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Aharonov-Bohm and Aharonov-Casher tunneling effects and edge states in double-barrier structures
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The simultaneous occurrence of Aharonov-Bohm (AB) and Aharonov-Casher (AC) effects due to edge
states in double-barrier two-dimensional wires formed by an electrostatic confinement potential, in the
quantum Hall effect regime, is discussed. The AC effect is manifested via a shift of the AB conductance
oscillations, and a method for measurement of the effect is proposed.

Quantum coherent effects have been intensely studied
for a long time. The most well known of them is, the
Aharonov-Bohm (AB) effect due to sensitivity of the
phase of the electron wave function to the vector poten-
tial field, which creates magnetic flux.! The additional
shift of the phase of the wave function (the AB phase)
when an electron moves along a closed trajectory [Fig.
1(a)] is given by the expression
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where ¢ is the magnetic flux enclosed by the trajectory
and ¢,=hc /e is the flux quantum.

Another example of a quantum coherence effect is the
Aharonov-Casher (AC) effect.? The latter, being dual to
the AB effect, is due to interaction between the particle’s
magnetic moment g and an electric field E. The phase
shift in this case (the AC phase) is given by

Opc=7- $EXp)dI o)

In the case of a Coulomb electric field, which may be
created, for example, by a charge line with charge density
7 [Fig. 1(a)], E=27r/r% we have for the AC phase the
following expression:

D,\=27 3)
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where F= f E,dl=4wr is the electric flux through the
loop trajectory and Fy=hc /u is the “electric flux quan-
tum.” Note that in this case the AC phase is a topologi-
cal one as in the AB effects, when the magnetic flux ¢ is
created by a solenoid. Both phases depend on the magni-
tudes of the fluxes (for the AC phase on charge density)
and do not depend on the shape and size of the trajecto-
ry. An important difference between the two phenomena
should be emphasized. The AB effect originates from
charge current-vector potential interaction and has a
force-free nature. Thus, it may take place even in a
magnetic-field-free region. The AC effect results from
spin-orbit interaction, so it is necessary to create a real
electric field for its existence.> Both the AB effect and the
AC one were first observed for electron* and neutron’
beams, in vacuum.

There are various solid-state realizations of the AB and
AC effects. The AB effect is manifested in solids in oscil-
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latory dependence of thermodynamic and kinetic charac-
teristics on magnetic flux, with a flux quantum period.
This phenomenon occurs both in double-connected sys-
tems (pure® and dirty "® cylinders and rings, see Refs.
9-12) and in simply connected ones.!* In the latter case
the AB oscillations are due to electron edge states local-
ized near the surface and forming effectively a double-
connected (ring) geometry. The concept of edge states
(whispering-gallery states) was used for study of the AB
effect in solid cylinders (microwires) placed in a weak lon-
gitudinal magnetic field.!* This geometry (Bi micro-
cylinders) allowed the experimental observation of the
AB effect.!* Later the AB effect due to similar edge
states was studied in quantum dots,'> point contact,'s!’
and a single-barrier structure'® in a strong magnetic field
(see Ref. 19).

The AC effect reveals itself in solids also, through a
specific dependence of thermodynamic and transport
properties on electric flux (the AC phase). So far,
different theoretical aspects of this effect have been dis-
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FIG. 1. (a) Schematic of the Aharonov-Bohm (AB) and
Aharonov-Casher (AC) effects. R is an electron trajectory and
QQ' is a source of flux created by a solenoid (AB effect) or by a
charged fiber (the AC effect). (b) Schematic of a two-
dimensional quantum wire with two barriers (hatched) in the
geometry of the quantum Hall effect (H| is in the direction into
the page). Arrows denote the directions of motion of the elec-
trons via edge states.
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cussed only in the context of double-connected metallic,?
magnetic,?! semiconducting,?? and ‘He-4 (Ref. 23) sys-
tems (see also Ref. 24 about spin-orbit interaction in
mesoscