particular, if
a completely regular semigroup satisfies the identity z = 2™, n > 2, then 27! = 2" 2,
It is much more natural to consider completely regular semigroups as algebras with
two operations than as semigroups, i.e. as algebras with one binary operation. If
we add this unary operation to the signature of completely regular semigroups, then
the class CR of all completely regular semigroups becomes a variety given by the

g = :c,:cx_l

following identities: (z7')™' = z, 22~ = z7'z. The variety of all groups
is a subvariety of CR. The intersection of the set of subvarieties of CR and the set of
varieties of semigroups is the set of periodic varieties of completely regular semigroups,
i.e. the class of varieties satisfying identities of the form x = 2™ (varieties given by
such identities have been discussed above: see Theorem 3.3). If we fix a variety of
groups V then the class of all completely regular semigroups with subgroups from V
is also a variety, denoted by CR(V). By a theorem of Clifford (Theorem 3.4 above)
this variety is equal to the following Mal’cev product: (V(L x R))Z where L (resp.
R, T) is the variety of left zero semigroups (resp. right zero semigroups, commutative
idempotent semigroups), and £ x R is the class of all direct products of left zero
semigroups and right zero semigroups.

In particular, the variety given by the identity @ = 2" is equal to CR(B,,—1), where
B, _1 is the variety of groups of exponent n — 1. Other important subvarieties of CR
are the following:

e OCR(V), the variety of orthodox completely regular semigroups with subgroups
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from V. A completely regular semigroup is called orthodoz if its idempotents
form a subsemigroup.

e BCR(V), the variety of bands of groups from V. This variety is the Mal’cev
product of the variety V and the variety of all idempotent semigroups.

e CS(V), the variety of all completely simple semigroups with subgroups from
V. A completely regular semigroup S is called completely simple if it does not
contain ideals distinct from S, equivalently, a completely simple semigroup is a
rectangular band of groups (see the Clifford description of completely regular
semigroups, Theorem 3.4). This variety is the Mal’cev product of the variety V
and the variety £ x R).

The equational problem in the variety C'R has been solved independently by Ger-
hard [105], [106] and Trotter [401], while the word problem in the relatively free
semigroup with 2 generators from CR has been solved by Clifford in [71].

Algorithms, found by Gerhard and Trotter, are very complex. Later Kadourek
and Polak [169] found an easier algorithm.

Then Pastijn and Trotter [291] generalized the Gerhard-Trotter result and the
result of Kadourek and Polék, cited above. They proved that if the variety of groups
V has solvable equational problem then the equational problem is solvable in CR(V).
Their algorithm is a generalization of the algorithm from [169]. They also proved that
if relatively free groups in V are residually finite then the relatively free semigroups in
CR(V) are residually finite also. An important particular case, when V is a Burnside
variety of groups B,, has been considered in Kadourec and Poldk [168]. The paper
[168] was published two years later than Pastijn and Trotter [291], although it was
written, and submitted to a journal as early as 1986. The second author of this survey
personally saw the manuscript in 1988 when he was visiting Polak in Czechoslovakia.

We present here the Pastijn-Trotter-Kadourek-Polék theorem which contains an
algorithm solving the equational problem in CR(V), to show the non-trivial combi-
natorial objects which arise in the study of completely regular semigroups. In order
to formulate this theorem we need some definitions.

Let U be the variety of all unary semigroups, that is semigroups equipped with a
unary operation (which we will denote by ~!). The variety CR is a subvariety of U.
Let X be a set and let Fiy be the free unary semigroup over X. Semigroup FUx
consists of words in the alphabet X U {(,),”! } where symbols (, ), ™' must obey the
natural rules. For example, ab(a(ab)™'ed)™! is a correct word, but ab(cd(™')) is not
correct. A segment of a word u € FlUx is a subword of u thought of as a word in this
extended alphabet. Notice that a segment of a word from FUx may not belong to
FUx . For example, ab( is a segment of ab(cd)™".

Let u be a word from FUy . By ¢(u) we denote the set of variables occurring in
u.

If d is a segment of a word u € FUy , and ¢(d) > 1 then by d we denote the word
which is obtained from d by deleting unmatched parentheses.
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Let v € FUx and |c(u)| > 1.

Put o(u) = @ where a is the largest initial segment of u such that [c(a)| = [e(u)[-1.
Likewise put £(u) = b where b is the largest final segment of u such that |¢(b)] =
)] — 1.

Now let [u] denote the characteristic sequence of u invented by Kadourek and
Polék in [169]: [u] = (eouo, . - ., €nt1uns1). In this sequence ¢; € {—1,1} and u; € FUx
is such that |c(u;)| = |e(u)| — 1 for each i. The construction of [u] is inductive.

Suppose u has no segment (¢)~! where ¢(q) = ¢(u). Select successively, from the
left, the largest segments by, . .., by11 of u such that |e(b;)| = |c(w)| — 1 for each 7. Put
€ =1 and u; = ?72

Suppose u = p(q)~'r where ¢(q) = ¢(u). Define inductively

[u] = (< po(q) >, —[l(q)g0(q)], < l(q)r >)

where

B

and if [v] = (novo, ..., nrvr) then —[v] = (—novo, . .., —NKVE).
For example, let v = z(y((z) *zz)"'y)"*. Then u =

p(q)~'r where p = =z,
q = y((2)"*za)" 'y, and r is the empty word. Now o(q) = y(z

)7'z and ((q) = ay.

Hence
< polq) >= (ay,y(2)"'2), <Llg)r >=uwy
and
[(q)qo(a)] = (xy?,y*(2) " 2, ((2) " 2a) T, 2y?, y?(2) 7 2).
Thus

[u] = (2y,y(2) 712, —y*(2) 'z, —ay?, —((2) 2a) e,
—y*(2) e, —ay? xy).

Theorem 3.19 Let V be a variety of groups, and let u,v €eFUx . Let
[u] = (€otto, - - -, €nt1ting), [V] = (M0vo, - - Mh41Vk41)-
Then uw = v is an identity in CR(V) if and only if the following are satisfied.
1. c(u) = ¢(v).
If |e(u)| =1 then u = v is an identity in V.
o(u) = o(v) and {(u) = {(v) are identities of CR(V).

o

Let ¢ be a mapping from the set {ug, ..., Ups1,00,. ., Vpq1} into X which glues
words together if and only if these words form an identity in ). Then the equality

(ur@)™ - - (urnd)™ = (019)™ - - (vxg)"™
is an identity of V.
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This theorem shows that the equational problem in CR(V) is reduced to the
equational problem in V, but in a very non-trivial way.

From Theorem 3.19, it follows that maximal subgroups of the relatively free semi-
groups from CR(V) are subgroups of relatively free groups of V (it is not known if
they are free themselves). The same fact holds in varieties of orthodox completely
regular semigroups OCR(V), and varieties of completely simple semigroups CS(V).
The equational problem in the variety of all orthodox completely regular semigroups
was solved by Gerhard and Petrich [109]. The word problem for OCR(V) was reduced
to the equational problem in V by Rasin in [311]. These results have been simplified
and generalized to many other varieties of completely regular semigroups by Polak
[300], [301], [302]. See also [71].

The equational problem for the variety CS(V) has been reduced to the equational
problem in V by Rasin [310], and Jones [159]. See also [108].

The situation in the variety BCR(V) of bands of groups is more complex because
the maximal subgroups in the relatively free semigroups of this variety are not nec-
essarily relatively free. They are not free even in the case when V is the variety of
all groups (see Trotter, [402]). So in order to solve the equational problem in these
varieties one has to first of all find defining relations of these groups, and then solve
the word problem there. This is very non-trivial and has been done by Kadourek
in [165]. In fact, Kadourek solved the equational problem in a class of completely
regular varieties which is much bigger than the class of varieties of bands of groups.
A particular case, when V is Abelian, is simpler. It has been considered in Pastijn
and Trotter [290].

We can conclude that the equational problem is decidable in every reasonable
variety of completely regular semigroups. Nevertheless, to the best of our knowledge,
the following question is still open.

Problem 3.1 Is there a finitely based variety of completely reqular semigroups C
such that the equational problem in C is undecidable but the equational problem in the
mazimal group subvariety of C (which is also finitely based, of course) is decidable?

Notice that we gave only a sketch of the theory of varieties of completely regular
semigroups. For a more complete presentation of this history see the introductions
to papers [291], [165], [403], and the survey [368].

If we move from the varieties of completely regular semigroups higher, to varieties
of index 2, the next level in the Sapir-Sukhanov hierarchy, then the situation becomes
more difficult.

Varieties of index 2, that is varieties where all nil-semigroups have zero product,
have been described in Golubov and Sapir [112]: A semigroup variety has index 2 if
and only if it satisfies an identity of one of the following forms:

zy = (zy)", zy = 2"y, vy =ay”, n > L.
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Ershova and Volkov [94] studied varieties given by the first of these identities,
that is varieties of semigroups with completely regular squares. They obtained results
similar to the results of Pastijn and Trotter (see Theorem 3.19 above). Namely, it
turned out that the equational problem in the variety given by the identity zy = (xy)"
may be reduced to the equational problem for the corresponding Burnside variety of
groups of exponent n — 1.

The answer to the following question is not known yet.

Problem 3.2 Suppose the equational problem in the Burnside group variety B, _4
is decidable, but B,_1 ts not locally finite. Is the equational problem decidable in the
variety given by the identity xy = xy™ (resp. xy = a™y) ¢

If B,,_1 is locally finite then the variety given by the identity zy = xy” (resp.
zy = 2"y) is locally finite [355] and so its equational problem is obviously decidable.
Varieties of arbitrary finite index r satisty identities of the form

1. s (T )1 Ty =2y T (T ) T T (3)
for some ¢,7,n, 1 <17 < j <r (see [355], [40]).

Problem 3.3 Suppose the equational problem in the Burnside group variety B, _4
is decidable, but B,_1 ts not locally finite. Is the equational problem decidable in the
variety given by the identity (3)¢

The answer to this question is not known for any r > 2,12, 5, while we think that
this problem is doable and the answer is positive. Indeed, we know almost complete
information about the structure of semigroups in these varieties (see Theorem 2 in
[355]). Again, if B,_; is locally finite then the identity (3) defines a locally finite
variety [355].

3.3.4 The Equational Problem in Burnside Semigroup Varieties

The equational problem in Burnside varieties of semigroups became very popular a
few years ago. We will call relatively free semigroups in the variety of semigroups
given by an identity of the form 2™ = z™*" free Burnside semigroups of index'®
m and period n. Relatively free groups in Burnside varieties B, will be called free
Burnside groups of exponent n.

It is interesting that so far there is no method which can prove that a free Burnside
group is infinite without solving the word problem. In contrast, methods of proving
the infiniteness of free Burnside semigroups (see [274]) do not require the solution of
the word problem.

19Don’t mix this index with the index discussed in the previous subsection. However completely
regular semigroup varieties are of index 1 under both definitions, which is very convenient.
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We have seen (Theorem 3.1) that it is very easy to prove the infiniteness of free
Burnside semigroups of indexes > 2. It turned out that the word problem in these
free Burnside semigroups is very non-trivial and we still do not know the solution of
the equational problem in Burnside semigroup varieties for some m and n.

Notice that the Pastijn-Trotter-Kadourek-Poldk Theorem (Theorem 3.19 above)
reduces the equational problem for varieties given by identities of the form = = 2™ to
the equational problem in the corresponding Burnside varieties of groups. So we do
not have to worry about the case m = 1 here, in the semigroup corner of our survey.

The case when m > 1 is completely different. For example, the maximal subgroups
of the free Burnside semigroups of index m > 1 are finite [77] (recall that in the case
m = 1 these subgroups are just free Burnside groups of exponent n, which follows
from results of [168]).

The decidability of the word problem in the free Burnside semigroups of index 2
and higher was first conjectured at least in 1977, perhaps much earlier. We personally
heard it from L.N.Shevrin in 1977-1978. J.Brzozowski formulated this conjecture in
the case of period 1 (i.e. n = 1) in 1969 (published in [60]). But until 1990 very
little information about the free Burnside semigroups of index > 1 had been known.
One can mention, for example, a paper of Brown [59] where he proved that any free
Burnside semigroup of index 2 is a union of locally finite semigroups (this result
answered a question by Shevrin [367]). [.Simon [377] obtained some results about the
structure of R-classes'! in the free Burnside semigroups of period 1.

But in 1990-1991 significant progress was achieved almost simultaneously by A.
de Luca and S.Varricchio [78] and J.McCammond [254]. They solved the equational
problem in many Burnside semigroup varieties. The result of de Luca and Varricchio
covered the cases with index m > 5 and period n = 1, and McCammond’s result
covered the cases with m > 6,n > 1. Notice that the only case which was covered
by the de Luca-Varricchio paper and was not covered by McCammond’s paper was
m=29,n=1.

Proofs in [78] and [254] are based on different ideas. De Luca and Varricchio find
a canonical word for every element of the free Burnside semigroup. In order to find
this canonical word they obtain an (infinite) terminating Church-Rosser presentation
of the free Burnside semigroup of index > 5 and period 1 in the class of all semigroups
(see Section 2.10 for the definition of terminating Church-Rosser presentations).

McCammond considers the set S, of words which are equal to a given word w
in this semigroup. He proves that this set is recognized by a finite non-deterministic
automaton'? A,,. The automaton A,, is constructed by induction on the so-called rank
of w. It is interesting that, as was pointed out by J. Rhodes in a conversation with the
second author of this survey, the canonical word of de Luca and Varricchio labels a

HRecall that two elements @ and b are said to belong to the same R-class of a semigroup S if
a = be, b = ad for some elements ¢,d of S.

12That is a labeled graph with specified start and end vertices. An automaton recognizes a word
w if w labels a path from the start vertex to an end vertex.
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geodesic on the automaton of McCammond, and is called a “base” in McCammond’s
proof. McCammond proves more than 40 Lemmas by a simultaneous induction on
this rank, while the proof in [78] proceeds in a more traditional manner.

Later A.do Lago [85] improved the method of de Luca and Varricchio, and solved
the equational problem in Burnside semigroup varieties for every m > 4, n > 1.
This result is stronger than McCammond’s result. In fact do Lago found a kind of
boundary for the applicability of the de Luca-Varricchio-do Lago method. He shows
that it works fine for m > 4,n > 1. There is a strong hope that it works in cases
m=2,n=1and m > 3,n > 1. And it does not work, for example, in the case where
m=2,n=2.

Independently and at the same time as do Lago, the solvability of the equational
problem for m = 4,n > 1 was obtained by V.Guba [125], who is a well known
specialist in Burnside problems in groups. Guba gave a talk about his proof at the
Sverdlovsk Algebraic Systems seminar in January, 1992. He used the McCammond
method. In fact, he showed that in order to get this result it is enough to slightly
change the formulation of one of McCammond’s Lemmas. Another nice consequence
of this change is that instead of 40 lemmas proved by a simultaneous induction, one
needs only 4.

Recently Guba found a further improvement of McCammond’s method and solved
the equational problem for arbitrary Burnside semigroup varieties of index > 3 [127],
[126].

The case m = 3 requires some new powerful combinatorial ideas. Unlike Mc-
Cammond, Guba does not deal with automata A,. His methods are purely one-
dimensional. In fact, just as de Luca and Varricchio, Guba constructs a terminating
Church-Rosser presentation for the relatively free semigroup in the corresponding
Burnside semigroup variety.

Thus the solvability of the equational problem is not known only for m = 2, n > 1.

Problem 3.4 s the equational problem solvable in the Burnside semigroup vari-
ety of index 27

It is very unlikely that the answer is negative. The variety is too “natural” to
have an undecidable equational problem. But let us not forget about the variety of
modular lattices which is also very natural, but has an unsolvable equational problem
(the celebrated result of Freese, [101]).

Notice that in all cases when the equational problem in Burnside semigroup va-
rieties turned out to be decidable (see the papers cited above), the relatively free
semigroups in these varieties were proved to be residually finite.

Problem 3.5 Are the free Burnside semigroups of index 2 residually finite?
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3.3.5 The Equational Problem in Varieties of Inverse Semigroups

The variety of inverse semigroups ZS is yet another subvariety of the variety of unary
semigroups U, which we considered in Section 3.3.3. The variety ZS is defined by
the following identities: za~lyy™ = yy taza™' za e =z, (27!)~* = . The class of
all groups is a subvariety of this variety. Varieties of inverse semigroups have been
studied extensively during the last 20 years (see [295] for an introduction to the theory
of varieties of inverse semigroups, and the papers [195], [194], [166], [167], [381], [247],

Traditionally inverse semigroups, discovered by Vagner and Preston in the fifties
(see the history in [73] and [295]), were considered as ordinary semigroups, without
explicitly mentioning the unary operation. They are von Neumann regular semigroups
where idempotents commute. By the Vagner-Preston theorem [73] inverse semigroups
are exactly semigroups of partial one-one transformations of a set, closed under taking
inverse transformations. Then the operation ~! is interpreted as the operation of
taking the inverse of a partial one-one transformation. It turns out again, as in the
case of completely regular semigroups, that it is more natural to consider inverse
semigroups as algebras with two operations.

Inverse semigroups mysteriously appear in many investigations. For example,
the fundamental groupoids of manifolds are in fact inverse semigroups. The Brandt
monoid (2) is an inverse semigroup. Recently Margolis and Meakin [247] found a nat-
ural one-one correspondence between finite inverse semigroups and finitely generated
subgroups of the free groups. In [246] a connection between identities of finite inverse
semigroups and quasi-identities of finite semigroups was discovered. In [263], [264],
it is shown that there exists a group-like correspondence between homomorphisms
of the free semigroup and inverse subsemigroups of the so called inverse polycyclic
semigroup which is in a sense an “inverse envelope” of the free semigroup. See also
Theorem 3.46 by Ash below. There are lots of other examples.

A completely regular semigroup is connected with groups via its subgroups. In-
verse semigroups and groups are also very closely connected but the connection is not
so obvious. As we said, any inverse semigroup S is a semigroup of partial one-one
transformations of a set. One can extend these transformations to some permutations
of the set, and generate a group G by these transformations. We will call this group
a cover'® of §. So inverse semigroups are just restrictions of groups of permutations.
Of course, an inverse semigroup can have different covers. If we fix a variety of groups
V we can consider the class of inverse semigroups V which have covers from V [243].
This class is a variety defined by all identities of the form w = w? where w = 1
is an identity of V. Another way to describe this variety is the following: V is the
Mal’cev product of the variety of semilattices (commutative idempotent semigroups)
and V. Also this variety is the class of semigroups which divide semi-direct products

13Specialists say in this case that S has an e-unitary cover over G. It would take too much space
to explain what “e-unitary” means, so we have coined another term.
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of semilattices and groups from V.

Varieties of the form V form a skeleton in the lattice of varieties of inverse semi-
groups, just like varieties CR(V) in the lattice of varieties of completely regular semi-
groups. The variety of all inverse semigroups is just the “hat” of the variety of all
groups.

The equational problem in the variety ZS was solved by E.Kleiman, Munn,
Schieblich, Schein (see [295]). Here we would like to present a nice solution of the
word problem in relatively free semigroups in the varieties V due to Margolis and
Meakin [243].

Let V be a variety of groups, X a nonempty set and Fx (V) the relatively free X-
generated group in V. Let I'x (V) denote the Cayley graph of Fx(V) relative to the
set of generators X. Thus 'y (V) has set Fx (V) of vertices and has an edge labeled
by x € X U X! from ¢ to gx for each g € Fx (V). Define a semigroup Mx (V) as the
set of all pairs (I', g) where I' is a finite connected subgraph of I'x (V) containing 1
and g as vertices, I' # {1} with the multiplication

(1, 91) (T2, 92) = (1 U g1 - Ta, 9192).

(Here g1 - I'y denotes the natural action (left translation) of g, on I';.)

Theorem 3.20 (Margolis, Meakin, [243]). IfV is any variety of groups and X is
any non-emply set then Mx (V) is the relatively free X-generated inverse semigroup
in the variety V.

The Munn description of the free inverse semigroups [295] is a particular case of
Theorem 3.20 where V is the variety of all groups.

Theorem 3.20 shows that the equational problem is decidable in V if and only if
it is decidable in V. This also follows from another description of the free inverse
semigroups in V obtained by Reilly and Trotter in [313] (see Lemma 3.5 in [313]).

There are several other recent results on the equational problem in inverse semi-
group varieties. We would like to mention Stephen’s results on Burnside varieties of
inverse semigroups, which, of course, are defined by identities of the form 2™ = z™*"

[244], [381].

Theorem 3.21 (Stephen, [381]). The equational problem is decidable in the
Burnside variety of inverse semigroups of index m and period n for every pair (m,n)
where n < m. Relatively free semigroups in these varieties are residually finite.

This result is in contrast with results on the Burnside semigroup varieties which
we discussed in Section 3.3.4. In the case of ordinary semigroups it is difficult to
deal with small indexes (the decidability/undecidability of the equational problem
for Burnside semigroup varieties of index 2 is still unknown) while the period did not
play any significant role. Here, in the case of inverse semigroups the index is not
important while the period must be small enough.
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The method of proving Theorem 3.21 is in a sense similar to McCammond’s
method. For every word w in the free Burnside inverse semigroup B1I,,, Stephen
shows that the set of all words w’ such that w = w'e in BI,,, for some idempotent
e is accepted by a finite deterministic automaton, the so called Cayley automaton of
w.

Cayley automata, invented by Stephen, are very useful tools in studying the word
problem in inverse semigroups. See, for example, [244], [381]. Meakin and the second
author of this survey used these automata in [264] to prove that the word problem
is undecidable in the variety A where A is the variety of all Abelian groups (even
though the equational problem in this variety is decidable by Theorem 3.20).

3.3.6 The Higman property

The semigroup analog of the Higman embedding theorem was proved by Murskii in
1967 [275]. Proper semigroup varieties which possess the Higman property and do
not satisfy the condition F'P = FG (see Section 2.10) were unknown until the second
author of this survey proved the following result which appears here for the first time.

Theorem 3.22 (Sapir). The variety given by the identity x*> = 0 possesses the
Higman property, that is every semigroup from this variety which is given by a re-
cursively enumerable set of defining relations s embeddable into a semigroup which
is finitely presented in this variety.

There are reasons to believe that the following conjecture of the second author of
this survey may be proved with the help of the techniques employed in the proofs of
Theorems 3.7, 3.8 and 3.22.

Conjecture 3.1 (Sapir) LetV be a variety given by a system of identities u; = v;,
v € I such that u; and v; do not contain nonempty free sets of letters. ThenV satisfies
the Higman property.

If we allow u; and v; to contain free sets of letters then the method of the second
author does not work. Nevertheless it is possible that every variety with locally finite
periodic semigroups satisfies the Higman property. Currently we do not know any
counterexamples.

Problem 3.6 (Sapir) Is there any unavoidable word u with free letters such that
the variety given by the identity u = 0 satisfies the Higman property? Is it true that
the variety given by the identity (zy)* = 0 satisfies the Higman property?

Notice that an analog of the Higman theorem for inverse semigroup varieties was
obtained by Belyaev in [32]. No proper inverse semigroup varieties with this property
are known (except for varieties with the property FG = FP). It is not known
(Shevrin’s problem) if the variety of all completely regular semigroups satisfies the
Higman property.
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3.4 The Club of The Word Problem

Permanent members: The word problem, the uniform word problem, the uni-
form word problem for finite semigroups, the residual finiteness of finitely pre-
sented semigroups, other algorithmic problems concerning finitely presented
semigroups.

Undecided membership: The isomorphism problem.

Membership by association: The finiteness problem, the triviality problem.

3.4.1 Commutative Semigroups

The first non-trivial (that is non-locally finite) variety of semigroups with solvable
word problem was found independently by A. I. Mal’cev [236] and by Ceitin and
Emelichev [91]. It was the variety of all commutative semigroups.

Theorem 3.23 (Mal’cev [2536], Ceitin and Emelichev [91]). The variety of all

commutative semigroups has a solvable word problem.

Mal’cev showed that every finitely generated commutative semigroup is faithfully
representable by matrices over a suitable field, and every finitely generated ring of
matrices is residually finite. Therefore every finitely generated commutative semi-
group is residually finite, and the McKinsey algorithm (see Connection 2.4 in the
Introduction) gives the solution to the word problem.

As was pointed out by Emelichev in [91] the proof may be easily deduced from
an old paper by Hermann [142] devoted to the membership problem for ideals in the
ring of polynomials*®. Indeed, let S =< X|u; = vy,...,u, = v, > be any finitely
presented commutative semigroup. Emelichev [91] proved that a relation u = v holds
in S if and only if the polynomial p = u — v belongs to the ideal of the ring of
polynomials Q[X] generated by polynomials p; = u; — v;. This, in turn, is equivalent
to the solvability of the following equation over Q[X]:

pfit+pfot.. +pfi=p (4)
with unknowns fi,..., f.. Now we can use the following result from Hermann [142]:

Theorem 3.24 (Hermann, [1/2]). Let d = max{deg(p1), deg(pz2), ..., deg(p,)}. If
the equation (4) has a solution then there is a solution with deg(f;) < deg(p)—l—(rd)Qle.

It is clear that if there is a bound for the degrees of unknown polynomials in (4)
then the number of coefficients of these polynomials is also bounded. Then (4) is

1A proof of Hermann contained a small gap which has been fixed in [253].
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equivalent to a finite system of linear equations over the field of rational numbers,
which can be solved by, say, the Gauss elimination algorithm.

G. Bergman (see Section 10.3 of [34]) was probably the first to prove that ev-
ery finitely presented commutative semigroup possesses a finite terminating Church-
Rosser presentation which also implies the solvability of the word problem. R. Gilman
[110], C. E. Peterson and M. E. Stickel [294] and by Ballantyne and Lankford [22]
produced similar proofs independently.

A proof of Theorem 3.23 based on other ideas is presented below in Section 7.1.1.

Taiclin [389], [390] proved the following result which is much stronger than The-
orem 3.23.

Theorem 3.25 (Taiclin, [389], [390]). The elementary theory of every finitely

presented commutative semigroup is decidable.

A relatively easy proof of this theorem was published in [386]. The idea of the
proof in [386] is the following. It is well known that the elementary theory of non-
negative integers with addition (the Presburger theory) is decidable [305]. Then the
elementary theory of any free commutative monoid (which is a direct power of the
semigroup of non-negative integers) is decidable. The free commutative semigroup
is equal to the free commutative monoid without the unit, so its elementary theory
is also decidable. Every finitely presented commutative semigroup S is a factor of a
finitely generated free commutative semigroup A over a finitely generated congruence
o. Taiclin proves that this congruence is elementary, that is there exists a first order
formula 0(x,y) with two free variables such that

6(z,y) if and only if (z,y) € o.

This implies Theorem 3.25 because now for every first order formula v of S one can
construct a first order formula f(v) of A such that

v holds in S if and only if f(v) holds in A.

Indeed, in order to construct f(7v), it is enough to replace all equality signs in v by 6.

The same idea has been employed in a more general situation by Rozenblat and
Zamjatin [333]. They considered varieties which satisfy a permutation identity, that
is an identity of the form

T1Ty .. Ty = To(1)To(2) « -+ To(n) (5)
where o is a permutation.

Theorem 3.26 (Rozenblat, Zamjatin, [333]). Let V be a finitely based variety
satisfying a permutation identity. Then the elementary theory of every relatively free
semigroup in V is decidable.
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An amazing thing about this theorem is that the converse statement also holds in
the case of non-periodic varieties Rozenblat [332].

Theorem 3.27 (Rozenblat, [332]). LetV be a semigroup variety where every rel-
atively free semigroup has a decidable elementary theory. Then V satisfies either a per-
mutation tdentity or an identity of the form xyxy ... 2, = U1 T,11us wWhere T1,. .., Tpyq
are pairwise distinct letters, and uy, uz are (possibly empty) words. In the last case
V is a variety of finite index (see Section 3.3.3).

3.4.2 The Description

The first example of a finitely based variety of semigroups, other than the variety of
all semigroups, with an unsolvable word problem is, of course, the variety of Murskii
[276]. This was the only known example until 1983 when an attack on the varieties
with decidable word problem was initiated by I.Mel'nichuk. In particular, she proved
[267] that the word problem is undecidable in any variety which contains a non-locally
finite variety of semigroups given by identities of the form v = 0. Such varieties were
been described by Bean, Ehrenfeucht, McNulty and Zimin (see Theorem 3.6 above).
She also proved that the word problem is decidable in any finitely based variety which
satisfies the permutation identity (5).

Then Mel'nichuk, and the authors of this survey [268] found a minimal variety with
an undecidable word problem, a boundary between solvability and undecidability. It
was the variety generated by the semigroup Sy from Section 7.2.4. Semigroups 51

and the dual semigroup §1 from Section 7.2.4 also appeared in [268]. Notice that
generally speaking semigroups S; and S; depend on the Minsky machine used in the
construction of these semigroups. But the varieties generated by these semigroups do
not depend on the Minsky machine.

Finally, the second author of this survey [334], [335] proved that S; and §1 also
generate boundaries between solvability and undecidability, proved that there are no
more boundaries among non-periodic varieties of semigroups, every periodic semi-
group in a non-periodic variety with decidable word problem must be locally finite,
and every non-periodic variety with an undecidable word problem and locally finite
periodic semigroups contains one of these three varieties. He also showed that a
periodic variety with a solvable word problem and locally finite groups must be lo-
cally finite itself. This is everything that one can hope to get, because the problem
of describing non-locally finite periodic varieties of groups with solvable word prob-
lem is hopeless. It also turns out that many other conditions for finitely presented
semigroups in varieties are equivalent to the solvability of the word problem.

The results from [334] and [335] of the second author of this survey are summarized
in the following three theorems.

Recall (see Section 2.10) that for every variety of semigroups V the set of all
semigroups which are finitely presented inside V is denoted by F P(V), the set of all
(absolutely) finitely presented semigroups which belong to V, is denoted by F PN V.
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We will need the following two subsemigroups of the Brandt monoid (2):

{0 0)(50)-(0 0} @
r={(s0)-(54)(32) (35}

For every semigroup S the dual (anti-isomorphic) semigroup is denoted by §, the
semigroup S with an identity element adjoined is denoted by S?.

Theorem 3.28 (Sapir). Let V be a finitely based non-periodic variety. Then the
following conditions are equivalent.

1. The word problem is decidable in any semigroup from FP(V).
The elementary theory of any semigroup from F P(V) is decidable.

The uniform word problem for V is decidable.

o

In every semigroup from F P(V) the following “divisibility” problem is decidable:
For every two elements a and b decide if a is divisible by b.

5. In every semigroup from F'P(V) the following “regularity” problem is decidable:

For every element a decide if a is reqular.

6. In every semigroup from F P(V) the following “idempotent” problem is decid-
able:

For every element a decide if a is an idempotent.

7. Every semigroup from FP(V) is representable by matrices over a field.

8. Fvery nil-semigroup from V is locally finite and V does not contain ]3 x Pt
—1
P xP,T.

9. FEvery nil-semigroup of V s locally finite and for some natural numbers k,m,n,p
the variety V satisfies one of the following identities:

.fny(Zktk)pZm — xm(tkzk)py2n7 n=m+ kp, (7)
ay"z = yFay™zy?, n > m. (8)

Theorem 3.29 (Sapir). Let V be a finitely based periodic variety of semigroups
where all groups are locally finite. Then each of the conditions 1, 2, 3, 4,5, 6, 8 from
Theorem 3.28 is equivalent to the condition that V is locally finite.
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For ¢ =1,...,8 let ¢’ be the condition ¢ from Theorem 3.28 where the set F'P(V)
is replaced by the set FPNV.

Theorem 3.30 (Sapir). Let V be a finitely based non-periodic variety of semi-
groups where all nil-semigroups are locally finite. Then each of the conditions 1, 2,
3, 4, 5, 6, 7 from Theorem 3.28 ts equivalent to each of the conditions 1°, 27, 3°, J’,
57,67, 7. and to each of the following conditions

9. Every semigroup from F'P(V) is Hopfian.

10. Every semigroup from FPNYV is Hopfian.

Conditions 4, 5, 6 appear here for the first time. The fact that these conditions
are equivalent to the others may be easily deduced from the results of Sapir [335].

Let us analyze these theorems. From Theorems 3.28, 3.29 it follows that in the
class of non-periodic semigroup varieties where all nil-semigroups are locally finite
every variety which has an undecidable (strongly undecidable) word problem must
contain one of the three finite semigroups:

— —1
P xP', p xP T. (9)

On the other hand, every non-periodic variety containing one of these three semi-
groups has an undecidable word problem. Therefore the following three varieties are
the only minimal varieties with undecidable (strongly undecidable) word problem
among non-periodic varieties with locally finite nil-semigroups:

— 1
var( P x P! % N), var(P xP x N), var(T x N)

where N is the semigroup of natural numbers with respect to addition. In fact, these

three varieties coincide with varieties generated by the semigroups Sy, §1, and S
respectively, presented in Section 7.2.4 below.

It is easy to see that each of these varieties is a join of a locally finite variety
(generated by a finite semigroup) and the variety of all commutative semigroups. Both
have solvable word problem. Therefore we have examples of varieties with unsolvable
word problem which are joins of varieties with solvable (even in polynomial time) word
problem.

If a finitely based variety does not contain any of the three semigroups (9) but
still has an unsolvable word problem then either it contains a non-locally finite nil-
semigroup or it is periodic and contains a “bad” group, an infinite finitely generated
group of finite exponent (see Theorems 3.28, 3.30). Theorems 3.7 and 3.8 show that
there are no minimal finitely based non-locally finite varieties of nil-semigroups, that
is every non-locally finite finitely based variety of nil-semigroups contains a proper
subvariety with the same properties. Thus in the first case the variety does not contain
any minimal variety with unsolvable word problem. In the second case the situation
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is more complex. We do not know any minimal periodic variety of groups with
unsolvable word problem. Moreover an analogy between nil-semigroups and periodic
groups make the following two conjectures of the second author of the survey seem
reasonable:

Conjecture 3.2 Every finitely based periodic group variety with undecidable word
problem contains a proper subvariety with an undecidable word problem.

Conjecture 3.3 Every non-locally finite finitely based variety of periodic groups
has an undecidable word problem.

Of course, we do not have any hope of proving these conjectures. So far we have
only a few examples of periodic group varieties with undecidable word problem (see
Theorems 6.15 and 6.16).

Thus, modulo groups, there are exactly three minimal varieties of semigroups with
an undecidable word problem.

Now let us turn to the other properties mentioned in Theorems 3.28, 3.29, 3.30.
These theorems show that the properties are equivalent in the class of finitely based
non-periodic varieties with locally finite nil-semigroups.

If we leave this class then some of the equivalences become unknown. The most
important connection which we would like to trace is the connection between weak
and strong word problems.

Problem 3.7 Is the decidability of the word problem in a variety of semigroups
equivalent to the weak decidability of the word problem in this variety?

And again the case of periodic varieties is crucial. Recall the following problem
(see [384] Problem 3.61) which seems very difficult and interesting. The first part of
this problem is well known, the second part was posed by Shevrin and the second
author of this survey.

Problem 3.8 a) Is there a finitely presented infinite periodic semigroup?
b) Is there a finitely presented infinite nil-semigroup?

Since we do not know the answers to these questions it would be premature to
even pose a question about describing periodic semigroup varieties with strongly
undecidable word problem.

Properties 2 — 6 from Theorem 3.28 seem easier to handle.

In particular since every periodic semigroup of matrices over a field is locally finite
(see [218], Chapter 10), Theorems 3.28, 3.29 imply a complete description of finitely
based varieties of semigroups where every finitely presented semigroup is representable
by matrices over a field.
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Theorem 3.31 (Sapir, [342]). For every finitely based variety V of semigroups
the following conditions are equivalent.

1. Every semigroup from F P(V) is representable by matrices over a field.

2.V either either is a locally finite variety or is non-periodic and satisfies condi-

tions 1-9 of Theorem 3.28.

Problem 3.9 Describe semigroup varieties (not necessarily finitely based) where
every finitely presented semigroup is residually finite.

3.4.3 The Uniform Word Problem for Finite Semigroups

As we mentioned in the Introduction, in 1966 Yu. Gurevich [133] proved that the
uniform word problem is undecidable in the class of all finite semigroups.

On the other hand, as follows from Connection 2.6, it is decidable in the finite
trace of any variety where finitely presented semigroups are residually finite, and in
any periodic variety where the restricted Burnside problem is solved positively. In
[352] the second author of this survey proved that every variety ¥ where the uniform
word problem for finite semigroups is decidable is either non-periodic and belongs
the first of these classes, or periodic and belongs to the second class. Since we know
algorithmic descriptions of non-periodic varieties from the first class (Theorem 3.28)
and periodic varieties from the second class (Theorem 3.13) we get the following
theorem.

Theorem 3.32 (Sapir, [352]). For any finitely based variety V the following
conditions are equivalent:

1. The uniform word problem is decidable in Vﬁn'

2. Fvery nil-semigroup from V is locally finite and either V is non-periodic and

— —1
does not contain P xP, p xP, T orV is periodic.

As we have seen before, the condition 2 of this theorem may be algorithmically
verified.

3.4.4 The Isomorphism Problem and Similar Problems

It is possible to prove that semigroups 57, S, from Section 7.2.4 and the semigroup
S(M, ¢) from Section 7.2.5 are Hopfian. Therefore every variety with an unsolvable
word problem, which is covered by Theorems 3.28, 3.29, 3.30, contains a Hopfian
finitely presented semigroup with an unsolvable word problem. Thus Connection 2.1
applies and we can formulate the following statement proved recently by the second
author of this survey. It appears here for the first time.
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Theorem 3.33 (Sapir). Let V be a finitely based variety of semigroups which
satisfies one of the following conditions:

1. 'V contains a non-locally finite nil-semigroup;
2.V is non-periodic and contains one of the three semigroups (9).

Then the isomorphism problem in'V is undecidable.

It the following conjecture were correct then the isomorphism problem in semi-
group varieties covered by Theorems 3.28, 3.29, 3.30 would be equivalent to the word
problem.

Conjecture 3.4 Let V be a finitely based variety of semigroups which is either
non-periodic or periodic with locally finite groups. Then the solvability of the word
problem is equivalent to the solvability of the isomorphism problem.

Relatively detailed information about the structure of finitely presented semi-
groups in the varieties with decidable word problem is known: see Theorem 7.1 be-
low. Theorem 7.1 shows that these semigroups are close to commutative semigroups.
This must help to prove Conjecture 3.4 because, as usual, everything is fine with the
variety of commutative semigroups. The following theorem was published in [388].

Theorem 3.34 (Taiclin, [388]). The isomorphism problem in the variety of com-
mutative semigroups is decidable.

This theorem is in fact a result of the collective efforts of several authors. At first
Taiclin [387] proved that with every pair of finitely presented commutative semigroups
A, A’ one can associate a pair of finite sequences of square matrices of the same finite
size over the ring of integers: U = {M,..., M, } and U' = {M7,..., M!} such that
the following statement holds.

Theorem 3.35 (Taiclin, [387]). A is isomorphic to A" if and only if U and U’
are conjugate, that is if and only if there exists an invertible matriz V' over the integers

such that VM,V = M! fori=1,...,n.

Remark. It is interesting that the conjugacy problem for sequences of square
matrices and the isomorphism problem for commutative semigroups are in fact equiv-
alent. Taiclin proves in [387] that for every two such sequences U and U’ one can
construct two finitely generated commutative semigroups (even completely regular
commutative semigroups) A and A’ such that U and U’ are conjugate if and only if
A and A’ are isomorphic.

Later Grunewald and Segal [122], and Sarkisjan [357] came to the same problem
through studying the isomorphism problem for nilpotent groups. By a coincidence
(or was it more than a coincidence?) this isomorphism problem also reduced to the
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conjugacy problem for sequences of matrices over integers. Grunewald and Segal [122],
and Sarkisjan [357] proved that the conjugacy problem is decidable which in turn
implied the decidability of the isomorphism problem for commutative semigroups.

Perhaps one can generalize Taiclin’s method and prove Conjecture 3.4. One can
also try to employ the method of Pickel [296] (see the discussion before Connection
2.7 in the Introduction). Both approaches seem to be fruitful. But in order to apply
Pickel’s method one has to prove the following conjecture of the second author of this
survey, which is interesting also by itself.

Conjecture 3.5 (Sapir). For every finitely generated commutative semigroup A
there exist only finitely many finitely generated commutative semigroups which are
quasi-isomorphic to A (that is, which have the same finite homomorphic images as

A).

An analog of this conjecture is true for nilpotent groups [296]. And, as we men-
tioned before, commutative semigroups are closely related to nilpotent groups via
sequences of matrices over integers. Thus one can expect that Conjecture 3.5 is also
true.

By Connection 2.7, the triviality problem is decidable in any variety covered by
Theorems 3.28, 3.29, 3.30. Since the triviality problem is related to the isomorphism
problem (a semigroup is trivial if it is isomorphic to the 1-element semigroup), we
have assumed that the triviality problem belongs to the word problem Club. But in
fact we do not know any proper variety of semigroups where the triviality problem is
undecidable. Same applies to the finiteness problem.

Problem 3.10 (Sapir). Is there a proper semigroup variety where the triviality
(finiteness) problem is undecidable?

Thus it is possible that the Club of the triviality problem (finiteness problem) is
even higher than the Burnside problem Club.

3.4.5 The Complexity of the Word and Uniform Word Problems

Let us formulate the word and uniform word problems in Computer Science terms
from Section 2.8.

The word problem in an algebra 7'=< X | R > from a variety V.

e Bp = {(u,v) | u,v are words over X},
e Sp={(u,v) € Bp | uis equal to v modulo R and identities of V}.

e The size of the pair (u,v) is the sum of lengths of words u, v.

The uniform word problem in variety V.
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e Bp = {(u,v,R) | u,v are words over X, R is a set of relations u; = v;}
e Sp={(u,v,R) € Bp | uis equal to v modulo R and identities of V}.

e The size of the triple (u,v, R) is the sum of lengths of words u, v, and all
u;, v; such that u; = v; € R.

As we mentioned in Section 2.8, the first variety where the complexity of the
word and uniform word problems was investigated, was the variety of commutative
semigroups.

E.Cardoza [68] noticed that the word problem in any fixed finitely generated
commutative semigroup may be solved in linear time. This is an immediate corollary
of the following three facts:

1. The result of Taiclin [386] that any congruence on a free finitely generated
commutative semigroup A, may be given by a first order Presburger formula
in Aj, (see the proof of Theorem 3.25 above),

2. The result of Ginsburg and Spanier [111] that any subset 7' C A, definable
by a Presburger formula in A, is an effectively constructible finitely generated
semilinear subset. This means that 7' is a finite union of “affine” sets of the
following form L(z, P) = {x + nip1 + ... + ngpr | ns € N,p; € P} for some
element ¢ € A,, and a some finite set P C A,.

3. The result by Fischer, Meyer, and Rosenberg [99] that every semilinear subset
of A, can be recognized in linear time.

The uniform word problem for the variety of commutative semigroups is much
harder. Mayr and Meyer [253] proved that it is exponential space complete (see also
[385]).

The fact that there exists an exponential space algorithm solving this problem
was announced earlier by Cardoza in [68]. It follows from Hermann’s Theorem 3.24
(see Section 7.3).

The fact that every exponential space problem can be reduced to the uniform
word problem for commutative semigroups, was proved by using a “bounded version”
of Minsky machines with 3 tapes (see Section 7.3).

The time complexity of the uniform word problem for commutative semigroups
is not known. It is certainly not polynomial, because polynomial time problems are
solvable in polynomial space (see Connection 2.11). On the other hand by Connection
2.12 the time complexity is at most double-exponential. It is one of the famous open
problems in Computer Science, whether or not every problem which can be solved
in exponential space can be also solved in exponential time (this problem is only
slightly less famous than its great P=NP brother). We would solve this problem
if we could find an exponential time algorithm for the uniform word problem for
commutative semigroups: this easily follows from the fact that the uniform word
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problem for commutative semigroups is exponential space complete. This shows that
the possibility of finding an exponential time algorithm is very slim.

It is very interesting to find out the complexity of the word and the uniform
word problems in the varieties where the decidability of these problems follows from
Theorems 3.28, 3.29, 3.30. We think that the following conjecture of the second
author of this survey may well be true.

Conjecture 3.6 [or every finitely based non-periodic semigroup variety V the
following conditions are equivalent:

1. The word problem is decidable in V;
The uniform word problem ts decidable in V;

The word problem in'V may be solved in polynomial time;

RIS

The uniform word problem in 'V ts exponential space complete.

The equivalence of conditions 1 and 2 follows from Theorem 3.28.

3.5 The Club of Locally Residually Finite Varieties

Permanent members: “To be locally residually finite”, “To have only a count-
able number of finitely generated semigroups”, “To be locally representable by
matrices over a field”, “To be locally Hopfian”, etc.

Temporary membership The Church-Rosser property.

3.5.1 Locally Residually Finite Varieties

Again everything started with the commutative semigroups. By the Redei Theorem
[73] every finitely generated commutative semigroup is finitely presented. Thus the
variety of commutative semigroups satisfies the property FG = FP. This, by the
way, implies that there are only countably many finitely generated commutative semi-
groups. As we mentioned above, Mal’cev proved that this variety is locally residually
finite and locally representable by matrices.

In the "70s Shevrin posed the problem of describing semigroup varieties which
possess the property F'G = FP (see Problem T on page 3 of Bokut’s survey [42]).
Bokut’ (Problem 1 on page 4 of [42]) posed a similar problem about locally residually
finite semigroup varieties. These problems were stimulated, of course, by results of
L’vov, Yu. Mal’cev, and Anan’in on varieties of associative algebras with similar
properties (see Section 4).
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Zimin [432] found a description of the finitely based non-periodic varieties which
satisfy the property FIG = FP. With every finitely based non-periodic semigroup
variety V he associates a variety V. Then V satisfies the property F'G = FP if and
only if Vis locally finite. The variety )Y may be described in the following way (Zimin
himself used another, more complicated, terminology). Let ¥ be the finite basis of
V. ¥; be the subset of ¥ which consists of all identities which do not hold in the
semigroup P x P where P is the same 3-element semigroup which figured in Theorem
3.28. Then V is defined by all identities u = 0,v = 0 such that u = v € ¥;. Using
Theorem 3.7 this description is easy to make algorithmic. A simpler algorithmic
description was found by the second author of this survey in [337], [336]. It turned
out that, at least in the finitely based non-periodic case, this property is equivalent
to other properties mentioned above as the permanent members of the Club. Later
the second author of this survey obtained complete descriptions of locally residually
finite varieties and varieties which are locally representable by matrices [342]. Notice
also that T.Nordahl [281] studied locally residually finite semigroup varieties which
satisfy permutation identities (see identity (5) above).

The results of the second author of this survey are combined in the following two

theorems (see [336]).

Theorem 3.36 (Sapir, [337], [336]). For every semigroup variety V the following
conditions are equivalent:

1. Fvery finitely generated semigroup from V is residually finite.

2. Fvery finitely generated semigroup from V is representable by matrices over a

field.
3. Fither V is a locally finite variety or the following three conditions hold:

(a) V is a non-periodic variety,

(b) All nil-semigroups from V are locally finite,
(c) Px PE V.

4. EitherV is a locally finite variety or the following three conditions hold:
(a) V is a non-periodic variety,

(b) All nil-semigroups from V are locally finite,
(¢) V satisfies the identity
ey =y ey zy” (10)

for some k,m,n,p,n > m.

Theorem 3.37 (Sapir, [337], [336]). LetV be a semigroup variety which satisfies

one of the following two conditions:
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1.V is non-periodic;
2.V is periodic and all groups in 'V are locally finite.
Then the following conditions are equivalent.
1. Fvery finitely generated semigroup from V is residually finite.

2. Fvery finitely generated semigroup from V is representable by matrices over a

field.
3. FG(V) = FP(V).

4. Fvery congruence on every finitely generated relatively free semigroup in V is
finitely generated.

S

Every ideal in every finitely generated relatively free semigroup of V is finitely
generated.

6. The set FG(V) is countable.

Remark 1. Notice that the identity (10) coincides with the identity (8) from
Theorem 3.28. This, of course, reflects the fact that every locally residually finite
variety of semigroups has a solvable word problem. The condition “to be locally
residually finite” is strictly stronger than the condition “to have a solvable word

problem”. This is reflected by the fact that the “forbidden” semigroup P x F is
smaller than the “forbidden” semigroups from Theorem 3.28. It is a subsemigroup of

the semigroups ]3 x P! and ]31 x P, and it generates a smaller variety than var(7").
Remark 2. Condition 5 in Theorem 3.37 is published here for the first time.
Remark 3. There are several strong similarities between these theorems and
results about locally residually finite associative and Lie algebras from Sections 4, 5.
Let us mention two of these similarities:

e As in the associative and Lie algebra cases, local residually finiteness, local
representability by matrices, and other similar conditions are equivalent.

e The identity (10) is a semigroup analog of L’vov’s and Volichenko’s identities

(16), (22).

Remark 4. There is also a significant difference between Theorems 3.36, 3.37
and similar results in Lie and associative algebras. In the last two cases we have
complete descriptions of varieties possessing the properties FG' = F'P (locally weakly
Noetherian varieties) and “to have only a countable number of finitely generated
objects”. In the case of semigroups we have descriptions modulo periodic varieties of
groups. This difference roots in the differing situations of the Burnside properties in
groups and associative (Lie) algebras (see Section 2.6).
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3.5.2 Church-Rosser Presentations of Semigroups in Varieties

We have mentioned in Section 2.9 that there are many Church-Rosser semigroup
varieties, although a complete description of such varieties is not yet known.

In order to present results which are currently known we need some definitions.
Let F' be a semigroup, p,q,w € F. We say that the relation (p,q) is applicable to
the element w if w = spt for some elements s, € F'. The result of the application
of (p,q) to w is the element sqt € F. Notice that if F' is a free semigroup then
this definition coincides with the definition used in Section 2.9. Notice also that
the applicability problem discussed in Section 2.9 is, in the case of semigroups, the
divisibility problem: “Given two elements a,b € F', decide whether a is divisible by b
in 7”7 (we have discussed this problem before, see Theorems 3.28, 3.29). Thus with
every set of pairs ¥ from F' X F' we can associate a rewrite system Q(F, ).

Of course, in order to find terminating Church-Rosser rewrite systems we shall
use the Knuth-Bendix procedure (see Section 2.9). As we have mentioned in Section
2.9, before we are able to apply this procedure, we must meet some requirements.

First of all we shall assume that our semigroup F'is ordered. This order must be
stable with respect to multiplication. We shall assume that if s divides ¢ in F' then
s < t. We shall also assume that for every element s € F' there are only finitely many
decompositions s = sys3 with s; € F. The latter assumption holds in any relatively
free non-periodic semigroup. If these assumptions hold we shall call F' successfully
ordered. The absolutely free semigroups and the free commutative semigroups are
successfully ordered by the ShortLex order.

We also need a definition of a critical pair. Some particular cases of our definition
may be found in Bergman [34], Gilman [110] and Pedersen [292]). Let F' be a finitely
generated semigroup. An overlap of two relations (p1,¢1), (p2,g2) € F X F'is a quadru-
ple of elements s1,11, 82,13 € F such that syp1t; = sapaty and s1g1t; > Saqots. This
overlap is called critical if there is no other overlap s},t, s}, t, of the same relations
such that:

L. sipit] < sipity;

2. for some elements z,y € S*
! ! ! !
sipiqy = asipityy, sigh = x(s1qith)y, siqits > x(s5¢21h)y.

The critical pair determined by such a critical overlap is the pair of elements s;q;t1,
S2qqty of F.

Now let us consider the question of when a variety of semigroups is Church-Rosser
(see the definition in Section 2.9). Periodic finitely based varieties of semigroups with
solvable word problem are either locally finite (hence Church-Rosser, see Section 2.9)
or contain “bad” groups (see Theorems 3.28, 3.29). Therefore we can restrict ourselves
to non-periodic varieties.
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It turns out that if V is a locally residually finite variety of semigroups and all
free semigroups in V are successfully ordered then we always have a finite number
of critical pairs and the Knuth-Bendix procedure always terminates. So we have the
following result.

Theorem 3.38 (Sapir, [338]). Let V be a finitely based variety which either
is non-periodic or contains no infinite finitely generated groups of finite exponent.
Suppose V is locally residually finite and that the free semigroups in ¥V are successfully
ordered. Then the Knuth-Bendiz procedure applied to any finite V-presentation of a
semigroup S € V halts, producing a Church-Rosser terminating presentation of S.
Therefore V is a Church-Rosser variety (the free semigroups of V play the role of
pseudo-free semigroups in the definition of Church-Rosser varieties).

This theorem generalizes the main results in [292] and [110].

Not every locally residually finite variety has orderable free semigroups. The
following example is due to the second author of this survey. Let us take the variety
V given by the following identities:

1. zyzzzyzrteyzzayr = 2?yzoyrtryrzrye,

2. zy® = ydz,
3. 22y?25432802y2 = 20253022,
A4, 22?5322y = y22?313 00ty

The first two identities make V locally residually finite (see Theorem 3.37). Now
take X = {z,y,2,t} and suppose that F' = Fx (V) admits a complete stable order <.
It is easy to see that words u = z%t32z® and v = 25¢3 represent different elements in
F. Thus either u < v or v < u. Suppose that u < v. Since < is a stable order, we
must have that

ytucty? < atytory?, yirtuzy? < yletvelyl. (11)
But identities 3 and 4 yield

2 2

2,2 2,2 2 2,2 2,2 2,2 2 2,2

This and (11) imply:

v ztoaly? < ylrluey? < ylzluelyl.

Hence

2 2

yietvaty? = yPatua’y?
But it is easy to see that this identity does not follow from identities 1 — 4. This
contradiction shows that the free semigroups from V are not orderable.

Nevertheless there are enough locally residually finite varieties with orderable free

semigroups.
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Theorem 3.39 (Sapir, [338]). Every non-periodic variety ¥V (n, W) of semigroups
given by two identities Z, = W and z*"y = z"yx™ has orderable free semigroups.
Therefore every non-periodic finitely based locally residually finite variety is Church-
Rosser (one can take free semigroups in the corresponding variety V(n, W) as pseudo-
free semigroups forV ).

This theorem shows yet again that locally residually finite varieties of semigroups
inherit many important properties of the variety of commutative semigroups. We have
mentioned above (Section 2.9) that rewrite systems of relations in free commutative
semigroups are exactly the Petri nets. Thus rewrite systems of relations in free
semigroups of locally residually finite varieties of semigroups are non-commutative
analogs of Petri nets.

3.6 The Club of Residually Finite Varieties

Permanent members: “To have solvable elementary theory”, “To have solvable
elementary theory of the finite trace”, “To be residually finite”, “To be residually
small”, “To have finitely many quasi-varieties”, “To have at most countably
many subquasi-varieties”.

3.6.1 The Elementary Theory

A description of locally finite group varieties with decidable elementary theories was
obtained by Ershov [93]. He proved that a locally finite variety of groups has a
decidable elementary theory if and only if it is Abelian.

Based on this result, Zamjatin found a complete list of locally finite semigroup
varieties with decidable elementary theories [424]. Then Zamjatin proved, solving
a Tarski problem, that every group variety with a decidable elementary theory is
Abelian [422]. This result and results from [424] imply that every semigroup variety
with a decidable elementary theory is locally finite. Thus the main theorem of [424]
gives in fact the list of all semigroup varieties with decidable elementary theories. In
order to formulate this theorem we need some notation:

e L is the variety of left-zero semigroups (=var{zy = z}),

e R is the variety of right-zero semigroups (=var{zy = y}),

e N is the variety of semigroups with zero product (=var{zy = 0}),

e T is the variety of all commutative idempotent semigroups (=var{zy = yx, 2* =

o [ is the two element left zero semigroup,

R is the two element right semigroup,
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e N is the two element semigroup with zero product,
o [ is the two-element commutative idempotent semigroup,

e M, is the Rees matrix semigroup over the cyclic group of order n with 2 x 2-

sandwich matrix P = ( 8 (1) ), that is the set of triples {(¢,9,5) | ¢,7 €

{1, 2},¢9 € Z,} with the following multiplication (z,¢,7)(k,h,¢) = (¢,9 +
P(k,j)+ h,l) where “+” is the operation in Z,.

o If V; and V), are two varieties of semigroups then V; x V, denotes the class of
all direct products A x B where A € V4, B € V,; Vi + V; denotes the joins of
these varieties in the lattice of all semigroup varieties.

Theorem 3.40 (Zamjatin, [424], [422]). A variety of semigroups has a decidable
elementary theory if and only if it coincides with one of the following varieties: G,
GXL, GXR, GXLXR, N, L+N, R+ N, where G is an Abelian group variety
of finite exponent.

From the proof of this result, it is easy to deduce a characterization of varieties
with decidable elementary theories in terms of “forbidden” semigroups. As far as we
know, this result is published here for the first time. In this theorem and later wr
denotes the wreath product.

Theorem 3.41 A variety of semigroups has a decidable elementary theory if and
only if it is locally finite and does not contain the following finite semigroups

o Z,wrZ, where p,q are distinct primes,

o The nilpotent non-Abelian groups of order p° where p is a prime,
o The semigroup I,

o The semigroup M, for everyn > 1,

o The four element commutative 3-nilpotent semigroup {a,b,c,0} where ab=c =
ba, all other products are equal to 0,

o The semigroup L x R x N,

o The semigroup Z, x N where Z, s a non-trivial cyclic group.

While the list of forbidden semigroups in this theorem is infinite, it contains only
finitely many semigroups of any given period. Given a finite set of identities, which
are known to define a periodic variety of semigroups V, it is easy to find out the
period of V. Then we have to check only a finite portion of this list.
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Theorem 3.41 gives an algorithmic description of these varieties in the class of
locally finite varieties. The problem of a complete algorithmic description of these
varieties is equivalent to the problem of finding an algorithm, which, given a finite
number of group identities, decides if the corresponding variety is Abelian of finite
exponent. The last problem seems to be hopeless at the present time.

Notice that the results of Zamjatin may be deduced from general results of McKen-
zie and Valeriote [260] on locally finite varieties of arbitrary universal algebras with
decidable elementary theory.

In [421] Zamjatin considered elementary theories of finite traces of semigroup
varieties.

Theorem 3.42 (Zamjatin, [421]). Let V be a semigroup variety. Then the ele-
mentary theory ofVﬁn is decidable if and only if V coincides with one of the following
varieties: G, G X L, GXx R, Gx LxR, N, L+N, R+ N, where G is a periodic

variety of groups where all finite groups are Abelian.

Thus it turned out that for every variety V' such that the elementary theory of Vg |
is decidable there exists another variety ¢ such that Vg,, = Ug,, and the elementary
theory of U is decidable. If V is locally finite then one can take &/ = V. Notice that
in the case of rings, for example, the situation is quite different. From Zamjatin’s
Theorems 4.27 and 4.28, it follows that, say, the variety generated by the ring Z/4Z
(integers modulo 4) has an undecidable elementary theory, but its finite trace has a
decidable elementary theory.

3.6.2 Residually Finite Varieties

Residually finite varieties, that is varieties consisting of residually finite algebras, are
exactly varieties where every subdirectly irreducible algebra is finite. Subdirectly
irreducible algebras play very important role in the theory of varieties because by the
Birkhoff theorem every variety is generated by its subdirectly irreducible members.
This is why residually finite varieties of algebras have attracted a robust interest
during the last 25 years.

In 1969 Ol'shanskii [289] described all residually finite varieties of groups, i.e.
varieties which consist of residually finite groups.

Theorem 3.43 (Ol’shanskii, [289]). A group variety is residually finite if and
only if it is generated by a finite group with Abelian Sylow subgroups.

This theorem stimulated all further investigations of residually finite varieties of
semigroups, rings, Lie rings, and universal algebras in general.

As far as semigroups are concerned, descriptions of residually finite varieties have
been found in some particular cases by Gerhard [107] and Mamikonian [241]. A
complete description of residually finite varieties of semigroups has been found by
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Golubov and the second author of this survey [113], [114]. A full proof appeared in
[112]. Independently but later other descriptions were found by Kublanovskii [210]
and R.McKenzie [259]. We present here an algorithmic description of these varieties
in terms of “forbidden” semigroups, which can be deduced from descriptions in Sapir

[349], Golubov and Sapir [112], Sapir [350] and is published here for the first time.

Notice that the three element semigroup P and its mirror image P appear in this
description once again (it appeared in the descriptions of varieties with solvable word
problem, and locally residually finite varieties). We shall also meet these semigroups
a number of times later. Perhaps there exists some mysterious connection between
residual finiteness and these semigroups.

Theorem 3.44 (Sapir). A semigroup variety V is residually finite if and only if
it is locally finite and does not contain the following semigroups:

o (ZywrZy)wr(Z, x %, x ... x L) where p,q,r are distinct primes, n =1,2,.. .,

o The non-Abelian groups of order p* where p is a prime,
o M,, n>1,

o P x (Z,wrZq) where p,q are distinct primes,

o« P X(Z,wrZq) where p,q are distinct primes,

o The semigroups P x L and ]g xR,

o The three element semigroup L',

o The four element commutative 3-nilpotent semigroup {a,b,c,0} where ab=c =
ba, all other products are equal to 0,

o The four element semigroup Wi = {a,b,c,d} with the following multiplication
table:

QO R |
Q| |0
Qo | Q|

QIO [ & | &Q

QO o R

and the semigroup I/Tfl,
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o The seven element semigroup Wy = {a,b,c,d, e, f,0} with the following multi-
plication table:

jen) Ben) Ren) Nen] Neo] Nen] N en]) Han)
[en) Ben) ol e Nen ]l Hen ) Kan ] s
O OIS T OO O o
[en) Ben) No N Ne Wl Nen] Nen) Nen] o
(o] New) o oW Heo] ) Ne]

[en) New) Rl e Neo ]l Nen ) Ren ] BN
oo | oo ol O~

o |||l

and the semigroup f/I_/Q.

Again this list of semigroups is “almost finite”. Given a finite set of identities, we
have to check only a finite part of this list.

This theorem and Theorem 3.41 show that every variety with decidable elementary
theory is residually finite. The converse is not true even for periodic group varieties.
But still these two descriptions have much in common.

As a corollary of Theorem 3.44 one can deduce that every residually finite variety
is of index 2 (in the sense of the Sapir-Sukhanov hierarchy from Section 3.3.3).

Golubov and Sapir [114], Kublanovskii [209], and Savina [359], [358], [361], [360]
(see also [368]) found algorithmic descriptions of varieties of semigroups with the
following properties:

e Every semigroup is residually finite with respect to membership in a subsemi-
group;

e Every semigroup is residually finite with respect to membership in a (left, right)

ideal;

e Every semigroup is residually finite with respect to the regularity (for every
non-regular element there is a homomorphism onto a finite semigroup such that
the image of this element is not regular);

e Every semigroup has recognizable ideals (that is every ideal is a union of classes
of a congruence of finite index).

All these properties turned out to be “almost” equivalent to residual finiteness,
but, for example, in the case of residual finiteness with respect to membership in an
ideal, we do not have restrictions on the group subvariety (because every group is
residually finite with respect to membership in ideals).

Another property which turned out to be equivalent to residual finiteness in all
known cases, is the property “to be residually small”. A variety is called residually
small if the orders of its subdirectly irreducible algebras are bounded by some cardinal
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(recall that in residually finite varieties these orders are finite). This property is very
closely connected to many nice properties of varieties (see [396]), so it is very popular
among specialists in universal algebra.

Residually small varieties of semigroups have been studied by McKenzie [259],
[256]. He showed that the problem of describing these varieties would be reduced to
the analogous problem for periodic group varieties, if a certain group-theoretic prob-
lem had a positive solution. Then the second author of this survey and Shevrin [354]
solved this problem positively, which completed the description of residually small
semigroup varieties modulo periodic group varieties. Every locally finite residually
small group variety is residually finite (this follows from Olshanskii’s results [289]),
so, in the case of locally finite varieties of semigroups, the properties “to be residually
finite” and “to be residually small” are equivalent. Examples of non-locally finite
residually small varieties of periodic groups are not known, and it seems very unlikely
that such examples exist. Thus there is a high probability that these two properties
are equivalent in the class of all semigroup varieties.

3.6.3 Subquasi-Varieties

A quasi-variety is a class of algebras defined by quasi-identities.

By a result of Mal’cev every two distinct finite subdirectly irreducible algebras
generate distinct quasi-varieties. Thus a locally finite variety of algebras with finitely
many quasi-varieties must be residually finite. By a result of the second author of
this survey [351], for groups and associative rings the converse statement is also true.
But this is not the case for semigroups.

A complete description of such varieties appeared in [351]. Here we present an al-
gorithmic description which can be deduced from [351] but has not been published be-
fore. The main characters of this description are the familiar semigroups L, R, N, I, P.

Theorem 3.45 (Sapir, [351]). A locally finite variety of semigroups contains
only finitely many quasi-varieties if and only if it is residually finite and does not
contain the following semigroups:

o The semigroup I x Z,e where p is a prime,

o Semigroups P x Z,: and P X2, where p is a prime,

o The semigroup N x (Z,wrZ,) where p,q are distinct primes,

o The semigroup I x (Z,wrZ,) x (Z,wrZ,) where p,q,r are distinct primes,
o The semigroup I x (Z,wrZ,) X Z,.

The proof of this theorem is very non-trivial. It involves, in particular, a careful
study of finite Abelian groups with one or two distinguished subgroups. It turned
out that the properties of such systems depend very much on whether the exponent
of the group is free of 6-th powers (resp. 3-d powers) or not.
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3.7 The Membership Problem For Pseudovarieties of Finite
Semigroups

It would take too much space to review all known algorithmic results about the mem-
bership problem for pseudovarieties of finite semigroups. Fortunately there are good
surveys, published, in particular, in this journal, devoted exclusively to this subject
(see, for example, [141], [242]). This is actually a whole theory where semigroups are
mixed with automata, languages, profinite groups, etc. John Rhodes calls this devil
mixture “Global Semigroup Theory”. We will briefly discuss only four interesting
topics of this theory.

A pseudovariety may be generated by a known class of semigroups (say, by one
finite semigroup). It may appear as a result of a construction (the Mal’cev product,
the join, etc.). It may be given by identities or so called pseudoidentities. Finally
it may appear accidentally: an important class of finite semigroups turns out to be
a pseudovariety. Thus we will consider four cases of the membership problem and
give some examples of the solutions in each of these cases. We will also consider
(when possible) the computational complexity issues. For every pseudovariety P the
instance of the membership problem is the Cayley table of a finite semigroup.

3.7.1 Pseudovarieties Generated by Important Classes of Semigroups

It a semigroup S is a homomorphic image of a subsemigroup of a semigroup 7' then
we will say that S divides T'.

If C is a class of finite semigroups then pvarC is the minimal pseudovariety con-
taining C: that is the set of all semigroups which divide finite direct products of
semigroups from C. If C is closed under finite direct products then pvarC is just the
set of semigroups which divide semigroups from C. The following result, obtained by
C.Ash [14], answered a question by Pin.

Theorem 3.46 (Ash, [14]). The pseudovariety generated by the class of all finite
inverse semigroups coincides with the class of all finite semigroups where idempotents
commule.

Thus this pseudovariety has decidable and even polynomial time membership
problem. As a corollary, one can conclude that every finite semigroup with com-
muting idempotents divides a semidirect product of a finite semilattice (commutative
idempotent semigroup) and a finite group. Indeed, as we have pointed out in Section
3.3.5 every inverse semigroup divides such a semidirect product.

Using Ash’s method Birget, Margolis, and Rhodes [39] proved the following gen-

eralization of Theorem 3.46.

Theorem 3.47 (Birget, Margolis, Rhodes, [39]). The pseudovariety generated by
all finite regular semigroups whose idempotents form subsemigroups (such semigroups
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are called orthodox), coincides with the set of all finite semigroups whose idempotents
form subsemigroups.

Every regular semigroup, whose idempotents form a subsemigroup, divides a semi-
direct product of an idempotent semigroup and a group [39]. Thus every finite semi-
group whose idempotents form a subsemigroup divides such a semi-direct product.

One of the most important classes of finite semigroups is the class of 0-simple
finite semigroups. Recall that a semigroup is called 0-simple if it does not have
ideals except itself and possibly {0}. Every finite semigroup may be obtained from
0-simple semigroups by a sequence of ideal extensions. Thus the role of finite 0-simple
semigroups in the theory of semigroups is similar to the role of finite simple groups
in the theory of groups. Every group is, of course, a 0-simple semigroup. The classic
theorem of Sushkevich [73] shows that finite 0-simple semigroups have the following
structure. Let G be a finite group, let L and R be two finite sets and let P be an
R x L-matrix over the group GG with 0 adjoint such that every row and every column
of P contains a non-zero element. Let M°(G; L, R, P) be the set L x G x RU {0}
with the following binary operation:

! ! : .

(4, g,m), g, r") = { ((f’gpwg 7 i ]IZE i 8?
Then M°(G; L, R, P) is a finite 0-simple semigroup and every finite 0-simple semi-
group is isomorphic to M°(G; L, R, P) for some G,L,R,P. If L = R and P is the
identity matrix then M°(G; L, R, P) is called the Brandt semigroup over the group G.
It is denoted by Bp((G). Brandt semigroups are precisely the 0-simple inverse semi-
groups. As one can see the structure of finite 0-simple semigroups and finite 0-simple

inverse semigroups is extremely clear. Thus the following result of Kublanovsky was
very unexpected.

Theorem 3.48 (Kublanovsky, 1994). The set of all subsemigroups of finite 0-
simple semigroups is not recursive. The set of finite semigroups in the quasi-variety
generated by the class of finite 0-simple semigroups ts not recursive also.

Kublanovsky uses the unsolvability of the uniform word problem for finite groups
(Slobodskoii [378]) and Connection 2.2. Then T.Hall, Kublanovsky and Sapir proved

the following stronger result.

Theorem 3.49 (7.Hall, Kublanovsky, Sapir, [140]). For every pseudovariety of
finite groups V the following conditions are equivalent.

1. The uniform word problem in V s solvable.

2. The set of subsemigroups of finite 0-simple semigroups M°(G; L, R, P) with G €
V is recursive.
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3. The set of finite subsemigroups of Brandt semigroups Br(G) with G € V is

TECUTSIVE.

4. The set of finite nilpotent of degree 4 subsemigroups of finite 0-simple semigroups
M°(G; L, R, P) with G €V is recursive.

5. The set of finite nilpotent of degree 3 subsemigroups of finite Brandt semigroups
BL(G) with G €V is recursive.

6. The set of finite nilpotent of degree 4 semigroups in the quasi-variety generated
by finite 0-simple semigroups M°(G; L, R, P) with G € V is recursive.

7. The set of finite nilpotent of degree 3 semigroups in the quasi-variety generated
by finite Brandt semigroups Br(G) with G € V is recursive.

Remark. The degrees 3 and 4 in Conditions 4 - 7 are impossible to make smaller
(see [140]).
This result is in constrast with the following result from [140].

Theorem 3.50 (Kublanovsky, Margolis, Sapir, Trotter, [140]). Let V be a de-
cidable pseudovariety of groups. Then the pseudovariety CS*(V) generated by finite
0-simple semigroups M°(G; L, R, P) with G € V is decidable and the pseudovariety
B(V) generated by all Brandt semigroups Br(G) with G € V is decidable. These two
pseudovarieties are finitely based provided V is finitely based. In particular the mem-
bership problem for the pseudovariety generated by all finite 0-simple semigroups and
the membership problem for the pseudovariety generated by all finite Brandt semi-
groups are decidable in polynomial time.

An important step in the proof of Theorem 3.50 is the representation of the
pseudovariety CS°(V) as a star-product (Z + V) * R where as above T is the variety
of semilattices and R is the variety of right zero semigroups. The star-products of
pseudovarieties are defined in the next section.

3.7.2 Operations on Pseudovarieties

e have already met some of important operations on pseudovarieties. Given two
We h Iread t i tant t d t G t
pseudovarieties B and C of finite semigroups one can consider:

e The join B + C, that is the set of all finite semigroups which divide direct
products B x C where B € B, C € C;

e The star-product B x C, that is the set of all finite semigroups which divide
semi-direct products BAC where B € B, C' € C;
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e The Mal’cev product BmC, that is the set of all finite semigroups which divide
semigroups which have homomorphisms onto semigroups from C such that each
pre-image of an idempotent belongs to B.

There is a natural connection between finite semigroups and automata via tran-
sition semigroups. Then the join of varieties corresponds to the parallel connection
of automata, the star-product corresponds to the sequential connection of automata.
The Mal’cev product does not correspond to anything natural, but it coincides with
the star-product in many important cases (like the case of group pseudo-varieties,
and cases considered in the previous subsection).

We have seen that the join of two pseudovarieties with decidable membership
problem may have undecidable membership problem (see Theorem 3.18). Rhodes
conjectured that the same is true for Mal’cev and star-products [141]. But very often
joins or the star-product are decidable. We refer again to Theorems 3.46 and 3.47,
3.50.

The star-product is especially important because of the following variant of the
celebrated Krohn-Rhodes theorem.

Theorem 3.51 Let A be the pseudovariety of all aperiodic finite semigroups (that
is semigroups with trivial subgroups). Let G be the pseudovariety of all finite groups.
Let us define a pseudovariety R, as follows:

Ro = A7---7Rn+1 = A*Q*Rn.
Then every finite semigroup belongs to R, for some n.

The minimal number n such that S € R, is called the group complexity of S. The
problem of recognizing the group complexity, that is the membership problem for the
pseudovariety R, is the famous group complexity problem, posed by Rhodes. The
answer in general is not known even for n = 1. But the group complexity problem
for inverse and completely regular semigroups is known to be decidable [207]. This
means that, given a completely regular or inverse semigroup S one can effectively
decide what the group complexity of S is. It is interesting that methods used by
Krohn, Rhodes, and Tilson in [207], in particular, the Rhodes expansion, are similar
to methods used later by L.Polak and others in their study of completely regular
varieties of semigroups.

The latest achievement in the group complexity problem was made by C.Ash [15].
He proved the so-called Rhodes type II conjecture, one of the main consequences of
which is the following.

Theorem 3.52 (Ash, [15]). If the membership problem is decidable for a pseu-
dovariety V then it is decidable for the pseudovariety VmgG.
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In fact the type II conjecture provides an algorithm which solves the membership
problem in Ym@G. With every finite semigroup one can associate a subsemigroup D(S)
which is called the type II subsemigroup. 1t is constructed inductively as follows:

1. All idempotents belong to D(5),
2. If a € D(S5), and for some b,c € S b= beb then bac, cab € D(S).

It is obvious that given S one can easily (in polynomial time) construct D(S).

One of the formulations of the type II conjecture is the following: A semigroup S
belongs to YmG if and only if D(S) € V.

This theorem implies Theorems 3.46 and 3.47 above (since the variety of semilat-
tices and the variety of all idempotent semigroups obviously have decidable member-
ship problems). It has many other corollaries as well (see surveys [141] and [242]).

In the proof of Theorem 3.52 Ash heavily uses the theory of inverse semigroups,
in particular, covers defined above in Section 3.3.5, and the Ramsey-type technique
developed by him when he was proving Theorem 3.46.

Later Ribes and Zalesskii [320] found a “profinite” proof of Theorem 3.52. A
connection between the type Il conjecture and questions on profinite groups has
been discovered by Pin, Reutenauer and Margolis [298], [245]. They proved that
the following conjecture is equivalent to the type Il conjecture: Let Hy, H,, ..., H, be
finitely generated subgroups of a free group F'. Then the product HiH, - -+ H,, is closed
in the profinite topology of F'. Recall that the basis of the profinite topology on F' is
the set of all subgroups of F' of finite index. For n = 1 this conjecture is exactly the
famous result of M.Hall. Ribes and Zalesskii proved this conjecture using the theory
of profinite groups acting on profinite graphs, developed earlier by Gildenhuys, Ribes,
and Zalesskii.

It is amazing that the theory of finite semigroups is so closely connected with the
theory of profinite groups. It would be very interesting to compare the semigroup
theoretic proof of Ash and the topological proof of Ribes and Zalesskii, and discover
new relationships between these two areas.

3.7.3 Identities and Pseudo-Identities

When the membership problem is decidable for a pseudovariety V, the computational
complexity of this problem becomes very important. It would be very interesting, in
particular, to characterize pseudovarieties which have polynomial time membership
problem.

The first step in this direction was made by J.Almeida [10]. It is easy to see that
if a pseudovariety V is given by a finite number of identities, that is if it is a finite
trace of a finitely based variety, then the membership problem for V is decidable in
polynomial time. J.Almeida conjectured that the converse statement is also true. In
fact his conjecture is more general. By a theorem of Reiterman [314] every pseudova-
riety of semigroups may be given by so called pseudoidentities, which are basically

80



pairs of elements of the free pro-V semigroup. Almeida [10] conjectured that a pseu-
dovariety has a polynomial membership problem if and only if it has a finite basis
of pseudoidentities, each of which may be computed in polynomial time. The second
author of this survey constructed the following counterexample to the conjecture of
Almeida. This example appears here for the first time. The mysterious three-element

semigroups P and P play here a role again.

Theorem 3.53 (Sapir). Let N be the 2-nilpotent group variety of exponent 4, and
for every n > 1 let w, be the word xiyixiyy - 2>y2x,y,. Let S be the intersection
of the variety var(Px F) + N and the variety given by all identities of the form
zwnz = (zw,2)*. Then the following conditions hold:

1. § s generated by a finite semigroup,
2. S does not have a finite basts of pseudo-identities,

3. The membership problem for Sﬁn is polynomaial.
The proof is based on the following facts:

e The variety § is generated by a finite semigroup and is not finitely based. This
is proved in [344].

o If afinite semigroup has a finite basis of identities in the class of finite semigroups
then it has a finite basis of identities in the class of all semigroups. This is proved

in [348].

o If a finite semigroup has a finite basis of pseudo-identities then it has a finite
basis of identities in the class of all finite semigroups. This is proved in [10].

e The membership problem for S, is polynomial. This is a new result.

In fact we do not know any pseudovariety generated by a finite semigroup which
has a non-polynomial time membership problem.

Problem 3.11 Is there a pseudovariety generated by a finite semigroup whose
membership problem is not polynomial time? Is the membership problem for the pseu-
dovariety generated by the Brandt monoid (2) polynomial time?

The fact that we do not know the answer to such questions is very annoying. This
means that we still know very little about finite semigroups.

Another counterexample to Almeida’s conjecture has been found independently
by Volkov [413]. He proved, in particular, that the Mal’cev product of the pseu-
dovariety of all aperiodic finite semigroups and the pseudovariety of all finite groups
is not finitely based. The fact that the membership problem for this pseudovariety
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is decidable in polynomial time follows from Ash’s Theorem 3.52. Notice that this
pseudovariety is not generated by a finite semigroup, and is not a finite trace of any
variety. In the case of inverse semigroups a counterexample to Almeida’s conjecture
has been found by Margolis (unpublished). He proved that the membership problem
for the Mal’cev product of the pseudovariety of semilattices and the pseudovariety
of Abelian groups of exponent 2 is solvable in polynomial time. The fact that this
pseudovariety is not finitely based follows from results of E.Kleiman [194].

While Almeida’s conjecture turned out to be incorrect, it seems to point in the
right direction. It is quite possible that the property “the membership problem is
solvable in polynomial time” may be expressed by a simple second order formula.
Connection 2.13 and similar connections discussed in Section 2.8 also hints at such a
possibility.

3.7.4 Inherently Non-Finitely Based Finite Semigroups

One of the most famous algorithmic problems about finite universal algebras is the
following Tarski problem.

Problem 3.12 (Tarski, [392]). Is the set of finite algebras, possessing a finite
basis of identities, recursive?

This problem was reduced to the case of groupoids (algebras with one binary
operation) by R.McKenzie [257]. It was proved by McNulty and Shallon [262] that
there are in a sense a “few” finitely based non-associative groupoids. This made
associative groupoids, that is semigroups, an important case for the Tarski problem.
In fact, McNulty and Shallon proved that there are “few” non-associative groupoids
which are not inherently non-finitely based. We discussed this concept a little in
Section 3.3.1. Recall that a locally finite variety of algebras (resp. a finite algebra)
is called inherently non-finitely based it every locally finite variety, containing it, is
not finitely based. If a variety (resp. an algebra) is not inherently non-finitely based
then we shall call it weakly finitely based. McNulty and Shallon asked if there exists
an inherently non-finitely based semigroup. This question has been answered by
the second author of this survey (see Theorem 3.11 above): the six-element Brandt
monoid (2) is inherently non-finitely based.

Then the following “weak” version of the Tarski problem arose:

Is the set of weakly finitely based finite semigroups decidable?

This problem also has been solved by the second author of this survey [341].
The answer is “Yes”. The following theorems combine results from papers [346, 341].
Before we formulate this theorem, let us recall that if e is an idempotent of a semigroup
S then the maximal subgroup of S containing e is denoted by S. (e is the identity
element in this subgroup); if G is a finite group then the upper hypercenter I'(G) is
the last term of the upper central series of G.
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Theorem 3.54 (Sapir, [346], [3/1]). A locally finite variety of semigroups is
weakly finitely based if and only if it satisfies a nontrivial identity of the form Z, = W,
where 7, is the Zimin word, and n is a natural number.

Theorem 3.55 (Sapir, [346], [341]). For every finite semigroup S, the following
conditions are equivalent:

1. S is weakly finitely based,
2. S satisfies a non-trivial identity of the form Z, = W.

3. S satisfies a non-trivial identity of the form Z, = W, where n < |S|?, and W
P+ where p is the period

7

s obtained from Z, by replacing some letters x; by x
of the semigroup S,

4. For every idempotent ¢ = ¢* € S the semigroup T = eSe satisfies the following
condition:

For every element a € T and for every idempotent f € TaT
elements faf and faP*'f belong to the same coset of the mazimal
subgroup Ty of T' with respect to the upper hypercenter I'(Ty).

This theorem has many corollaries. Let us mention only some of them (see also

[341]).

Theorem 3.56 (Sapir, [341]). Let Z, be the infinite (in both directions) word
which is a limit of Zimin words Z,. Let S(Z,) be the semigroup corresponding to
Z, (more precisely, to the symbolic dynamical system generated by Z,, see Section

3.3.1). Then the following three conditions hold:

1. The variety generated by S(Z,,) is the only minimal inherently non-finitely based
non-group variety of semigroups.

2. FEvery inherently non-finitely based semigroup variety contains either S(Z,) or
an inherently non-finitely based variety of groups.

3. The equational theory of S(Z,) is decidable.

Remark. It is not known if there exist inherently non-finitely based varieties of
groups. A celebrated result of Zelmanov [426] shows that there are no inherently
non-finitely based group varieties of prime exponent. So there is a big probability
that there are no inherently non-finitely based group varieties at all. If this turns
out to be the case then var(S(Z,)) will be the absolutely unique minimal inherently
non-finitely based semigroup variety.

The following corollaries are about finite semigroups.
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Theorem 3.57 (Sapir, [341]). A. If all subgroups of a finite semigroup S are
nilpotent then S is weakly finitely based if and only if the Brandlt monoid By does not
divide S.

B. There exists an inherently non-finitely based finite semigroup S such that B}
does not divide S.

Theorem 3.58 (Sapir, [3/1]). The set of all weakly finitely based finite semi-
groups is a pseudovariety. This pseudovariety has a polynomial time membership
problem.

The second statement of Theorem 3.58 has not been published before. It follows
from condition 4 of Theorem 3.55.

It is interesting that if we consider B; as an inverse semigroup, that is as an
algebra with two operations: binary (multiplication) and unary (which in this case
coincides with the operation of taking the transpose of a matrix), then it is no longer
inherently non-finitely based. Moreover the following theorem of the second author

of this survey holds [339].

Theorem 3.59 (Sapir, [339]). Every finite inverse semigroup, considered as an
algebra with two operations, s weakly finitely based.

This theorem follows from the following two facts proved in [339]. Let Z, be the
Zimin word 7, without the rightmost letter. Then:

e Every finite inverse semigroup satisfies the identity
7! =7zt (12)
for some n;

e An inverse semigroup S is locally finite if it satisfies the identity (12) and all
subgroups of S are locally finite.

Remark. Just recently, after the text of this section was written, Ralph McKenzie
solved the Tarski problem (Problem 3.12) in the negative. More precisely, for every
Turing machine 7', calculating a partially recursive function f(n), and every number
n, McKenzie constructs a finite algebra A(7T,n) such that if f(n) is defined then
A(T,n) is finitely based, and if f(n) is not defined then A(7,n) is inherently non-

finitely based. Thus the following two sets of finite algebras are not recursive:

o The set of finitely based finite algebras;

e The set of inherently non-finitely based finite algebras.

This outstanding result sheds a new light on the questions discussed in this section.
For example, since the set of inherently non-finitely based finite semigroups is recur-
sive, finite semigroups behave better algorithmically than general finite algebras. And
- who knows - perhaps the set of finitely based finite semigroups is also recursive?
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4 Associative Algebras

4.1 Basic Definitions

We will use the terminology from Jacobson [157], Rowen [331], Kemer [171], Kemer
[172].

We will mainly consider associative algebras with or without unit over a field,
say K, although some of the results hold for arbitrary associative rings. If in the
formulation of a result we do not specify that we consider algebras with (without) unit
then the result holds in both cases.

We would like the ground field K not to be the main cause for the undecidability of
algorithmic problems. In particular we would like to apply the McKinsey algorithm in
order to solve the word problem in residually finite algebras. This means that we need
to be able to count finite dimensional K-algebras. Thus we will always assume that
K is countable and recursive. This means that there exists an effective enumeration
of elements of K and the basic field operations of K are recursive functions.

Let S be a semigroup, let K be a field. Then the semigroup algebra KS is the
algebra of formal sums ), a;s; where o € K, s; € S with the natural distributive
multiplication. If S contains 0 then we will always identify 0 of S with 0 of K The
algebra KS may be considered as an algebra generated by the direct product K x S
subject to the relations:

(1 + ag,8) = (a1, 8) + (az, 8), (a1,81)(az,s2) = (g, 5152),
alag, s1) = (aaq, s1), (a,0) =(0,0).

The free associative algebra over a set X is the semigroup algebra K X ™.
A tensor product A ®@ B of two K-algebras A and B is the algebra generated by
A x B subject to the relations:

(a1 + az,b) = (a1,b) 4 (aq,b), (a,by + b2) = (a,b1) + (a, by),
(a1,b1)(az, bs) = (a1az, b1b2), afa,b) = (aa,b) = (a,ab).

If A is a finite dimensional algebra with a basis a, ..., a, and structure constants
a; ik (that is a,a; = 3, a; jrar), then the m-generated algebra of generic elements of
A is generated by formal sums

S XWas, j=1,...,m, (13)
where XZ»(j ) are commuting unknowns, subject to the following relations

J

ZXZ'(p)ai ZXZ'(q)ai = ZXZ»(p)X;-q)aiaj = Z Oéi7]‘7kXZ-(p)X(-q)ak.
% z ,J

0,5,k
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In other words this is the subalgebra of the tensor product K[Xl(l), XM e A
generated by elements (13).

An udentity in the case of associative algebras is simply a polynomial aquy + ...+
anu, where u; is a word, «; is an element of K. One says that this identity holds in
an algebra R if this polynomial is identically 0 on this algebra. An algebra satisfying
a non-trivial identity with GCD of coefficients equal to 1 is called a Pl-algebra.

We shall denote the ring commutator zy — yx by [z,y], and write [[z,y], 2] as
[x,y, z].

A polynomial p is called homogeneous if every letter occurs the same number of
times in each monomial of p.

An algebra (without a unit) is called nilpotent of step k if it satisfies the identity
1Ty ...Tky1. Notice that traditionally such associative algebras are called nilpotent
of step k+ 1. We break the tradition for the sake of uniformity with the cases of Lie
algebras and groups. The variety of all nilpotent algebras of step k is denoted by N.
The variety of commutative algebras is denoted by A.

We denote by W)W, the Mal’cev product of the varieties W; and W,. For ex-
ample, NV A is the variety of algebras with k-step nilpotent derived subalgebra. If V
is a variety of algebras then the class of all algebras A which have a central ideal [
such that A/I € V is a variety denoted by ZV. For example, ZN, A is the variety of
center-by-N;A associative algebras.

A K-algebra is called residually finite if it has enough K-homomorphisms into
finite dimensional K-algebras to separate every two distinct elements.

For every algebra K the algebra of all n x n—matrices over K is denoted by
M, (K).

Similar notation and definitions will be used in the group and Lie algebra cases
in the next sections.

4.2 Overview

Algorithmic problems in varieties of associative algebras have a much better neigh-
borhood than algorithmic problems in varieties of other systems considered in this
survey.

Indeed, while in the case of groups and semigroups we struggle with periodic
non-locally finite varieties, in the case of associative algebras we have the Kaplansky-
Shirshov Theorem [161], [371] which states that every associative algebra with a
non-trivial identity whose one-generated subalgebras are finite dimensional is locally
finite dimensional.

While in the cases of semigroups and groups there are lots of varieties without
finite bases of identities, in the case of associative algebras over fields of characteristic
0 we have the Kemer Theorem [170], which states that every variety is finitely based.
In the case of positive characteristic, every variety of algebras over an infinite field,
that does not contain the algebra of all 2 x 2-matrices, is finitely based (Krasil’nikov,
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[204]). There is a strong hope that every variety of associative algebras over an
infinite field is finitely based, and nobody knows any counterexamples even in the
case of finite fields.

While in the cases of semigroups, groups and Lie algebras relatively free systems
in varieties may have awful structure, by another of Kemer’s theorems [173] every
relatively free associative algebra over a field of characteristic 0 is representable by
matrices over a direct power of the so-called Grassmann algebra, and if a variety
is generated by a finitely generated algebra then its free algebras are in some sense
almost finite dimensional. More precisely these are algebras of generic elements of
some finite dimensional algebras.

Arbitrary algebras in varieties of associative algebras have nice properties too. By
the theorem of Razmyslov, Kemer, and Braun [56] every finitely generated associative
algebra A satisfying a non-trivial identity has a nilpotent ideal J(A) (the Jacobson
radical) such that A/J(A) is a subdirect product of matrix algebras.

All these features make associative algebras a very nice place to work with algo-
rithmic problems.

For more information about the theory of varieties of associative rings and algebras
we refer the reader to the book of Rowen [331]. The current state of this theory is
presented in a recent survey by Kemer [172].

Of course, sometimes associative algebras are harder to work with than, say, semi-
groups. For example, the simple tools like Minsky machines do not suffice to get deep
enough in the lattice of varieties of associative algebras. Thus, this lattice is “deeper”
(or would it be better to say “more viscous”?) than the lattice of varieties of semi-
groups. Also some of the properties which are equivalent in the case of semigroups
turn out to be distinct in the case of associative algebras. It is actually interesting
to see how the specifics of associative algebras influence the behavior of properties
which belong to the same Club in the semigroup case.

4.3 The Identity Problem and Related Problems

Let p = 0 be an identity of associative algebras. The polynomial p can be represented
as a sum of homogeneous polynomials p = p; + ...+ p,. It is well-known and easy
to prove (see [172]) that in the case of associative algebras over an infinite field the
identity p = 0 is equivalent to the system of identities p; = 0,...,p, = 0. Now let F
be a finitely generated relatively free algebra of a variety of algebras over an infinite
field. Then for every n, elements from F' of degree > n form an ideal. The intersection
of all these ideals is 0. Each of them has a finite co-dimension. Thus every relatively
free associative algebra over an infinite field is residually finite. Therefore it has a
decidable word problem, and by Connection 2.5 we have the following result.

Theorem 4.1 The equational theory is decidable in every variety defined by ho-
mogeneous identities. The identity problem is decidable in the variety of all associative
algebras over an infinite field, and in all its subvarieties.
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Thus the equational problem in every variety of associative algebras over an infinite
field is decidable.

Notice that a similar argument has been used to prove the decidability of the
equational problem in non-periodic varieties of semigroups (see Theorem 3.15). Free
semigroups in these varieties have a similar sequence of ideals of finite index (see
Section 3.3.2).

As we mentioned before, residual finiteness provides very slow algorithms. In
the case of characteristic 0 there exist much faster algorithms solving the equational
problem.

The following result, noticed by the second author of this survey, is a direct
consequence of Kemer’s results [170], [173]. It is published here for the first time.

Theorem 4.2 Let K be a field of characteristic 0 such that sums and products of
elements of K are computable in polynomial time (say, the field of rational numbers).
Then every variety of associative algebras over K has NP decidable equational theory.

In order to show how this follows from Kemer’s results let us recall some defini-
tions. An algebra A is called a superalgebra if A has two distinguished subspaces Ag
and A; satisfying the following conditions:

A = Ao @ Al, Ag,A% g Ao, AoAl,AlAO g Al.

The pair (Ao, A1) is called the grading of A. Every associative algebra A may be
considered as a superalgebra if one takes Ag = A, A; = 0. This grading is called
trivial. The most famous example of a superalgebra with a non-trivial grading is
the Grassmann algebra. It is generated by an infinite set {ey,es,...} with defining
relations e;e; = —eje;, 1,7 = 1,2,.... The grading of GG is defined as follows: G is
the subspace of G generated by the words of even length in the generators, and Gy is
the subspace generated by the words of odd length. For every superalgebra A with
grading (Ao, A1) the subalgebra Ao ® G+ A1 @ G of the tensor product of A and G
is called the Grassmann hull of the superalgebra A.
The following two outstanding results were proved by Kemer.

Theorem 4.3 (Kemer, [170]). Every variety of associative algebras over a field
of characteristic 0 s finitely based.

Theorem 4.4 (Kemer, [173]). Fvery non-trivial variety of algebras is generated
by the Grassmann hull of some finite dimensional superalgebra. If a variety does not
contain the Grassmann algebra (in particular, if it is generated by a finitely generated
algebra) then it is generated by some finite dimensional algebra.

Now take any variety of associative algebras over a field of characteristic 0. By
Kemer’s finite basis theorem (Theorem 4.3) it can be given by a finite number of
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identities. Kemer’s proof of Theorem 4.4 shows that, given a finite system of identities
Y, one can effectively construct a finite dimensional superalgebra A such that the
Grassmann hull of A generates the variety defined by Y. It is clear that, given
this algebra A, it takes only linear space and non-deterministic polynomial time to
check if an identity p = 0 holds in the Grassmann hull of A (a similar fact for finite
dimensional algebras was noted after Problem 2.4 in Section 2.8).

Problem 4.1 (Sapir). Is there a variety of associative algebras over () (or any
other field of characteristic () where the addition and the multiplication are computable
in polynomial time) such that its equational theory is not decidable in polynomial time?

The residual finiteness of relatively free algebras over an infinite field implies the
following result which also appears here for the first time. For every variety V of
algebras Vg, denotes the class of all finite dimensional algebras of V.

Theorem 4.5 The identily problem for Vﬁn (the Rhodes problem) is decidable

for every variety V of associative algebras over a field of characteristic 0.

Problem 4.2 Do analogs of Theorems 4.1 and 4.5 hold for algebras over finite
fields?

Notice also that the equational problem for varieties of associative rings (algebras
over Z) was formulated first by Mal’cev in 1966 (see [200], Problem 2.40b). This

problem is still open.

4.4 The Word Problem

It is very easy to construct a finitely presented algebra over an arbitrary field which
has an undecidable word problem: just take the semigroup algebra of a finitely pre-
sented semigroup S with an undecidable word problem. In particular S can be one

of the semigroups S, S3, §2 which generate minimal varieties of semigroups with
undecidable word problem (see Section 7.2.4 below). The second author can show

(unpublished) that varieties generated by K Sy, KS;, K §2 coincide and do not de-
pend on the corresponding Minsky machine. The same is true if we add units to 57,

—

S3, S and consider varieties of unitary algebras generated by semigroup algebras of
these monoids. Thus let S be Sy or ST. Then the algebra K S has the following three
properties (see [268]):

1. It is finitely presented,
2. It has an undecidable word problem,

3. It has an ideal I, nilpotent of class 3, such that K.S/I is commutative.
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4. I? is in the center of K S.

The last two properties mean that KS belongs to the variety N3 AN ZN3A. hence
it satisfies the identities

(21, y1][22, ya[3, ysl[za, ya] = 0, [[z1, ya][22, y2][z3, ya], 2] = 0

Recently the second author showed (unpublished) that K S belongs to the variety
generated by the algebra M;s( K1) of 3 x 3 matrices over any infinite extension K; of
K (if K is infinite then we can take Ky = K). Thus we have the following result.

Theorem 4.6 (Sapir). The word problem is strongly undecidable in the variety
varMs(Ky) N Ns AN ZN, A, Here Ky = K if K is an infinite field or Z and K, is
any infinite extension of K iof K s a finite field.

In the case of prime characteristic var K'S is the smallest known variety with
undecidable word problem. We do not know, for example if the word problem is
decidable in the variety generated by My(K7).

It is interesting to note that one can find a nice-looking algebra V which generates
the variety varKS. This algebra is given by generators {A, B, q,a,b} and defining
relations

tA= Bz =¢"=qga=bg=0.

where z is an arbitrary generator.

The second author can show that in the case of positive characteristic every ho-
momorphic image of any subalgebra of V generates either the same variety as V or a
variety with decidable word problem.

Problem 4.3 (Sapir). Is it true that the variety generated by the algebra V is
a (the) minimal variety of associative algebras with undecidable word problem in the
case of positive characteristic?

In the case of characteristic 0 we can go deeper.
Let U be the associative algebra or associative unitary algebra over a field of
characteristic 0, given by generators {A, B, ¢q,a} and defining relations

zA = Bzr =q¢"=qaq=[g,a,a] =0

where z is an arbitrary generator. It is easy to see that U is a homomorphic image
of the subalgebra of V' generated by A,q, B,a 4+ b. Algebra U has more identities
than V. For example, U satisfies the identity [x1, y1][22, Y2, 2][23, y3] = 0 (see the next
theorem) and V' does not satisfy this identity (take 1 = A, y1 = a, 22 = ¢, y2 =
z=b, xt3=B, y3 =b.).

The following theorem holds.
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Theorem 4.7 (Sapir, [343].) The word problem is strongly undecidable in any
variety containing U. In the unitary case the word problem is decidable in every
subvariety of the variety varU and this variety has the following basis of identities.

(Y

- @1, xo)[ws, wa][T5, 6] [27, 28] = 0;
2. [[x1, x2][xs, x4][xs, 6], 7] = 0;
3. [x1, xo][xs, x4, x5][26, 7] = 0;

4. [[@1, x2, x3][@a, 5, x6], 7] = 0;

[35175527113][1?4730573?6] - [30175527356][354756573?3] - [55173?2][3?37306][3047355]
21, 2] [24, T5][ws, w6] — 23, w6][21, T2][24, T5] = 0;

6 (@1, x2)[x3, za][5, T6] + [@5, T6][T3, Ta)[T1, T2] + [T1, T6][23, Ta][22, 5]
' -I-[ll?27 $5][$3, 1’4][1’1, 556] + [$2, ~176] [5173, $4] [$5, 1?1] + [1’5, 1’1][1’3, 5174][552, $6] = 0§

The decidability /undecidability parts of this theorem are consequences of the fol-
lowing three results.

Theorem 4.8 (Sapir, [3/3]). The variety generated by U contains an absolutely
finitely presented associative algebra with an undecidable word problem.

Theorem 4.9 (Sapir, [343]). In the unitary case every proper subvariety of varU
satisfies an identity of the form [z, xq][xs, x4][T5,. .., Tpys] = 0.

Theorem 4.10 (Sapir, [3/3]). In the unitary case every variety of associative
algebras satisfying an identity of the form

[$1, s ,.fn][an_H, $n—|—2][$n+37 R $n+m] =0

has a decidable word problem.

It is possible that appropriate analogs of Theorems 4.9, 4.10 hold in the case of
algebras without units. Then in this case we would have an analog of Theorem 4.7.

Theorem 4.8 is obtained by applying the method of interpreting systems of differ-
ential equations. This method will be discussed later in Section 7.6.

In the proof of Theorem 4.9 and 4.10 some methods of Latyshev [222] are em-
ployed. These methods are especially designed to work with non-matrix varieties,
that is varieties which do not contain the algebra of 2 x 2 matrices. It is easy to see
that the variety generated by the algebra U is non-matrix.

We will discuss the methods of proving the solvability of the word problem em-
ployed in the proof of Theorem 4.10 later in Section 7.1.
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It is quite possible that the variety varU is the only minimal variety with undecid-
able word problem (characteristic 0). Notice that the lattice of varieties of associative
algebras over a field of characteristic 0 satisfies the descending chain condition (by
Kemer’s finite basis Theorem 4.3). Therefore every variety with undecidable word
problem contains a minimal variety with this property. Recall that in the semigroup
case there are varieties with undecidable word problem which do not contain any

minimal variety with this property (for example, the variety defined by the identity
z? =0).

Problem 4.4 (Sapir). Is it true that varU is the only minimal variety of asso-
ciative algebras over a field of characteristic 0 with undecidable word problem?

4.5 The Isomorphism Problem

The isomorphism problem for associative algebras is much harder than for semigroups.
Even for finite dimensional algebras the solvability of the isomorphism problem is not
at all clear. Let A and B be two n-dimensional K-algebras. Let X = {zy,...,z,} be
a basis of A and Y = {y1,...,y.} be a basis of B. Let

Tk =Y Tk,
k

viyi = > BijkY
P

where «; 1, and ; ;r are (structure constants) from K. Algebras A and B are iso-
morphic if and only if there exists a basis Z = {z1,...,2,} in A such that

zizj = Y Bijkke (14)
k

The basis Z is determined by the invertible transition matrix M from X to Z. A
standard linear algebra argument gives us that (14) holds if and only if some system
of equations in n? unknown entries of M has a solution. Therefore if K has a decid-
able elementary theory in the signature including all constants then the isomorphism
problem for finite dimensional algebras over this field is decidable. In fact we need
only an algorithm to solve systems of polynomial equations over this field. Every alge-
braically closed field has a decidable elementary theory with constants (see [395]). If
the elementary theory of K is not decidable (for example, if K is the field of rational
numbers Q or the ring of integers Z), then the question becomes much more delicate.
We do not know any example of a recursive field for which the isomorphism problem
for finite dimensional algebras is undecidable. If K = Q or Z then the decidability of
the isomorphism problem for finite dimensional algebras has been proved by Sarkisian

[356] and Grunewald and Segal [122].
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If we assume that the isomorphism problem for finite dimensional K-algebras is
decidable then the isomorphism problem is decidable in every locally finite dimen-
sional variety, for example, in any nilpotent variety.

We are not aware of any results about the computational complexity of the isomor-
phism problem for finite dimensional algebras. This problem may be computationally
very hard even for finite algebras over finite fields. Some important characteristics of
a finite algebra can be found in polynomial time. In particular, Lajos Rényai [329]
proved that the radical of a finite algebra over a finite field can be found in polyno-
mial time. If the algebra is semisimple then its decomposition into a sum of simple
algebras (the Wedderburn decomposition) can be found in polynomial time provided
the Turing machine can use an oracle to factor polynomials over finite fields.

The variety of commutative algebras is the minimal non-locally finite dimensional
variety. The situation with this variety is very complicated. In fact, almost nothing
is known about the isomorphism problem for finitely generated (= finitely presented)
commutative algebras. There are no examples of recursive fields for which this iso-
morphism problem is undecidable, and there are no examples of fields for which this
problem is known to be decidable. We do not know the answer even for finite fields
like Z5. The isomorphism problem for commutative associative algebras is clearly im-
portant by itself. The isomorphism problems in some important varieties of groups,
for example, the variety of metabelian groups, reduces to the isomorphism problem
for commutative K-algebras for some K (see Section 6.7). It would be interesting
to apply the Pickel method (see Connection 2.7) to finitely generated commutative
algebras.

Not much is known about varieties which are higher than the variety of commu-
tative algebras. We can prove only that isomorphism is undecidable in any variety
where we can prove the undecidability of the word problem. This is so because we can
always interpret Minsky machines or systems of differential equations in such a way
that the resulting associative algebra is Hopfian. Then the undecidability of the iso-
morphism problem follows from Connection 2.1. Moreover for each of these varieties
V there exists an associative algebra L that is finitely presented in V and such that
the problem of whether an algebra from F' P(V) is isomorphic to L is undecidable.

4.6 Varieties Where Finitely Presented Algebras are Resid-
ually Finite
The problem of describing varieties of associative algebras where every finitely pre-
sented algebra is residually finite has been posed by Bokut’ in [42].
In contrast with the semigroup case, not every finitely presented associative alge-

bra in a variety with a decidable word problem is residually finite. For example, let
us take a semigroup Y =< A, a,b,q > with defining relations

tA=0, ab=ba=0, ga=0, Ab=0, agb=q, Agb=0, (15)
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where x is any generator. It is easy to see that this semigroup is not residually finite.
Indeed, elements Ag and 0 cannot be separated by a homomorphism into a finite
semigroup: every such homomorphism must identify two elements Aa™ and Aa™ for
n < m, then it will identify Aa"q¢b™ = Agb™ " = 0 and Aa™¢b™ = Agq.

From results of Mal’cev [237] it follows that for every commutative ring K and
every semigroup S if the semigroup algebra K S is residually finite (as a K-algebra)
then S is residually finite.

Therefore the semigroup algebra K'Y is not residually finite for every commutative
ring K. On the other hand it is easy to see that the algebra KY# (the algebra K'Y
with unit adjoint) satisfies the identity [x1, y1][®2, y2][®s, y3] = 0 and so by Theorem
4.10 it belongs to a variety of associative algebras with solvable word problem (in the
case of characteristic 0).

The algebra K'Y (without unit) satisfies the identity x[y1, z1][y2, z2] = 0. Thus we
have the following result announced by Kublanovskii in [212] but, as far as we know,
never published with a proof before.

Theorem 4.11 (Kublanovsky [212]). If every finitely presented algebra in a vari-
ety of associative algebras is residually finite then this variety cannot contain varieties
given by the identity x[y1, z1][y2, 22] = 0 or [y1, z1][y2, z2]z = 0.

In the same paper [209] Kublanovskii announced the following result, which also
has not been published with a proof. The second author of this survey can prove this
result, so we decided to include it in the survey.

Theorem 4.12 (Kublanovsky [212]). Let V be a variety of algebras given by
finitely many homogeneous identities, which satisfies a permutational identity of the
form

T1T2. .. Ty = To(1)To(2) - - - To(n)-

Then every finitely presented algebra in V is residually finite and representable by
matrices over an extension of K.

Note that the condition that V be given by homogeneous identities holds auto-
matically if the ground field is infinite.

This result shows that at least in the case of algebras without unit the class of
varieties where every finitely presented algebra is residually finite does not coincide
with the class of locally residually finite varieties. Indeed, by this theorem every
finitely presented algebra in the variety given by the identity xyzt = zzyt is residually
finite, but this variety is not locally residually finite by Theorem 4.17 below.

In the case of algebras with units, we do not know if these two classes are different.
To prove that they are different in the case of characteristic 0 one has to consider the
variety given by identities [z1,y1][x2, y2][zs, y3] = 0, [[z1,vy1][x2, ¥2],2] = 0, Sy =0
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(here Sy is a standard identity — see Section 4.1) because this is the minimal non-
locally residually finite variety by Theorem 4.18.

One can see that we don’t know much about varieties where finitely presented
algebras are residually finite.

Nevertheless our intuition tells us that the description of such varieties, at least
in the case of characteristic 0, is not very far ahead. In particular we can formulate
the following conjectures.

Conjecture 4.1 (Sapir) Let K be a field of characteristic 0. The variety var K'Y
(resp. varKY#) is a minimal variety containing finitely presented non-residually
finite algebras.

Conjecture 4.2 (Sapir) Let again K be a field of characteristic 0. Then the
only minimal varieties containing finitely presented non-residually finite algebras are
varKY, varK Y, varKZ, varK 7 (resp. varKY# varKY ,varKZ#, varK 7
in the case of algebras with unit) where Z is a semigroup given by generators A, a, b, q
and defining relations

xqg=0, Aa =0, ab=ba, qab=q, ¢Ab=10

(here x is any generator).

4.7 Locally Residually Finite Varieties. Non-Commutative
Commutative Algebra

As we saw in the two previous sections, properties which formed the Club of the Word
Problem in the semigroup case are no longer equivalent in the case of associative
algebras. In this section, we shall show that the properties which formed the Club of
Locally Residually Finite Varieties are much more strongly bonded with each other.

The following theorems are a result of the work of A.Mal’cev, Latyshev, L’vov,
Anan’in, Yu.Mal’cev, Nechaev, Tonov, Kublanovskii, Drensky, Kemer, Sapir (in time
order). Together they give a description of varieties which satisfy the properties from
the Club of locally residually finite varieties. This description depends on the ground
field (ring) K and on the existence of a unit. As far as K is concerned there are four
possible situations:

(Char 0) K is a field of characteristic 0;
(Inf) K is an infinite field of positive characteristic;
(Fin) K is a finite field;

(Z) K = Z.
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Thus there are a total of eight possible cases.

Theorem 4.13 Let V be a variety of associative algebras. In all eight cases the
following conditions are equivalent

1.V is locally residually finite;
2. FG(V)=FP(V);

3. Fvery finitely generated algebra fromV is representable by endomorphisms of a
finitely generated module over a field if K is a field or over a ring of polynomials
if K =17.

4.V satisfies an identity of the form

ayz =Y wayzv; (16)

n;<n
where u; and v; are some words.

If K s countable then these conditions are equivalent to the following condition.

5. The set FG(V) is countable.

Theorem 4.14 If K is a field then condition 3 from Theorem 4.13 ts equivalent
to the following condition:

3°. Every finitely generated algebra of V is representable by matrices over an exten-
sion of K.

Theorem 4.15 If K is an infinite field then condition 4 of Theorem 4.13 is equiv-
alent to each of the following conditions (for some n > 1):

4.V satisfies an identity of the form
[T, y,y,...,ylz"[t,u,u, ... ul (17)
47. Fvery finitely generated algebra of V satisfies an identity of the form
[T1,. s xa)yr - ynlz1, .oy 20 = 0.

Theorem 4.16 In the case of algebras without unit and in the case of character-
istic 0, the conditions of Theorem 4.13 are equivalent to the following condition:

6. Fvery finitely generated algebra in 'V is Hopfian.

Theorem 4.17 In the case of algebras without unit, the conditions of Theorem
4.13 are equivalent to each of the following conditions:
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7.V does not contain the variety defined by the following identity:

zyzt — zzyt = 0.

7°. 'V does not contain the algebra Klx] x K(P x ]3) where P is the same semigroup
which figures in Theorem 3.28 and 3.36. Here K|[z] is the algebra of polynomials
with one vartable.

Theorem 4.18 In the case of characteristic 0 and algebras with unit, the condi-
tions of Theorem 4.13 are equivalent to each of the following conditions:

8.V does not contain the variety given by the following three identities
[21, ][22, y2l[w3, ys] = 0, [[21,01][w2,92], 2] = 0, Sa=0.

§°. V does not contain the following algebra of matrices

( Kla]/(«®)  aK[z]/(2?) )
eK[z]/(2®) Klz]/(«®) )~

where K|z] is the ring of polynomials with one variable, (x°) is the ideal gener-
ated by the polynomial z3.

As we mentioned above these theorems are a result of the work of many people.
In 1943 A.I.Mal’cev [237] proved that every finitely generated commutative algebra
is representable by matrices over a field. In 1958 [236] he proved that every finitely
generated algebra of matrices is residually finite. He also proved that every finitely
generated commutative ring is residually finite. This was the beginning of the investi-
gation of algebras representable by matrices and residually finite algebras. One should
mention also the problem of Kaplansky [162] of whether every finitely generated PI-
algebra is representable by matrices. After an easy example of a non-representable
Pl-algebra was found, there arose the natural problem of describing representable
Pl-algebras in terms of identities. Among partial results related to this problem we
can mention the result of Lewin [224] which states that every (not only finitely gen-
erated) algebra satisfying the identity [z, y][z,?] = 0 is representable by matrices over
a commutative ring. From this result and from the result of Mal’cev [237], it follows
that every finitely generated algebra satisfying the identity [z, y][z,t] = 0 is repre-
sentable by matrices over a field. We should also mention an unpublished result of
V.T.Markov which states that every finitely generated algebra over an infinite field,
which satisfies the Engel identity

[z, y,y,...,y] =0 (18)

is representable by matrices over a field.
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In 1966 Latyshev [221] studied what was at first glance a completely different
question: how to generalize the Hilbert finite basis theorem to Pl-algebras. He de-
scribed varieties of algebras of characteristic 0 with unit where every finitely generated
algebra is Noetherian. Recall that an associative algebra is called (left) Noetherian
if it possesses the descending chain condition for left ideals. It turned out that these
are precisely the varieties satisfying the Engel identity (18). We will consider locally
Noetherian varieties in the next section. In 1969 L’vov [226] described the class of
varieties of algebras of characteristic 0 where every finitely generated algebra is weak
Noetherian (has the ascending chain condition for two-sided ideals). It is easy to see
that this condition is equivalent to the condition FG(V) = FP(V). He proved that
a variety satisfies this condition if and only if it satisfies an identity of the form (16).
These identities were later called the L vov identities. In 1976 L’vov [225] announced
a similar description of locally weak Noetherian varieties of algebras over an arbitrary
commutative Noetherian ring (in particular, the ring of integers, any field, the ring
of polynomials over any field or over the ring of integers, etc.). L’vov never published
a proof of this result though.

Yu.Mal’cev [239] proved that in the case of algebras without unit over a field of
characteristic 0 there is only one minimal non-weak Noetherian variety, namely the
variety given by the identity xyzt = zzyt. So he proved that condition 7 is equivalent
to condition 2. Then he used an example of a non-Hopfian semigroup W constructed
by Zel’'manov, to show that this minimal variety contains the non-Hopfian semigroup
algebra KW. He showed this only in the non-unitary case of characteristic 0. This and
L’vov’s result mentioned in the previous paragraph imply the statement of Theorem
4.16 in the non-unitary case of characteristic 0. But it is easy to see that KW satisfies
the identity zyzt = zzyt regardless of the characteristic. This gives the non-unitary
part of Theorem 4.16. The second author of this survey can prove that the semigroup
algebra KW' (which is also non-Hopfian) belongs to the variety of unitary algebras
from condition 8 (Theorem 4.18). This and Theorem 4.18 imply the unitary part of
Theorem 4.16.

It was Anan’in who discovered strong connections between locally representable
varieties, locally residually finite varieties, and locally weak Noetherian varieties!®.
He proved the equivalence of conditions 1, 2, 3, 4, 4°, 4”7 of Theorems 4.13, 4.14 and
4.15 in the case of an infinite field (of any characteristic).

Then Yu.Mal’cev and Nechaev [240] added condition 5 in the case of algebras
without unit over a field of characteristic 0.

Then Kublanovskii [211] proved that conditions 1, 2, 3, 4 are equivalent in the case
of algebras without unit over arbitrary fields or Z. His proof can be easily rewritten
to the case of algebras with unit. In [212], [208] he proved that conditions 1, 2, 3,
4 are equivalent to the condition 7 for algebras without unit. Obviously this is not
true for algebras with units. From this, it follows almost immediately that condition
5 (“there are countably many finitely generated algebras”) is equivalent to conditions

15 Anan’in [11] mentions that L’vov discovered the equivalence of conditions 1 and 2 independently.
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1, 2, 3, 4 in the case of arbitrary countable or finite field or Z. Condition 7" was

noticed by the second author of this survey. Semigroups P and ]<3 are the 3-element
semigroups from (6) which appear in Theorems 3.28 and 3.36. The similarity between
this condition and condition 3 of Theorem 3.36 is very interesting.

Tonov [400] found condition 8 of Theorem 4.18. Condition 8" of this theorem
was found by Drensky [86] and independently by Kemer during his visit to Lincoln
(Nebraska) in October, 1993 (by request of the second author of this survey). The
algebra from condition 8" appeared earlier in a paper by Drensky [88] as Rs (see page
214 of this paper). Algebras Ry = ( Klz]/(a*) —xK2]/(2")

' eKlzl/(e?) K[e)/(s*)

role in Drensky’s description of subvarieties of the variety generated by the algebra

) play an exceptional

of 2 x 2-matrices.

Notice that Bergman [35] proved that the ring of endomorphisms of the group
Z, x Z,. is not representable by matrices over a field. This is a finite ring, so it
generates a locally residually finite (even locally finite) variety of rings. Thus condition
3 of the Theorem 4.13 is not equivalent to condition 3’ in the case of rings.

Thus we know almost everything about connections between the properties which
belong to the Club of locally residually finite varieties. The only major thing which
we don’t know is the description of minimal non-locally residually finite varieties in
the case of algebras with units over fields of positive characteristic and over Z.

Problem 4.5 Find all minimal non-locally residually finite varieties of associa-
tive algebras with units over a field of positive characteristic and minimal non-locally
finite varieties of rings with units.

Theorems 4.13 - 4.18 show that the L’vov identity (16) (or, equivalently, the
identity (17) in the case of characteristic 0) is an appropriate generalization of com-
mutativity if one wants to have an analog of the Hilbert finite basis theorem. There
were several attempts to generalize in a similar way other classical results of commu-
tative algebra. For example in 1984 Kharchenko [174] showed that generalizations of
E.Noether’s famous theorem about invariants also lead to L’vov’s identity (16).

Recall some definitions. We shall consider algebras with units over a field K
of characteristic 0. Let V,, = span{z1,...,z,} be an m-dimensional vector space,
m > 1. Consider the natural action of the group GL(m,K) = GL(V,,) on V,,. Now
let V be a variety of K-algebras, and let /' =< zy,...,z,, > be the m-generated free
algebra in this variety. Then any linear map ¢ : V,, — V,, may be extended (uniquely)
to an endomorphism of F', and this endomorphism will be an automorphism if and
only if ¢ belongs to GL(m, K). Thus the action of GL(m, K) on V,,, may be extended
to an action of this group on F. For every subgroup G < GL(M, K) we can define
the subalgebra of invariants of this group:

F%={p| g(p) = p for every g € G}.
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For example, if V is the variety of commutative algebras then F' is the algebra
of polynomials in m variables, and F¢ is the algebra of invariant polynomials. The
classical Noether theorem states that in this case for every finite group G the alge-
bra of invariants is always finitely generated. If we take V to be the variety of all
algebras then the analog of this result is not true [82], [174]. Kharchenko [174] found
a description of varieties where an analog of the Noether theorem holds. Recently
Drensky [86] strengthened Kharchenko’s theorem. As a result we have the following
statement.

Theorem 4.19 (Kharchenko, [174], Drensky, [86]). Let V be a variety of asso-
ciative algebras with units over a field of characteristic (. Then conditions 1-4 of
Theorem 4.13 are equivalent to each of the following conditions:

9. For every finite group G < GL(m, K) the algebra F is finitely generated.

9°. There exists an element g from GL(m,K) such that g has a finite order, at
least two eigenvalues of g have different orders, and the algebra F'<9” is finitely
generated.

Condition 9 is due to Kharchenko, condition 9’ is due to Drensky. For a survey of
results on non-commutative invariant theory we refer the reader to Formanek [100].

4.8 The Higman Property
In [33] V.Belyaev proved the following analog of Higman’s theorem.

Theorem 4.20 (Belyaev, [33]). Let K be either a finitely generated commutative
unitary ring or a field which is a finite extension of its simple subfield. Then every
K-algebra given by a recursively enumerable set of defining relations is embeddable
into a finitely presented K -algebra.

This result answered a problem by Bokut’ from [84] (Problem 1.22).

It is interesting that among the relations of this finitely presented algebra only
one relation has the form a + b = ¢ (a,b, ¢ are generators), others are equalities of
words of generators. Thus this algebra is a factor algebra of a semigroup algebra
over the ideal generated by @ + b — ¢. In the proof, Belyaev encodes the addition
and multiplication of an arbitrary associative algebra A in a semigroup. Then he
uses the Mursky analog of the Higman Theorem [275] to embed this semigroup into
a finitely presented semigroup S. Then he proves that algebra A is embeddable into
KS/Id(a+b—c).

Theorem 4.20 answered a question of Bokut’ from [84]. Every locally weak Noethe-
rian variety (see a description of such varieties in Section 4.7) satisfies the Higman
property because every finitely generated algebra there is finitely presented. The sec-
ond author of this survey conjectures that there are no other varieties of associative
algebras over a field which satisty this property.
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4.9 Finitely Presented Relatively Free Algebras

The question of when a relatively free universal algebra is finitely presented in some
bigger variety is very natural, and it seems strange that this question has been studied
intensively only in the case of associative algebras (at least as far as we are aware).

Let M., be the variety generated by the algebra of n x n-matrices over an infinite
field. Procesi [306] and Lewin [224] raised the question of whether the relatively free
algebras in M, are finitely presented. The answer to this question was given by
V.Markov in [251]. In fact Markov described all varieties of associative algebras with
units where relatively free algebras are finitely presented. More precisely, Markov
proved the following three theorems. In each of these theorems we consider algebras
with units over an infinite field.

For every variety V let md(V) be the minimal number among all deg,.(f) such that
f =01is a nontrivial identity of V. Here deg,(f) is the degree of z in the polynomial
f. ItV is the variety of all associative algebras then we let md()) be infinity.

Theorem 4.21 (V. T. Markov, [251]). LetV and V' be two varieties of associa-
tive algebras with units. If 1 < md(V) < md(V') then the relatively free k-generated
algebra in V is not finitely presented in V' for every k > 1.

Theorem 4.22 (V. T. Markov, [251]). For any n > 2 the relatively free algebra
in M,, with more than one generator is not finitely presented in the variety M, 1,
furthermore it is not absolutely finitely presented.

Theorem 4.23 (V. T. Markov, [251]). For every variety of associative algebras
with units V the following conditions are equivalent.

1. For every k > 1 the relatively free k-generated algebra from V s finitely pre-
sented.

2. The relatively free algebra in 'V with two generators is finitely presented.

3.V is locally Noetherian (every finitely generated algebra possesses the descending
chain condition for left ideals).

4.V satisfies an Engel identity [z,y,...,y] = 0.

5.V satisfies the “left Lvov identity”
ey + 3 aytey™T
for some n.

6. md(V) = 1.
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Theorem 4.22 follows from Theorem 4.21 because md(M,) = n (see [251]).
Markov mentions that Theorem 4.23 was independently proved by L’vov. The equiv-
alence of conditions 3, 4, and 5 in Theorem 4.23 was proved by Latyshev in [221] in
the case of characteristic 0. Markov noticed that Latyshev’s prove does not depend
on the characteristic.

4.10 Grobner Bases

In this section we follow the paper [338] of the second author of this survey.

We consider only algebras over an infinite field. The situation with rings and
algebras over finite fields is similar but technically more complicated.

As we mentioned in Section 2.9, in the case of associative algebras over a field the
Church-Rosser presentations correspond to so-called Grobner bases. There exists a
big literature devoted to Grobner bases (see, for example, the book by T. Becker and
V. Weispfenning [30] or the survey by Ufnarovsky [404]).

First of all let us give the precise definition of a Grobner basis. Our definition
will be more general than that in [30], [404], or other sources which we are aware of.
This definition is similar to what we had in the semigroup case (see Section 3.5.2).
Let ' =< X > be a finitely generated algebra. Let Sgp(F') be the multiplicative
semigroup generated by X in F. Algebra F' is spanned by Sgp(F'). Let Y C Sgp(F)
be a basis of the vector space F'. We shall call elements of ¥ monomials and elements
from F' polynomials. Let < be a complete order on Y. Then every polynomial f in ¥
has a leading monomial which will be denoted by f. We shall call F' ordered if there
exists a basis Y C Sgp(F'), and a complete order < on Y such that:

1. if F' contains a unit 1 then 1 is the minimal element in Y/
2. > satisfies the descending chain condition;
3. > is stable, that is if u,v € Y and u > v then for every s,t € Y
sut > svt.
Let us assume that F' is ordered and that an ordered basis Y of monomials is
fixed. We shall call F' effectively ordered if
e The set Y has a recursive enumeration;

e There exists an algorithm which, given an element from Sgp(F'), produces the
decomposition of this element into a linear combination of elements from Y;

e The order < is recursive.
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Every relation (u,v) € F' x F' is equivalent to the relation (v — v,0), thus we can
restrict ourselves to relations of the form (f,0). We also will suppose that f is monic,
that is the leading coefficient of f is 1. Instead of the pair (f,0) we shall simply write
f.

Let f be a (monic) relation. We say that f is applicable to the polynomial g if
g =tfs for somet, s € Y. In this case we can replace g by g — atfs, where « is the
coefficient of the leading monomial of g. This “kills” the leading monomial of g. The
polynomial ¢ — at fs is called the result of an application of f to ¢g. Since the order <
is stable, the leading monomial of g — at fs is smaller than the leading monomial of g.
It is easy to see that this definition of an application of a relation is more restrictive
than the general definition given in Section 2.9.

Thus with every basis ¥ of the ideal I we can associate a rewrite system Q(F, )
with elements of F' as objects and applications of basic elements as elementary trans-
formations. The connected components of this rewrite system are the cosets modulo
the ideal I generated by Y. Since the order on monomials satisfies the descending
chain condition, this rewrite system is always terminating. It is easy to verify that
this rewrite system satisfies the Church-Rosser property if and only if for every ele-
ment ¢ of I there exists an element f; from the basis which is applicable to g. If this
condition holds, we will call the basis {fi,..., f.} a Grébner basis of the ideal I.

The term “Grobner basis” of an ideal in a free commutative algebra was intro-
duced by Buchberger in 1965 [61] but the concept had been introduced a year earlier
by Hironaka [145]. He used the term “standard basis”. Notice that if F'is a free
commutative algebra then Sgp(S) (the set of all commutative words) is a basis of the
vector space F'. Both Hironaka and Buchberger used the ShortLex order on commuta-
tive words (see Section 3.5.2) They proved that every ideal of a finitely generated free
commutative algebra has a Grobuner basis. (see [62], [63], [30]). Thus they proved,
in our terms, that the variety of commutative algebras is a Church-Rosser variety
and one can take the free algebras in this variety as the pseudo-free algebras in the
definition of a Church-Rosser variety (see the definition in Section 2.9).

In the non-commutative case, Grobner bases were introduced (under different
names) independently by many authors including Shirshov [372] and Bergman [34]
(see Ufnarovsky’s survey [404]).

Grobner bases of ideals in free commutative algebras play an extremely important
role in computational commutative algebra. They are used in solving non-linear sys-
tems of polynomial equations, in solving the word problem in commutative algebras,
in computing syzygies, in solving the membership problem for finitely generated sub-
algebras of commutative algebras, and so on. For applications of Grobner bases see,
for example, [30], [62], [63], [321], [404].

Of course, Grobner bases would be practically useless if we did not have algorithms
to find them. Hironaka’s proof was non-constructive, but Buchberger [61] found
an algorithm which produces a Grobner basis in every ideal of a free commutative
algebra. This algorithm may be viewed as the Knuth-Bendix procedure (see Section
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2.9) applied to a finitely generated congruence on the free commutative algebras.
Other variants of the Knuth-Bendix procedure have been developed in [372], [34],
[12], [273], [220], [160], [404] (see also references in [30]).

The difference between these variants lies in their differing definitions of a critical
pair (see the discussion at the end of Section 2.9). Here we present what appears
to be a generalization of all these definitions. Notice that our definition of a critical
pair in the associative algebra case is almost the same as in the semigroup case (see
Section 3.5.2).

An overlap of two relations fi, fo € F'is a quadruple of monomials sq,11, 59,15 € F
such that

s1fits = safals

and

s1fity — s1fity > safata — safals

This overlap is called eritical if and there is no other overlap si,1, s5,t, of the same
relations such that

1. Slfltl > Sllfltll,

2. There exist monomials x,y possibly empty such that s; fit; = xsf fit}y,

syfity = s1fity = xsyfity — s ity > xsifoty — s1fotyy.

The eritical pair determined by such a critical overlap is the pair of elements

s1(fr = fi)ts, s2(fa — fa)tz of F.

In many cases one can prove that for every two relations fi, f; there are only
finitely many critical pairs, and that the Knuth-Bendix procedure halts and so every
ideal has a finite Grobner basis (see Apel and Lassner [12], Mora [273], Latyshev
[220] and Kandri-Rody and Weispfenning [160]). The following algebras, which arise

naturally in mathematics and physics, have this property:
o free commutative algebras;

e enveloping algebras of finite dimensional Lie algebras (see the definition in Sec-
tion 5);

o the Weyl algebras W, =< p;,¢; | [pi;¢:] = 1, [pi, ;] = 0,1 <i# 5 <n >.

More generally, the so called solvable algebras [160], [206] satisfy these conditions.
By definition, an associative algebra F' is called solvable if F' is a factor-algebra of the
free algebra K X* over an ideal I generated by polynomials of the type [z;, z;] 4 p;;
such that the following conditions hold:

1. p;; i1s a linear combination of commutative words in X;
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2. Pij < zjz; in the ShortLex order on commutative monomials;
3. I does not contain any non-zero linear combination of commutative words.

These conditions imply that the commutative words in X form a basis of the vector
space F'. The ShortLex order on this basis makes F' an ordered algebra. Notice that
there exists a strong similarity between solvable algebras and polycyclic groups (see
Section 6). Perhaps it would be better to call these algebras “polycyclic” instead of
“solvable”.

The following analog of Theorem 3.38 holds.

Theorem 4.24 (Sapir, [338]). Let V be a locally residually finite variety of as-
sociative algebras. Suppose that the free finitely generated algebras of V are ordered.
Then the Knuth-Bendiz procedure applied to any finite V-presentation of an algebra
A €V halts, producing a Church-Rosser terminating presentation of S. Therefore V
is a Church-Rosser variety (the free algebras of V play the role of pseudo-free algebras
in the definition of Church-Rosser varieties).

Conjecture 4.3 (Sapir). For every n every finitely generated free algebra in the
variety given by the identity

['1717"'7'rn]y1y2"'yn[217"'72n] =0 (19)
is effectively orderable.

If this conjecture is true then, as in the case of semigroups, every locally residually
finite variety of associative algebras is Church-Rosser. One would be able to take the
free algebras in the varieties given by identities (19) as pseudo-free algebras. Indeed,
by Theorem 4.15 every finitely generated algebra in a locally residually finite variety
satisfies this identity, and every variety which satisfies this identity is locally residually
finite. As in the case of semigroups one also has to use the fact that locally residually
finite varieties are locally weak Noetherian.

So far the biggest known class of Church-Rosser varieties consists of varieties
which satisfy the Lie nilpotency identity [z1,z2,...,2,] = 0. The following theorem
is proved by Latyshev [220] (Latyshev used different terminology).

Theorem 4.25 (Latyshev, [220]). Every variety of unitary assoctative algebras,
which satisfies the identity [xq,...,2,] = 0 for some n is Church-Rosser. One can
take the enveloping algebra of a free nilpotent Lie algebra with m generators as a rank
m pseudo-free algebra for this variety.

Problem 4.6 (Sapir). Describe Church-Rosser varieties of associative algebras.
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4.11 Residually Finite Varieties

The description of residually finite varieties of associative rings turned out to be
similar to the description of residually finite varieties of groups, but nicer since rings
do not have Burnside complications. It also turned out that the property of being
residually finite is equivalent to the property of having finitely many subquasi-varieties
(similar to the group case, but in a sharp contrast with the semigroup case).

Let Mg be the variety of all rings with zero multiplication, for every prime p > 2
let M, be the variety defined by the following identities:

ryz = vy + yzr = px =0,
for every prime ¢ let M; be the variety defined by the following identities:
ryz =2y —yxr = qr = 0.

Theorem 4.26 For every variety of associative rings V the following conditions
are equivalent.

1. Every ring in V is residually finite.

2.V contains only finitely many subquasi-varieties.

3.V contains no more than countably many subquasi-varieties.
4

.V 1s generated by a finite ring R such that every nilpotent subring of R ts a ring
with zero multiplication.

5.V does not contain the varieties My, M,, M, for every prime p > 3 and q.

6. V satisfies an identity ne = 0 for some n (here x is a variable, n is a natural
number) and an identity xy + Y ;u; = 0 where lengths of words u; are greater
than 2, x and y are variables.

7.V satisfies an identity ne = 0 for some n and does not contain finite rings
given by the following presentation < a,b | a* = b* = ab+ ba = pa = pb =0 >,
<a | qa=a®*=0> where p is any prime and q is any odd prime.

Given a finite set of identities A which defines the variety V, it is easy to check
whether V satisfies an identity nz = 0 for some n: the set A must contain an identity
of the form ma + Y, u; = 0 where none of the words u; is equal to z. After this n
is found, the list of “forbidden” rings to be checked becomes finite because the prime
parameters p and ¢ participating in the presentations of these rings must divide n.
Therefore condition 7 of Theorem 4.26 gives an algorithmic description of residually
finite varieties of rings. A similar description holds in the case of algebras over an
arbitrary field.
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Theorem 4.26 has a strange history. In 1977 Volkov proved the equivalence of
conditions 1 and 3. The proof employed ideas from Ol’shanskii’s paper on residually
finite groups [289] and L’vov’s results from [227]. He wrote a paper containing the
proof of this result. The second author of this survey personally saw the paper because
he was a co-author of it. His contribution was a description of varieties of rings where
every ring is residually finite with respect to subrings (for every element and every
subring which does not contain the element there exists a homomorphism onto a finite
ring which separates the element and the subring). Then Volkov told L'vov about
this result and it turned out that L’vov had proved it three years earlier, in 1974.
He was a graduate student then and mentioned this result in his graduate student
annual report. Then, in 1978, L’vov gave a talk about residually finite varieties of
rings at the “Algebra and Logic” seminar in Novosibirsk (see [228]), but he never
published the paper. Of course, Volkov did not publish his proof either. L’vov also
mentioned that Belkin independently found a similar proof. This is quite possible
because Belkin’s paper [31] contains similar results. But Belkin’s proof too has never
been published. Meanwhile in 1979 R.McKenzie, who did not know about L’vov,
Volkov, and Belkin, found his proof and published it in [255] and then in [258]. The
equivalence of conditions 1, 2, 4 was obtained by the second author of this survey in
[349] and [350]. The equivalence of conditions 4 and 5 follows immediately from the
results of L'vov’s paper [227]. The conditions 6 and 7 are taken from Volkov’s paper
[414].

Notice that the equivalence of conditions 1 and 3 holds in the case when V is
an arbitrary congruence-modular variety of universal algebras that is generated by a
finite algebra [102]. Notice also that in the case of rings and arbitrary congruence-
modular varieties the property “to be residually finite” is equivalent to the condition
“to be residually small” (this condition was introduced in Section 3.6.2), see [258],

[102].

4.12 Varieties with Decidable Elementary Theory

A complete description of varieties of associative K-algebras where K is either a field
with a decidable elementary theory or Z was found by Zamjatin in [423]. It turned
out that if K is an infinite field then a variety has a decidable elementary theory if
and only if it is a variety with zero products. In the case where K is a finite field or
Z his description may be formulated in the following way.

Theorem 4.27 (Zamjatin, [{23]). Let V be a variety of associative K -algebras
where K is a finite field or Zi. Then the following conditions are equivalent:

1. The elementary theory of V is decidable.

2. There exists a variety with zero product U and a variety W generated by finitely
many finite fields such that every algebra in 'V is a direct product of an algebra
from U and an algebra from W.
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3.V s residually finite and does not contain the following two semigroup algebras:
Z,P,Z, P (if K = Z), or KP, K P (if K is a finite field). Here P is the
3-element semigroup from (6), P is the dual (anti-isomorphic) semigroup, and
p is a prime number.

Condition 3 did not appear in [423] and has been added by the second author of
this survey. This condition can be extracted from the proof of Theorem 1 from [423].
Recall that by virtue of Theorem 4.26 the class of residually finite varieties has an
algorithmic description.

Zamjatin [423] also described varieties of associative algebras whose finite traces
have decidable elementary theories. Again only the case where K = Z or K is a finite
field is non-trivial. In order to formulate Zamjatin’s result we need some notation.

First we introduce rings of types 1-5. By a ring of type 1 we mean a finite field; a
ring of type 2, the ring K P where K is a finite field and P is our 3-element semigroup
from (6); a ring of type 3, the ring K ]g where K is a finite field; a ring of type 4, the
ap b
0 ay
p is the characteristic of the field and £ is a fixed natural number; a ring of type 5,
the Galois ring of characteristic p* for some prime p. (A Galois ring of characteristic
p* is a ring isomorphic to Z[z]/(p?, f(z)) where Z[z] is the ring of polynomials in
the variable @ and (p?, f(x)) is the ideal generated by p* and a polynomial f(x) with
leading coefficient unity which is irreducible modulo p.) We also need the 4-element
semigroup £ = {e, f,¢,0} in which ¢* = ¢, f? = f,ef = ¢ and all other products are
equal to 0.

ring of all matrices of the form over a finite field in which ay = afk where

Theorem 4.28 (Zamjatin, [4/23]). Let V be a variety of associative K -algebras
where K s a finite field or Z. Then the following conditions are equivalent:

1. The elementary theory of Vﬁn is dectdable.
2.V s generated by a finite set of rings of types 1-5.

3.V is residually finite and does not contain the semigroup algebra Z,E (if K = Z)
or KE (if K is a finite field).

Condition 3 gives an algorithmic description. It has been extracted from the proof
of Theorem 2 of [423] by the second author of this survey.

Remark. Varieties with decidable elementary theories have been intensively stud-
ied in the general case of universal algebras. Burris and McKenzie [64] described all
locally finite congruence-modular varieties of universal algebras which have decid-
able elementary theory. Theorem 4.27 can be easily deduced from their description,
although it should be mentioned that Burris and McKenzie used Zamjatin’s ideas.
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McKenzie and Valeriote [260] considered elementary theories of varieties without the
assumption of congruence modularity. They reduced the problem of describing decid-
able locally finite varieties to two special cases: varieties of modules over a finite ring
and the so-called discriminator varieties. A discriminator variety is a variety of alge-
bras that can be thought of as Boolean algebras with extra operations. Thus starting
with varieties of rings the problem of describing varieties with decidable elementary
theories went to general algebras and then returned to rings again but in a different
form. Congruence-modular finitely generated varieties of universal algebras with de-
cidable finite traces were considered by Idziak [149]. He also reduced the problem of
describing such varieties to some varieties of modules over a finite ring. Theorem 4.28
can be deduced from Idziak’s results but this requires some work.

5 Lie Algebras

5.1 Basic Definitions

For notation, definitions and basic facts on Lie algebras and their varieties see Jacob-
son [156], Bakhturin [18], Kostrikin [201].

A linear algebra L over a commutative unitary ring K is called a Lie algebra if L
satisfies the following two identities (the product of x and y is denoted by zy):

vy +yx =0,

(zy)z+ (yz)x + (z2)y = 0.

The second identity is called the Jacoby law.

Since the Lie algebra product is non-associative, we need to agree on how to read
the word zyz. We follow the left faction of the Lie algebra community and read this
word as (zy)z. The word zy” reads as (...(zy)y...). Note that in the main reference
book on varieties of Lie algebras, [18], zyz stands for x(yz). Thus it belongs to the
wrong (right) faction of the community.

Let L be a Lie algebra. A linear function ¢ : A — A is called a deriwvation if
dlzy) = ¢(x)y + xé(y). Let x be an element of L. Then ad x denotes the function
y — yz, which is called an internal derivation. The Jacoby law and zy + yz = 0
imply that ad z is indeed a derivation.

The derived subalgebra A’ of an algebra A is the subalgebra generated by all
products zy, x,y € A. The centre Z(A) of A is the ideal of all elements € A such
that zy = 0 for every y € A.

As in the case of associative algebras we assume that K is either a field or the ring
of integers. In the latter case L is called a Lie ring. If K is a field then we assume
that it is recursive.

There is a natural connection between Lie algebras and associative algebras. If A
is an associative algebra, then the commutator [z, y] = 2y — yx may be considered as
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a new operation. This operation together with the addition and the multiplication
by elements of K make A a Lie algebra. Let L be a Lie algebra with product o which
is a free K-module (this holds automatically if K is a field). Let F be a basis of L.
Consider the associative algebra A generated by the set £ subject to defining relations
€163 — €g€1 = €1 O €9, €1,€9 € F. This algebra is called the enveloping algebra of A.
Let us fix a complete order on £. By the famous Poincare-Birkhoff-Witt Theorem
[18], products ejeq - - - €, where ¢ > €3 > ... > ¢, form a basis of A. In particular if
the basis F is recursive and the order < is recursive then A has a recursive basis.

We denote the variety of Abelian Lie algebras by A (this variety is defined by the
identity zy = 0). By N} we denote the variety of nilpotent Lie algebras of step < k.
This variety is defined by the following identity:

.171"'Ik_|_1:0.

The Engel variety of step k is defined by the (Engel) identity yzx - -- & = 0 (x repeats
k times). This identity can be rewritten in the form: (ad z)* = 0.

As in the general case we denote by UV the Mal’cev product of the varieties U
and V. For example, N A is the variety of algebras with k-step nilpotent derived
subalgebra. The n-th power of the variety of Abelian algebras A" is the variety of
all solvable Lie algebras of step < n. For every variety V, ZV denotes the variety of
centre-by-)V algebras. An algebra A belongs to ZV if and only if A/Z(A) € V. For
example, ZN A is the variety of centre-by-NpA Lie algebras.

Let F(X) be the free Lie algebra over X = {z1,...,2,,...}. A poly-degree of
a monomial v(xy,...,2,) € F(X) is an m-tuple @ = (a,...,q,,), where o; is the
number of occurrences of z; in v(z1,...,x,,). Let F}, be the subspace of F'(X) spanned
by monomials of polydegree a. An element in F'(X) is called homogeneous if it belongs
to F, for some a. Every element in F(X) can be uniquely written as a sum of
homogeneous elements. A variety W is called homogeneous if it may be given by
homogeneous identities. This is equivalent to the following property: if v = 0 is an
identity in the variety W and v = }__ v,, where v, is homogeneous then for any «
the identity v, = 0 also holds in W.

5.2 Overview

The neighborhood of algorithmic problems in the case of Lie algebras is not as good
as in the case of associative algebras, but not as bad as in the group case. This puts
Lie algebras in the position between associative algebras and groups.

Let us briefly review what is known about the finite basis problem and the
Burnside-type problems in Lie algebras.

It is still unknown whether there exists a non-finitely based variety of Lie algebras
over a field of characteristic zero.

The varieties N A over a field of characteristic zero are hereditary finitely based
(Krasilnikov [205]). This is the biggest known class of hereditary finitely based va-

110



rieties (characteristic = 0). Notice that these varieties play a significant role in the
theory of varieties of Lie algebras. Indeed, every solvable finite dimensional Lie alge-
bra over a field of characteristic zero has a nilpotent derived subalgebra [156], hence
it belongs to some variety NA.

["tyakov [151] proved that every finite dimensional Lie algebra over a field of
characteristic 0 is finitely based.

Vaughan-Lee and Drensky showed that if the characteristic p is not 0, then there
exist non-finitely based varieties even inside ZN,_ 1A (see [408], [409], [87]). They
also proved that even a finite dimensional Lie algebra over an infinite field of positive
characteristic can be non-finitely based. On the other hand Bakhturin and Olshanskii
showed that every finite Lie ring is finitely based [20].

The role of the Engel identity (ad x)¥ = 0 in the theory of Lie algebras is similar
to the role of the identity ™ = 0 in the theory of semigroups and associative algebras.
Every nilpotent Lie algebra satisfies this identity. The question of when the Engel
identity implies local nilpotency is the Burnside-type problem for Lie algebras. It is
closely related to the restricted Burnside problem for groups [201].

It was proved by Kostrikin [202], [203] that every finitely generated Lie algebra of
characteristic p is nilpotent provided it satisfies the Engel identity (ad z)* =0, k < p
(k is arbitrary in the case of characteristic zero).

The following result of Zelmanov is a generalization of Kostrikin’s results, it sum-
marizes the investigations of Lie algebras with Engel identity: A finitely generated Lie
ring which satisfies an Engel identity is nilpotent (see Zelmanov [428], [427], Vaughan-
Lee and Zelmanov [410]). This is an analog of the Kaplansky-Shirshov theorem for
associative algebras (see Section 4.2).

For Lie algebras of characteristic 0 the following analog of the Dubnov-Ivanov-
Nagata-Higman theorem has been proved by Zelmanov [425]: a Lie algebra over a
field of characteristic zero which satisfies an Engel identity is nilpotent. In the case
of positive characteristic p there exist simple examples of non-nilpotent Lie algebras
satisfying the Engel identity (ad z)P** = 0 (see Cohn [74]). Razmyslov [312] con-
structed a (much more difficult) example of a similar Lie algebra with a “smaller”
identity (ad z)?~* = 0. The existence of such an example implies several important
results about varieties of groups (see [312]).

5.3 The Identity Problem and Related Problems

The question of whether the identity problem is solvable for all varieties of Lie rings
was posed in 1966 by Mal’cev ([200], problem 2.40). It is still unsolved. Notice that
the analogous problem for groups was solved in the negative by Kleiman (see a sketch
of his proof in Section 7.7.3). Unfortunately all attempts to find a similar proof for
Lie rings have failed. The main difficulty is to find a Lie ring analog of the main
personage of Kleiman’s proof, the group C(A, N, M).

There are positive solutions of the equational problem in some important varieties.
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It a variety of Lie algebras can be given by homogeneous identities then, as in the
case of semigroups and associative algebras (Sections 3.3.2, 4.3), every relatively free
algebra in this variety is residually finite. This can be proved using Theorem 4.2.2
from [18] in the same manner as Theorems 3.15 and 4.1 above. Every variety of Lie
algebras over an infinite field may be given by homogeneous identities ([18], Theorem
4.2.4). Thus we have the following theorem, which is similar to Theorem 4.1 in Section

1.3).

Theorem 5.1 The equational theory is decidable in every variety of Lie algebras
defined by homogeneous identities. The identity problem is decidable in the variety of
all Lie algebras over an infinite field.

In particular, the equational problem is solvable in the product of nilpotent vari-
eties N N, - - - N, for arbitrary natural numbers ¢y, ..., c,.

Using the proof of Krasilnikov’s result that the varieties NV.A over a field of char-
acteristic 0 are hereditary finitely based [205], we can prove that the identity problem
is solvable in any subvariety of the variety NV, A.

By Connection 2.9 the Rhodes problem is solvable in any subvariety of the variety

N.A.

Problem 5.1 Is the Rhodes problem solvable in the variety of all Lie algebras?

5.4 The Word Problem

A.L Shirshov was one of the first to study the word problem in Lie algebras [370],
[372]. He developed the so-called composition method (this was one of the first
implementations of what was later called the Knuth-Bendix procedure, see Section
2.9) and used it in the proof of the following theorem

Theorem 5.2 (Shirshov, [370], [372]). The word problem is solvable in any Lie

algebra given by one defining relation.

In fact Shirshov proved that the Knuth-Bendix procedure applied to any one
relator presentation of a Lie algebra produces a finite terminating Church-Rosser
presentation of this algebra.

It is interesting that Theorem 5.2 cannot be proved by using the residual finiteness
argument. Agalakov [7] proved that the Lie algebra < z,y | yaz —yz + 2 =0 >
over a field of characteristic 0 is not residually finite. It is hard to believe, but over
any field of positive characteristic the algebra given by the same relation is residually
finite [7].

We have already mentioned that the word problem is decidable in relatively free
algebras of products of nilpotent varieties N, N, ---N,,. Talapov [391] proved a

¢

more general result that is similar to Theorem 5.2
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Theorem 5.3 (Talapov, [391]). The word problem is solvable in Lie algebras
gwen by 1 defining relation in the variety N., ... N., for arbitrary natural numbers

Cly...,Ck.

The result was originally formulated for Lie algebras over a field which is a finitely
generated over its simple subfield, but the proof can be easily adapted to the case of
an arbitrary recursive field.

The word problem for Lie algebras was first formulated by Shirshov (see [84],
Problem 1.154). The first example of a finitely presented Lie algebra (over an arbitrary
field) with undecidable word problem was implicitly constructed by L.A. Bokut’ [44].
Bokut’ used a Lie algebra analog of the technique used by Higman and Valiev in their
proofs of the embedding theorem for groups [144], [406]. In [46] G.P.Kukin presented
the following simple construction of a Lie algebra with an undecidable word problem.
Let S be a semigroup given by generators z; and defining relations u; = v;. The Lie
algebra Lg over a ring K is generated by elements a, z;,y;. The defining relations of
Lg are the following:

zy; = 0,
ar; = ay;,
<au; >=< av; >

for every ¢« and j. Here the notation < u > means that we consider the word u as a
Lie algebra word. It is easy to see that two words u and v over X are equal in S if
and only if the Lie algebra words < au > and < av > are equal in Lg. Thus if S has
an undecidable word problem then so does Lg. Algebra Lg may be viewed as a Lie
algebra analog of the semigroup algebra KS.

The first attempt to construct a Lie algebra that is finitely presented in a nontrivial
variety, namely N5A, and has an undecidable word problem was made by Kukin in
[213]. Unfortunately, there is a serious gap in the method used there (see Section
7.5). An attempt [217] to construct an absolutely finitely presented Lie algebra with
an undecidable word problem and a non-trivial identity contained a similar gap. A
detailed discussion of this example may be found in Baumslag, Gildenhuys and Strebel
[28].

Nevertheless the variety Ny A from Kukin [213] was so small that it hinted to the
possibility of describing all varieties of Lie algebras with decidable word problem.
This problem has been mentioned in [42] and [66].

The first correct examples of varieties with strongly undecidable word problem ap-
peared in Kharlampovich [177], Mel'nichuk, Sapir, Kharlampovich [268] and Baum-
slag, Gildenhuys, Strebel [28].

Theorem 5.4 (Kharlampovich, [177]). The word problem is strongly undecidable
in the variety of Lie algebras ZN3 AN A® over a field of characteristic # 2.
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Constructions in all these papers are based on an interpretation in Lie algebras
of a 2-tape Minsky machine with an undecidable halting problem, see section 7.2.1.
The methods of the works mentioned above are described in Sections 7.2.6 and 7.2.7.

If the main field has characteristic 2, these methods do not work quite as suc-
cessfully, and we do not know whether this variety has a strongly undecidable word
problem.

Notice that the variety ZAN3A4 N A® is the Lie algebra analog of the variety of
associative algebras from Theorem 4.6. Thus Theorem 5.4 is a Lie algebra analog of
Theorem 4.6.

As far as the (ordinary) word problem is concerned, we have the following result.

Theorem 5.5 (Kharlampovich, [187]). The word problem is undecidable in any
variety of Lie algebras (over an arbitrary field) containing ZN3A.

For a field of characteristic 0 the result of Theorem 5.4 has been improved.

Theorem 5.6 (Kharlampovich, [176]). The word problem is strongly undecidable
in the variety ZN3 A of Lie algebras over a field of characteristic 0.

The Minsky machine technique is insufficient in this case (see Section 7.6.5). The
proof of the theorem is based upon Sapir and Kharlampovich’s result [353] on the
algorithmic unsolvability of systems of linear differential equations over a ring of poly-
nomials (see Section 7.6.3). In the case of positive characteristic our interpretation
of differential equations does not work, so we cannot drop the restriction on the
characteristic in this theorem.

It is interesting to compare Theorem 5.6 with Theorem 4.7 for associative algebras:
in the case of associative algebras the variety ZN,A also has a strongly undecidable
word problem. We shall see in Section 6.5.1 that a similar result holds for groups.

The variety ZN3A is not a minimal variety with undecidable word problem. But
the following theorem shows that it is very close to the boundary between decidability
and undecidability.

Theorem 5.7 (Kharlampovich). If V C Ny A then the word problem for V is
decidable.

The idea of the proof is described in section 7.1.

Theorem 5.7 generalized several results obtained earlier.

It has been known since 1954 that finitely generated metabelian Lie algebras are
residually finite (Hall [137]). Hence the word problem is decidable in the variety .A?
and in the subvarieties of this variety.

Umirbaev [405] proved the solvability of the word problem in the variety of centre-
by-metabelian Lie algebras Z.A%. His proof employs the same ideas as Romanovskii’s
earlier proof of the similar result for groups (see Section 6).
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It is still unknown if there are Lie algebras finitely presented in Z.A? which are not
residually finite, but it is known that this variety is not locally residually finite (see
Theorem 5.26). Notice that the result of Umirbaev does not give any information
about subvarieties of the variety ZA% As we have noted in the Introduction, the
solvability of the word problem is not hereditary for subvarieties.

Thus the gap between varieties with decidable word problem and those with un-
decidable word problem is very narrow, so in spite of the mistakes in Kukin’s papers
[213], [217], the problem of describing varieties with decidable word problem, inspired
by these papers, seems doable.

Our intuition tells us that the following two conjectures “must” be true.

Conjecture 5.1 FEvery variety of solvable Lie algebras over a field of character-
istic zero with decidable word problem is contained in the variety N? for some c.

Conjecture 5.2 A subvariety of N?* has decidable word problem if and only if
its intersection with N3 A has decidable word problem, that is the variety N3 A is an
indicator variety with respect to the decidability of the word problem (see the definition
in the Section 2.7).

These two conjectures justify the following problem.

Problem 5.2 (Kharlampovich). Describe all subvarieties of the variety N3 A with
hereditary solvable word problem.

An important step towards the solution of this problem is the investigation of
subvarieties of the variety ZN5A. The first author of this survey and D. Gildenhuys
investigated subvarieties of this variety over a field of characteristic 0. The bad news
is that even inside this variety the property of having an undecidable word problem
is not hereditary for subvarieties. More precisely the following surprising results were
obtained.

Theorem 5.8 (Kharlampovich, [184]) There exists an infinite chain of varieties
of Lie algebras (char. = 0) inside ZN3 A in which varieties with decidable and unde-

cidable word problem alternate.

This theorem is the consequence of the following two theorems.

Theorem 5.9 (Kharlampovich, [184]). The word problem is decidable in the va-
rieties NoNy N ZNLA.

Let M}, be the variety defined in ZN3A by the identity

(1. Tpp2) W1+ Ypr2) (21 ... 21) = L.
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Theorem 5.10 (Kharlampovich, [184]). The word problem is undecidable in the
varieties M.

There are obvious inclusions
o C My, CZN; AN NN ST Mgy Cove

In order to study subvarieties of ZN3A one needs a special system of concepts
that has been developed by the first author of this survey. We need some of these
concepts now.

Let F' be the free Lie algebra of infinite rank with generators X = {xy, z,,...}
in the variety ZN3A. The letter £, with or without subscripts, will denote a product
x;x; of two distinct generators. The generators appearing in different (-symbols are
assumed to be distinct from each other, and from those represented by other letters.

Let « € F and w,v elements of F' such that © = v (mod F'); i.e. u—v €
F'. Then we have ((1u)lyx = ((1v)lax, l1(lau)x = {1({yv)x, (1l(lzu) = (ly(L5v).
Therefore it makes sense to consider the elements ((yu)lyx, {4 (lou)x, (145({3u), where
u belongs to the enveloping algebra U(F/F') of F/F'. Since F/F’ is an Abelian
algebra which is spanned by z;, by the Poincare-Birkhoff-Witt theorem the enveloping

algebra U(F/F') is isomorphic to the ring of polynomials K[z1,...,2,,...], where K
is the ground field. Let #i,...,&,,... be some new unknowns. Then the mapping
x; — &; can be extended to an isomorphism: K[z, ...,x,,...] = K[@1,...,&p,...]
We denote

élgggg ouv = (51U)(£2’0)£3,

where u,v,w € Klzy,...,2,,...], and 0 is the image of v under the indicated isomor-
phism. We denote also

Ulyz o ud = (L1u)(lav)x.

Let P(a,x) be the polynomial containing only one occurrence of every factor of
the polynomial

(z+(1+a)d)(ax+ (1 +a)@)((1 + o)+ &)((1 + a)r + ai)

(polynomials which differ by the scalar coefficient are considered the same). For
example, P(—1,z) = zi.

A polynomial R(a, 1, 22,23, x4) is to be obtained from P(«, x) by introducing a
different variable for each factor. For example,

R(—1, 21,2, %3, 24) = 215.

The identities of the form (10305 o f(xy,d&1,...,2,,%,) = 0 we call enveloping
identities.

Let A3 be the alternating group on 3 elements. Let W, be the variety defined
inside ZN,A by the identities
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£1£22 o R(Oj, XL1,T2,T3, $4)R(Oj7 Ts5,Te, L7, $8) = 07
Yot ((2o1))(To(2)To(3)) 2 © R, 21, 22, 23, 24) = 0,
Yoses (To(1)To(2)Y51)) (Ys(2)¥5(3)Ta(3)) 2 = 0.

Theorem 5.11 (Kharlampovich, [183],[178]). Let K be a field of characteristic
0. For every a € K,a # 0,—1 there exists a finitely presented Lie algebra with
undecidable word problem that belongs to the variety W,.

This theorem is stronger than Theorem 5.6.

Theorem 5.12 (Kharlampovich, [178]). If K is a field of algebraic numbers,
a #0,—1, and |a| and |a + 1| are multiplicatively independent (that is products of
integer powers of |a| and |+ 1| are equal to 1 only if the powers are equal to 1) then
the variety W, is a minimal variety with a strongly undecidable word problem. For
every such oo and B the intersection W, N\ Wp has hereditarily decidable word problem.

The varieties from Theorem 5.12 are candidates for being minimal with undecid-
able word problem, but we still can not prove that every proper subvariety of them
has not only weakly decidable, but decidable word problem. Since by the theorem
of Krasilnikov [205] the lattice of subvarieties of N3.A satisfies the descending chain
condition, each variety W, contains a minimal finitely based variety with undecidable
word problem. Thus there exist infinitely many minimal varieties of Lie algebras over
any number field. This is in a sharp contrast with the cases of semigroups (three
minimal varieties) and associative algebras (most probably just one minimal variety).

An explicit example of a minimal variety with undecidable word problem will be
given in Theorem 5.13.

The restriction on the field to be a number field is necessary here, because the
solution of the word problem in the proper subvarieties of the variety W, is connected
with the solution of some systems of exponential Diophantine equations. In Section
7.6.1 the connections between the word problem and some number theoretic questions
will be discussed in more detail. In general, the answer to the following question is
required in order to describe all subvarieties of the variety ZN,A with decidable word
problem.

Problem 5.3 (Kharlampovich). Does there exist an effective bound for the inte-
gral solutions of the exponential Diophantine equation

Z)\i(l’)af =0, (20)

where the \;(x) are polynomials in x with algebraic coefficients, and the o; are alge-

braic numbers with the property that o;/a; (i # j) are not m-th roots of unity for any
%

m
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There is a well known theorem by Scolem [379] which says that if the \;(z) in
(20) are constants then this equation has only finitely many integer solutions. The
proof of Scolem’s theorem works in the case when the A;(z) are arbitrary polynomials.
Thus the equation (20) always has only finitely many solutions. The problem is to
find an effective bound for these solutions. For n = 1 an effective bound is obvious.
For n = 2 the effective bound follows from a theorem of Baker [16]. Mignotte, Shorey
and Tijdeman [269] have obtained an effective bound in the case when n = 3 and all
Ai(z) are constants. This is all that is currently known about Problem 5.3.

In [182], there is a reference to an unpublished positive solution of this problem
by S.V.Kotov. The solution turned out to be incorrect. Fortunately it is not used in
the proof of any of the results in [182].

The following theorem gives the only known explicit examples of a minimal variety
of Lie algebras over a field of characteristic 0 with undecidable word problem. As we
mentioned above the set of such varieties is infinite.

Theorem 5.13 (Kharlampovich and Gildenhuys, [190]). Let W be the subvariety
of the variety ZN3 A defined in ZN, A by the identities

(x129w3)(T4a526)27 = 0,

Yoea (y2)(toyto@)21 - - - 22ht1 )lo(z) = 0, h > 1,

EaeAg(ylyzfca(l))(fca(2)$a(3))2 = 0.
Then W has an undecidable word problem and all its proper subvarieties have decidable
word problem.

There exist varieties containing the variety W and having solvable word problem,
for example, the varieties ZN3A N NyNyy1, see Theorem 5.9. Thus we currently
do not know any variety V of Lie algebras such that every proper subvariety of V
has solvable word problem and every variety containing ¥ has an undecidable word
problem. In the case of associative algebras and semigroups such varieties exist (see
Theorems 3.28, 4.7).

Yet another interval in the lattice of varieties which consists of varieties with
undecidable word problem is provided by the following theorem.

Theorem 5.14 (Kharlampovich and Gildenhuys, [191]). In the case of charac-
teristic 0 the interval between ZAN, N ZN3 A and ZN, A consists of varieties with

undecidable word problem.

This theorem implies, in particular, that the varieties Z(AN; N N3A) and Z AN,
have undecidable word problem. This result is in contrast with the fact that the word
problem is decidable in the variety AN, for any c. Moreover the latter varieties are
locally residually finite by a result of Hall [137].

Another approach consists of trying to find “strong” identities which hold in va-
rieties with decidable word problem. This would give, in some sense, upper bounds
for varieties with solvable word problem. The following theorems provide some nice
identities.
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Theorem 5.15 (Kharlampovich and Gildenhuys, [188]). Over a field of charac-
teristic 0 every proper subvariety of variety ZNy A satisfies an enveloping identity of
the form

U lals o (10 — x2dq)" = 0.

Theorem 5.16 (Kharlampovich and Gildenhuys, [190]). If a variety V of Lie
algebras over a field of characteristic 0 has hereditary decidable word problem then V
satisfies for some n the identity

E aij$1x”+1_i_j(txi)t:cj =0, (21)
1<e+5<n

with ai.0 7& 0
Theorem 5.17 (Kharlampovich, Gildenhuys, [188]). If a variety of Lie algebras,

over the field of algebraic numbers, is contained in ZN3A and has solvable word
problem, then it admits for some integer n > 0 the identity

glgggg o] .I?.f?fi’;b(ﬂfljg - $2.f1) = 0.

5.5 The Generalized Freiheitssatz

Free algebras in varieties usually behave better than arbitrary algebras. Thus it is
important to find conditions under which a finitely presented algebra is close to a free
algebra or contains a “big” free subalgebra. The classical example is the Freiheitssatz
proved by Magnus for one related groups (see [229]): in every group with n generators
and one relation one can effectively find a free subgroup freely generated by n — 1
generators. Magnus used this theorem to prove the solvability of the word problem in
groups with one defining relation. A generalization of this theorem for n+m-generated
groups with m relations was conjectured by Lyndon in “Kourovskaya Tetrad” [200]
and proved by Romanovskii [326] (see Section 6.6). A similar result for semigroups
was proved earlier by L. Shneerson [376]. He also proved the following characterization
of free Lie (associative) algebras which is conceptually close to the Freiheitssatz.

Theorem 5.18 (Shneerson, [375]). Let F be a Lie (or associative) algebra given
by n+k generators ay,...,a,y; and n relations. If F' can be generated by k generators
C1y...,¢, then F s free and cq,...,cp are its free generators.

Let us give precise formulations of the Freiheitssatz and the Generalized Frei-
heitssatz in varieties.

Let V be a variety of universal algebras. We say that the generalized Freiheitssatz
holds in a variety V, if for any algebra L € V given inside V by n 4+ m generators
T1, ..., Tpym and m relations there exist n generators z;,, ..., z;, which freely generate
a V-free subalgebra of L. If in this definition we fix m = 1 then we shall say that the
(ordinary) Freiheitssatz holds in W. We say that the effective Freiheitssatz holds in
W if those free generators may be found effectively.
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Theorem 5.19 The effective Fretheitssatz holds in the following varieties:
1. (Shirshov [372]). The variety of all Lie algebras.

2. (Talapov [391]). The Mal'cev product N., ... N., (for arbitrary ci,...,ci),
where N, is the variety of nilpotent Lie algebras of step c.

As a consequence of this theorem we have the effective Freiheitssatz for solvable
and nilpotent varieties.
The following theorem answered a question by Bokut’ [42].

Theorem 5.20 (Kharlampovich, [177]) The Generalized Freiheitssatz holds in
the varieties A" and in the variety of all Lie algebras.

Notice that unlike Theorem 5.19, this theorem is not effective. It does not say how
to find the free n-generated subalgebra which figures in the generalized Freiheitssatz.
We do not know if the effective generalized Freiheitssatz holds in the variety of all
Lie algebras or in the variety A”".

Romanovskii told the first author that the following result may be proved in the
same way as its group analog in [327].

Theorem 5.21 (Romanovskii) The Generalized Freiheitssatz holds in the variety
N, of Lie algebras for every c.

Again, it is not known whether the effective generalized Freiheitssatz holds in N,
for every c.

5.6 The Isomorphism Problem

The isomorphism problem for Lie algebras is as hard as it is for associative algebras.
The solvability of the isomorphism problem for finite dimensional Lie algebras over
an algebraically closed field can be proved by the same argument as for associative
algebras (see Section 4.5). Recall that the decidability of the isomorphism problem for
finite dimensional algebras over Q and Z was proved by Sarkisian [356] and Grunewald
and Segal [122] (see Section 4.5).

As a corollary we have the decidability of the isomorphism problem for finitely
generated nilpotent Lie Q-algebras and finitely generated nilpotent Lie rings.

In the proof of Theorem 5.4 one can choose a Minsky machine in such a way
that the corresponding Lie algebra is Hopfian. Hence by Connection 2.1 we have the
following two results.

Theorem 5.22 IfV D ZN3 AN A? then the isomorphism problem for absolutely
finitely presented algebras in V is undecidable. There exists a finitely presented Lie
algebra L € V such that the problem of whether an algebra from FPNY is isomorphic
to L is undecidable.
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Theorem 5.23 IfV D ZN,A then the isomorphism problem for relatively finitely
presented algebras in V is undecidable. There exists a Lie algebra L that is finitely
presented in VYV and such that the problem of whether a Lie algebra from FP(V) is
isomorphic to L is undecidable.

The original proof of Theorem 5.22 in Kharlampovich [177] and Baumslag, Gilden-
huys and Strebel [28] is similar to Kirkinskii and Remeslennikov’s proof of the un-
solvability of the isomorphism problem for the group variety A" [193].

The construction used for the proofs of the results about the unsolvability of the
word problem in subvarieties of the variety ZAN,A is based on the interpretation in
Lie algebras of a system of linear differential equations. This system can be chosen
in such a way that the Lie algebra with undecidable word problem will be Hopfian.

Hence the following theorem holds.

Theorem 5.24 If a variety W of Lie algebras over a field of characteristic 0
contains one of the varieties Wy, o # 0, —1, then the isomorphism problem for finitely
presented algebras which belong to W is undecidable. There exists a finitely presented
Lie algebra L € W such that the problem of whether a Lie algebra from FPNW s

isomorphic to L is undecidable.

5.7 The Uniform Word Problem For Finite Traces

The uniform word problem for finite traces of varieties of Lie rings has been raised by
Bokut’ (see [84], Problem 2.24). It was investigated in Kharlampovich [179], [181].
Let A be the class of all nilpotent rings and F be the class of all finite Lie rings. Let
X be an arbitrary class of Lie rings such that ZN;A4 C X.

Theorem 5.25 (Kharlampovich [179], [181]). The universal problem is undecid-
able for the following classes of Lie rings: F; N; FON; FOX; NNX; NNXNF.

If one considers finite dimensional Lie algebras over a field instead of finite Lie
rings then the same result is true.

In general, like in the semigroup case (see Section 3.4.3), we can prove the un-
decidability of the uniform word problem for finite trace of some variety of Lie rings
provided we can prove the undecidability of the word problem in this variety using
the technique of Minsky machines. The following natural conjecture arises

Conjecture 5.3 The uniform word problem for the finite trace of a variety of Lie
rings is decidable if and only if the word problem for this variety is decidable.

121



5.8 The Higman Property

As we have already mentioned, Bokut’ [44] used a Lie algebra analog of the Higman
and Valiev technique employed in the proofs of the embedding theorem for groups
[144], [406]. Although he did not prove an analog of the Higman embedding theorem,
he raised the question of whether such analogs exist (see [84], Problem 1.22). In
1979 Kukin published the paper [216], where he claimed that for any variety M
containing NV3A, every recursively generated Lie algebra in M can be embedded into
a Lie algebra which is finitely presented in M. A?. In particular, if M is the variety
of all Lie algebras then we get an analog of the Higman embedding theorem: every
recursive Lie algebra is embeddable into a finitely presented algebra. Thus from 1979
till the present time this area was considered well-developed.

The main technique used by Kukin in [216] was an interpretation of partial re-
cursive functions in Lie algebras. He used the same technique in his papers on the
word problem [213], [92],[214]. As we show in Section 7.5, this technique contains a
serious gap. So now one must consider results from [216], including the Lie algebra
analog of the Higman embedding theorem, as only conjectures.

Problem 5.4 Is the variety of all Lie algebras a Higman variety?

We are sure that the answer is positive. It can probably be proved either by a
modification of Kukin’s method or by applying Belyaev’s ideas from [33] (see Section
4.8).

Problem 5.5 [s it true that every recursively presented solvable Lie algebra is
embeddable into an algebra that is finitely presented in A™ for some n.

This problem is a Lie algebra analog of a Remeslennikov and Roman’kov problem
about group varieties [318].

Thus all we know for certain about Higman varieties of Lie algebras is that the
locally Noetherian varieties described in Section 5.9 are Higman varieties (see Section
2.6).

We say that a variety is strongly Higman if every recursively presented Lie alge-
bra in the variety is embeddable in an absolutely finitely presented Lie algebra that
belongs to this variety.

By the result of Baumslag [23] every metabelian variety of Lie algebras over a
field of characteristic # 2 is strongly Higman. This follows from the Baumslag-
Remeslennikov Lemma that we will use in Section 7.2.7 (see Lemma BR there).
There are, of course, examples of non strongly Higman varieties. For example, the
varieties ). constructed in Theorem 6.11 are also not strongly Higman. This is a
trivial consequence of Theorem 6.11.

Problem 5.6 [s there any strongly Higman variety of Lie algebras that is not a
subvariety of A2.
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This problem relates to the following problem, which is an analog of a group
theoretic question raised in Noskov, Remeslennikov and Roman’kov [284].

Problem 5.7 [s it true that any Lie algebra which is finitely presented in the
variety A" for some n is embeddable into an absolutely finitely presented solvable Lie
algebra.

5.9 Locally Residually Finite Varieties

The class of varieties with residually finite relatively finitely presented algebras is
strictly smaller than the class of varieties with hereditary decidable word problem.
The authors recently constructed an example of a relatively finitely presented algebra
in the variety A5A over a field of char # 2 which is not residually finite [192]. This
variety has hereditary decidable word problem. It is not too hard to show that the 2-
generated free NV A-algebras are not Noetherian (do not satisfy the maximal condition
for ideals).

In the case of absolutely finitely presented algebras the situation differs. Abso-
lutely finitely presented algebras in N3 A are residually finite.

We do not know whether the class of varieties where finitely presented algebras
are residually finite coincides with the class of locally residually finite varieties. To
prove that they are different one has to consider the variety of centre-by-metabelian
algebras, which is not locally finite by theorems 5.26 and 5.28.

Problem 5.8 Describe all varieties of Lie algebras over a field of characteristic
0 in which every relatively finitely presented algebra is residually finite.

The investigation of locally residually finite varieties of Lie algebras was inspired
by the success in the investigation of locally residually finite varieties of associative
algebras (see Section 4.7). The first examples of nontrivial locally residually finite
varieties of Lie algebras were given by Bakhturin [17]. He proved that over a field of
characteristic 0 every metabelian variety satisfies this property. The proof in [17] can
be extended to the varieties N.A.

Bahturin and Bokut’ posed the problem of describing all locally residually finite
varieties over a field of characteristic 0 ([84], problem 2.16)

A description of locally residually finite varieties, locally representable varieties,
locally Noetherian and locally Hopfian varieties of Lie algebras over infinite fields has
been obtained by M.V.Zaitsev [420], [418], [419], [417]. By a Noetherian Lie algebra
we mean an algebra that satisfies the ascending chain condition for ideals. A variety
is locally Noetherian if and only if it satisfies the familiar property F'P = FG (every
finitely generated algebra is relatively finitely presented).

The variety of centre-by-metabelian algebras will play a very important role in the
description below. One of the essential moments in obtaining this description is an
earlier result of Volichenko [412]. He had proved that, over a field K of characteristic
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zero, a variety V does not contain all centre-by-metabelian algebras if and only if it
satisfies the identity
xy"z = Zozixy”_izyi, (22)
i>1
for some natural number n and some o; € K.

This identity is the Lie algebra analog of the I.’vov identity for associative algebras
(16) and the identity (10) for semigroups.

Another essential moment was the result of Zelmanov that every (not only finitely
generated) Lie algebra over a field of characteristic zero that satisfies the Engel iden-
tity is nilpotent [425].

First we formulate the results of Zaitsev in characteristic 0. For this we need
one more definition. Let GG be the so called 3-dimensional Heizenberg algebra over
a field K, that is the algebra with the basis {z,y,z} and the multiplication table
xy = z,xz = yz = 0 . Let Y be the semidirect product of the polynomial algebra
K|t], considered as an Abelian Lie algebra, and GG where GG acts on K[t] as follows:

af(t) = f'(t), yf(t)=1tf(t), z2f(t) = f(t). Let YV be the variety generated by Y.

Theorem 5.26 (Zaitsev [420], [419], [417]). Let V be a variety of Lie algebras

over a field of characteristic 0. Then the following conditions for V are equivalent.
1.V is locally residually finite,
2.V s locally representable,

3.V does not contain all centre-by-metabelian algebras and the commutator of
every finitely generated algebra in'V s nilpotent.

4.V netther contains all centre-by-metabelian algebras nor the variety Y.

5.V satisfies the identity (22) and does not contain the variety Y.

In the case of associative algebras and rings the conditions for a variety to be
locally residual finite, to be locally representable and to be locally Noetherian are
equivalent. In the case of associative algebras and rings without unit they are equiv-
alent to locally Hopfianness (see Section 4.7). In the case of nonperiodic semigroups
the conditions for a variety to be locally residually finite, locally Hopfian, Locally
representable and locally Noetherian are also equivalent (see Section 3.5).

In the case of Lie algebras over a field of characteristic 0 these conditions are not
equivalent.

Theorem 5.27 (Zaitsev, [{18]). Let V be a variety of Lie algebras over a field

of characteristic (. Then the following conditions for V are equivalent.

1.V is locally Noetherian (FG(V) = FP(V)),
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2.V s locally Hopfian,
3.V does not contain all centre-by-metabelian algebras,

4.V satisfies the identity (22).

The description in Theorems 5.26 and 5.27 is effective. Indeed, in order to check
whether the variety of centre-by-metabelian algebras satisfies an identity f = 0 it
is enough to check if f is equal to 0 in the relatively free algebra of the centre-by-
metabelian variety. This can be done since this free algebra is residually finite (see
section 5.3). It is also possible to verify if an identity f = 0 holds in the algebra Y
that generates the variety ). This problem can be easily reduced to the problem of
determining if a finite system of linear differential equations over the algebra K|t] has
a solution. This problem is algorithmically decidable, because it can be shown that
if the system has a solution then it has a solution of effectively bounded degree (see
[181]).

The identity (21) plays the same role in connection with the word problem as
Volichenko’s identity (22) plays in connection with the residual finiteness of a variety.

It is not difficult to show that if a variety of solvable Lie algebras over a field
of characteristic 0 does not contain all centre-by-metabelian algebras then for some
¢ it belongs to N2 . In connection with theorem 5.26 the following question arises:
Is any locally residually finite variety of Lie algebras over a field of characteristic 0
contained in N, A for some ¢? The analogous result holds for associative algebras
over an infinite field. In the case of Lie algebras the answer is negative. The variety
given by the identities

(z122w3)(242526) = 0, (x122)(2324)(T123) =0

is locally residually finite but is not contained in AN.A for any c¢. This variety has
been studied in Volichenko [412], [411].

For infinite fields of positive characteristic there is the following result of Zaitsev.

Theorem 5.28 (Zaitsev, [{18]) Let V be a variety of Lie algebras over an infinite
field of positive characteristic. Then the following conditions for V are equivalent

1.V is locally residually finite;
2.V s locally Hopfian;

3.V is locally Noetherian;
4.V s locally representable;

5. The identity (22) holds in V.

If characteristic # 2 then conditions 1—4 are equivalent to the following condition
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7V does not contain ZA?.
If characteristic = 2 then conditions 1—/ are equivalent to the following condition:

8 V does not contain the variety given in ZA* by the family of the identities
1y - Ye(@2xs) + xoyr - yk(@szr) + xsyr - yk(@12e) =0, k=1,2,...,
T1L2Y1 .« Ym(T122) =0, m=1,2,...).

In the original formulation of this result, there was an additional restriction that
every Engelian algebra in V be locally nilpotent. Zelmanov’s result [428], that every
Lie ring with an Engel identity is locally nilpotent, allows one to drop this restriction.

Again, this description is effective: given a finitely based variety one can verify if
it satisfies condition 4.

In the case of finite fields the situation is unclear. It was proved by Bahturin in
[18] that over any field a finitely generated metabelian Lie algebra is residually finite.
The centre-by-metabelian variety contains a non-residually finite finitely generated
algebra [18] but we do not even know if this is a minimal non-locally residually finite
variety in the case of finite field.

Problem 5.9 Describe locally residually finite varieties of Lie algebras over finite
fields and locally residually finite varieties of Lie rings.

5.10 Residually finite varieties

Every nilpotent non-Abelian variety of Lie algebras over an arbitrary ring contains a
non-residually finite algebra ([18], Section 6.6.6). This simple observation is enough
to describe all residually finite varieties of Lie algebras over an infinite field (see [420]).
Indeed, it is easy to see that every variety of Lie algebras over an infinite field which
does not contain non-Abelian nilpotent algebras is Abelian. This immediately follows
from the fact that every variety of Lie algebras over an infinite field may be given by
homogeneous identities. Every Abelian algebra over a field is a subdirect product of
1-dimensional algebras. Indeed Abelian Lie algebras are just vector spaces with zero
multiplication. Thus there are just two residually finite varieties of Lie algebras over
any infinite field: the variety of all Abelian algebras and the 0 variety.

In the case of finite fields the situation is much more difficult but the description
of residually finite varieties is known. Some partial results were obtained by Bah-
turin and Semenov in [21]. Then Premet and Semenov described all residually finite
varieties over a finite field.

Theorem 5.29 (Premet, Semenov, [304]). Let k be a finite field of characteristic
p > 3. All algebras of the variety W of Lie algebras over k are residually finite if and
only if W is generated by one finite algebra, such that all of its nilpotent subalgebras
are Abelian.
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This theorem is a complete analog of Olshanskii’s theorem for groups. In order to
make the analogy between these theorems clearer, we note that all Sylow subgroups
of a finite group are Abelian if and only if all of its nilpotent subgroups are Abelian.
It is interesting that the proof of Theorem 5.29 is not similar to Ol’'shanskii’s proof.
For varieties generated by a finite algebra Theorem 5.29 follows from the result of

Freese and McKenzie [102].

5.11 Elementary Theories

Varieties of Lie rings with decidable elementary theory have been described by Zam-
jatin.

Theorem 5.30 (Zamjatin, [{21]) A variety V of Lie rings has decidable elemen-
tary theory if and only if V is an Abelian variety.

Zamjatin told the first author of this survey that the same statement holds for
Lie algebras over a field. A similar statement holds in the case of finite traces.

Theorem 5.31 (Zamjatin) The elementary theory of the finite trace Vi, is solv-
able tf and only if Vy;y, does not contain nonabelian Lie algebras.

We do not know of any non-Abelian variety of Lie algebras where every finite
algebra is Abelian.

6 Groups

6.1 Basic Definitions

For notation and definitions from the theory of groups we refer the reader to H.
Neumann [279], Kargapolov and Merzljakov [163] and Rotman [330]. Let us recall
some of them. The analogous notation has been used for varieties of Lie algebras in
the previous section.

V1V, is the Mal’cev product of varieties Vi and V.

A" is the variety of all solvable groups of step n.

Groups from A? are called metabelian.

N. denotes the variety of all nilpotent groups of step c.

It V is a variety of groups then ZV is the variety of all centre-by-V groups that is
groups (¢ such that G/Z(G) € V.

B, is the variety of all groups of exponent p.

A, is the variety of Abelian groups of exponent p.

Recall [279] that a product of two varieties is generated by the (restricted) wreath
product of free groups of these varieties of countable ranks. The definition of the
wreath product is the following. Let GG and H be groups and let G") be the direct
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product of |H| copies of . Then H acts on G#) in the following natural way. If ¢
is a vector in GW) and h € H then for every t € H

¢"(t) = o(th™").

Then the wreath product, GwrH, of G and H is the semidirect product of G*) and
H. Thus GwrH is the set of pairs G) x H with the following product:

(6, a)(¥, b) = (¢", ab).
A group G is called polycyclic if it has a series of subgroups
<G <...<G, =G (23)

where every G; is normal in G4y and Gy /G; is cyclic. If G is polycyclic then
it has a so-called polycyclic base {g1,...,¢,} such that ¢g; € G;\G;_; and the coset
9:G;_1 generates (G;/(G;_1. Polycyclic groups are precisely all the solvable subgroups of
GL(n,Z),n=1,2,...[366]. Every nilpotent finitely generated group is polycyclic. A
group is said to be polycyclic-by-finite, or a PF-group for short, if it has a polycyclic
normal subgroup of finite index. By a theorem of P.Hall [137] every PF-group is
finitely presented. If one chooses a polycyclic base {g1,...,¢,} of a polycyclic group
(G as a set of generators, then GG can be given by relations which have one of the two
forms:

L. g =w(gr,...,9i-1), 1 <1< n;

2. (gwg]) = ‘w(gl7"'7gi—1)7 1 S.] < v S n.

Here w is an arbitrary word, (z,y) denotes the commutator z='y~'zy. Such presen-

tations of polycyclic groups will be called polycyclic presentations. One can easily
find a similarity between polycyclic presentations and presentations of solvable as-
sociative algebras which we have discussed in Section 4.10. Polycyclic groups and
PF-groups form pseudovarieties (that is each of these two classes is closed under
taking subgroups, homomorphic images and finite direct products).

6.2 Overview

Varieties A", N, N.A, ZN.A, B,, A, are probably the most important varieties of
groups. Several well-known theorems in group theory imply that under some natural
conditions a group belongs to one of these varieties. In particular, Kolchin-Mal’cev’s
theorem says that every solvable matrix group has a normal subgroup of finite index
with a nilpotent derived group. Moreover, Platonov [299] proved that every matrix
group over a field that satisfies a nontrivial identity is solvable-by-finite, and thus is
a finite extension of a group from N_A. For fields of characteristic 0 this follows from
the well known Tits’ alternative.
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Varieties A™ and its subvarieties have nice Burnside properties: every periodic
group there is locally finite. Varieties M. A have some nice additional properties.
In particular, Krasilnikov [204] proved that these varieties are hereditary finitely
based. This makes solvable varieties of groups and in particular nilpotent-by-Abelian
varieties a potentially good field to study algorithmic problems.

Nevertheless the class of solvable groups is in many cases more complicated than
other classes considered in this survey.

6.3 The Identity Problem

The identity problem for groups was posed by Mal’cev in [200] (Problem 2.40). It
has been solved in the negative by Yu. Kleiman.

Theorem 6.1 (Yu. Kleiman, [197]). There exists a finitely based variety V of
groups such that the identity problem inV is undecidable.

The variety V is contained in A7. The word problem is undecidable in any free
noncyclic group of this variety.

We describe Kleiman’s method in detail in Section 7.7.3.

S.V.Aivazyan [8] improved Kleiman’s result by providing a similar example within
the variety of all solvable groups of derived length at most 5. The proof is based on
Kleiman’s work.

Recently Storozhev [382] proved that every countable abelian group can be em-
bedded as a verbal subgroup of a center of a relatively free group in some variety.
This result provides another way to construct relatively free groups with undecidable
word problem. Unfortunately, the varieties constructed by Storozhev are not finitely
based. It would be interesting to find similar embeddings into relatively free groups
in some finitely based varieties. Storozhev’s varieties are far from being solvable.

Another theorem by Yu. Kleiman shows that even “good” groups may have
undecidable equational theories.

Theorem 6.2 (Yu. Kleiman, [197]). There exist a finitely generated solvable of
step 4 group with decidable word problem and undecidable equational theory.

Problem 6.1 [Is there a finitely presented group with an undecidable equational
theory?

Most important varieties have decidable equational theories. If the word problem
is solvable in the relatively free groups in the varieties V4 and Vs, then it is also solvable
in the relatively free groups in their product. This follows from Shmel’kin’s theorem
[374], [373] on the embedding of the free n-generated group in ViV, into the wreath
product of the free n-generated group in V; and the free n-generated group in V.
This embedding is effectively given. This implies the solvability of the equational
theories of the varieties A", V. A and AN..
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Using Krasilnikov’s proof of the result that the varieties V. A are hereditary finitely
based [205], it seems possible to prove that the equational theory is decidable in any
subvariety of the variety N .A.

Finitely based varieties with undecidable equational theory have non-residually
finite free groups. The property “to be Hopfian” is weaker than the property “to be
residually finite” in the case of finitely generated groups. The problem of whether
there exists a finitely based variety of groups with non-Hopfian free groups was posed
by H. Neumann (see [279], Problem 15). Recently S. Ivanov announced a negative
solution of this problem [155]. He constructed a variety given by two relatively simple
identities where every non-cyclic free group is not Hopfian. It is still not known
whether there exists a solvable variety with this property.

6.4 The Identity Problem For Finite Traces

By Connection 2.9 the identity problem is solvable in the finite trace of any subvariety
of the variety NV, A. It is also solvable in every periodic variety of groups because of
the positive solution of the Restricted Burnside problem (see Connection 2.10).

Problem 6.2 (Rhodes, [9]) Is the identity problem for finite groups solvable?

This question is very interesting and rather complicated.

6.5 The Word Problem

In this subsection, we first consider varieties of solvable groups and then varieties of
periodic groups.

6.5.1 Solvable groups

There are two classes of solvable group varieties where the solvability of the word prob-
lem is well known: the varieties of nilpotent groups and the varieties of metabelian
groups.

As we mentioned above all nilpotent and metabelian varieties of groups are finitely
based. Every finitely generated nilpotent group is finitely presented, representable by
matrices over Z and residually finite (see, for example Kargapolov and Merzljakov
[163], Hall [137], Mal’cev [236]). This implies the solvability of the word problem in
nilpotent varieties. Finitely generated groups in the variety A% are finitely presented
in this variety and residually finite, hence have solvable word problem (P. Hall [137]).
Thus every metabelian variety of groups has solvable word problem.

More recent investigations have been inspired by the following problem:s.

1. Determine whether or not the word problem is solvable for groups, relatively
finitely presented in the variety A", n > 3 (Mal’cev, [238]).
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In our terminology, the question is whether the word problem is solvable in the
varieties A".

2. Construct a finitely presented group, satistying a nontrivial identity, with un-
solvable word problem (Adian, problem 4.3 in [200]).

In our terminology, this problem asks to construct a proper subvariety V of
the variety of all groups, in which the word problem is strongly unsolvable. A
similar problem posed by Remeslennikov and Romanovskii [318] asked whether
there exists a solvable variety with a strongly unsolvable word problem.

3. Determine whether or not every recursively presented group in the variety A" is
embeddable in a relatively finitely presented group in the variety A™, for some
m (Remeslennikov, problem 5.46 in [200]).

Remeslennikov [315] obtained a solution of Problem 1. He proved that the word
problem for the variety A", n > 5 is unsolvable. This solved Problem 1 in the negative.
Using this result, Remeslennikov and Kirkinskii [193] obtained a negative solution of
the isomorphism problem for the varieties A", n > 7.

Kukin and Epanchincev published an article [92] where they claimed the unsolv-
ability of the word problem for any variety W containing NV3.A. The result is incorrect
(see [185], [215]). In [46] it was claimed that the proof can be fixed if one simply re-
places Ay A by N3 A in the formulation of the result and in the proof. But in Section
7.5 we shall show that the proot does not work even after this change.

Later it was proved by the first author [187] that the word problem is undecidable
in any variety containing ZN3A, in particular in the variety N3A.

The solution of Problem 2 was obtained in the article [175] by the first author. It
was proved that there exists a finitely presented group with unsolvable word problem
that belongs to the variety A3 ANN4A. This means that the word problem is strongly
unsolvable in any variety containing the variety A3ANN4A. The proof is based on an
interpretation of a two-tape Minsky machine with unsolvable halting problem. The
method is described in section 7.2.8.

Later G. Baumslag, D. Gildenhuys and R. Strebel [27] found a slightly differ-
ent approach in constructing finitely presented solvable groups with unsolvable word
problem. Namely, they also interpret a two-tape Minsky machine, but the language of
matrix groups that they use helps them simplify the proof. Their result is also more
general: they constructed finitely presented groups with unsolvable word problem in
the varieties ZN3A N AZA for any p > 2. They also proved the unsolvability of the
isomorphism problem in these varieties. In the case p = 2 the group constructed in
[27] is isomorphic to a subgroup of the group in [175] generated by all but two of the
generators.

These results made it clear that a part of the boundary between varieties with
decidable (weakly decidable) and undecidable (strongly undecidable) word problem
could be found inside the variety NyA.
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Then, the variety was made smaller again.

Theorem 6.3 (Kharlampovich, [176]). The variety ZNy A has a strongly unde-
cidable word problem.

This variety is given by the following identity:

((((Ihm?)v($37$4))7($57$6))7$7) = 1. (24)

We write as usual (a, b, ¢) instead of ((a,b), c).

The proof of this theorem employs an interpretation of differential equations in
groups (see Section 7.6).

On the other hand the word problem is decidable in the variety Z.A%. This result
was proved by Romanovskii [328].

Romanovskii’s result was crucial. It was the first case where the solvability of the
word problem was not proved as a consequence of residual finiteness. The variety Z.A*
is not locally residually finite and it is still unknown (and very interesting) if there
are groups which are finitely presented in Z.A? and not residually finite. The result
of Romanovskii does not imply the solvability of the word problem in subvarieties of
ZA%

This result was strongly improved by the following theorem of the first author.

Theorem 6.4 (Kharlampovich, [185]). If V C Ny A then the word problem in V

s solvable.

The weak decidability of the word problem in N3;A was proved by Bieri and
Strebel in [38]. To be more precise, Bieri and Strebel proved the following important
theorem.

Theorem 6.5 (Bieri and Strebel, [38]). Every absolutely finitely presented group
which belongs to the variety N3 A is residually finite.

Earlier Groves [117] proved the same result for the smaller variety of central-by-
metabelian groups.

A technique used in the paper [38] is remarkable. The authors use the following
concept of a sphere of valuations of a finitely generated Abelian group. A valuation of
a finitely generated Abelian group H is a homomorphism v : H — R into the additive
group of R. Two valuations are equivalent if they coincide up to a positive constant
scalar multiple. The unit sphere S™~! in R™ can be identified canonically with the set
S(H) of all equivalence classes [v]. An explicit description of S(H) is the following.
Let T' be the torsion subgroup of H. Since H/T is a direct product of finitely many
infinite cyclic groups, there exists a homomorphism 6 : H — R™, which maps H/T
isomorphically onto Z" C R"™. Fix one of such 8. Every valuation v : H — R can be
extended to a unique R-linear map v : R" — R such that v = v 06. The vector space
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R" is endowed with the standard inner product. From linear algebra we know that
every linear map of R” into R is induced by the product by a vector of R". Hence
for every valuation v there is a (unique) element z, € R” with v(y) =< z,,y >,
for all y € R". Equivalent valuations correspond to parallel vectors. Thus we have
a correspondence between the set of equivalence classes of valuations S(H) and the
points of the unit sphere S™1.

For every equivalence class of valuations [v] let us define the monoid H, = {h € H :
v(g) > 0} (we identify [v] and its representative). Let us consider finitely generated
modules over the commutative ring ZH. A finitely generated ZH-module A may
or may not be finitely generated as a module over the semigroup ring ZH,. If A is
any finitely generated ZH-module, the authors study the subset ¥4 = {[v] : A is
finitely generated over H,} of the topological space V' = S™"!. This leads to an
interesting characterization of finiteness conditions of metabelian groups in terms of
the topological behavior of ¥ 4. Notice that if G is a metabelian group and A is a
normal Abelian subgroup of GG such that H = GG/A is also Abelian then A may be
naturally considered as a ZH-module (H acts on A by conjugation). The main results
are the following:

Theorem 6.6 (Bieri, Strebel [38]). Let G/A = H and let A, H be Abelian. Then
G is polycyclic if and only if ¥4 = S™, and G is finitely presented if and only if
YaU=3X,= Sn-t,

This result has many applications. In particular the following results have been
obtained.

Theorem 6.7 (Bieri, Strebel [35]).

1. All metabelian homomorphic images of an absolutely finitely presented solvable
group are finitely presented,

2. If G is a group with the property that G/G" is absolutely finitely presented then
all the homomorphic images of G in Ny A satisfy the ascending chain condition
for normal subgroups and are residually finite.

This result implies residual finiteness of finitely presented groups from N;A.

Other properties of absolutely finitely presented solvable groups can be found in
Bieri and Strebel [36], [37], Strebel [383], Wilson [415], Groves and Wilson [120]. See
also [383] for some open problems.

Since the variety ZN5A is hereditary finitely based, the interval of varieties be-
tween N3 A and ZN; A must contain minimal varieties with unsolvable word problem.
It turns out that there are infinitely many such minimal varieties. The following the-
orem has been proved by the first author of this survey.

Theorem 6.8 (Kharlampovich). The varieties ZN2 AN B, A, (p > 5, prime) are
minimal varieties with unsolvable word problem.
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The proof of the assertion about unsolvability in this theorem is published in [187],
the proof of the minimality has been submitted for publication.

Another series of minimal varieties with undecidable word problem has been found
by the second author.

Theorem 6.9 (Sapir, 1992, unpublished) The varieties A, A, A (p,q are distinct.
primes) are minimal varieties with unsolvable word problem.

The ideas of the proof of unsolvability in this theorem are presented in Section
7.2.9. All proper subvarieties of these varieties are locally residually finite, hence have
solvable word problem.

In the article [184] by the first author, the word problem for subvarieties of the
variety ZN3 A was studied. It turned out, as in the case of Lie algebras, that the
lower we go in the lattice of subvarieties of N34 the more complicated picture we get.
In particular the following surprising result was proved

Theorem 6.10 (Kharlampovich, [184]). There exists an infinite chain of vari-
eties of groups inside ZN3 A in which the varieties with solvable and unsolvable word
problem alternate.

As in the case of Lie algebras this theorem is a corollary of the following two
results.

Theorem 6.11 (Kharlampovich, [184]). The word problem is solvable in the va-
rieties NoN. N ZNLA.

Let Y. be a variety defined in ZN,A by the identity

((x1, oo @er2)s (Y1, oy Yer2), (21,0005 20)) = L.

Theorem 6.12 (Kharlampovich, [184]). The word problem is unsolvable in the
varieties V. for any ¢ > 1.

Theorem 6.10 follows from these two theorems because V._; C NoN. N ZNL, A C
yc—}—l-

Before mentioning the subsequent results concerning the variety ZN,A, we will
formulate the following conjecture that underscores the significance of these results.

Conjecture 6.1 Any variety of solvable groups with hereditary solvable word
problem belongs for some ¢ and k to the variety N2By.

It is well known that solvable groups with an identity z* = 1 are locally finite. So,
if this conjecture is true, then to get a description of all varieties of solvable groups
with hereditary decidable word problem we need to consider only groups in A2
The technique of proving solvability of the word problem developed in Khar-
lampovich [184], suggest conjecture that for solvable groups the variety N3A is an
indicator variety with respect to hereditary solvability of the word problem.
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Conjecture 6.2 A metanilpotent variety of groups W has hereditary solvable
word problem if and only if W N N3A has hereditary solvable word problem.

So it is very important to consider subvarieties of N3A.

Problem 6.3 Describe all subvarieties of the variety N3 A with hereditary solvable
word problem.

We need now some new definitions to describe another series of minimal varieties
with unsolvable word problem. These definitions are similar to those for Lie algebras.

Let F be a free group of infinite rank of the variety ZN3A. Then the group
(F', F', F') is Abelian, and we use the additive notation for this group. If u,v and w
are some elements of the group ring Z[F/F'], it makes sense to define

(€17€272) ouv = (€11L7€12]7Z)a
(b1, 02,03) o uvw = (7,05, 03)).

We have also a relation ({q,0z,03) 0z = ({1,0s,03) 0oz~ 37"

Let «, 3 be two coprime integers, « > 0, § # 0. Let < z,% | & = &z > be
the free Abelian group on the generators x, . Let P(a, 3, 2) be the polynomial from
Z[< x,& | & = Za >] with coefficient 1 at the highest power of z, and containing
each factor of the polynomial

(:L,a-l—ﬁ _ v—a)(l,a+ﬁ _

T i)z = &) (7P — o)

exactly once (factors f and fz'@®, where t,s € Z are considered equivalent). Let
R(e, B, 21, 22, x3,24) be obtained from P(a, 3, z) by introducing a new variable for
each factor. If the number of factors is less then four then z4 is a fictitious variable.
For example

R(1, =1, 21, @9, 23, 24) = (21 — 1)(Z2 — 1).

Let W, g be the subvariety of the variety ZN3A defined by the identity
(1,02,2) o R(e, B, a1, 22, x5, x4) R(e, B, x5, 26, 27, 28) = 0.
The following theorem is stronger than Theorem 5.6

Theorem 6.13 (Kharlampovich, [184]). The word problem is strongly unsolvable
in the varieties Wy g, (o, 8) # (1, —1), If some subvariety W of the variety W, g has
some additional enveloping identity then the word problem in W is solvable.

In particular, if « # a1 or B # (1, then the word problem is solvable in the
varieties Wy g N Wa, 8,

The varieties ). were the first examples of group varieties with unsolvable but
weakly solvable word problem. These varieties are not strongly Higman varieties.
This means that not every recursively presented group in these varieties is embeddable
in an absolutely finitely presented group belonging to the same variety.

135



Problem 6.4 Describe as completely as possible solvable group varieties with solv-
able (weakly solvable) word problem.

Among other important results about the word problem and varieties of solvable
groups, let us mention the following theorem by Yu.Kleiman.

Theorem 6.14 (Yu. Kleiman, [196]). Let X be any countable set of groups.
Then there exists a solvable group variety of step 4 which is not generated by members

of X.

In particular, let X" be the set of recursively presented groups. This set is obviously
countable. Thus there exists a variety of solvable groups which is not generated by
its recursively presented groups. In particular, this variety cannot be generated by
groups with solvable word problem.

We have mentioned already that the word problem is decidable in relatively free
groups in the varieties A". We have also mentioned (see Talapov’s Theorem 5.3) that
in the case of Lie algebras the word problem is solvable in every algebra given by
one defining relation in A". In the group case the analogous result is not known.
Kargapolov posed the corresponding problem as early as 1965.

A partial solution of this problem has been obtained by Romanovskii [324]. Let
F' be a free group. We say that an element r is primitive modulo the derived series
if the inclusion » € FU)\ F"+1) implies that r is not a proper power in F(W\ F(*+1),
Romanovskii [324] proved that the word problem is solvable in groups given in A"
by one defining relation, when the relator is a primitive element modulo the derived
series. In this case the factors of the derived series of the one-related group are
torsion-free, and the situation is close to that for Lie algebras.

To complete the topic of the word problem in solvable varieties, let us remark that
it would be very interesting to investigate the complexity of the algorithms solving
the word problem in solvable group varieties (see the necessary definitions in section
3.4.5). In particular we have the following conjecture.

Conjecture 6.3 For every subvariety of the variety N3 A and for every subvariety
of the variety AN, the word problem is solvable in polynomial time.

6.5.2 Periodic Groups

The well known Burnside problem can be rewritten in the form: “Is there a variety
of groups of finite exponent which is not locally finite?” In 1968 Novikov and Adian
solved this problem in the affirmative. They proved that for any odd number n >
4381 the group variety B, is not locally finite. In [4] Adian lowered this bound
to 665. In [154] and [153] the analogous result was announced and proved for any
n > 2*; in [230] it was announced for n > 2'3. The property “to have an unsolvable
word problem” is stronger than the property “to be non-locally finite”. In [5] Adian
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constructed an example of a group, presented by an infinite recursive set of relations
in the variety B,, which has an unsolvable word problem. In [6] he and Makanin
posed a question: whether there exists such an example with finitely many defining
relations?

The first example of a periodic group variety with unsolvable word problem is
given by the following theorem by the second author of the survey.

Theorem 6.15 (Sapir, [345]). The word problem is unsolvable in the variety
A, B, for every odd p > 665 and every prime r # p.

The ideas of the proof are presented in Section 7.2.9. With the use of methods
developed in [345], the following theorem has been recently proved by the first author
of this survey.

Theorem 6.16 (Kharlampovich, [186]). If n = pm, where p is prime > 3 and
m either has an odd divisor > 665 or n > 2% then there exists a group, finitely
presented in the variety B,, with unsolvable word problem.

The main idea of the proof is the embedding of a group similar to the one con-
structed in [345] into a finitely presented group inside B,,.

6.6 The Generalized Freiheitssatz

As we already mentioned in Section 5.5, the basic theorems about groups with one
defining relation, the Freiheitssatz and the solvability of the word problem, were
proved by Magnus in [232], [231] (see also [229]). All the necessary definitions are
given in Section 5.5.

The generalized Freiheitssatz for the variety of all groups was conjectured by
Lyndon [199]. Romanovskii proved Lyndon’s conjecture and the validity of the gen-
eralized Freiheitssatz for the varieties A™ [326] and N, [327]. Yabangi proved it for
the varieties AN; and My A. C. K. Gupta and N. S. Romanovskii [131] proved it for
the variety ZA.

It is interesting that in some sense Romanovskii proved the generalized Frei-
heitssatz for the variety of all groups and for the variety A" simultaneously. He
showed that if F is the absolutely free group given by n + m generators z1,...,Z,1m
and N is a normal subgroup of F' generated by m elements, then there exist n gener-
ators x;,, ..., x;, with the following property: If H is the subgroup of F' generated by
Ty ..., then H® = HA NF® for any k. Here F*) is the k-th derived subgroup
of F.

The generalized Freiheitssatz for the variety of all groups is now just a consequence
of the fact that the intersection of all derived subgroups of a free group is trivial.

The generalized Freiheitssatz for the varieties of nilpotent groups follows from the
corresponding result of Romanovskii for pro-p-groups from [327]. A pro-p-group is a
projective limit of finite discrete p-groups. A free pro-p-group F(X) on a set X is the
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projective limit of the groups L(X)/N, where L(X) is the free (discrete) group on X,
and N runs through the normal subgroups of index a power of p, with N containing
almost all the elements of X. An identity in the class of pro-p-groups has the form
f =1 where f is an element of F(X), where X is a countable set. This identity is
said to hold in a pro-p-group G if every continuous homomorphism from F(X) into
(G sends the element f to 1. By the analogy with discrete groups, one can define the
notion of a variety of pro-p-groups, and the notion of a pro-p-group given in a variety
by generators and relations. Romanovskii proved that the generalized Freiheitssatz
holds in the variety of all pro-p-groups, in the variety of pro-p-groups nilpotent of
step ¢, and in the variety of pro-p-groups solvable of step k.

Finally notice that the Freiheitssatz does not hold in every variety of groups.
For example, it does not hold in the variety B,, where p and ¢ are distinct primes.
Indeed, let G be the group given in B,, be two generators z,y and one defining
relation xPy? = 1. It is easy to see that this relation implies #? = 1 and y? = 1. Thus
neither « nor y generate a relatively free group in B,,. A similar argument shows
that the Freiheitssatz holds in a periodic variety of groups only if the exponent of this
variety is a prime power.

Problem 6.5 Prove or disprove the (generalized) Freiheitssatz for the variety B,
where p is a prime.

6.7 The Isomorphism Problem And Related Problems

The construction used for the proofs of the results about the unsolvability of the word
problem in varieties of solvable groups, as in the cases of Lie and associative algebras,
is based on interpretations of either Minsky machines (see Section 7.2) or systems
of linear differential equations (see Section 7.6.2). As we have already mentioned
in Sections 4.5 and 5.6, a program of the Minsky machine, or a system of linear
differential equations can be chosen in such a way that the group with unsolvable
word problem will be Hopfian.
Hence by Connection 2.1 the following result is true.

Theorem 6.17 All varieties of solvable groups with undecidable (resp. strongly
undecidable) word problem enumerated in the previous section have undecidable (resp.
strongly undecidable) isomorphism problem.

Asin the case of Lie algebras, we do not know very many non-locally finite varieties
of groups with decidable isomorphism problem. In fact the largest known class of
group varieties with decidable isomorphism problem consists of products of nilpotent
and locally finite varieties, and their finitely based subvarieties. Even for such varieties
the isomorphism problem is extremely non-trivial.

The isomorphism problem for finitely generated nilpotent groups was solved in
the positive by Grunewald and Segal [122], [123]. Later Segal [366], [365] proved the

following more general result.
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Theorem 6.18 (Segal, [366], [365]). There exists an algorithm that given two fi-
nite presentations of polycyclic-by-finite groups, decides if these groups are isomorphic
and if so gives an explicit isomorphism.

The proof in [365] is based on the same ideas as the proofs in [122] and [123].
These ideas are the following.

To prove the solvability of the isomorphism problem for polycyclic-by-finite groups
we first of all reduce this problem to the analogous problem for torsion free polycyclic-
by-finite groups. For any two finitely generated torsion-free polycyclic-by-finite groups
GG1 and (G5, one can find numbers n; and ny that satisfy the following two properties:

1. the semidirect product of GG; and Aut(G,;), where i = 1,2 is effectively embed-
dable into the group of invertible integer matrices of order n;, GL,, (Z), (we
denote this embedding by fg,). Here “effectively embeddable” means that we
can compute the image of each generator of G;

2. Groups (7 and (G are isomorphic if and only if ny = ny = n and there exists
an integer matrix A € GL,(Z) such that A™'BcA = Sg.

Now we can consider the set of all polycyclic-by-finite subgroups of the group
G L,(Z) for some n. The group GL,(Z) acts on this set by conjugations. Our goal is
to check if two subgroups belong to the same orbit of this action.

An important feature of the papers of Grunewald and Segal is a (partial) reduction
of this problem to the problem of whether two vectors of a vector space with an action
of GL,(Z) are in the same orbit of this action.

This shows that one has to consider actions of the group G'L,,(Z) on vector spaces.
Groups G'L,(Z) belong to the class of so-called arithmetic groups (see the definition
in [55], [366]) which arise in algebraic topology, number theory, etc. There exists a
deep theory of actions of arithmetic groups (see, [55]). The first problem was to make
this theory “effective”, that is to find algorithms where only existence theorems were
known. A solution to this problem was an important achievement of Grunewald and
Segal.

Using these algorithms they proved that if an action of an arithmetic group on a
vector space is in some natural sense explicitly given then it is algorithmically decid-
able whether two elements are in the same orbit. This result has many applications
to different algorithmic problems not only in algebra but also in number theory. We
have mentioned some of the applications to the isomorphism problem in Sections 4.5,
5.6. In particular this result allowed Grunewald and Segal to complete the solution
of the isomorphism problem for nilpotent and then for polycyclic-by-finite groups.

It is worth mentioning that the solvability of the problem of isomorphism to a
fixed finitely presented nilpotent group G had been proved earlier by Pickel [296].
We have mentioned his result in the Introduction. Recall that two universal algebras
are called quasi-isomorphic if they have the same finite homomorphic images. Pickel
proved that the set of non-isomorphic finitely generated nilpotent groups which are
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quasi-isomorphic to a fixed group G is finite. Later Grunewald, Pickel and Segal
extended this result to arbitrary polycyclic-by-finite groups [124].
By a result of Groves [119], every finitely generated group in a variety is polycyclic-
by-finite if and only if this variety does not contain varieties A,.A for all prime p.
Thus the varieties A, A are the smallest varieties which are not covered by The-
orem 6.18. Unfortunately even for these varieties the solvability of the isomorphism
problem is not known.

Problem 6.6 [Is the isomorphism problem decidable in the following varieties:
a) A, A, where p is prime;
b) AA (the variety of metabelian groups);

C) NQ.A 9

It is quite possible that the answers in cases a), b), c¢) are different.

The problem of isomorphism to a fixed group G in these varieties is also hard
and the answers are not known. Groves and Miller [121] showed that it is decidable
whether a finitely presented metabelian group is a free metabelian group. Thus the
problem of isomorphism to a free metabelian group is decidable in A% Recently
Noskov [283] announced that this result can be obtained by a Pickel-type argument:
for every finitely generated free metabelian group G there are only finitely many
finitely generated metabelian groups which are quasi-isomorphic but not isomorphic
to GG. Pickel [297] constructed an example of infinitely many non-isomorphic but
quasi-isomorphic finitely generated metabelian groups.

Problem 6.7 Describe varieties of solvable groups in which every set of quasi-
isomorphic finitely generated groups is finite. Does the variety A, A satisfy this prop-
erty for some p?

Notice that if the answer to the second half of this problem is negative then the
first part has an easy solution: nilpotent-by-locally finite varieties. This follows from
the result of Groves [119] mentioned above.

The general isomorphism problem for metabelian groups is actually a commu-
tative algebra problem. Connections between algorithmic problems for metabelian
groups and algorithmic problems for modules over commutative rings are discussed,
for example, in [26]. These connections are based on the fact that the first derived
subgroup G’ of any metabelian group G is a module over the commutative ring
Z(G/G"). If G is finitely generated then the ring and the module are finitely gener-
ated. This follows from the result of P.Hall that every normal subgroup in a finitely
generated metabelian group is finitely generated as a normal subgroup [137], [138].
If two metabelian groups are isomorphic then these rings must be isomorphic and
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the modules must be isomorphic also. The isomorphism problems for finitely gen-
erated commutative rings and for finitely generated modules over finitely generated
commutative rings are very hard and the answers are unknown.

The preceding results may lead to the impression that varieties of solvable groups
are no better algorithmically than arbitrary varieties of groups. Baumslag, Cannonito
and Miller showed that this is not so: many algorithmic properties which are unde-
cidable in the variety of all groups turn out to be decidable in varieties of solvable
groups. Thus even though we can’t say in general whether or not two finitely pre-
sented solvable groups are isomorphic, we can decide if these groups have important
properties in common. The following fundamental theorem was proved in [25].

Theorem 6.19 (Baumslag, Cannonito, Miller [25]). There is an algorithm which,
given a finite presentation of a group in the variety A", decides if the group is poly-
cyclic, and if so, produces the polyciclic presentation of this group.

This result immediately implies the following striking corollary.

Corollary 6.1 The following properties of a group finitely presented in the variety
A" are effectively recognizable: polycyclic; supersolvable; nilpotent; Abelian; finite;
cyclic; trivial.

In the case of metabelian groups one can get even more information.

Theorem 6.20 (Baumslag, Cannonito, Robinson [26]). Let G be a relatively
finitely presented metabelian group. There is an algorithm which finds a finite presen-
tation of the Z(G/G")-module G'. Hence there is an algorithm which finds the centre
Z(G), and also a finite presentation of Z(G). There is also an algorithm which finds
(a finite subset whose normal closure is) the Fitting subgroup Fit(G).

This theorem has the following corollary.

Corollary 6.2 Let GG be a relatively finitely presented metabelian group. Then
there exist algorithms which can:

decide if G is torsion-free;

decide if a given element of G has finite order;

enumerate all possible orders of elements in G;

find the limit of the lower central series of G

decide if a finitely presented metabelian group is residually nilpotent;

find the Frattini subgroup of G.
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6.8 The Conjugacy Problem

The conjugacy problem is undecidable in varieties with undecidable word problem.
From the undecidability of the word problem, it follows that every variety containing,
for example, ZN,A has undecidable conjugacy problem. On the other hand, the
conjugacy problem for finitely generated metabelian groups was shown to be decidable
by Noskov [282]. In [26], Baumslag, Cannonito and Miller presented an algorithm
which, given a finitely generated metabelian group G and two sequences zq,...,z,
and yq,...,y, of elements of GG, decides if there exists an element g of G such that
o =y, fori=1,2,...,n.

Varieties which are above the variety of metabelian groups are much less studied.
In [130] C. Gupta, Herfort and Levin proved the solvability of the conjugacy prob-
lem for some relatively free centre-by-metabelian groups including the free centre-by-
metabelian groups of rank 2 and 3. In [132], C. Gupta, N. Gupta and Levin solved
the conjugacy problem for all relatively free centre-by-metabelian groups. Earlier
Kargapolov and Remeslennikov [164] solved the conjugacy problem for free solvable
groups.

Problem 6.8 Describe solvable group varieties with decidable conjugacy problem.
Is it true that the conjugacy problem is decidable in a) every centre-by-metabelian
variety b) every subvariety of Ny A?

See also the survey articles Gupta [129] and Hurwitz [148] for the results on
conjugacy separability. Recall that a group G is conjugacy separable if for every non-
conjugate pair of elements x and y in G, there is a homomorphism ¢ onto a finite group
H such that ¢(z) and ¢(y) are not conjugate. Finitely presented conjugacy separable
groups have solvable conjugacy problem [236]. The survey [148] also contains results
on the complexity of solutions to the conjugacy problem and some open problems.

6.9 The Uniform Word Problem For Finite Traces

The uniform word problems for the class of finite groups and for the class of finite
nilpotent groups was posed by Mal’cev and written down by Kargapolov in [200] in
1965. In 1978 Slobodskoj proved the unsolvability of this problem for the class of all
finite groups [378]. In 1979 the first author of this survey proved the analogous result
for finite nilpotent groups [180]. In [181] she investigated some other classes of finite
groups. Let N be the class of all nilpotent groups and F be the class of all finite
groups. Let X' be an arbitrary class of groups such that ZA,A C X,

Theorem 6.21 (Kharlampovich, [180], [181]). The uniform word problem is un-
decidable for the following classes of groups: F; N; FON; FNX; NNX; NNXNF.

Notice that a statement similar to Conjecture 5.3 does not hold for groups: there
exists a group variety where the word problem is undecidable but the uniform word
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problem for finite traces is decidable. Indeed, we have mentioned that there exist
periodic group varieties with undecidable word problem (Theorems 6.15, 6.16). The
solvability of the uniform word problem for finite traces of these varieties follows from
the positive solution of the restricted Burnside problem (see Connection 2.10).

Nevertheless it is possible that a statement similar to Conjecture 5.3 may hold for
solvable group varieties.

6.10 The Higman Property

In Kukin [214] it was claimed that for any variety V containing N5.A every recursively
generated group in V can be embedded into a group finitely presented in VA% The
proof contains a serious gap (see Section 7.5), so this assertion can only be considered
a conjecture.

Notice that even if Kukin’s theorem were correct, it would not provide an example
of a proper Higman variety of groups. In all proper Higman varieties that are currently
known, every finitely generated group is finitely presented. On the other hand we do
not know of any “sufficiently large” proper variety of groups which has been proved
to be non-Higman. All we know is that, as in the case of Lie algebras, not all
natural varieties of groups are Higman varieties. For example, the variety Z.A4? is
non-Higman. It is a corollary of the fact that the word problem is decidable in this
variety (Romanovskii [328]), but there are examples of recursively presented groups
in this variety with undecidable word problem.

Thus we formulate the following problems.

Problem 6.9 Prove or disprove that the varieties A" are Higman varieties.

Problem 6.10 Prove or disprove that the varieties B, are Higman varieties for
large n.

As in the case of Lie algebras we say that a variety is strongly Higman if every
recursively presented group in the variety is embeddable in an absolutely finitely
presented group belonging to this variety. From Bieri and Strebel, [38] it follows that
the variety N5.A is not strongly Higman. The varieties ). constructed in Theorem
6.12 are also not strongly Higman.

Problem 6.11 Prove or disprove that the variety B, for large n is strongly Hig-
man.

Notice that a positive answer to this question would imply the existence of a
finitely presented infinite group of finite exponent. This would solve the well known
problem of finding such groups. As far as we know, this problem was first posed by
P.S.Novikov in the fifties or early sixties.
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6.11 Locally Residually Finite Varieties

The following result shows that in the group case (like the cases of associative and
Lie algebras and unlike the case of semigroups) there are varieties with solvable word
problem which contain relatively finitely presented non-locally finite groups.

Theorem 6.22 (Kharlampovich, Sapir, [192]). For any prime p, p > 3 there
exists a relatively finitely presented group belonging to the variety No AN By A which
is not residually finite.

Recall that the varieties A, A, A (p,q are distinct primes) are minimal varieties
with respect to three properties: to have undecidable word problem, to residually
finite relatively finitely presented groups and to be locally residually finite (see The-
orem 6.9).

We do not know if there are non-locally residually finite varieties of groups where
every relatively finitely presented group is residually finite. It is possible that these
two properties coincide in the group case (the situation for other types of algebras is
described in the previous sections of the survey).

The study of locally residually finite varieties of groups was initiated by A.Mal’cev
[236] and P.Hall [138] in 1959. P.Hall also initiated the study of varieties with the
property F'G = F'P which is, of course, equivalent to the property that every finitely
generated group in the variety has the ascending chain condition for normal sub-
groups. As in all other cases considered in this survey these two properties turned
out to be very close. Hall [138] proved that every Abelian-by-nilpotent variety of
groups satisfies these properties.

A variety of groups is called metanilpotent if it is contained in a product of two
nilpotent varieties. A description of metanilpotent varieties of groups which satisty
these properties has been obtained by Groves [118]. The key role in the description
is played by the varieties 7, (p is prime) generated by all 2-generated groups which
belong to B, AN ZA? if p is odd, and which belong to A3AN ZA, A if p = 2.

There are two other descriptions of these important varieties. In [116], Groves
found for every p a nice group which generates 7,. He uses the so called crown
products of groups introduced by B. H. Neumann in [278]. Let G and H be groups
and consider the (restricted) wreath product GwrH. Let K be a subgroup of the
centre of . Denote by N the set of all those vectors ¢ of the base group G of
GwrH such that

1. all coordinates of ¢ are in K;

2. the product of coordinates of ¢ is 1.

Then N is a normal subgroup of Gwr H and we define the crown product, Gerg H,
of G by H with amalgamated subgroup K to be (GwrH)/N. Intuitively the direct
product GH) in GwrH is replaced by the relevant central product in the crown
product.
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Denote by D,, for each odd prime p, the non-Abelian group of exponent p and
order p® and by D, the dihedral group of order 8. Let Z denote the additive group
of integers. Let T}, be the crown product D,crZ where the amalgamated subgroup is
the centre of D,. Groves proved [116] that for every prime p T, generates the variety
7,.

Another description of 7, has been recently found by Kharlampovich and Gilden-
huys in [189]. They proved that for odd primes p the variety 7, coincides with
ZA*N B,A, and T, is the subvariety of ZA;A N ByA defined by the identities

(($h7 T1,T4...Th-5, (eTz, eTs))((ll?h, T, Tq4...Th-s, ($37 Il))((u'ﬂm T3,T4...Th-5, (51717 $2))
=1

and
((I17I27I4. e Lh—5, (fCl,fCQ)) = 17h = 475, e

This set of identities is infinite. By the result of Krasilnikov [204] this variety is
finitely based, but a finite basis of identities of 73 is not known.

Varieties 7, were introduced by Ph. Hall in [137]. He proved that 7, contains non-
residually finite finitely generated groups and does not satisfy the condition FIG' =
FP. In [65], N. Gupta, C. Gupta and Rhemtulla proved that these are precisely
all the minimal non-locally residually finite varieties of centre-by-metabelian groups.
Groves [118] extended this result to metanilpotent varieties and obtained the following
description of locally residually finite metanilpotent varieties of groups.

Recall that if x,y are elements of a group GG then z¥ denotes y~'zy, and if ¢t =
y*¥1 4. . . 4y* is an element of the group ring Z < y > then z! denotes Vv g

Recall also that (z,y) denotes the commutator 2=y~ tzy.

Theorem 6.23 (Groves, [116], [118]). If V is a variety of metanilpotent groups
then the following conditions are equivalent:

1.V s locally residually finite.
2. VN NLA is locally residually finite.

3. All finitely generated groups in 'V satisfy the ascending chain condition for nor-
mal subgroups (that is V satisfies FG = FP).

4. The set of finitely generated groups in'V is countable.

S

V does not contain any of the varieties T,, p is prime.

6. V satisfies an identity of the form

k-1

(2, 9), (2.00) = T, ((2,9), (=, 1) ), (25)

where f; belongs to the group algebra Z < u > and w is a word from the verbal
subgroup of the free group F' =< x,y, z,t,u > corresponding to the variety Ny A.

145



Notice that conditions 2, 6 are not contained in [118] explicitly, but one can easily
extract these conditions from this paper.

Condition 4 is added by the second author. The fact that it is equivalent to the
other conditions can be proved as follows. First of all one can show that the centre
of the free 2-generated group in 7, contains an infinitely generated Abelian group
of exponent p (this was essentially proved in C. Gupta [128] and F. Cannonito and
N. Gupta [67]; using this fact Cannonito and N. Gupta constructed an example of a
2-generated centre-by-free metabelian group with an unsolvable word problem). Thus
the free group in 7, has a continuum of homomorphicimages. Since the automorphism
group of every finitely generated group is countable, the cardinality of the set of 2-
generated groups in 7, is continuum. Thus any variety with countably many finitely
generated groups cannot contain varieties 7,. This gives the implication 4 — 5. On
the other hand any variety with the property F'G = FP contains only countably
many finitely generated groups. This gives the implication 3 — 4.

The second author of this survey has noticed that there exists an algorithm which
checks condition 5 in Theorem 6.23. A sketch of the proof follows. Let ¥ be a finite
system of identities. We need to check whether there exist p such that the variety 7,
satisfies ¥. Since 7, is generated by T,crZ it is enough to check whether 3 holds in
T,. As we mentioned above T}, is a semi-direct product of an infinite central product
of groups D, of order p* and exponent p if p is odd or 4 if p = 2. From this, it is not
difficult to deduce that the fact that ¥ holds in 7}, is equivalent to a formula of the
following type.

(Va1,...,2,)(¢1(Mod p))or(ga(Mod p)lor...(¢n(Mod p))

where ¢; is a conjunction of linear equations in z1,...,z, with integer coefficients
which do not depend on p. This formula is equivalent to a formula of the following
form:

(Var,... 22} = O(Mod p)

where % is a polynomial in z,...,z, with integer coefficients. It is easy to show
that this formula holds in the ring Z if and only if coefficients of ) are divisible by p.
Therefore the algorithm for verifying condition 5 is the following. Given ¥, compute
the polynomial 1». Then compute the greatest common divisor of the coefficients of
this polynomial. The variety given by ¥ contains 7, for some p if and only if this
greatest common divisor is not equal to 1.

Conjecture 6.4 The only minimal non-locally residually finite varieties of solv-
able groups are the varieties T, and the varieties A,A;A (p,q are distinct primes). A
variety of solvable groups is locally residually finite if and only if it does not contain
any of these varieties.

Notice that the identity (25) plays the same role as the identities (10) in the case
of semigroups, (16) in the case of associative rings, (22) in the case of Lie algebras. It

146



is easy to see that all these identities have similar forms, although the identity (25)
looks more ugly. We don’t know whether there exists a nicer identity characterizing
locally residually finite metanilpotent varieties of groups.

Other properties from the Club of residually finite varieties have not been thor-
oughly studied in the group case.

Problem 6.12 Describe solvable locally Hopfian group varieties.

By Theorem 6.23 every locally residually finite metanilpotent variety of groups
satisfies both these properties (see Section 6.11).

P.M.Neumann noticed [279] that if V is a variety of solvable groups and the free
group Fi(V) is non-Hopfian then there are uncountable many k-generated groups in
V. This led him to the following problem.

Problem 6.13 (P.M.Neumann, [279], Problem 16) Is it true that a locally solv-
able variety contains finitely generated nonhopfian groups iff it contains uncountably
many non-isomorphic finitely generated groups.

Using a result of Groves [119] it is easy to obtain a description of solvable varieties
of groups which are locally representable by matrices over a field of characteristic 0.
As far as we know this result has never been published before.

Theorem 6.24 A solvable variety of groups is locally representable by matrices
over a field of characteristic 0 if and only if it is nilpotent-by-locally finite.

The “if” part follows from the fact that every polycyclic-by-finite group is repre-
sentable by matrices [366]. The “only if” part follows from the fact that the wreath
product Z,wrZ is not representable by matrices over a field of characteristic 0 because
it has infinitely many elements of order p (see Mal’cev [235]).

We do not know a description of varieties which are locally representable by ma-
trices over arbitrary fields. But it is easy to prove that this class of varieties is strictly
smaller than the class of locally residually finite varieties. Indeed, the variety A, A
where p and ¢ are distinct primes is not locally representable by matrices over any
field because the group Z,,wrZ is not representable (the group of matrices over a
field of characteristic p cannot have infinitely many elements of order ¢).

Problem 6.14 Describe varieties of solvable groups which are locally representable
by matrices over commutative rings. Does this class of varieties coincide with the class
of locally residually finite varieties?

Some algorithmic properties of centre-by-matabelian varieties of groups may be
found in N. Gupta and Cannonito [67]).
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6.12 Residually Finite Varieties of Groups

Residually finite varieties of groups have been completely described by Ol’shanskii in
[289], see 3.43. We recall this theorem here.

Theorem 6.25 (Ol’shansky, [289]). A variety of groups is residually finite if and
only if it is generated by a finite group with Abelian Sylow subgroups.

Variety V is called residually small if all subdirectly indecomposable systems in
Y form a set, i.e. their cardinalities are bounded by some cardinal. Every residually
finite variety is residually small. A group variety is called a SC-variety if it is con-
tained in the product of solvable and Cross (generated by a finite group) varieties.
Sapir and Shevrin described residually small SC-varieties.

Theorem 6.26 (Sapir, Shevrin, [35}]). An SC-variety of groups is residually
small if and only if it either is residually finite or is a join of some residually finite
variety and the variety of all Abelian groups.

Problem 6.15 (Sapir, Shevrin, [354]). Is it true that a group variety is residually
small if and only if it either is residually finite or is a join of some residually finite
variety and the variety of all Abelian groups?

6.13 Elementary Theories

The main result about elementary theories of varieties of groups is the beautiful
theorem by Zamjatin.

Theorem 6.27 (Zamjatin, [422]). The elementary theory of a variety V is de-
cidable if and only if V consists of Abelian groups.

This theorem answered the well-known question of Tarski and Ershov. FEarlier
Ershov [93] proved that if the variety contains a finite nonabelian group, then the
elementary theory of this variety is undecidable. This result is weaker than Zamjatin’s
result, because there exist nonabelian varieties of groups in which all the finite groups
are Abelian [287].

The following theorem is not mentioned in [422], but Zamjatin has observed that
it follows from the proof in [422].

Theorem 6.28 (Zamjatin). The elementary theory of the finite trace Vi, is
decidable if and only if all groups in V¢, are Abelian.
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7 Methods

You know my methods. Apply them.
Sir Arthur Conan Doyle “A Study in Scarlet”

Here we would like to present the main methods of proving decidability and un-
decidability of algorithmic problems. In order not to get lost in insignificant (while
technically complicated) details, and to show the genesis of the most general methods
and ideas, the results discussed here will not be presented in their strongest form. We
will also omit some details, leaving ideas in their purity.

7.1 The Decidability of the Word Problem

The first and the most universal method of proving the decidability of the word
problem was discovered by Mal’cev [236]. He noticed a remarkable connection between
the residual finiteness and the decidability of the word problem.

We mentioned this connection in the introduction (see Connection 2.4).

In many cases (see, for example, Section 3) a variety has decidable word problem
only if all algebras finitely presented in this variety are residually finite. But this is
not always so: as we have seen before, the variety N5A of Lie algebras or groups
contains non-residually finite relatively finitely presented algebras (groups) and has
solvable word problem.

Thus one needs other methods of proving the decidability of the word problem.

There are, of course, methods that apply when we are solving the word problem
in an algebra given by a specific system of defining relations. For example the word
problem is decidable in the case where one can find a finite terminating Church-Rosser
presentation. Then there exist a normal form for every word over the alphabet of
generators and an effective procedure which transforms every word to its canonical
form (see Section 2.9). We don’t know if every variety with solvable word problem is
Church-Rosser, thus we need other methods to solve the word problem.

One of these methods is in a sense opposite to the Church-Rosser method. Instead
of finding the “canonical” word in the set of words which are equal to a given word
u one considers this set as a whole and finds some “hidden” structure on this set. To
illustrate this method we will consider two examples: a variety of semigroups and a
variety of groups.

7.1.1 Semigroups

Here we would like to present some ideas for proving the solvability of the word
problem in varieties of semigroups. This ideas were employed initially in Biryukov
[41], and later in Mel'nichuk, Sapir, Kharlampovich [268], Mel'nichuk [266], and Sapir
[335]. To illustrate these ideas we will show how they work in the variety of commu-
tative semigroups. Other methods for proving the solvability of the word problem in
this variety have been discussed in Section 3.4.1.
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First of all recall that the free n-generated commutative semigroup A, with an
identity element is simply the direct product of n semigroups of natural numbers.
Therefore every element of this semigroup may be represented by a vector of natural
numbers'®. We can consider A,, as a partially ordered set with the natural coordinate-
wise order. It is clear that u < v in A, if and only if u divides v. It is easy to prove
that every subset M of A, has minimal elements, and every element of M is greater
than or equal to a minimal element. The following simple statement is attributed to

Dickson.

Lemma 7.1 (Dickson, [83]). Every infinite set T' of elements in A, contains two
comparable elements.

Let R be a finite set of defining relations, i.e. a finite subset of A, x A,. We want
to show that the word problem is decidable in the factor semigroup of A,, modulo the
congruence generated by R. In other words, we want an algorithm, which, given a
pair of elements (u,v) in A, x A,, determines if u equals v modulo relations of R.

Take an element v in A,. We will describe the set M(u) of all elements of A,
which are equal to u modulo R.

For every subset X of A, let minX denote the set of minimal elements of X.

Every element v in M (u) is greater than or equal to an element w from minM (u).
Hence v = we for some e. Since both v and w are equal to u modulo R we have that
v = ue (Mod R). Such an element e is called a unit for u. Let E(u) be the set of all
units. Then E(u) is a subsemigroup of A, and is closed under taking quotients, that
is if e1f = ey and e, e; are units then f is also a unit. This implies easily that the
semigroup E(u) is generated by the subset minF(u)of its minimal elements. Notice
also that if e is a unit for v and w € M(u) then, of course, we € M (u).

By Lemma 7.1 both sets minM (u)and min£/(u)are finite. Therefore we have the
following description of M (u):

Mu)={( JI ¢€*)w|weminM(u),k €N}.
eeminE(u)

This description would give us a solution of the word problem, if we had a process
of finding the sets min M (u)and min£ /(). This process is almost straightforward. We
simply apply the relations from R to u until we find all elements from minM (u)and
min£(u). Of course, the most tricky thing in such processes is stop sign: the sign
which shows that we have found all the elements that we need, and we can stop and
relax. This is organized as follows.

Denote the maximal length of words from R by ¢(R). If M is a subset of A,, then
let T(M) be the set of all elements of A,, which can be obtained from elements of
M by applying relations of R (at most one application for each relation and for each
element of M).

167ero is also natural.
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Let us construct a sequence of sets My C M(u). Let My = {u}. Suppose we
have constructed the set Mj. Let Ej be the set of all quotients of elements from M.
Notice that £y C E(u).

Let us apply T' to My many times until we obtain all elements of the form

( II € w

e€cMInE,

where w € minMj, and the sum of k. does not exceed ¢(R). This set is finite and each
element in it is equal to u modulo R, so we will find all of these elements sooner or
later. Then let My, denote the union of these sets.

By Lemma 7.1 there is a number & such that

minMy = minMpyq, mink, = minFj,4.

We claim that then minM(u)is equal to minMjy, minF(u)=minky. Indeed, it is
enough to show that if we apply a relation from R to a word

v = H eke)'w (26)

e€cMinkg,

where w € minM,, then we obtain a word w of the same form. If the sum of k. does
not exceed ¢(R) then this follows from the definition of M and from the equalities
min My=min M, minFy=minFj .

Let this sum be greater than {(R). Any application of a relation from R touches at
most {(R) units e from the right hand part of (26). Therefore v = (HeeminEk e )y,
and w = (HeeminEk e”)w;, where vy belongs to M,, and w; is obtained from v; by
applying a relation from R. But then w; is of the form (26), and so is w. This
completes the proof.

7.1.2 Nilpotent-by-Abelian Groups

Let us consider the group variety N3A and prove that the word problem is decidable
there (Theorem 6.4).

Let us take any group G =< X >, finitely presented in N5.A. The group GG may
be represented as a factor of the relatively free group F' =< X > of NVA.

Therefore (G = F'/R for some normal subgroup R which is finitely generated as a
normal subgroup. Given a word w over X, we want to find out if w = 1 in G. We
can consider w as an element of F. Then w = 1 in G if and only if w belongs to R
as an element of F'. Thus we have the first (simple) reduction:

The word problem in G ts decidable if and only if the membership problem for R
in F' is decidable
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This reduction allows us to consider F'instead of (. Usually free groups in varieties
have much better structure than other members of these varieties. For example F
certainly has a decidable word problem. So it is easier to work with F' than with G.

Still, it is not clear how to solve the membership problem for R. But we can find
a somewhat bigger normal subgroup for which the membership problem is decidable.
For example consider the subgroup F”R (here F" is the second derived subgroup of
F). The factor group F'/F"R is finitely presented in the variety of metabelian groups.
It is known that the word problem in the variety of metabelian groups is decidable (P.
Hall [138]). Therefore the membership problem for the subgroup F”R is decidable.

So we can check if our word w belongs to F”R. If we are lucky then w ¢ F"R
and so w ¢ R. In the worst case w € F”R and our question of whether w belongs
to R remains unanswered. But, nevertheless, we can gain some profit from these
considerations. Indeed, since w € F"R, we can represent w as a product pr with
p € F", r € R. This may be done effectively in the following way. We can lift F",
R, and w up to the absolutely free group F over X. Then F” will lift to F", R will
lift to some normal subgroup 7' of F' generated as a normal subgroup by a finite set
(for each generator of R we take one pre-image of it in F'), and w will lift to some
reduced word w’. We can enumerate all elements of F” and T and their products.
One of these products p'r’ is equal to w’ (in the absolutely free group). When we
return down to F, p’ and ' will turn into the desired p and r. Since r € R, it is
enough to decide if p € R. The word p is better than an arbitrary w since p € F".

Thus we may suppose that w € F"

This is the second reduction. Now we have to consider the membership problem
for the subgroup RN F”.

Consider F" first. This is an Abelian subgroup of F. If F" were finitely generated
then RN F" would be a finitely generated Abelian subgroup and the membership
problem for R N F" would be trivially decidable. Unfortunately F” is not finitely
generated as an Abelian subgroup (if F' is not a cyclic group).

But we should recall that not only finitely generated Abelian groups have nice
algorithmic properties. Finitely generated modules!” over “good” (commutative,
Noetherian, etc.) rings are almost as nice. In particular the membership problem
is decidable for every submodule of a finitely generated module over such a ring. So
why not define a module structure on F”? There is a standard way of doing this.

Any Abelian normal subgroup A in a group H may be viewed as a right module
over the group algebra ZH where the action of ZH on A is defined by the following
formula:

ao(d tg) = Ma%.

1"Here and after we consider only right modules.
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It is clear that this module has a big annihilator. For example ZA and even ZCg(A)
(here Cr(A) is the centralizer of A in H) is in this annihilator. Therefore A may be
considered as a module over ZH/N for every normal subgroup N < Cg(A).

In our case F' € Ny A. Therefore F" is Abelian and Cz(F") > F'. Hence F" may
be considered as a right module over the ring K = ZF /F'. This ring is just the ring
of polynomials over Z with X U X! as the set of unknowns, factorized by the ideal
generated by elements xz™' — 1 for all z € X. Thus this is a commutative, finitely
generated domain which is certainly good.

Now how about F"? Is it finitely generated as a module over K? Unfortunately,
it is not. But - an important thing - we can make it into a finitely generated module
by increasing K! Indeed, by definition, the second derived subgroup £ consists of all
elements which are products of double commutators [[a, b], [c, d]] where a,b,c,d € F.

Let us define a new action of generators from X on F”:

[la, 8], [¢,d]] oz = [[a, ], [¢, d]][[a, 8], [¢, d]"].

It is amazing that this wild (but beautiful) action is well defined and can be extended
to another action of K = ZF/F' on F". Moreover this action commutes with the first
action of K. Thus we can consider F” as a module over the tensor product K @ K.
The last ring is, of course, a finitely generated domain, and so it is as good as K. It
can be verified that F" is a finitely generated module over K ® K. You see: we have
found a hidden module structure on F" and now F" looks very nice.

But F" is not the main character of our play. We are mainly interested in R, or
more precisely, in BN F”. This is a normal subgroup and thus a K-submodule under
the first action of K (normal subgroups are closed under conjugations!). But we are
not lucky enough: this is not necessarily a K ® K-submodule. This seems to be a big
difficulty. And indeed this is the most involved and technical point of our scheme.

The idea is to split one “beast” thing (RNF") into a number of “beauty” things. In
our case RN F" turns out to be a sum of three Abelian groups A;+ Ay + A3 where A,
is finitely generated as a subgroup (Z-module), A, is finitely generated as a normal
subgroup (K-module) and Aj is finitely generated as a K @ K-module. Moreover
generators of A, Az, A3 may be found effectively (see Kharlampovich [184] for details).
Therefore the membership problem for R has been reduced to the membership problem
for the sum of finitely generated modules Ay, Ay, As over different rings.

Now we can apply the following powertul result.

Lemma 7.2 Let M be a D—module where D is a finitely generated commutative
domain. Let D1 < Dy < ... < D,, < D be a sequence of finitely generated subrings
of D. Let N; (i = 1,...,m) be a finitely generated D;-submodule of M. Then the
membership problem for N = Ny + Ny + ...+ N, is decidable.

This Lemma gives us the decidability of the membership problem for B N F”,
which, in turn, implies the decidability of the word problem in N;A.
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Lemma 7.2, the key Lemma in the above proof, has its origin in an article by
Romanovskii (see [325]). It was subsequently modified by other authors who adapted
it to their needs. For example, it turned out (see Romanovskii [325], Sapir [343])
that the restrictions on D may be weakened. Without big troubles the commutative
domain D may be replaced by a group algebra of a nilpotent finitely generated group,
or by an arbitrary finitely generated ring which satisfies an identity of the form
[x1,29,...,2,] = 0.

Sometimes one has to drop the restriction that the subrings D; form a chain. In
such cases the situation needs a much more careful investigation.

Even if the subrings do not form a chain, there are usually some polynomial
connections between them (connections induced by the identities of the variety under
consideration). Let us clarify this a little bit.

The standard situation is the following. The ring D is generated by two sets of
the same cardinality {z; | ¢ < m} and {z; | ¢ < m}, D; is generated by the first set,

Dy is generated by the second set, and p(a;, ..., 2, Ty, .., %) = 0, ¢; < m, for
a polylinear polynomial p(ty, ..., tg, t1,..., 1) = [1(t; — ait;) and any rearrangement
{t1,...,1} of {1,...,k}. Here the elements a; belong to an algebraic extension of

the ground field. The word problem is reduced to the membership problem in a free
finitely generated D-module for the sum of three finitely generated modules Ay, A;, A3
where A; is a Z-module (a finitely generated Abelian subgroup), A; is a module over
Dy, Az is a module over D,.

Then the decidability /undecidability of this membership problem depends on
properties of the o;. If oy = «; for some ¢ # j then one can find Ay, Ay, A3 such
that the membership problem is undecidable (see an example in Section 7.6.3 below).
If all a; are different then the situation very much depends on deep number theoretic
properties of these roots (see Kharlampovich [184]).

One of the number theoretic problems which one has to deal with is the Problem
5.3 mentioned above.

7.1.3 Other Hidden Structures

It is interesting that a hidden module structure appears in the case of semigroups
also. We will call a semigroup S a semi-module over a semigroup A if there exists an
action o of A on S (i.e. a function o : A x S — S with (a1a3) 0 s = ay0(az03s))
which “agrees” with the operation in S: @ o (s182) = (a0 81)s2 = s1(a 0 s3) for every
a € A, sy,39 € S. The following result was proved by the second author.

Theorem 7.1 (Sapir, [3/8]) Let T' be a semigroup finitely presented in a variety
V satisfying one of the following identities'®

:any(zktk)pz(n—p)k — m(n—p)k(tk$k)pyznk’

18 As it was mentioned in Section 3, this condition is necessary for the decidability of the word
problem.
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xy"z = yrry™zyP, n > m.

and let every periodic group in'V be locally finite. Then there exists a semi-module S
over a commutative semigroup A such that T is “almost” a subsemigroup of S. More
precisely there is a semigroup Sy such that S is an ideal of S1 with S1/S finite and
nilpotent and T is a factor-semigroup of S1 over a congruence with all congruence
cosets finite.

This Theorem is one of the main tools in describing semigroup varieties with
decidable word problem.

The module structure is not the only possible hidden structure on the set of
words equal to a given word. For example if we are dealing with semigroups, groups,
or inverse semigroups, it is useful to draw these words on the Cayley graph of a
relatively free semigroup or group. Then the subgraph formed by these words may
have nice geometric properties, as in [263], which helps to solve the word problem
(or to prove its undecidability). Another possibility was discovered by Margolis and
Meakin in [247]. They considered inverse semigroups'? given by finitely many defining
relations of the form e¢ = f, where ¢ and f are words which are idempotents in the
free inverse semigroup (equivalently which are equal to 1 in the free group). It turned
out that if we take any such semigroup S, and a word u, and draw all words which
are equal to u in S on the Cayley graph of the free group, which is, of course, a
labeled tree, then we will get a set of vertices which may be given by a formula
from a decidable fragment of the second order theory of this tree. This implies the
decidability of the word problem in S. A similar method works if we consider certain
subvarieties of the variety of inverse semigroups. Only instead of the free group one
has to consider relatively free groups in the corresponding varieties of groups. Also,
as we have mentioned in Section 3.3.4, the set of words which are equal to a given
word in the free Burnside semigroup of index > 3 is a language recognizable by a
finite non-deterministic automaton.

7.2 Minsky Machines and the Undecidability of the Word
Problem in Varieties

7.2.1 Minsky Machines

One of the most powerful tools in proving the undecidability of the word problem is the
so-called Minsky machine. It was invented by Marvin Minsky in 1961%° (see Minsky
[272], [271], Mal’cev [233]). In the Computer Science literature Minsky machines are

19Gee Section 3.3.5 for the definitions of inverse semigroups and for a discussion of their role in
the theory of semigroups and groups.

20Tt is written in [272] that the concept of a two-tape non-writing machine was inspired by some
ideas of Rabin and Scott [309], and that it was suggested to M.Minsky by J.McCarthy that such a
machine might be equivalent to the ordinary Turing machine.
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usually called counter machines. Yu. Gurevich was the first to use Minsky machines
to prove the undecidability of an algorithmic problem in algebra [133] (see Sections
2.5, 3.4.2).

Let us give the “canonical” definition of a Minsky machine.

The hardware of a (two-tape) Minsky machine consists of two tapes and a head.
The tapes are infinite to the right and are divided into infinitely many cells numbered
from the left to the right, starting with 0. The first cells on both tapes always
contain 1, all other cells have (0. The head may acquire one of several internal states:
Go, - - -, GN; o 1s called the terminal state. At every moment the head looks at one cell
of the first tape and at one cell of the second tape. So the configuration of the Minsky
machine may be described by the triple (m, gx,n) where m (resp. n) is the number
of the cell observed by the head on the first (resp. second) tape, ¢; is the state of the
head.

Every command has the following form:
qi, € 6 — q;, Taa Tﬁ'

where ¢,6 € {0,1},a,8 € {—1,0,1}. This means that if the head is in the state ¢;
and it observes a cell containing € on the first tape and a cell containing 6 on the
second tape then it acquires the state ¢; and the first (the second) tape is shifted «
(resp. () cells to the left relative to the head. If, say, @« = —1 then the first tape is
shifted one cell to the right.

The machine always starts working at state ¢; and ends at the terminal state gq.

The program (software) for a Minsky machine is a set of commands of the above
form.

One says that a Minsky machine calculates a function f(m) if for every m starting
at the configuration (m,¢,0) it ends at the configuration (f(m),qo,0). If m does
not belong to the domain of f then the machine works forever and never gets to the
terminal state.

The main property of Minsky machines is contained in the following theorem.

Theorem 7.2 (Minsky, [272]). For every partial recursive function f(m) there
exists a Minsky machine which calculates the partial function g; : 2™ — 2507,

Remark. It is interesting that, in this theorem, the function ¢g; cannot be replaced
by the function f. In particular, there is no Minsky machine which calculates the
function m? (see [233]).

The “canonical” definition of a Minsky machine seems to be very long and com-
plex while in fact it is very simple and can be understood by a high school or even
elementary school student. Let us give a “high school” definition of a Minsky machine.

Consider two glasses. We assume that these glasses are of infinite height. Another
(more restrictive!) assumption is that we have infinitely many coins. There are four
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operations: “Put a coin in a glass”, “Take a coin from a glass if it is not empty”.
We are able to check if a glass is/isn’t empty. A program is a numbered sequence of
instructions.

An instruction has one of the following forms:

e Put a coin in the glass # n and go to instruction # j;

o Ifthe glass # n is not empty then take a coin from this glass and go to instruction
# 7 otherwise go to instruction # k.

e Stop.

A program starts working with the command number 1 and ends when it comes
to the Stop instruction which will always have number 0.

We say that a program calculates a function f(m) if, starting with m coins in the
first glass and empty second glass, we end up with f(m) coins in the first glass and
empty second glass®!.

This “high school” version of a Minsky machine is also known as a Minsky algo-
rithm [272].

One can prove that Minsky machines are equivalent to Minsky algorithms, that
is, given a program for Minsky machine (resp. given a Minsky algorithm), it is easy
to construct a Minsky algorithm (resp. a program for a Minsky machine) which
calculates the same function.

A configuration of a Minsky algorithm is a triple (m, k, n), where m is the number
of coins in the first glass, n is the number of coins in the second glass, and k is the
number of the instruction we are executing. So the number of an instruction in the
algorithm plays the role of an inner state!

Another, elementary school, version of Minsky algorithms was invented by the sec-
ond author of this paper. It was implemented by M.Sapir, V.Klyachin, and E.Linetsky
in LOGO-type software and has been used in thousands of schools in the former
U.S.S.R., as well as in some other schools throughout the world, to teach kids pro-
gramming and problem-solving skills.

Imagine a part of the plane bounded from the left and from the bottom by two
orthogonal lines. Imagine further a small kangaroo, named Roo, living on this part
of the plane. It can only “Hop” (hop 1 cm forward), “Step” (draw a straight line
1 c¢m long??), and “Turn” (turn 90 degrees to the left). Roo can also check if the
wall (one of the two boundary lines) is 1 c¢m ahead of him. The program for Roo
is a non-numbered sequence of commands. This sequence may contain branchings
(If-instructions) like

2If you want to teach Minsky machines for business students you should change glasses to bank
accounts and coins to dollars.
22This command is unnecessary, it is included just for fun.
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If the wall is (isn’t) ahead then
otherwise

The end of branching
and loops like
While the wall is (isn’t) ahead repeat

The end of cycling

Roo stops when it gets to the last command of the program.

It is easy to understand what it means for Roo to calculate a function, and it is
easy to prove that Roo is equivalent to Minsky algorithms and machines.

Notice that although Minsky machines and Minsky algorithms are equivalent,
Minsky algorithms are sometimes better tools in proving the undecidability of algo-
rithmic problems. The main reason: there are four possible commands of a Minsky
machine which correspond to the same inner state g, while there is only one instruc-
tion of a Minsky algorithm with a given number k (see also Section 7.2.9 below).

M.Minsky himself gave the following definition of his algorithms (see [272]):

We work with a number denoted by t. We can suppose that ¢ = 2™3" for some
nonnegative integers m and n. Every instruction has one of the following forms

e [x2|j] - multiply ¢ by 2 and pass to the j-th command;
e [x3|j] - multiply ¢ by 3 and pass to the j-th command;

e [: 3|j|k] - check if ¢ is divisible by 3 and if “yes” then divide and pass to the
j—th command, otherwise pass to the k-th command;

o [: 2|j|k] - check if ¢ is divisible by 2 and if “yes” then divide and pass to the
j—th command, otherwise pass to the k-th command;

e Stop.

It is easy to establish a correspondence between this definition and the glass-coin
definition. The number ¢t = 2™3" corresponds to the situation when the first glass
contains m coins and the second glass contains n coins.

It is interesting that a variant of the “glass-coin” machine was invented indepen-
dently by J. Lambek [219], though his machine used an infinite number of glasses and
so it was technologically more difficult to build.

Now we will show how to apply Minsky machines to prove the undecidability of
word problems in different types of algebras.

158



7.2.2 Minsky Machines and the Word Problem for General Algebras

Here we will show how to apply Minsky machines (algorithms) to prove the undecid-
ability of the word problem. All applications of Minsky machines (algorithms) are
based on the following idea. We will show this idea for Minsky machines; exactly
the same idea works for Minsky algorithms. Take a Minsky machine M calculating a
partial function ¢g; with a non-recursive domain X and a constant value 1.

One can define an “equality” on the set of all possible configurations of the Min-
sky machine M: two configurations (m, g, n) and (m’, i, n’) are “equal” or “equiv-
alent” (we will write (m, gz, n) = (m/,qw,n’)) if there exists another configuration
(m”, grn,n") such that M transforms both configurations (m, ¢, n) and (m’, gx,n')
into (m”, g, n") in zero or more steps. It is easy to see that this “equality” is sym-
metric, transitive and reflexive. By the choice of M, (m,¢1,0) = (1, g0, 0) if and only
if m € X (recall that we always assume that ¢o is the stop state. Therefore we have
a sequence of configurations ~,, and a special configuration = such that ~,, = 7o iff
m e X.

Suppose now that we want to construct a finitely presented universal algebra
A(M) with an undecidable word problem.

The idea of doing this has its origin in the works of Markov [249], [250] and Post
[303]. First, with every configuration ¢ one associates a word w(v). This word is
usually called a canonical word.

Then with every command & of the Minsky machine M one associates a finite set
of defining relations R,. The algebra A(M) will be defined by the relations from the
union R of all R, (which is finite since we have only a finite number of commands)
and usually some other relations () which are in a sense “independent” of R. We
need @, for example, to make A(M) satisfy a particular identity.

The algebra A(M) will have an undecidable word problem if the following property
holds:

Y1 = by if and only if w(vr) = w(t)z) in A. (27)

Indeed, in this case one cannot algorithmically decide if w(m, ¢,0) = w(1, ¢o,0) for
the given number m.

We will say that we have an interpretation of the Minsky machine M in the algebra
A(M) if we have an assignment ¢» — w(t) with the property (27).

Usually, in order to prove the property (27) one has to prove two Lemmas.

Lemma 7.3 If we can proceed from configuration ¥ to configuration v, using
command &, then we can proceed from the word w(yr) to the word w(iy) using rela-
tions from R,.

Lemma 7.4 If we can proceed from the word w(iy) to the word w(is) by using
relations from the union of all R, then 1 = 1,.
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It is easy to see that Lemmas 7.3 and 7.4 imply property (27). Lemma 7.4 in most
cases is more difficult to prove than Lemma 7.3.

It is worth mentioning also that in order to prove Lemmas 7.3 and 7.4 we usually
do not need any information about the function that is calculated by M.

Let us also make a remark about the case where we are constructing an algebra
with undecidable word problem which is finitely presented in a variety V. In this
case we are allowed to use identities of V when we deduce relations of A(M). Notice
that unlike the relations of R, corresponding to commands of M, relations obtained
from identities of ¥V have no connection with the Minsky machine, and can spoil the
canonical words. So we have to make the canonical words resistant to applications
of identities of V. In the best case, the identities of V are not applicable to canonical
words.

The procedure for constructing an algebra, finitely presented in a variety V, with
undecidable word problem is roughly the following. First we temporarily forget about
YV and construct an interpretation of a Minsky machine M in an “absolutely” finitely
presented algebra A(M). We prove Lemma 7.3 for A(M). Then we consider the
factor algebra A(M) of A(M) by the verbal congruence corresponding to V, that is
we identify all pairs of terms in A(M) which are identically equal in V. The algebra
A(M) is finitely presented in V. Then we have to prove Lemmas 7.3 and 7.4 for
A(M) Fortunately we have Lemma 7.3 for free because the statement of this Lemma
is stable under homomorphic images. To prove Lemma 7.4 we usually need the above
mentioned independence of canonical words from the identities of V.

7.2.3 Why Minsky Machines?

The concept of an interpretation of a machine in an algebra can be applied to any
kind of Turing machine. Why did we choose Minsky machines? The first answer is:
because Minsky machines are in some important sense the simplest universal Turing
machines possible.

Indeed, the first and the main step in any interpretation of a machine in an algebra
is the choice of canonical words. The canonical words must encode the configurations
of the machine. Therefore the smaller the number of parameters which determine the
configurations, the more freedom we have in simulating the parameters. A configu-
ration of a Minsky machine is determined by just three numbers: m,7,n. Here 7 runs
over a finite set. Therefore one can encode each ¢ by a separate letter ¢;. It is also
important that the commands of Minsky machines change those three numbers in a
natural way. They add 0, 1 or —1 to m and n, and change ¢ according to some simple
rule. Therefore we can simulate m and n by, say, powers of different letters, say, a
and b, and the relations corresponding to the relations of the Minsky machine will
increase (decrease) the powers of these letters. Therefore we can encode the configu-
ration (m,,n) by a canonical word a™¢;b" (we suppose for simplicity that we have a
binary associative operation).
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True, after a little pondering one can conclude that something is missing in this
encoding. Indeed, recall that the relations will simulate the commands. The action of
a command depends on whether m or n is equal to 0 or not, so there are four different
situations (m # 0,n # 0; m =0,n # 0; m # 0,n # 0, and m = 0,n = 0). Therefore
for each one of these 4 situations, the corresponding canonical word must have a
special small subword which tells us that this situation occurs (then the corresponding
relation will replace this subword by some other word).

Notice that our canonical words corresponding to these 4 situations have the
following form: a”q;b™, ¢;b™, a"¢;, ¢; where m,n > 0. All these words are subwords
of the first one. So every subword of the second (the third or the fourth) word is a
subword of the first word. Thus we cannot distinguish between these situations.

The solution to this problem is simple: we have to add two more letters A and
B, which we will call “locks”, and encode the configuration (m,%,n) by the word
Aa"q¢;b"B. Then each of the 4 situations is characterized by a small subword of the
canonical word: The canonical word has a subword:

aq;biff m # 0,n # 0;

Ag;b iff m =0,n # 0;
ag;B iff m # 0,n = 0;
Ag;B it m=0,n=0.

Thus, as one can see, it is very easy to find an interpretation of the Minsky
machine. But this is not the only reason why one has to use it.

Recall that we want to simulate a machine in an algebra which satisfies as many
identities as possible. And as everybody knows, those identities tend to change words.
For example suppose that we have an identity xy = yx, and we simulate the con-
figuration (m,7,n) by the word Aa™¢b"B. Then the words Aa™¢b" B, a™ Aq;b" B,
Aa™q; Bb", and a™ Aq; Bb" are equal and, again, we cannot find small subwords which
distinguish the four situations from each another.

The important feature of Minsky machines and their interpretations is that the
canonical words, which we obtain, are very stable with respect to identities.

For example, in the case of semigroups, Theorem 3.28 means the following. There
exist a few basic encodings of the configurations of Minsky machines, and if a non-
periodic semigroup variety with locally finite nil-semigroups satisfies identities which
can change all these encodings, then the word problem is solvable in this variety, so
the interpretation of a Minsky machine (and any other universal Turing machine) in
this variety is impossible.

It is much more difficult to find stable interpretations of other kinds of machines.
For example, the configuration of the general (one-tape) Turing machine is a triple
u, ¢;, v where ¢; is an inner state of the head, u is the word written on the tape to the
left of the head, and v is the word written to the right of the head. So if we want to
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interpret the general Turing machine, we need to somehow encode arbitrary words
u and v. Since any identity can change some words, we cannot encode the word by
itself, thus the encoding must be unnatural. This leads to difficulties in simulating
commands of the Turing machine, and so on.

The so called modular machine (see Aanderaa and Cohen [2]) are also more difficult
to simulate than Minsky machines. While the configurations of a modular machine
is described by 3 natural numbers like in the case of Minsky machines, commands of
a modular machine induce more complicated operations on these numbers.

It is interesting that even the number of tapes of the Minsky machines (two) is
important. For example, if we try to simulate a Minsky machine with many tapes
(one can readily define such machines) in a variety N;.A of Lie algebras or groups
by means of the technique in Sections 7.2.6, 7.2.8, then it is possible to show that
the minimal k& for which such a simulation is possible, is greater than the number of
tapes. So if the number of tapes of the Minsky machine were 3 we could not simulate
it in the variety N3 A. We will return to this discussion at the end of Section 7.5.

A curious reader may ask here: “What if we take a Minsky machine with only
one tape?”. We will discuss this question also at the end of Section 7.5.

7.2.4 The Word Problem for Semigroup Varieties. The Nonperiodic Case

There are two important semigroup interpretations of Minsky machines: the semi-
groups S and S, below. Let M be a Minsky machine with internal states qo, ..., gn.
Then both S; and Sy are generated by the elements qq,...,qy and a,b, A, B. The
correspondences between commands of M and relations of 57 and S, are given by the
following tables. Every command corresponds to one relation in S7 and one relation
in Sy.

Command Si

i,0,0 = ¢;, T, 1% | ag;b = a'toq;b'*7

¢, 1,0 — ¢;, T, TP | Agb = Aaaqul‘w (28)

qi7071 — ijTa7Tﬁ

aq;B = a***¢;0°B

qi, 171 — QjaTaaTﬁ

Aq;B = Aa®q;V’B
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Command

S2

Qiaoao — qjaTaaTﬁ

qab = g;a'Toptts

¢, 1,0 = q;,T°,T? | ¢;Ab = qja® Ab'*P (29)
¢,0,1 — ¢;,T*, T | gaB = q;a'**’B
¢, 1,1 — ¢;,T°,T° | ;AB = ¢;a® Ab°B
The canonical words in S; are the following:
Configuration | S Sy _
(m,qr,m) | Aa"qb"B | gra™Ab"B (30)

To make these interpretations work and to make these semigroups satisfy as many
identities as possible we need also some additional relations independent of the com-

mands of M.

In the semigroup S; we need the following commutativity relations:

ab = ba, aB = Ba, bA = Ab, AB = BA. (31)

Also we need all relations of the type 23
zy =0

where zy is a two letter word which is not a subword of w(m, ¢z, n) for some m,n or
of any word obtained from w(m, ¢z, n) by the commutativity relations above.

These relations “kill” all “wrong” words. Basically only canonical words and their
subwords are distinct from zero in 57 and S;. Even a semigroup-illiterate reader would
agree that “Wanna more laws — kill more words”. A more literate reader would say
that this is not quite true, and (s)he would be absolutely right: sometimes it is better
not to kill words but to equalize them?*. But for the semigroups S; and Ss, killing
words is the right thing to do.

Thus we have the following additional relations in S;: all two letter words are
equal to 0 except Aa, Ag;, a?, ag;, ¢:b, ¢;B, b*, bB. And we have the following
additional relations in Sy: all two letter words are equal to 0 except ¢;a, ¢;b, ¢;A, ¢; B,

a?, aA, ab, aB, ba, b*, bB, bA, Ab, AB, Ba, BA.

23The equality u = 0 is an abbreviation for the following system of equalities: uz = u,zu = u
where z runs over all the generators of the semigroup.
24Doesn’t it remind us of a difference between dictatorship and democracy?
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These semigroups are very convenient for demonstrating the standard proofs of
Lemmas 7.3 and 7.4.

To prove Lemma 7.3 one needs to show that if we pass from the configuration
(m, qx,n) to another configuration (m’,¢w,n’) by a command & then we pass from
the word w(m, gx,n) to the word w(m’, gz, n') by the relation corresponding to k.

Let us prove this only for the case of the semigroup S; and the command & :
Qe 1,0 — g, T2, T7. All other cases are similar.

Since the command & is applicable to the configuration (m, g, n), in this con-
figuration the head observes the first cell of the first tape and some cell other than
the first on the second tape. Thus m = 0, n # 0. Then m’ = a, ' = n+
(in this case a cannot be negative). Now w(m, ¢z, n) = ¢b"AB and the relation
corresponding to & is qbA = qua®b*TPA. Since AB = BA and aB = Ba we have
w(m, qg,n) = qpb"AB = qbAb"'B. Thus we can apply our relation and replace
¢;bA by qa®b'tPA. As a result we obtain the word ga®b'T?Bb"~' A which is equal
to qra*Ab"*P B since bA = Ab. The last word is equal to w(m’, gy, n') as desired.

The proof of Lemma 7.4 is based on the following two standard observations. First,
for every canonical word w(m, qx,n) there exists at most one relation corresponding
to a command of M which is applicable to this word from the left to the right (this
means that one replaces the left hand side of this relation by the right hand side of
it).

Second, any application of a relation from tables (28) or (29) to any canonical
word — from the left to the right or from the right to the left — gives us another
canonical word (we do not distinguish words in S which are obtained from each other
by the commutativity relations®?).

Now consider two words w(m, qx,n) and w(m’, g, n') in S7 or Sy. Suppose these
words are equal in this semigroup. Therefore there exists a sequence of words

w(m, qg,n), wy, ..., wa, w(m', qp,n')

where each word is obtained from the previous one by applying a defining relation
corresponding to a command of the machine M. By the second observation each w;
corresponds to a configuration of M.

These relations may be applied from the left to the right and from the right to the
left. Now suppose that in the passage w,_; — w,, a relation was applied from the
right to the left and in the passage w, — w,;1, a relation was applied from the left
to the right. Then w,_; and w,,; are obtained from w, by applying relations from
the left to the right. By the first observation these two relations must coincide and
the words w,_; and w,y; must coincide also. Therefore in this case we can shorten

%5 Actually — important! — we assign to each configuration not a single word w(m, g, n) but a
set of words which may be obtained from each other by the commutativity relations. It is worth
mentioning that it is almost always better to consider w(m, ¢x,n) as a set of words; relations corre-
sponding to commands of M connect these sets of words; auxiliary relations connect words in the
same set.
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our sequence of words w;. Thus we can suppose that in our sequence, there is a word
w, = w(m”, gir,n") such that all relations before w, are applied from the left to the
right and all relations after w, are applied from the right to the left. But this means
that the machine M passes from both configurations (m, gz, n) and (m/, gx, n’) to the
configuration (m”, qgn,n"). Therefore (m, qx,n) = (M, qxr,n'), as desired.

Thus we have proved that S; and Sy have undecidable word problems provided
the Minsky machine that we started with computes a non-recursive function. These
semigroups are important because every (finitely based) semigroup variety with un-
decidable word problem, whose periodic semigroups are locally finite, contains either
S1 or Sy or the semigroup anti-isomorphic to Sy (see Sapir [348]). Identities of S; and
Sy do not depend on what Minsky machine is simulated. Therefore we do not need
any other semigroup with undecidable word problem to treat non-periodic varieties
with good periodic semigroups. But if the periodic semigroups are not locally finite
we need something else, and we will discuss it in the next subsection.

7.2.5 The Word Problem for Semigroup Varieties. The Periodic Case

Theorem 3.8 of the second author of this survey implies that a finitely based variety
of semigroups in which not every periodic semigroup is locally finite contains either
a periodic group or a nil-semigroup which is not locally finite. The periodic group
case will be considered later (see Section 7.2.9). Now let us consider the nil-case.
So suppose that we have a finitely based variety V containing a non-locally finite
nil-semigroup. Then by virtue of Theorem 3.29 V has an undecidable word problem,
and now we are going to explain how to prove this using Minsky machines.

In order to show only the principal details of the proof, let us take the semigroup
variety given by the identity 2® = 0 and prove that the word problem is undecidable
there. This variety consists of nil-semigroups and it was proved by Morse and Hedlund
[274] that it contains an infinite finitely generated semigroup.

We will need a slight modification of the Morse and Hedlund construction 2¢.

Let us start with the following Thue endomorphism ¢ [398] of the free semigroup
with generators a, b:

é(a) = ab, ¢(b) = ba.

Now let us iterate ¢ and consider the words a, ¢(a), $*(a), ¢*(a),.... For every n

@™ (a) is an initial segment of the word ¢"!(a), so all these words are initial segments
of an infinite sequence. Let us denote this sequence by T'(¢). Thue [398] proved that
these words do not have subwords of the form uuu where u is any non-empty word.
Given T'(¢), Morse and Hedlund construct a semigroup S(¢) as follows. Let S(¢)

be the set consisting of all subwords of the words from this sequence, and a special

26 Actually the author of this construction was Dilworth, as was mentioned in [274].
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symbol 0. Define an operation on this set by the following rule:

’ uv  if wv is a subword of ¢"(a) for some n;
“UT1 0 if wvis not a subword of any ¢"(a).

Here uwv is the result of concatenation of u and v. %7

It is easy to prove that S(¢) is an infinite semigroup generated by a and b. This
semigroup satisfies the identity z® = 0. Indeed, as we have mentioned above, for
every word u the word u® is not a subword of any ¢"(a) and so it is equal to 0 in
S(6).

One can easily see that it is not possible to use the interpretations from the
previous subsection to simulate a Minsky machine in a semigroup satisfying z* = 0.
Indeed, we can no longer encode the number of the cell observed by the head of the
machine by a power of a letter: there is a shortage of powers (only 3 is available).
The idea is to use powers of the Thue endomorphism ¢ instead of powers of letters.

Thus we want to encode the configuration (m, gx,n) by a word like ¢™(a)qr¢"(a).
Notice that such a word will be cube-free (will not contain subwords of the form wuu)
for any m and n, so we won’t be able to apply our identity z®> = 0 to this word. This
is good because the more “independent” the canonical words are from the identities
of the variety, the better (see the remark at the end of Section 7.2.2).

Now we have to assign a relation to every command of M. This relation must
increase (decrease) m and n in w(m,qx,n) if the command shifts the tapes to the
left (to the right). Unfortunately it is impossible to pass from ¢"(a)gr¢"(a) to
¢t (a)qrd™(a) by using one relation independent of m and n. Indeed, for “large”
m it is impossible to proceed from ¢™(a) to ¢™*!(a) by replacing a “small” subword
by another “small” subword.

But we notice that ¢! (a) = ¢(¢™(a)), so we need to find some auxiliary relations
which will simulate the iteration of ¢. This can be done by adding one letter, say,
¢ and relations ac; = ¢1¢(a),be; = e1¢(b). Indeed, for every m we will then have
¢ (a)ey = 1™ (a).

A practical realization of this idea is the following (see Section 7.2.9 for another
realization).

Our semigroup, — let us denote it by S(M, ¢),— will be generated by the set
{90, --,qn, a,b, c1,¢c0,¢_1, dy,dg,d_1, A, B} where A, B are, of course, locks.

For every configuration (m, g, n) let

w(m, gk, n) = A¢™(a)coqrdod™(a) B
where u is the word u written from the right to the left.

The correspondence between commands of the Minsky machine M and relations

in S(M, ¢) is given by the following table.

2TAs we mentioned in Section 3.3.1 there is a general construction which associates a semigroup
S(D) with every symbolic dynamical system D. The semigroup S(¢) is equal to S(D) where D is
the symbolic dynamical system generated by the limit of words ¢”(a).
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Command S(M,¢)

¢:,0,0 — ¢;, 7%, T? | bacygq;dyab = bac,q;dzab

¢:,1,0 — ¢;, T, T? | Aacoqidpab = Aac,q;dgab (32)

¢:,0,1 — ¢;, 7%, T? | bacog;dya B = bac,qjczaB

¢, 1,1 — ¢;, 7%, TP | AacoqrdoaB = AacyqjdsaB

The auxiliary relations are the following:

(1) aco = coa, beg = cob;

(i1) acy = a1é(a), bey = c16(b), Aey = Aco;

(iii) ¢(a)c—q = c_1a, ¢(b)e—y = c_1b, Acy = Ac;
(iv) doa = ady, dob = bdy;

(v) dia = ¢(a)dy, dib = ¢(b)dy, d1 B = doB;

(vi) d_1¢(a) = ad_y, d_1¢(b) = bd_y, d_1 B = dyB.

The role of the new generators ¢; and d; is clear from these relations: d; and ¢
increase the power of ¢, c_; and d_; decrease the power of ¢.

It is not very difficult to prove Lemmas 7.3 and 7.4. Therefore we have obtained
an interpretation of the machine M. Now, since all words w(m, ¢z, n) and all words
which can be obtained from these words by the defining relations of S(M,¢) are
cube-free, the identities of our variety won’t change these words. Therefore the state-
ments of Lemmas 7.3 and 7.4 hold for the factor-semigroup S(M, ¢) of the semigroup
S(M, ¢) over the verbal congruence corresponding to the identity z® = 0. Indeed,
the statement of Lemma 7.3 is stable under homomorphic images. The statement of
Lemma 7.4 holds because canonical words which are distinct in S(M, ¢) are also dis-
tinct in g(M, #). It remains to notice that the semigroup S(M, ¢) is finitely presented
in the variety given by the identity z® = 0. Therefore this variety has an undecidable
word problem.

In the general case, when the identities of the variety V are more (sometimes
much more) complicated, one has to use the endomorphisms constructed in Sapir
[346] instead of ¢, and the interpretation is slightly different also (see Sapir [335]).
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7.2.6 The Word Problem for Varieties of Lie Algebras

For every variety of Lie algebras containing A (the variety of all 3-solvable Lie
algebras), it is not very difficult to construct a Lie algebra which is finitely presented
in this variety and has an undecidable word problem.

All that we basically need is to take the semigroup S; from Section 7.2.4 and
replace the semigroup product by the Lie algebra product.

In more detail, let us consider the following Lie algebra L. It has generators
go---,qn, a,b, A, B. The relations assigned to the commands of the machine M are
the same as in the semigroup S;. We also need the following commutativity relations
similar to (31):

ab=aB =0A=BA=0.
The word w(m, g, n) is defined as in Section 7.2.4:

w(m, qg,n) = qra™ A" B.

Then the proof of Lemma 7.3 is similar to the proof of this Lemma in the semigroup
case.

Again, we have to prove that if we pass from the configuration (m, gx, n) to another
configuration (m', g, n’') by a command « then we pass from the word w(m, g, n) to
the word w(m’, ¢x,n') by the relation corresponding to x.

As in Section 7.2.4, let us prove it only in the case when the command & is of the
form gx, 1,0 — g, T, T7 (it is instructive to compare the Lie algebra proof with the
semigroup proof in Section 7.2.4):

Since the command & is applicable to the configuration (m, g, n), in this config-
uration the head observes the first cell of the first tape and some cell other than the
first on the second tape. Thus m = 0,n # 0. Then m’ = a,n’ = n + 3 (in this case
a cannot be negative). Now w(m, gx,n) = 0" AB and the relation corresponding to
K is qpbA = qa®b*tPA. Since AB = 0 and aB = 0, by virtue of the Jacoby identity
and the anti-commutativity identity*® we have w(m, gr,n) = qb"AB = q.bAY" ' B.
Thus we can apply our relation and replace g;bA by qra®b' TP A. As a result we obtain
the word qra®b'tPAb"~1 A, which is equal to qpa®Ab"tP B since aB = 0. The last
word is equal to w(m/, gi,n') as desired.

Notice the role of commutativity in this proof. In order to deduce the relation
w(n, qg,m) = w(n', g, m') we need to permute neighboring letters, say, A and B,
regardless of the place in the word where these letters occur. Since we do not have
associativity as in the case of semigroups, this is not a completely trivial thing. In
order to achieve these permutations we need the Jacoby identity. We will meet this
problem once again in the case of groups, where we will replace the Lie algebra product
by the group commutator. Unfortunately the group commutator does not satisfy the

28By these identities zyz 4+ yzz = xzy for every z,¥, 2, so if yz = 0 then zyz = zzy.
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Jacoby identity, and this is precisely the reason why the group case is more difficult
than the Lie algebra case.

To prove Lemma 7.4 we will construct a homomorphic image L of L with an
explicit structure such that words w(m, g, n) which are distinct in Sy (as semigroup
words) are distinct in L (as Lie algebra words). The algebra L is constructed in a
canonical way from the semigroup S;.

Let us take the Abelian Lie algebra T', freely generated by the elements z,,, where
u runs over all non-zero elements of S;. By definition let #g = 0. Define linear
transformations of this algebra corresponding to the elements a,b, A, B:

Tyt = Ty

where t = a,b0, A, B and ut is the product in S;. Since 7" is Abelian these linear
functions are derivations. Now take the semi-direct product L of T and the algebra
generated by the transformations a, b, A, B. It is almost obvious that L is generated
by z4,...,%4y,a,b, A, B and that the mapping ¢ — z,, a — a, b — b,A — A,
B — B is extendable to a homomorphism. It is clear that in L two words w(m, g, n)
and w(m', g, n') are equal if and only if the corresponding words in Sy are equal.
Therefore if the words w(m, gz, n) and w(m’', i, n') are equal in L then these words
are equal in S;. Thus Lemma 7.4 for the semigroup 53 implies a similar statement
for the Lie algebra L.

Now let us prove that the algebra L belongs to the variety A2, i.e. it is a solvable
algebra of degree 3. Indeed, since 7' is an Abelian ideal of L, it is enough to show
that the algebra generated by the derivations a, A, b, B is metabelian.

By the commutativity relations this algebra is a direct product of the algebra
E, generated by a, A and the algebra Ej generated by b, B, so it is enough to prove
that, say, the algebra F, is metabelian. To this end notice that every Lie monomial
containing more than one A is equal to zero in F,. This immediately follows from
the fact that in the semigroup S, every word containing more than 2 A-s is equal to
0. Therefore the monomials containing A form an Abelian ideal in E,. The factor-
algebra is generated by a, so it is also Abelian. Thus £, is a metabelian algebra.
Therefore, indeed, L is a 3-solvable algebra.

Now let us take any variety V of Lie algebras containing all 3-solvable algebras.
The algebra Lisa homomorphic image of the factor-algebra Ly of L over the verbal
ideal corresponding to V. Therefore the statement of Lemma 7.4 holds for Ly. The
statement of Lemma 7.3 holds too since this statement is stable under homomor-
phic images. Therefore the word problem in Ly is undecidable provided the Minsky
machine simulates a non-recursive function.

This proves that the word problem is undecidable in any variety containing all
3-solvable algebras?®’.

Z®More careful considerations would show that the algebra L belongs to the variety ZAN5.A. This
implies that the word problem is undecidable in any variety containing ZA5.A4.
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7.2.7 The Word Problem for Varieties of Lie Algebras. Strong Undecid-
ability.

In the previous subsection we constructed a Lie algebra with undecidable word prob-
lem, finitely presented in a variety V containing all 3-solvable algebras.

Now we are going to show how to construct a finitely presented Lie algebra with
undecidable word problem such that the identities of ¥V follow from the defining
relations of this algebra.

Notice that if the algebra fJ, constructed in the previous subsection, was finitely
presented, we would win immediately, since this algebra belongs to V. Unfortunately
(the reader surely expected this word here) it is not finitely presented. The idea
roughly is the following: we want to embed L into a finitely presented algebra which
belongs to A>.

To this end we have to add new elements to the set of generators of L (which is
the set {¢;,a, A, b, B}) and add new relations to the set of defining relations of algebra
L in such a way that

1. the elements ¢; generate an Abelian ideal, and
2. the elements a, A, b, B generate a metabelian subalgebra.

Notice that we can add any relation of L because it will not prevent L from being
embeddable in the resulting algebra.

Let us start with the second task. From the relations of L, it follows that the
subalgebras £, =< a, A > and E, =< b, B > form a direct product. Thus we have
to make each of them belong to A?.

To make F, metabelian we have to make all words like (Aa™)(Aa™) equal to 0 (the
variety of metabelian algebras satisfies the identity (zy)(zt) = 0) by adding finitely
many relations to L. It would be enough, of course, if we make Aa”A = 0 for every n.
Fortunately, we can use the embedding of a finitely generated metabelian Lie algebra
into a finitely presented metabelian Lie algebra first found by G. Baumslag in 1977
[23]. Earlier, the group theoretic analogue of this embedding was found independently
by Baumslag [24] and Remeslennikov [316]. Since the formulation and the proof of
this statement is almost the same in the group case and in the Lie algebra case, we
will call it the Baumslag-Remeslennikov Lemma or simply the BR Lemma.

Lemma BR. Suppose that a Lie algebra over a field of characteristic # 2 s
generated by three sets X, K = {a; |1 =1,...,m}, K'={d} | i =1,...,m} such that

(1) The subalgebra generated by K U K' is Abelian;

(2) For every a € K and every x € X we have xa®> = yxa' (for some constant ~y);

(3) x1ai* ... almag =0, for every x1,x2 € X, and every aq,..., o, € {0,1}.

Then the ideal generated by X in the subalgebra < X U K U K’ > is Abelian and
this subalgebra itself is metabelian.
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If the statement of this lemma holds for the sets K = {a; | e =1,...,m}, K’ =
{a}|i=1,...,m} and X, then we will call the elements a} BR-conjoint to elements
a; with respect to X, and we will call pairs (a;,a}) BR-pairs.

In our case X = {A}, K = {a}. Using BR Lemma, let us add a BR-conjoint & to
a. This means that we add a new generator @’ and new relations:

Ad® = yAd' ad' = AA = AaA = 0. (33)

for some v which we do not want to specify now. Similarly, let us add a BR-conjoint
b' to b with respect to {B}:

Bb? = yBby, bb, = BB = BbB = 0. (34)

Now let us turn to the first problem. We have to add new generators and
finitely many relations to make the ideal generated by ¢; Abelian. This means that
(¢:W)(¢q;U) must be equal to 0 for all possible words W and U in the alphabet
{A, a, d', B, b, V'}.

By the Jacoby identity, this will follow if we prove that for any word Wy in the
alphabet {A, a, ¢’} and any word W, in the alphabet {B, b, '} one has ¢;W1Wsq; =
0. This seems to be similar to the problem which we have just solved (instead of A
we now have ¢;). But the analogy is not complete because now the letters outside the
set X ={¢;|1=0,...,N} do not commute. In particular, aA # 0. So we have to
use some new ideas besides the Baumslag-Remeslennikov Lemma.

For the sake of simplicity let us forget about letters 6,4, B, and about the word
W;.

We can represent the word Wy in the form W, = U; AU, A...U, A, where Uy, ..., U,
are words in the alphabet a,a’. We have to make the word R = ¢;U; AUA...U, Ag;
equal 0.

Notice that if A does not occur in R then this word is equal to ¢;U;¢;, which may
be made 0 by adding relations which make a’ a BR-conjoint to @ with respect to the
set of ¢’s (so far it was a BR-conjoint to a with respect to A).

It Aoccursin R, Uy is empty, and Us; is not empty, then R begins with the subword
g;Aa, which may be made 0 by adding the relation

¢:Aa = 0. (35)

This relation holds in ji, so we can safely add it (see the remark above).
It U; is empty and U, is empty then R has a subword ¢;AA or ¢;Ag;. Both are

equal to 0 in L. So to take care of this case we can add the relations

GAA = ¢Aq = 0 (36)

Therefore the case when Uy is empty and A occurs in 2 may be handled easily by
adding finitely many relations of L.
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But what if U7 is not empty? The solution is straightforward: make it empty! Let
us add a new letter a, such that this letter commutes with all letters except ¢;, and
gia = gia.

Now in the case when U; is not empty we can make it empty by replacing all a’ by
a (using the BR relations) and @ by @, and by squeezing @ through A. For example,
if we had the word gaa;Aq, then we can transform it into yga?aAgq by using a BR
relation, then we can transform it into yga®Agq, and then we can move a through A,
and get vgAa®q. Now we have nothing between ¢ and A.

To make such words zero, we can use the BR Lemma again. It is enough to add
a BR-conjoint to @ with respect to {¢;A,¢; | : =0,..., N}. We will denote this pair
by a’. In order not to spoil the picture that we have already drawn, let us also add
relations which say that this new letter commutes with all letters except g;.

Therefore, by adding finitely many new letters and defining relations we can make
all products ¢;Wiq; equal to 0. If we also add the twins of the above relations,
replacing a by b, and A by B, then the ideal generated by all ¢; will be Abelian.

Now let’s see how these new elements and relations co-exist with the relations
corresponding to the Minsky machine.

For example, consider the word w(1, gk, 1) = grabAB corresponding to a configu-
ration of the Minsky machine. We can represent it in the form ¢ abAB = qrabAB =
qrbAb™aB.

Therefore, for w(1, gx, 1) there are two possible ways to apply relations correspond-
ing to commands of the Minsky machine: one with the left part grab and another
one with the left part ¢zbA. So by adding new letters @ and b we destroyed the main
property of the algebra L, that this algebra simulates the Minsky machine. This is a
disaster!

Fortunately this is the last disaster in this section, and its consequences are easy
to overcome. We will show how to save everything by adding just one new generator
d.

This element plays the role of a lock for the relations corresponding to the Minsky
machine. In all these relations, let us replace ¢; by ¢;d and make d commute with
everything except ¢;’s and a, ?), a, . So a, for example, cannot squeeze through d.
One can see that this new letter d, indeed, stops the illegal activities of letters with
tildes.

Of course we now again have to take care of the ideal generated by ¢;. It should
still be Abelian. This is easy to do. One can repeat the analysis that we did before
and conclude that it is enough to add relations ¢;dd = 0 for all 7, and relations which
are obtained from relations (35) and (36) by replacing ¢; by ¢:;d, and to make @’ a
BR-conjoint to @ with respect to d. It is also clear that we need similar relations for
the b’s.

Let us take generators and defining relations of the algebra L and add the new gen-
erators and relations that we discussed above. The resulting algebra will be denoted

by L. This algebra belongs to A°®.
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To prove the undecidability of the word problem in L we have to prove Lemmas
7.3 and 7.4. Lemma 7.3 is a consequence of the fact that the subalgebra of the algebra
L generated by the elements ¢;d, a, b, A, B, is a homomorphic image of the algebra L
from the previous Section (all the relations of L are satisfied).

To prove Lemma 7.4 we construct a homomorphic image of algebra L as we did
for L.

Let S3 be the semigroup obtained from S; by adding an element d which satisfies
d* = 0 and commutes with a, b, A, B, and by replacing all ¢; in the relations (29) by
qd.
Let us take the Abelian Lie algebra T}, freely generated by the elements g,,
where u runs through all non-zero elements of S;. By definition let go = 0. Us-
ing the same idea as in the previous section, we want to build a homomorphic
image L of L which is a semidirect product of 7; and an algebra generated by
{a, b, A, B, d, o', V', a, b, &', '}.

In order to do this we have to define linear transformations of 7" corresponding to
all these generators. These linear transformations must satisty the relations discussed
above (otherwise L won’t be a homomorphic image of L).

The actions of a, b, A, B, d are easy to predict:

Tyt = Tyt

where t € {a,b, A, B,d}, and ut is the product in Ss.
The actions of @’ and b are determined by the BR relations:

! /
Tl = Tye2, Ty b = x 0.

The actions of @, &', b, b’ are also determined by the relations described above,
so we will leave the definitions of these actions to the reader.

Notice that since T} is Abelian every linear operator of 7} is a derivation, so we
do not have to check that all our actions are in fact derivations of 7j.

Now it is almost obvious that L is isomorphic to the subalgebra of L generated
by qod, ..., qn4, a, b, A, B. A

This proves the statement of Lemma 7.4, since we know that in the algebra L
two canonical words are equal if and only if the corresponding configurations of the
Minsky machine are equivalent.

7.2.8 The Word Problem for Varieties of Groups. The Nonperiodic Case

In order to compare the applications of Minsky machines in group varieties with their
applications in Lie algebra varieties, let us take the variety A? of all solvable groups
of degree 3. This is, of course, the group analogue of the Lie algebra variety which
we considered in the previous subsections.

Let us start with an example of a group with undecidable word problem which is
finitely presented in this variety.
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The standard analogy between groups and Lie algebras dictates the use of the same
constructions as in Section 7.2.6, replacing the Lie product by the group commutator.

So let us take the Lie algebra L constructed in Section 7.2.6 and replace the Lie
algebra product by the group commutator. Then we obtain the group GG generated
by the elements qo, ..., qn,a,b, A, B, with defining relations

(a7b) = (avB) = (Aab) = (AaB) = 1,

where (z,y) denotes the commutator = 'y 'zy, and relations given by table (29)

where the product is replaced by the commutator. The canonical words are also
similar #:

w(m, qg,n) = (g, a(m), b(”), A, B).

Now, to prove Lemma 7.3 we need to be able to permute adjacent letters, say, A
and B in any canonical word, regardless of the place where these letters occur.

In the case of Lie algebras it was enough to have the relation AB = 0, because if
uv = 0, then for every x we had xuv = zvu by the Jacoby identity.

In the group case we do not have this. It is easy to give an example of a group
and three elements z,u, v in it such that (u,v) =1, but (z,u,v) # (z,v,u)*.

So we have to construct a finite family of relations which would imply all the
desired permutations. We would succeed if we could find finitely many relations
which make the normal subgroup generated by all the ¢'s Abelian. Indeed, then we
could consider this normal subgroup as a module over the group ring of the group
generated by {a,b, A, B}. Now if x belongs to this normal Abelian subgroup then the
commutator (z,u,v) will correspond to the element z(*~)(=1) of this module. And,
the equality (u,v) = 1 implies (u — 1)(v — 1) = (v — 1)(u — 1) and so (D=1 =
x(v—l)(u—l)‘

One of the ways of making this subgroup Abelian is almost obvious. Since we
want to construct a group which is finitely presented in the variety A4° we can do, for
example, the following. To each ¢; we assign four new generators p;;,...,p;4 and a
relation ¢; = ((pi1,pi2), (Pi3, pia)). These relations will automatically push ¢; down to
the second derived subgroup of the group that we are constructing. Since this second
derived subgroup is Abelian, we guarantee that the normal subgroup generated by
all ¢'s is also Abelian.

But this method is not good enough. First of all it works only for the variety A°.
Secondly, this trick makes Lemma 7.3 easy to prove, but it makes the proof of Lemma
7.4 very messy. Indeed, in order to build the group analogue of the Lie algebra jJ, we
will have to define linear transformations corresponding to those new generators p; ;,
and this is not trivial at all.

30We have agreed to read the commutator (z,y, z) as ((2,y),z) and (z,y™)) as (z,y,...,y).
31Take the free group with two generators a,b and elements & = a,u = b, v = b2.
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So we choose another way. Recall that when we were proving the strong undecid-
ability of the word problem in A® in the Lie case we made an ideal generated by ¢'s
Abelian. It is interesting that almost the same method allows one to solve the group
analogue of this problem.

Following the Lie algebra method, we add new generators {d, o', ¥, a, b, @, é’}
and the relations saying that ' is a BR-conjoint to a with respect to the set of ¢’s
and with respect to A; & is a BR-conjoint to b with respect to the set of ¢’s and
with respect to B; @’ is a BR-conjoint to @ with respect to the set {¢,(¢,A)} and
with respect to d; b’ is a BR-conjoint to b with respect to the set {g, (¢, B)} and with
respect to d;

In order for the previous paragraph to make sense we have to define what exactly
a BR-conjoint in the group case is. Fortunately there exists a group analogue of the
Baumslag-Remeslennikov Lemma [24], [316].

Lemma BRg. Suppose that a group G is generated by three sets X, K = {a; | 1 =
L...omp, K'={d, | e=1,...,m} such that

(1) The subgroup generated by K U K' is Abelian;

(2) For every a € K and every x € X we have x99 = 2% (for some monic
polynomial f of a which has at least two terms;);

(3) (xilﬁl"'afnm,x;)) =1, for every x1,z2 € X, and every By,..., 0, € {0,1,—1}.

Then the normal subgroup generated by X in the subgroup < X U K U K' > is
Abelian and G is metabelian.

If the elements a; and a! and the set X satisfy this Lemma we will call @) a
BR-conjoint to a; with respect to X.

In addition to these relations we have to add analogues of other relations of the
algebra L:

(050 = (0. (00) = (510, (1) = () e () = (). Ao we ad

the analogues of relations (35) and (36): (¢;, A,a) =1, (¢;, A,d’) =1, (¢, B,b) = 1,
(qi7Bab/) =1 and (qHAaA) = (Qi7A7Qj) = 1 (N ZJB B) (%,B,q]') = 17(qi7Qj) = 1.
We add the corresponding relations for d, @, @', b, b too. Now we are able to prove that
the normal subgroup generated by qo,..., g, is Abelian and hence to prove Lemma

7.3.

To prove Lemma 7.4 we construct a homomorphic image of the group G as we
did for the algebras L and L. We will use a semidirect product again. Let S3 be the
semigroup from the previous subsection.

Let us continue to use the Lie algebra analogy and take the direct product 7% of
cyclic groups generated by the elements z, where u runs over all non-zero elements
of S5. By definition let zg = 1. We want to define automorphisms corresponding to
letters A, B,d,a,b,a’,b',a,b,a, b of the group Ty in such a way that the subgroup,
generated by the set {z,,u € S3, A, B,d,a,b,a’,V, a, b,d, ?)’} in the semidirect product
of Ty and this group of automorphisms, becomes a homomorphic image of (.

There is not much freedom in defining these automorphisms. Like in the Lie
algebra case for every v € {a, b, A, B, d} we should have (x,,v) = z,, i.e.
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z v 'z, v = x4, From this we immediately deduce that z¥ should be equal to
TyTyy. S0 1f we denote by ¢, the automorphism corresponding to v, we should have
éu(2y) = TyTyy. We can similarly deduce the definitions of automorphisms corre-
sponding to other letters.

But how can we prove that these are actually automorphisms?

Recall that in the case of Lie algebras we did not have to prove that our mappings
were derivations, since any linear operator on a vector space is a derivation of the
corresponding Abelian Lie algebra. Here we also do not worry about these mappings
being endomorphisms. The main difficulty is to prove that they have inverses. And
in fact it can be proved that these endomorphisms do not have inverses.

In particular, ¢;!(z,) must be a vector with infinitely many non-zero coordinates,
which does not belong to the direct product 7. This is similar to the well-known
fact that the function ﬁ cannot be represented by a finite sum of powers of ¢ (while
it is representable by an infinite series).

One solution of this problem (see Kharlampovich [175]) is to replace T3 by the
Cartesian (full) product of cyclic groups. Then it becomes possible to prove that each
of our endomorphisms has an inverse, but this is very non-trivial. This is like working
with analytic functions instead of polynomials.

Another, easier, solution is to change G itself. To do this, let us note that the
commutator is not the only operation which can be defined on a group®?. We chose
the commutator because it is the traditional analogue of the Lie algebra operation.
But there are lots of other nice operations. So the idea is to choose one of these other
operations.

To choose a suitable operation we start the construction of GG from the end. We
first define &7 , and then define G itself. Namely, we define automorphisms of a suitable
direct product of cyclic groups, then find out which operation * satisfies the property
Gu ¥ U = @y, and replace the commutator by this operation .

Of course, we have to choose the automorphisms corresponding to letters in such
a way that automorphisms corresponding to members of a BR-pair form a BR-pair
themselves. Practically this means that if (u,v) is a BR-pair, and zf(*) = 2¥ (see
condition 2 of Lemma BRg), then we have to define an automorphism u and then
only check that f(v) is also an automorphism for some monic polynomial f of degree
> 1 which has at least 2 terms.

The solution is the following (see Kharlampovich [181]).

Instead of T let us take 75, a free Abelian group generated by the elements z; ; ,
where u runs over all non-zero elements of S; and 2,7 € 1,2,3. By definition let
zi;0 = 1. We see that instead of one element z, (for every u), as we had in the Lie
algebra case, we have now 9 “brothers” z; ;.

Let us define the automorphisms. For simplicity we will denote automorphisms
corresponding to letters a, a/, b, &', A, B by the same letters.

32Gpecialists in universal algebra would definitely agree with us here.
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lll

a
,7,u

iu for every

Let us start with automorphisms a, a’. We have to define z¢ . and x

t, J, u. First suppose that u does not contain A. Then let

Tijui 1 uTij+2ulijua, 1L J =1

a _ o -1 S
igu Li,julsj—1 u if j =2;
Tij—2us if y = 3.
a’ _ -1 _.a
Tiju = Tiguliju

7
) . a _ a — ..
If u contains letter A, then let T =T = Tiju

It is not difficult to find automorphisms ¢=! and (a’)~!. For example, let us find
x%}lu where u does not contain letter A. By the definition of ¢ we have

a J—

i1 — T1,1,u®1,2,ul1,3,uT1,1uas
a _ -1

Tigu — T12ul11us
a J—

Li3u — T1la-

If we apply a™! to all these equalities, we get

—1 —1 —1 —1
J— a a a a
Titu = T114201,2001,3401,1,ua
-1 -1
— a a -1
T12,u = $1,2,u($1,1,u) )
—1
J— a
L13u = L1714

We get something like a triangular system of equations. The third equality gives
us :L'ib_llu We can use the third equality to transform the second and the first ones.
Then we can use the second equality to transform the first one. Finally we get:

-1 1 1 -1

a - _
13w — T12u%13uT1,3ua
a1 —
Il,?,u - $1727u$1737u7
-1
a J—
Il,l,a - $1,3,’U,'

Automorphisms b, " are defined similarly. Let v not contain B. Then

Ti juTitl,julit2,juijuby 1 1= 1;

b _ o e o
xi,j,u - ‘I%Jﬂi‘ri—l,j,u? if s = 2?
TLi_2 ju, ifz=3.
b = prl b
hiw T Vgt g
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b _ b

g = Tigu = Tigu

If we {A,B,d} then let «¥. | = & u®ijuw-

27'.77“

If u contains B, then x

It is easy to see that a works with the second additional indexes (7), and b works
with the first additional index (z). This, by the way, automatically makes the map-
pings a and b commute. The idea of several additional indexes solving independent
parts of a problem will appear again in the next subsection (though in a completely
different situation).

Now we can define a partial operation *. We know that for every w € {a, b, A, B}
we should have

T11u0* W= 211 ,uw-

From this relation we can deduce the form of the operation *:

For every f € G let fsa = frfof=2 fa)7 fup = f1fof=07" fO7" for
z€ A, Blet f+z=(f,z2).

It is easy to check that we have all the BR-pairs that we wanted to have. Now if
we take the relations which define each of these BR-pairs, and the additional relations
listed above (which also hold in G), we will get a finitely presented group GG which
belongs to A? and has an undecidable word problem.

7.2.9 The Word Problem for Varieties of Groups. The Periodic Case

Here we present the method from Sapir [345] of constructing a group with undecidable
word problem which is finitely presented in the variety A,B, for every odd p > 665
and every prime r # p.

First let us try to naively use the method from Section 7.2.6, replacing the Lie
product by the group commutator, plus the identities of the variety A,B,. So let us
take a Minsky machine M and define a group GG by generators qq, . .., qn,a, A, b, B and
defining relations (a, B) = (a,b) = (B, A) = (A,b) = 1 and the relations of the table
(29), where the product is replaced by the group commutator. A canonical word will
be of the form w(m, ¢, n) = (¢, a"™, b, A, B). As we have shown already, in order
to prove the statement of Lemma 7.3, we need certain commutativities. We would
get these commutativities if the ¢’-s generated an Abelian normal subgroup. This is
not a big problem. Indeed, since our variety satisfies the identity zPy? = yPx?, every
element of exponent r generates an Abelian normal subgroup. Therefore it would be
enough to push our relations and canonical words down to the normal r—subgroup,
as we did in Section 7.2.8. For this we can add one letter () with a relation )" = 1,
and replace every ¢; in the relations and canonical words by the commutator (@), ¢;).
This will give us Lemma 7.3.

Let us turn to Lemma 7.4. The group G is a semidirect product of an Abelian
r—group R and a group L of exponent p (because r # p). It is easy to see that L is a
B,-free product of the free B,-group L;, generated by the ¢’s, and the direct product
of two free B,-groups Ly =< a, A > and Ly, =< B,b >. Every homomorphic image
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of G is a semidirect product of a homomorphic image of R and a homomorphic image
of L. Unfortunately we do not understand homomorphic images of the free Burnside
groups well enough. Indeed, it takes a lot of work to prove that the free Burnside
group does not collapse even if we do not add any non-trivial relations. So it would
be better not to add any more relations to L. Also the group L is so complicated that
it would be extremely difficult to find a handy representation of L by automorphisms
of an Abelian r—group like T or T, in the previous subsection. Therefore we have to
reject on the spot the idea of constructing a homomorphic image of group GG which
is easy to deal with.

The only other idea which comes to mind is to prove syntactically the absence of
“wrong” equalities of canonical words in (. For this purpose we can use the fact that
R is a right Z,L—module. Then for every € L, y € R we have (y,z) = y~'y* =
y o (x — 1) where o is the module action. Now let us rewrite the canonical words:

Relations of the form (@, u;) = (Q,v;) may be rewritten in the form:

Qo(t—10)=0
where w is the result of substitution™: x — = — 1 in w.

Every element in the normal subgroup generated by the left parts of these relations
will have the form

Qo Z(Uz - Uz) - fi

where the f; are elements from L.
Now we see that two canonical words w(m, ¢z, n) and w(m’, ¢z, n') are equal in G
if and only if we have the following equality in the group algebra Z, B

Lb(mv qk, n) - ’Lb(mlv qk, n/) = Z(&z - ﬁz) : fz (37)
for some f; € L, where u; = v; are relations from the table (29).
Therefore we can state that two canonical words are equal in G if and only if the

difference

w(m, qg,n) —w(m', qpr,n') =

(@ = D(a =170~ 1)"(A=1)(B 1)~ (g — (a—1)™(b—1)"(A~1)(B 1)

belongs to the right ideal of the group algebra Z,L generated by the elements u; — v;.

Now, we can easily see that there are many “wrong” equalities of canonical words.
Indeed, since L is a periodic group, there are only finitely many different powers of a
and b. This and the fact that Z, is finite, gives us that there are only finitely many
different powers of a — 1 and b — 1 in Z,L. Therefore there exist only finitely many
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different canonical words, and the problem of whether two canonical words are equal
can not be undecidable.

This shows that our “naive” approach was indeed too naive. Nevertheless, we do
get something positive from the above considerations. First of all we now understand
that we win if we find a finitely generated right ideal in Z,L with an undecidable
membership problem. Secondly, we understand that we have to fight “big” powers as
in the case of periodic semigroup varieties.

In order to fight the “big” powers we can employ methods from Sections 7.2.5
and 7.2.8. The first method consists in taking powers of an endomorphism instead of
powers of letters. The second method consists in using artificial operations.

Let us start with the second method. If we replace the commutator by another
operation then we must replace * — 1 in the substitution * — x — 1 by another
polynomial. It is easy to see that this cannot be a polynomial of one variable x for
the same reason: we will get only finitely many powers.

So this polynomial must contain other variables as well. The simplest such poly-
nomial is « + =’ where 2’ is a “brother” of x. Of course, we would have to add z’ to
the set of generators of the corresponding group L; (¢ = 1,2,3). If we replace v — 1
by x + z’, we will solve the “finite number of powers” problem. Indeed, it is possible
to show that there are infinitely may powers of x + 2’ in Z, L.

We can suppose that the newly born letters behave with respect to other letters
just as their older brothers, i.e. if x commutes with y then 2’ commutes with y and
y'. The semigroup given by these commutativity relations will be denoted by 5.

Now let us again try to prove that there are no “wrong” equalities of canonical
words. As above, we have to consider the equality (37).

We need to prove that if this equality holds then the configurations (m, g, n)
and (m/', gr,n') of the machine M are equivalent. The idea for proving this is the
following. Let us represent both sides of this equality as sums of monomials. Take a
monomial U in the sum (g¢;, + ¢&)(a’ 4+ a)™ (b’ + b)" (A’ + A)(B' + B). This monomial
must coincide with a monomial from the right side (we are in a group ring!).

Hence we have U = u!f; or U = v!f;. Here w' (for w equal to u; or v;) is obtained
from w by replacing some letters by their “brothers”. Suppose that the first equality
holds. Imagine that u! is an initial part of the word U, i.e. the equality U = u.f; is
an equality in the semigroup S’. Then we can take a monomial v/ in the sum ©; and
replace U by U; = v!f;. The monomial U; must cancel with some other monomial in
asum (s — 0s)fs. Again imagine that U; = v/ f; in the semigroup S’, and replace Uy
by U, = v} f,. Finally we will hit all sums (@, — 0,) f, in the right side of the equality
(37) and so one of U, will coincide with a monomial from the sum @w(m’, &, n'). Now
look at the sequence of monomials U, Uy, Us,...,U,. If we identify letters and their
doubles then U will coincide with w(m, ¢x,n), Uy coincides with w(m’, ¢x,n'), and
every step in this sequence of words is obtained by replacing one side of relations
from the table (29) by another side of this relation. Therefore we have a deduction
of the relation w(m, gx,n) = w(m’, g, n’) in the semigroup Sz. But we already know
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that if such relation holds in S; then the corresponding configurations of the Minsky
machine are equivalent.

This is only an idea for a proof. Everybody can see that it has very much of a
utopia. Just look at all the “let us imagine”s. But at least we can see what to do to
make this proof work:

1. If wy, wy are different canonical words then monomials in w; must be differ-
ent and none of these monomials can occur among monomials of Wy (and vise
versa)®?. This will force the monomials from @(m, g, n) to cancel with mono-
mials from the right side of the equality (37) and not with other monomials
from the left side of this equality.

2. We have to understand what to do if U, the monomial we are dealing with, is
equal to u!f; but u! is not an initial part of U. Of course, we still can take a
monomial v; and replace U by U; = v!f; but first of all it may eventually lead
to big powers of letters, which is bad since we are working with periodic groups.
Secondly, the transformations U — U; — U, ... will not simulate semigroup
transformations, which is also not good.

The first problem is not very difficult. We know from Adian [3] that if p is odd
and bigger than 665 then any cube-free word in the free B,-group is not equal to
any other word of smaller length, and no two cube-free words are equal. We also
notice that if w is a cube-free word then every monomial in @ is also cube-free, since
if we identify x and 2’ in this monomial, we get w. Therefore, in order to solve the
first problem, it is enough to make all canonical words cube-free. We have done it in
Section 7.2.5.

The second problem is harder. To solve it, we define a set of words F over the
alphabet of generators of L with the following properties.

E1. Every word in FE is cube-free.

E2. If w is a canonical word then one and only one monomial in @ belongs to

E.

E3. If the word f; is contained in £ and the word u!f; is also contained in E,

then there exists a unique v! such that v!f; belongs to E. *

E4. If the word f; does not belong to E but u’f; belongs to E then there exists a
unique monomial v in @; which is distinct from u} and is such that u f; belongs

to F.

E5. If w is a positive word from E, f € E, and w = u}f, then v} is an initial
part of w.

33Here we consider monomials as elements of the group L.
34Here u; = v; is a relation from (29).

181



We will continue the discussion of the second problem a little bit later. Now
we would like to note that, given this set £, we can describe our transformations
U— Uy — Uy — ... precisely. Indeed, suppose again that we have the equality (37).
We know that there exists a (unique) monomial U in w(m, ¢, n) which belongs to
E. Since all monomials in the left part of (37) are cube-free, U is not equal to any
monomial in the left side, and so it must be equal to some u!f; from the right side.

Now if f; belongs to £, we choose a (unique by E3) word v] in ¢, and replace U
by Uy = v!f;. Since U is a positive word, u! is an initial part of U, and so U; is also
a positive word. In this case we use all monomials from the sum (@; — 0;)f; which
belong to E. Let us call this transformation /' = U; an Rl-transformation.

If f; does not belong to F we choose a (unique by E4) monomial v in @; which is
distinct from u; and such that U; = u! f; belongs to £. In this case we will call our
transformation U/ — U; an R2-transformation.

Now if U; belongs to the sum w(m/, gxr,n’), our process ends. If not, we can find
another sum on the right side of (37) where it belongs. Then we can proceed from
Uy to Uy by an R1- or R2-transformation.

Let us return to our second problem: why does this process simulate the process
of semigroup deductions? Notice that if all transformations in the sequence U —
Uy — U, — ... are Rl—transformations then all these words are positive and the
sequence indeed simulates a deduction of the relation w(m, gx,n) = w(m/, g, n’).

But what should we do if some of these transformations are R2-transformations?
The idea is almost standard. We prove that if there exists a sequence of R1- and
R2-transformations which connects a monomial U from w(m, qx,n) with a monomial
U from w(m', qpr,n') then there exists another (perhaps even shorter) sequence of
Rl-transformations only, which connects these monomials.

In truth, this last statement does not hold for any cube-free interpretation of a
Minsky machine. Moreover, it turns out that we can not use the general Minsky ma-
chine at all: it is too rough an instrument for our goals. Minsky algorithms are much
better. The main difference: a Minsky machine has 4 different commands with the
same ¢, while a Minsky algorithm has only one. Another difference: Minsky algo-
rithms allow shorter interpretations, i.e. the left and right sides of the corresponding
relations are shorter.

The following semigroup interpretation of Minsky algorithms is used in Sapir [345].
The alphabet consists of letters { ¢;, ¢i1, a1, az, b1, b2, ¢1, ¢z, dy, dyy A, B,C,D |1 =
0,1,..., N}. We need commutativity relations:

Ty = Yz, Y =Yux; (38)

where z,y € {a,b,c,d},x # y,Y is the capital y for y € {a, b, c,d}.

Recall that a Minsky algorithm deals with a number of the type 2™3" and can
multiply and divide by 2 and by 3 (see Section 7.2.1 for the definition of Minsky
algorithms). A configuration of the algorithm is a triple (m,é,n) where ¢ is the
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number of the command which is being executed, 23" is the current value of the
number, with which the algorithm works.
Let ¢ be the Thue-like substitution (see Section 7.2.5):

d(x1) = 122, P(a2) = 2921, © € {a,b,c,d}.
Then the canonical word w(m,,n) is equal to ¢;¢"(a1)¢"(b1)ABCD.

The relations corresponding to the commands of the Minsky algorithm are the
following.

Command | Semigroup relations

[ % 2[s] giar = ¢idler), t = 1,2
@A = gnA
gince = ¢nag, t =1,2
qa1C = ¢;C

[ X 3|J] q;b; = qi¢(dt)7t =1,2
¢B =quB
gindy = qnby, t =1,2
qaD = q¢;D

(39)
[:2|7]k] qgia1 A = qra A
Qi¢’(at) = gic,1 = 1,2

A =qnA
qi1Ct = G104
71C = ¢;C

[ :3]7]&] ¢ B = ¢ B
Qi¢(bt) = qdy,0=1,2

B =q¢1 B
qildt = Qilbt
qaD = q¢;D

It is not difficult to check that these relations indeed simulate the Minsky algo-
rithm. Suppose, for example, that the ¢-th command of the Minsky algorithm is of the
type [x2|j], which means that we have to multiply our number 23" by 2 (i.e. replace
m by m+ 1) and proceed to command # j. The canonical word corresponding to the
configuration (m,e,n) is ¢;¢"(a1)¢" (b1 )ABC D. Using the relation ¢;a; = ¢;¢(c:) and
the commutativity relations (38) we transform all @s into ¢’s, and move ¢’s through
A, until there is no a between ¢; and A. As a result we transform ¢™ (a;) into the word
¢t (ey) written from the right to the left. Then we apply the relation ¢;A = ¢4 A,
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changing the index of ¢q. The role of the letter ¢;; is to restore the a's. We do this
using the relation g;¢; = ¢j1a; until there is no ¢ between ¢;; and C. As a result
we transform ¢™%!(c;) into ¢™*!(ay), so we get the word g™t (ay)é"™(b)ABCD,
which is equal to the word ¢;1C¢™(a1)¢"(b1)ABD by the relations (38). Now we can
replace ¢1C by ¢;C, and we are done: we have got the canonical word corresponding
to the configuration (m + 1, j,n).

As one can see, there are some significant differences between the cube-free inter-
pretation (32) and the interpretation (39). Here we do not have special letters which
scan the word ¢™(a;) and increase (decrease) the power of ¢. All relations involve
q, so they apply to a prefix of the word. We need this because we need to have that
if two canonical words are equal modulo relations (38) and (39) then the difference
between the “hats” of these words belongs to the right ideal generated by the “hats”
of relations from (39).

Another feature of these relations is that we cannot apply them for a very long
time if the word is not canonical: the relations check the “canonicalness” of the word
all the time. For example, if there is no A in the word or there is a ¢ between
the a’s and A, then ¢; will never transform into ¢;;, and furthermore it will never
transform into ¢;. This is also important because we want to get rid of “bad” R2-
transformations. These R2-transformations “spoil” the word and we have to “undo”
them after a short time.

It turned out also that we need more than one “brother” of every letter in order
to solve the second problem mentioned above. In fact we need three “brothers”. So
instead of the polynomial & = x + 2’ we have to use the polynomial & = xy; + 212 +
X271 + T92. Each of the new additional indexes plays its own role when we define R1-
and R2-transformations. The first index keeps a word cube-free (the first indexes
of letters always form a part of the Thue sequence). The second index is needed to
preserve the “bad” things which happened to the word after an R2-transformation,
and not to allow this word to become “good” before this R2-transformation is undone.

We must stop here. We have explained all the main ideas of the proof; for technical
details we refer the reader to Sapir [345].

7.3 Minsky Machines and The Complexity of The Uniform
Word Problem

As we mentioned in Section 3.4.5, the uniform word problem for commutative semi-
groups is exponential space complete. Here we would like to present a sketch of the
Mayr-Meyer [253] proof of this result. Let us denote the uniform word problem for
commutative semigroups by D.

The fact that there exists a space-exponential algorithm solving the problem D
follows from Hermann’s Theorem 3.24.

Indeed, if (u,v, R) € Sp then there exists a deduction

U=Wyg — W] — ... = Wy, =V (40)
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where each transition is made by applying one of the relations from K. By Hermann’s
Theorem the lengths of the w; may be bounded by

s(u,v,R)

(s(u,v, R)2)25(MVU7R) < 2%

where s(u, v, R) is the size of the triple (u, v, R), ¢ is a constant. Since we are working
in a commutative semigroup, we need no more than s(u, v, R)2°(“*%) cells of the tape
to write down each of w;. Indeed, we only need to write the numbers of occurrences of
each generator in w;, and we can write these numbers in binary form; therefore we will
2¢s(wv:R) cells for each exponent. The number of these exponents
does not exceed the number of generators, which is less than s(u,v, R).

The deduction (40) may be considered as a non-deterministic algorithm. At every

use no more than

step we guess a relation from R which is to be applied to w; to get w;y1. We do not
need to remember all previous w;, 7 < ¢, in order to guess this relation. Thus we only
need enough memory to store one w; at a time. This means that the space complex-
ity function for this non-deterministic algorithm does not exceed s(u,v, R)25(“vF),
Therefore the problem D may be solved in exponential space by a non-deterministic
machine. Now we can refer to the powerful result of Savitch [362], which states
that every problem which can be solved in exponential space by a non-deterministic
machine can also be solved in exponential space by a deterministic machine. This
completes the proof.

The proof that every exponential space problem can be reduced to D is harder.
Similarly to the proofs of the unsolvability of algorithmic problems, one has to take
a problem, say, () which is known to be exponentially space complete and reduce it

to D.
The problem () chosen by Mayr and Meyer is the following.

e By is the set of all programs for a Minsky glass-coin machine with three glasses.
e The size s(p) of the program p € By is the length of this program.

e 5S¢ is the set of programs from By such that starting at the configuration
(1;0,0,0) (the first command of the algorithm, all three glasses are empty)
they end at the configuration (0;0,0,0) (the Stop-command, all three glasses
are empty again) and at any time the number of coins in any glass does not
exceed 22",

The fact that () is exponentially space complete was proved in Fisher, Meyer and

Rosenberg [99].

The reduction of () to D is constructed in two steps.

Take any program p from Bg. Let n be the size of p. Let us denote
by e,. The first semigroup which we will construct, will, in fact be similar to
the semigroup Sy from Section 7.2.4. Its alphabet consists of the following letters:

228(?)

4o, qG1s---,qN,a,b,¢, A, B,C where N is the number of commands in the program p.
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Since we do not care about the configurations where some glasses contain more than
e, coins, we can define canonical word as follows:

w(e; b, k,m) = qiagbkcmAen_gBen_kCen_m.

Now it is easy to understand how to define the system of relations R(p) which corre-
spond to commands of the program p. For example, if a command ¢ is “Put a coin
in the first glass and go to command number ;7, then the relation is:

A = gja.

If a command 2 is “If the first glass is not empty then take a coin from this glass and
go to the command number j, otherwise go to the command number &7, then the
relations are:

GA™ = ¢;A™, qia = gra.

It can be proved, just like Lemmas 7.3, 7.4, that w(1;0,0,0) is equal to w(0;0,0,0)
modulo R(p) if and only if p belongs to Sg. Therefore the function ¢ which is required
by the definition of a reduction of one problem to another problem (see Section 2.8)
is the following:

¢(p) = (w(1;0,0,0),w(0;0,0,0), R(p)).
This function satisfies the first condition from the definition of a interpretation
(in the sense of Karp):

p € Sg if and only if ¢(p) € Sp. (41)

But unfortunately it does not satisfy the second condition: the size of R(p) is too big.
Indeed, each relation ¢;A** = ¢;A*" adds e, = 2*" to the size of ¢(p).

In order to overcome this difficulty Mayr and Meyer have shown that each relation
qiA°" = q; A can be replaced by a “small” number of small relations which do the
same thing.

This is not at all trivial. The idea is the following (see details in Mayr and Meyer
[253]).

For each of these big words, Mayr and Meyer construct a small Minsky machine
which “calculates” this word. It is easy to see that in order to calculate e, for every n
on a glass-coin machine with 4 glasses, one needs at most ¢n commands where ¢ is a
constant. Then they define a system of relations R'(p) as the union of all the relations
corresponding to these small machines. This set of relations will have size at most
cin? where ¢; is a constant. The hard thing is to prove that (41) holds for R'(p).
This is done by methods similar to those used in proving correctness of computer
programs. A simpler and more efficient, but conceptually similar, way of computing
¢, in commutative semigroups has been found by Jap in [416].

It is interesting that the semigroup given by relations R(p) turns out to be a sub-
semigroup of the semigroup given by relations R'(p). Thus a commutative semigroup
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of “large size” can be embedded into a commutative semigroup of “small size”. As
is mentioned in Mayr and Meyer [253], this idea is a computational complexity ana-
logue of the Higman embedding idea. Mayr and Meyer prove this only for semigroups
given by relations R(p). We think that it would be interesting to solve the following
problem.

Problem 7.1 Let A =< X | R > be a commutative semigroup of with presen-
tation of size s(R). Let t(R) be the minimal size of a presentation of a semigroup
containing A. Is there an algorithm to compute t(R)? Describe the sets of relations

R such that t(R) < log s(R).

7.4 Minsky Machines and The Uniform Word Problem for
Finite Algebras

As we wrote in the Introduction, the uniform word problem for finite algebras in a
class K is the following:

Find an algorithm which, given a set of equalities {u; = v; | 1 € 1},
and an equality v = v, where all the words u;, v;, u,v are written in an
alphabet X, determines if the last equality holds in every finite algebra
A=< X > i K that satisfies all the equalities u; = v;.

It K is closed under homomorphic images, finite direct product, and subalgebras,
this problem is equivalent to the problem of the decidability of the Q-theory (universal
theory) of the the class Kg, .

In this subsection we describe how to prove undecidability of the uniform word
problem for finite semigroups (Gurevich [133]) and finite groups (Slobodskoii [378]).

7.4.1 General Scheme

Let K be a class of finite algebras closed under finite direct products, homomorphic
images, and subalgebras (i.e. a pseudovariety). Let f be a partially recursive function
with two values, say, 1 and 2, such that the sets f~'(1) and f~'(2) are recursively
inseparable, i.e there is no recursive set X with f~(1) € X and X N f~%(2) = 0.
Such functions exist (see Mal’cev [233] or Rogers [322]).

Suppose that we have constructed a finitely presented algebra A =< X | R >,
where X is the set of generators, R is the set of defining relations, and we have
a computable set of terms u,, n = 0,1,... over X such that the following two
statements hold (these statements play the role of Lemmas 7.3 and 7.4).

Lemma 7.5 If f(n) =1 then u, =ug in A (n > 1);

Lemma 7.6 If f(n) =2 (n > 1) then there exists a homomorphism ¢ : A — B,
from A into an algebra from K such that ¢(u,) # ¢(ug).
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Then the uniform word problem in K is undecidable. Indeed, consider the follow-
ing universal formula:

(VX)&R — u, = ug. (42)

If f(n) =1 then formula (42) holds in any algebra, because if all equalities from
R hold in some algebra B then there exists a natural homomorphism from A to B.
Since u, = ug in A (by Lemma 7.5), the equality u, = uo holds in B too.

If f(n) = 2 then by Lemma 7.6 there exists a homomorphism ¢ : A — B, B € K,
where ¢(u,,) # ¢(ug). Since B is a homomorphic image of A, all equalities of R hold
in B, but the conclusion of the implication (42) does not hold. So B does not satisfy
our implication.

The final possibility is that f(n) is not defined, i.e. n is outside the domain of f.
In this case (42) may or may not hold.

Therefore the implication (42) holds in K if f(n) = 1, and it does not hold in K if
f(n) = 2. Hence the set of n for which (42) holds in K contains f~*(1) and is disjoint
from f~*(2). Since the sets f~*(1) and f~(2) are recursively inseparable, there is no
algorithm which, given the implication (42), tells us if this implication holds in K.
Therefore the uniform word problem in K is undecidable.

Remark. Moreover, the uniform word problem is undecidable in the class of
finite algebras from the variety generated by A. And we can even restrict ourselves
to the class of | X|-generated finite algebras of this variety.

Thus, in the case of finite algebras, as before, our task is to construct finitely
presented (infinite) algebras with certain properties. To construct such algebras, we
will use Minsky machines again.

7.4.2 Semigroups

Here we will show how to prove that the uniform word problem in the class of all
finite semigroups is undecidable.

Let us take the two-valued function f from the previous subsection and construct
a Minsky machine calculating the function g;(n) = 2/(*). The function g; also has
two values: 2 and 4, and the preimages of 2 and 4 are recursively inseparable.

Now let us take one of the semigroups constructed in Section 7.2.4, say S;. Notice
that this semigroup solves half of our task. Indeed, let w, be the canonical word
w(n,q,0) forn=1,2,..., and ug = w(2, go,0). Then if f(n) =1 then u,, = ug in S,.
So the statement of Lemma 7.5 holds.

Unfortunately, the statement of Lemma 7.6 does not hold. Indeed, if f(n) = 2
then w, = w(4,qo,0) in Sz. If there were a homomorphism from S; into a finite
semigroup B which separates ug and w(4, go,0), then the uniform word problem in B
would be undecidable, because we cannot algorithmically decide if u; is equal to ug
or w(4,qo,0). The word problem in every finite semigroup is, of course, decidable, so
such B does not exist.

188



Therefore we have to modify the semigroup S;. To make S; have many homo-
morphisms into finite semigroups we define a “graded” analogue of S;. The grading
parameter will be the number of steps of the Minsky machine.

In order to do this let us make an important observation: For every number
m there is only a finite number of configurations (n,q;,n') from which the Minsky
machine gets to the stop state gg in m steps.

Now let us introduce a new generator, ¢, which will play the role of a step counter.
We will suppose that ¢ commutes with all other generators except ¢;. In order to make
this generator a step counter, we include it to all the relations of the table (29):

Command

o

%7070 — QJaTa7Tﬁ

qab = gjattob P

qi, 170 — qj7Ta7Tﬁ

¢:Ab = q;a*Ab**Fc

qi7071 — qj7Ta7Tﬁ

¢:aB = g;a'T*b’ Be

qi, 171 — qjvTavTﬁ

¢ AB = g;a*Ab° Be

(43)

Of course, we have to keep all the commutativity relations of 55.

It is easy to check that for every natural number n, if f(n) exists, then u, is equal
to w(270Y, g, 0)ck where k is the number of steps needed for the Minsky machine to
get to the stop state from (27, ¢4, 0).

Now to make all words u,, with f(r) = 1 again equal to ug (and to make the
statement of Lemma 7.5 hold), it is enough to add one more relation:

uo = w(2,40,0) =0.

To prove the second Lemma suppose that f(rn) = 2, and our Minsky machine
transforms the configuration (2", ¢;,0) into the configuration (4, ¢o,0).

All elements of the semigroup S5 which are equal to the word w(4, go,0)c™ have
the form w(n,¢;,n')c", where 0 < r < m and n,n’ < m + 4. Indeed, we can only
apply relations from the table (43) to the word w(4,¢o,0)c™ from the right to the
left. Every such application reduces the exponent of ¢, and changes the exponents of
a and b by at most 1.

Now to find a finite homomorphic image of 5§ where u,, (f(rn) = 2) and ug are
different, we can do the following. Since f(n) = 2 we have u,, = w(4, ¢o,0)c™ for
some m. Now let us consider the set W of words equal to u,, in S and all subwords
of these words. This set is finite, and u,, of course, belongs to W. The complement
I = SI\W is an ideal, and uy = 0 belongs to /. Now the natural homomorphism
Sy — S} /1 separates u, and ug. This proves Lemma 7.6.
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7.4.3 Groups

The idea is almost straightforward. It is clear that one has to take the group from
Section 7.2.8, and modify it by introducing a step-counting generator c.

We can even avoid the pain of long calculations, because everything we need has
been done in Section 7.2.8.

Let us take the semigroup S3 from Section 7.2.7 (this is the semigroup S; with an
additional generator d), add a generator ¢, as we did in the previous subsection (do
not forget the relation ug = 0): we will get a semigroup S5. Then we can construct
a group G(S%) as we did it in Section 7.2.8 for the semigroup Ss. Let w, be the
canonical words w(n, ¢1,0) in G(S3). We can also assume that ug = w(2,¢,0) = 1 in
G(S%).

The proof of Lemma 7.5 is similar to the proof of Lemma 7.3, outlined in Section
7.2.8.

To find the finite homomorphic images of our group which are required by Lemma
7.6, let us consider the homomorphic image G(Sé) of the group G(S}), similar to G
in Section 7.2.8. This group is a semi-direct product of a free Abelian group 7}
constructed using the semigroup S5, and a finitely generated group generated by
automorphisms corresponding to all generators of G(.S3) except the ¢'s.

Now let us take a natural number n such that f(rn) = 2 and construct the ideal
I of the semigroup S5 as we did in the previous subsection. From the definition of
G(Sé), it is easy to deduce that for every ideal I of S} the subgroup H(I) of Ty,
generated by the elements z; ;, with v € I, is normal in G(Sé) In our case the ideal
I has a finite index (i.e. S4/I is finite). Therefore the factor-group T4/ H(I) is a
finitely generated Abelian group. Hence G(Sé)/H(]) is a semi-direct product of a
finitely generated Abelian group and a finitely generated group from A% Such semi-
direct products are known to be residually finite (see Mal’cev [236], and Hall [138]).
The element wu, does not belong to H(I), so it is not equal to 1 in G(S45)/H(I).
Then there exists a homomorphism from G(S4)/H(I) into a finite group B which
separates u, from 1 = wg. Now to finish the proot of Lemma 7.6 it is enough to
consider the composition of homomorphisms from G(S4) onto G(S4), from G(S%)

onto G(S4)/H(I), and from G(S,)/H(I) onto B.

7.5 An Analysis of Kukin’s Method of Simulating Recursive
Functions

Minsky machines and algorithms are not the only tools for proving the undecidability
of the word problem. In this Section we shall discuss a method of simulating recursive
functions proposed and extensively used by G.P.Kukin [213], [92],[216],[214]. Kukin
used this method to prove the undecidability of word and isomorphism problems,
and to obtain Higman-type results for varieties of groups and Lie algebras. Some of
the proofs contained gaps and some results were later proved to be false (see Kukin
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[215]). The results about the word problem which turned out to be correct have been
later rigorously proved and improved by using Minsky machines and interpretations of
systems of differential equations (see Kharlampovich [187], Sapir and Kharlampovich
[353], Melnichuk, Sapir and Kharlampovich [268], Kharlampovich [185]). However
the Higman-type results have yet to be proved by methods different from Kukin’s.
Therefore there is a widespread opinion that Kukin’s method is an alternative to
Minsky machines.

So we obviously could not ignore this method in our survey. We wanted to present
the main ideas of the method, and then, as an example, simulate a particular recursive
function, say, f(n) = 2n. We must say that papers by G.P.Kukin make difficult
reading. There are many misprints and statements without proofs. The notation
is sometimes strange and difficult to decipher. But finally we extracted the main
ideas of the method and constructed, following Kukin’s scheme, relations intended to
simulate the function f(n) = 2n in a Lie algebra.

But then we noticed that these relations do not work properly. Instead of simu-
lating our nice function f(n) = 2n, they just glue together all canonical words. After
a careful analysis of Kukin’s method we came to the conclusion that this method does
not work at all. 1t is impossible to simulate any more or less complicated function
using this method.

So we changed the plan of this section. Now we are going to show why Kukin’s
method does not work. We will also show how to fix it. And we will show that after
we fix the method, it turns into a method of simulating Minsky machines with many
(more than 2) tapes.

We recall the definition of a primitive recursive function (see Rogers [322]).

The class of primitive recursive functions is the smallest class C of functions from

N* (s =1,2,...) to N such that
e All constant functions ¢(z1,...,x;) = m are in C;
e The successor function s(z) =z 4+ 1 is in C;
e All projection functions I¥ (zy,...2,,) = z} are in C;

o If ¢ is a function of k variables in C and ¢4, ..., ¢ are (each) functions of m
variables in C, then the function

(X1, ) = (A1(T1y o Tm)y e ooy PR(T1, ooy Tn))
is in C. This function f is called a composition of ¢; and ¢;

e If & is a function of k£ + 1 variables in C, and ¢ is a function of £ — 1 variables
in C, then the unique function f of k variables satisfying

flze,. .y 26-1,0) = g(@1, ..., Tp—1),
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fleg, ..o xp,y+ 1) = h(f(21, .oy @ke1,Y), 21y - ooy Thm1, Y)

is in C. And we say that f is obtained by primitive recursion from ¢ and h.

For example, let f(z,y) = x + y, then this function is obtained by primitive
recursion from the functions g(z) = I}(z) =  and h(z,y,2) = s(z) = z+1 . Indeed,
F(,0) = IH(x) = 2 and f(z,y+ 1) = h(F(2,0),09) = F(rry) + 1 = (2 +)+ 1 =
4+ (y+1). )

The function ¢(z) = 2z is obtained by composition of ¢;(z) = ¢s(z) = I{(z) =z
and ¢(z,y) =z +y.

Let ¢(z) be a recursive function. Following Kukin [213] we shall say that a Lie
algebra L =< binit, ..., bfin, Tinity - - - Tfin, Y, Yx, 21, . .. > simulates the function ¢ if
it satisfies the commutativity relations (44) below, and for every natural number m
the equality bzt y.yR(z) = bfm:c};-"nmy*y, where R(z) is a word in the alphabet of
Z1, ..., holds if and only if m = ¢(n) for some n. We also say that the relations of
this algebra simulate the function.

We shall say that an algebra
L=< bim’t, . bfm, Tinity -+» Tfin's Thiny Yy Yuy Z1y--- >

simulates the graph of the function ¢ if it satisfies relations

Ziz; = Yz = Y2y = T 2p = Tpz = Ty = 7T = Yuxp = 0. (44)

and the equality

binit@ii Yoy R(2) = binaffiagh yy
holds if and only if m = ¢(n). In this notation we will call @i, bini initial letters,
and by,  fin, T i terminal letters.

The idea of constructing such an algebra is the following. List all steps in the
construction of ¢ as a primitive recursive function. Each step is either a concrete
function (a constant, a projection, or the successor), a composition, or a primitive
recursion. Then for each step write down the list of relations which simulates this
step (that is the list which simulates the function which we obtain at this step). Then
the algebra L defined by the last of these lists of relations will simulate the function
¢.

For example, if we have a list of relations 7, which simulates the function a(z)
and a list of relations 75 which simulates the function 3(z), and we want to make re-
lations which simulate the composition S(a(z)) then we can do the following. Write
down relations of 7, and g using disjoint alphabets. Let, say, bini, Zinie be the
initial letters, and by;,, x i, be the final letters of ¢, and let & ., x% ., be the ini-
tial letters, and V%, , 2%, be the final letters of ¢5 Then the list corresponding to
the composition is the union of 7, and 7g plus relations which identify the termi-

nal letters of m, with the initial letters of ng: i, = @iy, bpin = bl 1t s
easy to see that if bmﬁ:c}?;?y*y]%l(z) = bfmx};-l_na(n)y*y modulo relations in ¢, and
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b

tnit

b’fm(x’fm)l*'ﬁ(“(”))y*y modulo the joint set of relations constructed above. Notice that

(2l ) My y Ro(z) = by (2,) Py y then bia vy Ri(z)Ra(z) =
the converse implication is not so obvious, but probably can be proved.

One can show that each of the concrete functions (constants, the successor, and
the projections) can be simulated this way. The simulation of primitive recursion
(Lemma 3.6 in Kukin [213]) is where Kukin’s method fails. Note that, to the best of
our knowledge, concrete relations simulating recursive functions may be found only in
[213]. Kukin never repeated these relations in his other papers. Even in Epanchintsev
and Kukin [92] devoted to interpretations of recursive functions in groups, the authors
say (p.172 in the translation and p.282 in the original article) that the relations and
proofs carry over verbatim [from the Lie algebra situation] to the situation for groups.
Thus we will use the relations and the scheme from [213].

We will construct a counter-example to Theorem 4.1 in [213], the key statement in
this paper. Similar statements may be found in other papers [92], [216], [214]. This
Theorem says that if we have a Lie algebra which simulates a primitive recursive
function f(n) with initial letters bty @init, and final letters bsp,, @ fin, and add the
relation b;,;2? ;2 = 0 and the other two relations from the next to the last line on
page 276 of the translation of [213] (the Tth and 8th lines of page 412 in the original
article), then in the resulting algebra bfmx}j'nmyy* is equal to 0 if and only if m = f(n)
for some n.

Let us take the function f(n) = 2n. Following Section 3 of [213], the algebra Ly
(in [213] it is denoted by /Nl), which simulates f(n), is generated by the set

C=A{bi,zj,xs, 2", y,y; 0=0,...9, 5 =0,...16,t =1,...8, },

Tinit = T1, T fin = T5, Dingt = bo, bpin = bs.
The defining relations of Ly are listed below.
First we include the relations (44) (see relations (*) from Section 2 of [213].
Then, following the recipes of Lemmas 3.3 and 3.4 of [213] we add a set of relations
7 (Lemmas 3.3, 3.4) which simulates the function I7(z) :

brxaz1 = 52I5$77 boxrz12 = 5951777 byx7z13 = 5951727 byraz14 = bsfﬂz;

We also need the successor, so add some relations p from Lemma 3.2 of [213] and
from the scheme of Lemma 3.6 (page 411 of the original article):

2
bszi525 = byxsx6, baz16T6 = 551’6-

The next step is the primitive recursion. So we need the relations from Lemma

3.6 of [213]:
bizixs = biz3zys, bizyx3 = byxs, bazsry = b3x™, 532430*2 = byz”,

*
bazsx™ = byxg, bszetsts = bsxs, bszrrs = bews,
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bezste = bers, bszor3 = bzws,
bsx™y. = brys, by = bs

To finish the construction we have to add the relations defining the composition
of the functions ¢1(n) = ¢2(n) = n and the function ¢s(z,y) =z +y :

boz1021 = bo$8$27 bozi7xsxy = biasas.

OK, the meal is almost ready. Now if the proof of the main result of [213], Theorem
4.1, were correct, we would add the relations

2 3 2
bg$2$3$5214 = bg.fg,, bo.leO = bO$17 bo$1y*y = 0

(see the relations from the next to the last line on page 276 of the translation of [213]
or the Tth and 8th lines of page 412 in the original article) and get an algebra where

bty =0

if and only if m is a value of the function f(n) = 2n, that is if and only if m is even.
The next sequence of transformations shows that bgzit®y,y is also equal to zero
in this Lie algebra. At each step in this sequence we use relations of the algebra.

2 2 2,22 2 2 2 3 2
0= bo$1y*21021721 Z9RZ117127 1371475324252 15716R6L 7282923214 =
2.2 222 2 2 2 3 2
bo$8$2y*21721 Z9Z11R1221371473R425215216R6L 7282923214 =

2.2 2,22 2 2 2 3 2 _
61I8$2y*21222’112’122’132’142’32’42’52’152’162’62’72’82’923214 =

2.2 2 2 2 2 2 _
bl.I I3$4y*22211Zl22132142324252152162627282923214 =

2,.2,.2 2 2 2 2 3 2 _
bg$2$3$4y*2112122132142324252152162627282923214 =

2.2 2 2 2 2
bg$3$4$ $7y*2122132142324252152162627282923214 =

2.2 2 2 2 2
bg$3.174$ x7y*2132142324252152162627282923214 =

2.2 2. 2 2 2 3 2
69553334555332’}/*2142324252152162627282923214 =

2.2 2 2 2
bgiE I3$4I5y*2324252152162627282923214 =

2,.2 2 2
bg.fQ.TSI Isy*24252152162627282923214 =

2.2 % 2 2 3 2 2.2 2 2 3 2
b4$2$3$ TlYxZ5215R51626L 7282923514 = b4$2$3$4$5y*2152162627282923214 =
2.2 2.3 3 2 _ 2.2 3, 3 2 _
bs 550405 Y 2627252923214 = DsT5X5T 4T 5T Yw27252923214 =
2.2 3, .3 2 _ 2.2 _1+3, 2 _
be T 5T 5T 55 Y2y 2923274 = D55 aT3" " YuZoZa2y, =

2 2 2 _ 2 % 143
bsxirararitiy.zazl, = bsxixia el y,22, =

2.2 143 2.2 143, 2 _ 7 143
bradaielt®y, 22, = bexiaiel™y, 22, = bgaitiy,
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We can also show that for any natural m the element bgzi™™y,y is equal to 0 in

this algebra.

Thus the construction is incorrect. Now let us explain what’s wrong with it. The
main mistake in the construction is the following.

Consider, for example, the relations bszersrs = bsrs and bszrrs = bgrs from
Lemma 3.6 in [213]. We can apply both of these relations to the canonical word
bszE 2tasahy.y. Kukin considers only one alternative. He supposes that only the first
relation is applied until the letter x5 disappears. However, one can apply the second
relation first, and get an unexpected result.

We have met the same difficulty in Section 7.2.7. We have seen that it is always
bad when different relations can be applied to the same canonical word. And we
know the cure: locks. Suppose we have a canonical word bﬂcf ... and suppose we
want to apply to this word a relation until z; disappears, and then replace b; by by;
we can do the following. Add a new letter y; (a lock for z;) to the set of generators
and multiply the canonical word by this letter. This y; must commute with all other
y's, and with all z; for s # j. Then we need relations like b;x2 = b;xs, biys = byys.
These relations will do what we need.

But if we add all these locks y;, the construction will become equivalent to an
interpretation of a Minsky machine with many tapes, similar to what was used in
Section 7.2.6.

This would be easier to observe if we replace b;, x;, y; by the letters which play
similar roles in the Minsky machine interpretations:

bi — g
ZT; — a;
¥ — b
yi — A
y» — B

As the reader may recall, A and B were letters which marked the ends of the
tapes of the Minsky machine. Using this similarity, we can conclude that what the
author in [213] did was an interpretation of a Minsky machine with a huge number
of tapes where only one tape had a left end, and the other tapes were infinite in
both directions. We can prove that no recursive function with a non-recursive range
can be calculated using such a machine. Actually, we will provide sketches of two
proofs. The first proof is based on the fact that such a machine can be simulated in
a Lie algebra which is finitely presented in the variety N3A. The construction is the
same as that used in Section 7.2.6. But this variety has a decidable word problem
by Theorem 5.7. Therefore the machine cannot compute a recursive function with a
non-recursive range.

The following direct proof was sent to us by M.Minsky [270]. With his permission,
we present this proof here.

If one of the tapes of the machine is infinite, with no end marker, then
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it might as well not exist, because it will always appear the same to the
reading head.

Therefore any such machine is equivalent to a 1-tape non-writing ma-
chine. Any 1-tape non-writing machine is equivalent to a finite-state ma-
chine (hence it cannot be universal). To prove this, suppose the machine
has N states. Then it must always repeat a state within N steps. There-
fore, if you start the machine at the end of the tape, then either it will
never get further than N boxes away from the end — and therefore will
be a finite state machine — or else it will at some time get further than
N boxes away. In the latter case, though, it will also be finite state, be-
cause it must forever keep moving further away, by repeating whatever
state-sequence got it that far. This state sequence is a finite loop, hence
the reading head will never return to the end of the tape.

Finally notice that even if we add all these locks y; it would be impossible to
construct either a group or a Lie algebra in the variety N3A with unsolvable word
problem. Indeed, the class of nilpotency of the derived subgroup (subalgebra) must
be greater than the number of tapes of the machine that we simulate (see also Section
7.2.3). So even if we use the modified version of Kukin’s method we will only obtain
algebras and groups from N,A for very big k, and not from N3A as was claimed in
[213], [92],]216],[214].

We do not know if the Higman-type results obtained by using Kukin’s method
can also be obtained by using the modified method, or, for that matter, any other
method. Thus all these results must be considered as only conjectures (see Section

6).

7.6 Differential Equations

We are going to present a method of simulating differential equations which has
proved to be more powerful than the Minsky machines method in the cases of groups,
associative and Lie algebras. This method allowed us to go deep down in the lattice
of varieties and find minimal varieties with undecidable word problem — a task
inaccessible to Minsky machines.

7.6.1 Where Differential Equations Come From

As we have mentioned in Section 7.1, in order to prove the decidability or undecid-
ability of the word problem in a variety of groups, Lie or associative algebras, we
often need to consider the membership problem for a sum of two (right) modules over
different subrings of a “big” ring.

Let us look at an example which shows how these considerations lead to systems
of differential equations.
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Let K be a commutative algebra over a field F of characteristic 0, generated by
elements {a;,b; | : = 1,..., e} subject to the following polynomial relations:

(ai—bi)(aj—bj):0,i,j:1,...,e

Let K be the subring generated by the a's, K; be the subring generated by the
b's. Let M be a free module over K, freely generated by {qi,...,¢s}. Finally let
M, =< t; | j = 1,... > be a finitely generated K;-submodule of M, and M; =<
sj|7=1,...>beafinitely generated Ky-submodule of M. The membership problem
is the following:

Given an element m i M, determine whether or not m belongs to

My + M,.

We can rewrite the relation m € M; + M, in the “coordinate” form. We have that
m, each of the {;, and each of the s; are sums of ¢; with coefficients from K. The
inclusion m € My + M, means that m is equal to Y s; f;(a1,...,a.)+> t;9;(b1,...,bc)
where f; and g; are polynomials. This is equivalent to a system of equations like

ciifi +efo+t . o+ dugr tdipge+... = r
canfi+cenfot+ ... +dung +dang+... = ry (45)

Where ¢, di;, i are fixed elements from K. So the problem is the following:

Is there an algorithm for solving systems like (45)?

We can further simplify this problem by using the following observation. Recall
that a; and b; are connected by the relation (a; — b;)> = 0. This means a? = 2(a; —
b;)b; + b?. Multiplying this equality by a; and transforming it a little bit, we get
a? = 3(a; — b;)b? + b2, and so on; for every n we have a? = n(a; — b;)b" " + b*. For
those who have forgoten Calculus, recall that nz™™! is the derivative of ™. Since the
derivative is a linear operator, we have

Jlai) = (@i = ;) f'(b:) + f(bs),

where f is a polynomial in one variable.
If we turn to polynomials of several variables and use the relation (a;—b;)(a;—b;) =
0, then similar calculations give us the following formula:

N
f(al,...,a) fbl,..., —|—Z fbl,...,be) (46)

for every polynomial f(zq,...,z.).

35This formula looks like (and exactly is!) the Taylor expansion of the polynomial f around the
point (b1, ..., be).

197



This implies, by the way, that the F-algebra K is spanned by monomials in the
b's and monomials in the b's multiplied by (a; — b;), ¢« = 1,2,..., N. Actually these
elements form a basis of the vector space K.

If we now rewrite the system (45) using representations of all coefficients and
unknowns in this basis, we will get a system of linear differential equations

Dufi+Diafa+ .. dpgr +dipg2 + ... =11
Dnfi+ Dufat .. dyg+dyga+ ... =1y (47)
where the D;; are linear differential operators, f;(b1,...,b:),gi(b1,...,b.) are unknown

functions, d; and r’ are polynomials.
It is important to mention that the left-hand side of this system depends on the
modules M; and M, but not on m, and the right side depends on the element m.
Of course, we cannot say that we can get all such systems, but this shows that it
is worth considering the following Differential Fquations Problem:

Given the left-hand side of a linear system of differential equations
(47) with polynomial coefficients, is there an algorithm which for every
polynomial right-hand side determines whether or not the system (47) has
a solution in Klxy,...,x,]?

7.6.2 Undecidability of the Differential Equations Problem

One of the simple but crucial ideas in proving the undecidability of the Differential
Equation Problem was its reformulation in terms of the Weyl algebra.

Let n be a natural number and K a domain of characteristic 0. The Weyl algebra
W, = W, (z1,...2,) over K is an associative algebra with the presentation

Wn :<I1,...7$n,d17...,dn|
dZ”CZ — CCZdZ = 1,362'36]‘ = Iin,didj = djdi,fcidj == d]CCZ(L 7& J) > .

The algebra W,, acts on the ring of polynomials K[z, ..., z,] by the operation *
defined by

vix f=aif,dixf= AR
&ri
Therefore every linear system of differential equations may be rewritten in the
form
Dxf=r7 (48)
where D is a matrix over W, fis a vector of unknowns from K[zy,...,z,], 7 is a
vector of polynomials from K[zy,...,z,].

Therefore we can reformulate the Differential Equations Problem as follows:

36This action became famous after it was used in quantum mechanics.
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Given a matriz D over W, is there an algorithm which for every
vector 7 over Klx1,...,x,] determines whether or not the system (48)
has a solution in K[zq,...,z,]?

To illustrate the proof of the undecidability of this problem, let us notice that

m m m m
digixxf™ ooar = (my + D)™ o ooar
Hence
m m m m
pldize, ... dpxy) x 2™ o ooalm =p(lmy + 1, omy, + Dat ool

Now let p(y1,...yn) be a polynomial with integer coefficients. Consider the following
equation:

pldizy ... dpxy) * f(21,...,2,) =0. (49)

This equation has a nonzero solution if and only if the equation p(x1+1,... &, +
1) = 0 has a nonnegative integer solution. Indeed, if (mq,...,m,) is a nonnegative
integer solution of the equation p(zq + 1,...,2, +1) = 0, then 27" ...27" is a
nonzero solution of the equation (49). Conversely, if p(x; + 1,..., 2, + 1) = 0 does
not have a nonnegative integer solution and f(zy,...,,) is a nonzero polynomial
then p(dizy...dpxy) * f(21,...,2,) cannot be zero because its leading term will be
of the same degree as the polynomial f(xq,...,z,).

Recall that by the famous theorem of Matiyasevich [252] there exists a polynomial
p with 10 variables and integer coefficients such that the problem of whether the
equation

p($1,,$10)—€:0 (€:1,2,) (50)

has a positive integer solution is undecidable.
Now if we take this polynomial p, then the problem of whether the differential
equation

(p(dizy,...,dyox10) =) *x f=0 (51)

has a non-zero solution in K{z1,...,z10] is undecidable.

This differential equation has two deficiencies. First of all it always has a solution
(zero). Secondly, its “differential” part is not fixed, and its “free” part is fixed - just
the opposite of what we need. So we have not yet proved the proposition.

To make our idea more productive we crossbreed it with the following idea. First,
consider polynomials of two variables, say,  and y. For every k we have

e — (=D ) =1 (52)
Let us multiply this equality by y*. We will have
:z:kyg —(z — 1)($k_1 I A 1)y£ =y
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Now let us take a polynomial of two variables, p(x,y), apply the operator p(d,z, d,y)
to both sides of this equality, and use the above observations:

plk+ 1,04+ Da'y" — p(dez, dyy) * ((x — 1)@ #2724 1)y") = p(L 0+ 1)y".

Now suppose that p(1,¢ + 1) is never equal to 0 (we can guarantee this by replacing
p(z,y) by p(x,y+ ¢) for a big enough constant ¢: a polynomial of one variable cannot
have too many roots). Then the differential equation

p(do, dyy) + ((x = 1) f(z,)) = y* (53)
will have a solution if the Diophantine equation

ple+1,0+1)=0 (54)

(mk_l—}—1?k_2—|—...—}—1)yZ

has a solution. Indeed, f(z,y) = YAy

The important thing is that the converse implication holds too: The Diophantine
equation (54) is solvable if the differential equation (53) is solvable. Indeed, suppose
f(z,y) is a solution of the differential equation. Since the operator p(d.x,d,y) does

will be a solution.

not change the exponents of monomials, the monomial y* must occur among the
monomials of (x—1) f(z,y). Therefore it must occur among the monomials of f(z,y).
Then the monomial zy* occurs among the monomials of (z — 1) f(x,y). Let us take
the lexicographically leading monomial z*y* of (z — 1)f(z,y). We know that & > 0.
So this monomial cannot cancel with the monomial y* from the right hand side of
equality (53). Therefore the operator p(d.x,d,y) must kill this monomial. Therefore
plk+ 1,0+ 1) =0and (k+ 1,{) is a solution of (54).

Thus the solvability of the differential equation (53) is equivalent to the solvability
of the Diophantine equation (54). This is almost exactly what we need. In truth,
we need polynomials of more than 2 variables (because the problem of solvability of
Diophantine equations with 1 unknown is obviously decidable). Fortunately, we can
extend our arguments to polynomials with an arbitrary number of variables. Instead
of equality (52) one can use the fact that every monomial 2% ... 2k may be uniquely

represented in the following form

bt = (2 = (e = 1) (2, — 1)s + ST witi; + o (55)
1<ii<n

where s,1; ; are polynomials, ¢; ; does not contain variable z;, 1y is an element from

the field K. It is possible to prove that tg = (—1)"*! (this is a nice exercise in proofs

by induction for high school students; the base of the induction, n = 1, has been
considered above).

Now we can multiply this equality by y*, where y is a new variable, and apply

the operator p(dix1,...,d,2,,dyy). As above, we can assume that the polynomial
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p(L,1,...,1,¢ + 1) does not have integer roots. Notice that the sum

Z p(d1$17"'7dn$n7dyy) *xztzﬂ

1<i#i<n

may be expressed in the form
Z LiGi,j,
1<iFj<n
where each polynomial g; ; does not contain the variable ;. Notice also that the fact
that ¢g; ; does not contain the variable z; may be expressed by the equality d;*g; ; = 0.
Therefore, for every natural number ¢, the solvability of the following Diophantine
equation

plks + 1,k + 1L,0+1)=0 (56)

implies the solvability of the system of differential equations:

{ pldizy, ... dpxy, dyy) * (21 — 1)(xg — 1)+ (2, — 1)s + Di<igi<n Tifij = y*
(57)
The converse implication also holds. This may be proved by almost the same argu-
ment as above. Therefore, if we take the Matiyasevich polynomial p(z1,...,210) — ¢
with non-recursive set {¢ | Equation (50) is solvable}, then the corresponding system
(57) will give us the desired undecidability of the Differential Equations Problem.

7.6.3 An Interpretation of Systems of Differential Equations

Let us return to sums of modules over different subrings of a “big” ring (see Section
7.6.1), and show how, given a system of differential equations, we can construct such
a sum with undecidable membership problem.

As we have mentioned before, it is not clear that we will get every system of
linear differential equations with polynomial coefficients, when we consider member-
ship problems for sums of modules. Thus, before we construct the modules, we will
simplify our system of differential equations (57).

We can do with system (57) what specialists in differential equations usually do
when they want to reduce the degree of a system of differential equations by increasing
the number of variables. For example, if we have an equation d.d, * f = r we can
introduce a new variable f; and replace this equation by the following system:

dy*f_flzo
d, x fy =r.

Of course, we won’t change the solvability /unsolvability of the system by these
transformations. After these and similar transformations we can get a system D f =
7” where the matrix D satisfies the following conditions.
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L. every entry of D is of the form d;, x; (variable) or an element of the field F
(constant );

2. every row of D contains at most one entry of type d;;
3. every column of D contains at most one entry of type d;;

4. no d; appears in the top row.

Recall that we are dealing with a commutative algebra K over the field F, given
by generators {ay,...,ac, b1,...,b;} and relations (a; —b;)(a; —b;) = 0. We know that
this algebra is spanned by monomials in the b's, and monomials in the &'s multiplied
by (ai—bi),i:O,l,...,N.

Given the matrix D over W, satisfying conditions 1, 2, 3 above, we construct
two subspaces M; and M; of a free K-module M such that M; is a < ay,...,a. >-
submodule of M, M, is a < by,...,b. >-submodule of M =< ¢1,¢2,... > and the
membership problem for M; 4+ M, is equivalent to the system of differential equations
D x f =T

To show that it can be done (and to avoid routine calculations) consider the
following special case: N = 2; so K is generated by {a1, as, by, b5}, and the matrix D

. 1 T2
p=(¥)

Clearly, D satisfies all three conditions formulated above.
The module M will be generated by 2 elements ¢, g2. The submodule M; will be

is the following

generated by two elements corresponding to the columns of matrix D: ¢; 4 ¢2, 162 +
2%(@1 - 51)

The submodule M; will be generated by four elements corresponding to the rows
of D, two elements for each row: ¢1(a; — b1), ¢1(az — b2), ¢2, ¢2(az — by).

You can see that different rows are treated differently. Everything depends on
whether or not there is a d; in the row.

Now for every vector ¥ = (rq,72) let us consider the element m = ¢171(bq, by) +
q2(a1 — b1)ra(b1, by). We claim that m belongs to My + M if and only if the system
D * fz 7 has a solution.

Indeed, the fact that m belongs to M; + M, is equivalent to the existence of six

polynomials fi(a1,az), fa(a1,az), g1(b1, b2), g2(b1, b2), g3(b1, b2), ga(by, by) such that

(g1 + q2) fr + (q1b2 + 2q2(ay — by)) fot
qi1(a1 — b1)g1 + qi(az — ba)ga + q293 + q2(az — b2)gs =
qlrl(bl, bg) —|— qg(al — bl)T’Q(bl, bg)

Now, using the “Taylor expansion” (46) and the fact that the elements ¢;, ¢;(a;—b;)
form a basis of M considered as a < by, b, >-module, we can rewrite this equality in
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the following coordinate form:

fi+bafo=mr
%-1-2](2:7“2
ur +g1 =0
Uz + g2 =0
uz + g3 =0
g+ g4 =0

where u; is an expression built up of polynomials f; and their derivatives.

Since u; does not depend on g;, this system has a solution if and only if the
subsystem of the first two equations has a solution. Finally, notice that this subsystem
differs from our system D * f: 7 only in the names of its variables (b instead of z).

One can see that the submodules M; and M, play different roles in this construc-
tion. The first module simulates the system of differential equations while the second

module is a “garbage collector”: it neutralizes the by-products of the work of M.

7.6.4 A Representation of Sums of Two Submodules in a Finitely Pre-
sented Associative Algebra

Sums of two modules over different rings may be interpreted in groups [185], Lie
algebras [353], and in associative algebras [343]. All the interpretations are based on
the same ideas. We choose associative algebras because, first of all, in this case the
interpretation is more apparent, and second, it gives an immediate strong result — a
minimal variety of associative algebras with undecidable word problem.

As in the previous subsections, let K be a commutative ring generated by ele-
ments {a1,...,ab1,...,b.} subject to relations (a; — b;)(a; — b;) = 0. Let M =<
g1, ---,qn > be a free K-module, My =< 1y,...,t, > be a < a3,...,a. >-submodule
of M, My =< s1,...,8, > bea <by,...,b, >-submodule of M.

We will build the associative algebra S = S(M, My, My) step-by-step. First let S
be generated by {qi,...,qn,a1,...,a.}. As usual we will have relations simulating
the object we are interpreting (the sum M; + M) and auxiliary relations.

The auxiliary relations will make the subalgebra Ky =< ay,...,a. > commutative,
and the subspace V, spanned by words ug;v where u,v € Ky, a module over K. The
first of these two tasks is easy: the relations

;05 = A;0;

will do the job.

To make V into a K-module we need the relations
iy aj, a0l =0
for every triple 2, j, (.
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We can define a K-module structure on the subspace V. For every word ug;v from
V and every j = 1,2,... ¢ let

UGV 0 a; = ua;qv,
ug;v o b; = ugq;bjv.

The relations [¢;, aj,a,] = 0 guarantee us that, ugv o (a; — b;)(ay — b)) = 0.
Therefore V' is a (free) K-module. It is generated by the elements ¢;, ¢ = 1,..., N.
It is easy to see that V is K-isomorphic to M.

Now we can easily define subspaces V; and V; of V which correspond to submodules
M, and M,.

Let t; = 37, q; fij, i = >2; ¢;i,;- Then the subspace V} is spanned by all elements
u(d2; g5 0 fij), v €< a1,...,a. > and the subspace V5 is spanned by all elements
(225 45 © gij Ju-

Now, if V; and V;, were finitely generated ideals we could take their generators
as defining relations of S, and then (rightfully) claim that the word problem in S is
equivalent to the membership problem for M; + M, in M.

Of course, neither V; nor V5 is an ideal. We can make V; into a left ideal and V;
into a right ideal by adding some relations which kill extra words. As in Section 7.2.4
let us kill all 2-letter words which are not subwords of words ug;v, where u,v €<
ai,...,a. >. This means that for every such 2-letter word w we add a relation

w = 0.

From now on let us assume that S satisfies these relations. Then V] is a left ideal,
V3 is a right ideal of S. Moreover, it is easy to see that both of them are finitely
generated. But we need two-sided ideals!

To make these one-sided ideals into two-sided ideals let us add two new (but very
familiar looking!) generators A and B.

Using these generators we will change the definitions of V, Vi, V; as follows.

V' is spanned by all words Aug;vB,

Vi is spanned by u(}"; ¢; o fi;) B and Au(}; ¢; o fi;)B,

V; is spanned by A(3"; ¢j 0 ¢i;)u and A(Y; q; 0 gi;)u where u,v €< ay,...,a. >.

We also add new killing relations

zA=Bx =0

where x is any generator.

Now Vi and V, are both two-sided finitely generated ideals. New generators A
and B play the role of locks. The letter A protects a word from the left, the letter B
protects it from the right.

In truth, V; and V5, are no longer subspaces of V. This is the bad news. But we
have some good news also:
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1. V is isomorphic to M as an Abelian group;

2. V4 NV is isomorphic to My, V3 NV is isomorphic to M, and (Vi + Vo) NV is
isomorphic to M; + M5 under the same isomorphism.

As a result, if the membership problem for M; + M; is undecidable, then the
membership problem for (Vi + V3) NV is undecidable, whence the (even harder)
membership problem for the ideal Vi + V; is undecidable. Therefore, if we take the
finite set of generators of Vi +V; as relators of S, we get an algebra with an undecidable
word problem.

The auxiliary relations (killing relations and commutativity relations) make this
algebra satisfy the identities from Theorem 4.7 (see [343]). Therefore it generates a
minimal variety of associative algebras with an undecidable word problem. Since S is
(absolutely) finitely presented, this variety has a strongly undecidable word problem.

7.6.5 Why Not Minsky Machines?

So, why can’t we get as deep in the lattice of varieties of associative algebras (Lie
algebras or groups) with Minsky machines, as we can with Systems of Differential
Equations? Of course, it is difficult to give a precise answer to such a question. The
concept of an interpretation of a Minsky machine (or a general Turing machine for
that matter) is not rigorous enough to let us even raise the problem of finding a proof
that Minsky machines are not interpretable in some variety of algebras. Nevertheless,
we can try to explain why we feel that Minsky machines cannot be simulated in some
varieties in which the Differential Equations problem can be interpreted.

Consider, for example the variety of associative algebras given by the following
identity:

(21, 2] [y1, Y2, ys[21, 22] = 0

The algebra constructed in Section 7.6.4 satisfies this identity, so the word problem
is not solvable in this variety.

Now let us return to Sections 7.2.2 and 7.2.3, and recall that any interpretation of a
Minsky machine begins with choosing canonical words. A canonical word w(m, ¢;,n)
must contain a letter ¢; which represents the head, subwords u,, and v,,, which sim-
ulate numbers m and n, and locks A and B which represent the ends of the tapes.
The letters of u,, cannot seep through ¢; or A, letters of v, cannot seep through ¢; or
B, otherwise the whole interpretation collapses (see Section 7.2.3).

Recall the following equalities: zy = [z, y|4+yz, zyz = [z,ylz +yzz = [z,y,2] +
zlx,y] + yaxz = [z,y,z] + zzy — zyx + yaxz. Therefore if [z,y] = 0 then y can
seep through z, if [z,y,2] = 0 then y or z can seep through z.

But we want to keep ¢;, A, B, u,,,v, in the same word and to avoid the leaks
altogether3”. This means that a product of three commutators, which can have arbi-

37This is reminiscent of the problem of keeping water in a can with many holes.
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trary lengths (because w,,, v, can have arbitrary lengths), is not 0. This contradicts
the identity [z1,x2][y1, y2, y3][71, 22] = 0.
Don’t ask us for more satisfactory explanations! We don’t have them anyway.

7.7 The Undecidability of the Identity Problem

Recall that the identity problem for a class K of algebras is the following:

Find an algorithm which, given a finite set of identities ¥ =
{u; = v; | © € I} and an identity v = v, determines whether or not X
tmplies u = v in K.

If K is a finitely based variety then the decidability of the identity problem is
equivalent to the uniform decidability of the word problem for every relatively free
algebra in every subvariety of K, which, in turn, is equivalent to the decidability of
the problem of whether two finitely based subvarieties of K coincide.

We present here the proofs of the undecidability of the identity problem in the
classes of all semigroups (Murskii [276]), all finite semigroups (Albert, Baldinger,
Rhodes [9]), and all groups (Kleiman [197]). As was mentioned in the Introduction,
the question of whether the identity problem is decidable for the class of all Lie
algebras (over a good field), or for the class of all finite groups, is still open.

7.7.1 Semigroups

We have already mentioned the theorem of Murskii that the identity problem in the
class of all semigroups is undecidable (see Murskii [276]). Here we are going to present
the ideas of the proof of this result.

Notice first of all that the word problem in a variety K may be formulated in the
following form:

Given a set of relations ¥ = {u; = v; | 1 € I}, find an algorithm which,
given a relation u = v, determines whether or not ¥ implies u =v n K.

This looks very similar to the identity problem, though the relations are not
identities, of course.

But, as a first step we can naively take the set of relations ¥ of a finitely presented
semigroup with an undecidable word problem, say S from Section 7.2.4, and consider
these relations as identities. We would win if we had the following property: For any
canonical word w(m,¢g;,n) an identity v = v is applicable to this word if and only if
the relation u = v is applicable to this word, and there is at most one way to apply
this identity to the canonical word.

Of course, this is not the case. Indeed suppose that we have a relation A¢g; B =
AqybB. If we consider this formula as an identity then we can make substitutions
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(apply endomorphisms of the free semigroup). For example, we can make the following
substitution: A — a, B — b and apply this identity to the word Aaq,6B.

So the problem is that we have too many endomorphisms and that the relations of
Sy are too flexible: they can be transformed into each other by some endomorphisms.

The solution suggested by V.L.Murskii is simple but very effective. Let us replace
the letters in the interpretation of a Minsky machine®® by words: z — z.

Then it would be harder to apply a “wrong” identity to a canonical word (where
we also replaced all letters & by words z).

For example, if ¢ = pg°p?, ¢2 = pg'°p*, a = pg"'p*, b= pg"*p*, A= pq"*p*, B
pqt*p? then the identity Ag; B = AgbB is not applicable to the word w(1,q;,1)
Aaq, bB.

Indeed, the words Wi; = pg"™'p*, k > 3,1 < i < k have the following two
important properties (see Lemma 1 in Murskii [276]):

M1. No word of the form
W = Wk,h Wk,ig e Wk,im n Z 1 (58)

contains occurrences of words W, ; distinct from the occurrences explicitly des-

ignated in (58);

M2. If a word W of the form (58) contains ¢(Wy ;W ;) as a subword, where ¢ is any
substitution, then either ¢(p) = p, ¢(q) = ¢ or the sequence 1,1, .., 12, is not
cube free.

The second condition in the property M2 is essential. Indeed if a word W of the
form (58) contains a power, say W), and m > |W, W} ;| then ¢(Wy; Wy ;), where
¢(p) = ¢(q) = Wh,1, is a subword of W, and ¢(p) # p, ¢(q) # q.

This argument, by the way, shows that we cannot use interpretations of Minsky
machines in semigroups Sy or S,, because the canonical words in these interpretations
contain arbitrary big powers.

But we can use semigroups S(M, ¢) from Section 7.2.5. Indeed, the interpretation
presented there is cube free.

Finally, let us put the details of the construction together.

Take the interpretation of a Minsky machine M in the semigroup S(M, ¢) (see
Section 7.2.5). Let ty,...,t; be the set of generators of S(M, ¢), and let ¥ be the
set of defining relations of S(M, ¢). Replace every letter ¢; in these relations by the
word Wj,;. Denote the resulting set of equalities by ¥, and consider these equalities
as (semigroup) identities. Let w(m,¢g;,n) be a canonical word in S(M, ¢). Apply the
above substitution to this word and denote the resulting word by w(m, ¢;,n). Then
properties M1 and M2 guarantee that

38Murskii uses an arbitrary Turing machine. We will use a Minsky machine for the sake of
simplicity.
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The identity w(m,¢;,n) = w(m’, g»,n') follows from the identities of

Y if and only if the relation w(m,¢;,n) = w(m’, ¢;,n’) follows from the
relations of X.

Now the undecidability of the identity problem follows from the undecidability of
the word problem in S(M, ¢).

To prove the more general Theorem 3.16, one has to consider any finitely based
variety of semigroups V with non-locally finite nil-semigroups (Theorem 3.7 contains
a description of such varieties) instead of the variety of all semigroups. Then one has
to find words W, (V) which satisfy the property M1 and the property M2, where the
words “square free” are replaced by “isoterm for identities of V” (recall that a word
w is an isoterm for identity u = v if w cannot be changed by applying this identity).
Then, instead of the semigroup S(M, ¢), one has to take the semigroups from Section
3 of the paper Sapir [335]. The words W ;(V) were found in Sapir [340].

7.7.2 Finite Semigroups

To prove the undecidability of the identity problem in the class of finite semigroups
(see Albert, Baldinger, and Rhodes [9]), one needs only to combine the ideas of
Sections 7.7.1 and 7.4.2. Let us define a “graded” analogue of the semigroup S(M, ¢)
by adding special elements ¢, ¢;. For the grading parameter, instead of the power of
¢ as in Section 7.4.2, we will use the power of an endomorphism ¢ or, more precisely,
the word ¢"(c¢1). The interpretation of each step of the Minsky machine will be
accompanied by increasing the power of ¢ in ¢"(¢;1). Let, as in Section 7.4.2, the
Minsky machine calculate a function ¢g; where the function f has two values, 1 and 2.
Using our “graded” interpretation and the ideas of Section 7.4.2; one can construct a
system of relations ¥ and canonical words w(m, ¢;,n) with the following properties:

L. If f(n) =1 then the relation w(2",¢,0) = w(2, g, 0) follows from ¥;

2. If f(n) = 2 then the relations w(2",¢1,0) = w(2, ¢o, 0) fail in some finite homo-
morphic image of the semigroup given by the relations ¥;

3. All words w(m, g;,n)¢"(c1) are cube free.

Now if we define the substitution @ — & as in Section 7.7.1 (using the same words
W), then we will get a system of identities ¥ with the following two properties:

1. If f(n) =1 then the identity w(2", ¢;,0) = w(2, go, 0) follows from ¥;

2. If f(n) = 2 then the identity w(2",¢1,0) = w(2,¢o,0) fails in some finite ho-
momorphic image of the relatively free semigroup given by the identities from

Y.

This implies the undecidability of the identity problem in the class of finite semi-
groups.
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7.7.3 Groups

Here we present the main ideas of Kleiman’s proof of the undecidability of the identity
problem for groups (see Kleiman [197]).

First we can reformulate the identity problem for a variety of groups. Let V be a
group variety. The identity problem reads as follows:

Find an algorithm which, given a finite set of identities ¥ =
{u; = 1| ¢ € I} and an identity t = 1, determines whether or not %
impliest =1 in V.

Since every finite set of group identities is equivalent to one identity, the set ¥ in
this definition may be replaced by one identity s = 1. Therefore we can rewrite our
problem as follows:

Find an algorithm which, given two tdentities s =1 and t = 1, deter-
mines whether or not s =1 impliest =1 in V.

Now let R be a relatively free group of V with countably many generators. Then
every word may be considered as an element of R. If ¢ is a word then ¢(R) denotes the
verbal subgroup generated by ¢, i.e. the minimal normal subgroup such that R/t(R)
satisfies the identity t = 1. Then every countable group GG from V which satisfies this
identity is a factor group R/H with H > t(R). Therefore s = 1 implies t = 1 in V
if and only if ¢(R) < s(R). Hence we can reformulate our problem for a variety V as
follows:

Find an algorithm which, given two identities s =1 and t = 1, deter-
mines whether or not s(R) is contained in t(R), where R is the relatively
free group in countably many generators of V.

Now we will show that there exists a finitely based variety of groups V where
this problem is undecidable. From this, it is easy to deduce that the problem is
undecidable for the variety of all groups. Indeed, suppose that the identity problem
is undecidable in a finitely based variety V. Take an identity s = 1 which defines
the intersection of V and the variety given by s = 1. Then the problem “Given an
identity t = 1, find out if s = 1 implies ¢ = 1 in the class of all groups” is equivalent to
the problem “Given an identity ¢t = 1, find out if s = 1 impliest = 1 in V”. Since the
last problem is undecidable by the assumption, the first problem is undecidable also,
which implies the undecidability of the identity problem in the class of all groups.

For any relatively free group R, the verbal subgroup s(R) may be constructed in
two steps [279]. First we construct the set of all images of s under endomorphisms of
R. (This set is usually called a verbal subset and is denoted by s[R]. For example, if
s = (x,y) then s[R] is the set of all commutators of elements of R.) Then the verbal
subgroup s(R) coincides with the subgroup generated by s[R].
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Thus if we replace round brackets by square brackets, i.e. if we consider verbal
subsets instead of verbal subgroups, we will simplify the problem.

It is clear that ¢[R] < s[R] if and only if ¢ is an endomorphic image of s. We will
say that s covers t in R if ¢ is an endomorphic image of s in K. Thus we have the
following problem:

Given elements s and t in R find out if s covers t.

It turns out that it is easier to solve a harder problem. Namely we shall find a
relatively free group R, given by finitely many identities, and an element s in R such
that the following problem is undecidable:

Given an element t in R find out if s covers t.

It is easy to see why this problem is harder: it has fewer degrees of freedom, in
fact only one. In general, systems with more degrees of freedom are more likely to be
undecidable.

This problem for arbitrary (not necessarily relatively free) groups is known as the
problem of endomorphic reducibility. Roman’kov [323] proved that this problem is
undecidable even for a nilpotent group.

But Kleiman cannot use this result because he needs a relatively free group, and
Roman’kov’s group is not relatively free. So he modifies Roman’kov’s method.

Just as Roman’kov, he interprets Diophantine equations and uses the undecid-
ability of Hilbert’s 10th problem (Matiyasevich [252]). Following Roman’kov [323],
Kleiman formulates Hilbert’s 10th problem in the following way.

Let p(x1,...,2,),q(x1,...,2,) be polynomials with integer coefficients. We say
that p covers ¢ if f(p) = ¢ for some linear transformation

f LTy — Zaiﬂ:j —|— /3]‘ (59)

where «;;, 3; are integers. It is easy to see that p covers an integer k if and only
if the equation p(z1,...,2,) = k has an integer solution. Indeed, if f(p) = k then
p(Bi,...,Bn) = k. Therefore, the Theorem of Matiyasevich may be formulated as
follows:

There exists a polynomial p such that the set of integers covered by p
s notl recursive.

Now let us understand what it means “to translate Hilbert’s 10th problem into the
problem of endomorphic reducibility in a group R”. An intuition gained from working
with interpretations of various other things (Minsky machines, recursive functions,
etc.), tells us that we need two correspondences:
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e a mapping p — ¢, between polynomials of given degree and given number of
variables *°, and elements of R,

e a mapping f — ¢s between linear transformations (59) f and endomorphisms

of R.

These two mappings must satisfy the following “functorial” conditions:

L. If f(p) = g then ¢4(g,) = g,, and

2. if ¢(g,) = g, for some endomorphism ¢ then for some linear transformation f
we have f(p) = ¢.

To illustrate the idea of such an interpretation, let us consider polynomials of the
form ax?® + bx + c.

To simulate polynomials, we basically need to simulate the addition and the mul-
tiplication of numbers by two derived (defined by some words) group operations. Of
course, these operations must satisfy the laws of the usual addition and multiplica-
tion of numbers. In particular a) addition must be commutative and b) multiplication
must be distributive with respect to addition. In order to solve problem a) we will
interpret addition by the usual group multiplication, but we will try to use this op-
eration only inside a special Abelian subgroup.

In order to solve problem b) we can use the following well known fact: in any
nilpotent group of degree k the k-ary operation (1,2, ..., ) is distributive in every
variable (see [136]).

Consider, for example, the following construction. Let R be the free nilpotent
group of degree 4 with 3 generators z,y, z. For every four elements u, v, w,t in R the
commutator (u,v,w,t) belongs to the center Z(R) (this will be the special Abelian
subgroup we were talking about) and this 4-ary operation is distributive in every
variable, i.e., for example, (u, v, ww', z) = (u,v,w, z)(u,v,w’ z).

For every polynomial p = ax? + bx + ¢ let us consider the following word

9 = (z, 9,2, 2) (2,9, ¥, 2)(2, 4,9, y)".

For every linear transformation f : * — ax + 8 we can define an endomorphism ¢5

of R by
¢5(x) = 2y’ ¢5(y) = y, ¢5(2) = 2.
Then it is easy to verify that if f(p) = ¢ then ¢4(g,) = ¢g,. So we have property 1.

Unfortunately we do not have property 2: we cannot say that if g, covers g, then
p covers q. Indeed, the free nilpotent group R has too many endomorphisms and our

39 Actually we need to simulate only one particular polynomial — the Matijasevich polynomial, but
it is easier to interpret the whole set of polynomials of given degree and given number of variables.
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construction is too unprotected against “uninvited” endomorphisms. For example,
consider an endomorphism @ given by the following rules:

-1
Vix—ax,y—o Yy o,z — 2.

Let p(z) = z%. Then g, = (z,y,x,x). Hence ¥(g,) = (z,y~ ', z,2) = (2,y,z,2)"".
Notice that (z,y,z,2)™! = g, where g(z) = —z*. But it is obvious that the polynomial
p(x) = 2* does not cover the polynomial ¢(z) = —z*. So the word g, covers the word
g, while the polynomial p does not cover the polynomial g.

To get rid of “uninvited” endomorphisms we need a security system. A simple
idea is to multiply the words which we want to protect by a special factor £ (a “lock”)
such that if an endomorphism takes ¢ to ¢ then it fixes z and y. Using elementary
calculations with commutators (see H. Neumann [279]) and a little bit of linear algebra
it is easy to find such “locks”. For example, the word (z,y, 2, 2)(2, y,y, z)* will work
just fine. So it is enough to change the definition of g, as follows:

9 = (z,y,2,2)"(2,9,v,2)" (2,9, v, 9)(2, ¥, 2, 2) (2, y, 9, 2)°.

(Recall that p(z) = az? + bz + ¢.)

Of course, Kleiman has to interpret polynomials of greater degrees with many
variables, so his construction is much more complicated, but the main ideas are the
same. The concrete form of this interpretation is not significant for us. So from now
on it would be enough to assume that there exists a relatively free nilpotent group R
and an interpretation (p — g¢,, f — ¢5) of polynomials of sufficiently big degree and
sufficiently many variables in R which has properties 1 and 2 indicated above.

Now we can return to round brackets, i.e. to verbal subgroups. To proceed from
the square brackets to round brackets Kleiman invents the following very neat group-
theoretic construction. Later, the same construction allowed him to solve many other
important problems about group varieties.

Assume that A is a relatively free group, A > N and N is an Abelian verbal (that
is stable under endomorphisms) subgroup of exponent 2. Assume also that the wreath
product of the cyclic group of order 2 and A/N belongs to the variety generated by
A. Select a nonempty set of nonunit elements M C N such that M4 = M (that is M
is stable under conjugations by elements of A). Denote the image of an element a in
the factor group A/N by a. Using the group A, let us construct the group B whose
generators are all symbols of the form & and ¢*, for arbitrary ¢ € A, s € A/N, and
whose defining relations have the form

()2 = () =

(b7, 0") =1 if gh=' ¢ M,
(b7,0") = 7 if gh=t € M,
(b9,¢)=1

for all g,h € A, and s € A/N.
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The third relation may make you suspicious, because it seems that we prefer
the left factor of the commutator to the right one. This is strange because the
group commutator is an anti-commutative operation in general, and a commutative
operation in our case since every value of this operation is an involution (by virtue of
the first relation). So it looks like we will identify different elements ¢*. But in fact
everything is all right. Indeed, note that if gh~! € M then § = h because M C N.
Therefore . )

(B, 0") = =" = (M) = (0", 0.

It is easy to see that B belongs to the variety of nilpotent groups of class 2 and

exponent 4, i.e. B € A2N N,. There is a natural action of A on B:

(bg)h, — bgh7 (Cs)h — csh7
where g, h € A, s € A/N. Let us denote the semidirect product of B by A, relative
to this action, by C'(A, N, M).*

The following lemma contains the two main properties of the group C(A, N, M).

Lemma 7.7 1. The following equivalence holds for an arbitrary word w € N:
w* =1 is an identity in the group C(A, N, M) if and only if w[A]N M = 0.
2. If the identity u = v holds in A then the identity u* = v* holds in C(A, N, M).

Suppose now that the problem of endomorphic reducibility is not decidable in the
group A for a word s from N, i.e. that there is no algorithm which tells us if an
element ¢ from N is covered by s. Then for every nonunit element ¢ from N we can
take M; = {t? | g € A}. Now s[A]N M; = 0 if and only if ¢ & s[A], that is if and only
if s does not cover t.

Therefore, by the first statement of Lemma 7.7, we have that s* = 1 is an identity
in C(A, N, M,) if and only if s does not cover t in A.

Now consider the variety C generated by all groups C(A, N, M;).

Suppose that s does not cover ¢ in A. Then s* =1 is an identity in C'(A, N, M,),
but ¢* = 1 is not an identity of this group (since ¢ obviously covers ¢). Therefore if s
does not cover ¢t in A then the identity s* = 1 does not imply the identity t* = 1 in C.

The converse statement is also true. Indeed, suppose s covers t in A. Then
#(s) =t in A for some endomorphism ¢ of A. Since A is relatively free, we can
deduce that ¢(s) =t is an identity in A. Then by the second statement of Lemma
7.7, ¢(s)* = t* is an identity in every group C(A, N, M). Therefore ¢(s*) = ¢* is an
identity in C. Hence the identity s* = 1 implies the identity t* = 1 in C.

4°0One can notice a connection between this construction and the construction of group G in Section
7.2.8. There we used a free Abelian group with generators indexed by elements of a semigroup, and
then defined a semidirect product using a “natural” action. In some sense, both constructions are
variations on the theme of the wreath product. Another variation was used in Ol’shanskii’s work on
the finite basis property in group varieties [287].
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Thus there is no algorithm which can decide if the identity s* = 1 implies the
identity t* = 1 in C. This means that the variety C has undecidable identity problem.

We could apply these arguments for A = R and get the undecidability of the
identity problem for groups if

1) R had a verbal Abelian subgroup N of exponent 2, the wreath product of the
cyclic group of order 2 and R/N belonged to varR, the problem of endomorphic
reducibility was undecidable for elements of this normal subgroup, and

2) the variety C was finitely based.

Unfortunately the first of these statements is false and the second one is difficult
to prove. Even the fact that C is actually generated by a single group C(A, N, M;)
does not help much: in general the question of whether the identities of a group are
finitely based is a very non-trivial one.

Therefore we need to replace R by a somewhat different relatively free (non-
nilpotent) group and we need to replace C by a finitely based variety.

The solution to the first problem is almost straightforward. We can consider the
Mal’cev product V of the Abelian variety of exponent 2 and the variety generated by
R. Relatively free groups of this variety are semidirect products of Abelian groups of
exponent 2 and relatively free groups from varR. Let A be the relatively free group
from V with the same number of generators as R, let N be the verbal subgroup of
A corresponding to the variety var R. Then A is a semidirect product of N and R.
One can pick one element ug in N and for every element w consider the commutator
(ug, w), which also belongs to N. Using the Shmel’kin embedding of A into the wreath
product of N and R [374], Kleiman shows that it is possible to choose ug in such a
way that the following property holds in A:

(uo,gq) ts an endomorphic image of (uo, g,) in A if and only if g, is an endomor-
phic tmage of g, in R.

Recall that ¢, and g, are words corresponding to polynomials p and g.

Now that we are given the relatively free group A and its Abelian subgroup N, we
can construct groups C(A, N, M;) for every element ¢ in N, and consider the variety
C generated by these groups. As we showed above, the identity s* = 1 implies the
identity t* = 1 in the variety C if and only if t is an endomorphic image of s in A.

The last difficulty that we need to overcome is that C is possibly infinitely based.
Kleiman finds a finitely based variety D which is greater than C yet still satisfies the
statement in the previous paragraph. Let D be any variety greater than C. If one
identity does not imply another one in C, then the same holds in the bigger variety
D. Therefore s* = 1 does not imply t* = 1 in D if ¢ is not an endomorphic image of
s in A. Thus we do not have to care much about whether D preserves the “if” part
of the statement of the previous paragraph. It is more difficult to preserve the “only
if” part.

Let P be the Mal’cev product of V; N A2 and varA, and let P be the free group
of P with the same number of generators as A. Then P is an extension of a nilpotent
class two group V by A. It is easy to see that all groups C'(A, N, M) belong to P.
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By a theorem of Higman (H. Neumann [279], 34.24) P is finitely based.

Now suppose that s, € N (N is an elementary Abelian normal subgroup in A)
and t is covered by s in A. It is enough to prove that ¢* is an endomorphic image of
stin P (then s*[P] will contain t*[P] and so s*(P) will contain t*(P)).

For every endomorphism 1 of A we can define an endomorphism ? of P which
acts on generators in the same way as v does. We have v(s) = tv for some v € V
and t(s) = (tv)*. Everything would be OK if we had (tv)* = ¢*. A smart reader
might guess that this is not the case. And (s)he is right as usual.

But we can add one identity to the equations of P to make this property true.
Indeed, we want to have (tv)* = ¢* for every t € N,v € V. To this end it is enough to
find a word f such that f(A) = N and a word v such that v(P) = V. We can assume
that f and v are written on different sets of variables. Then the identity (fv)* = v*
will do the trick. Kleiman finds such words using a certain technique of Rhemtulla

[319]. This finishes the proof.
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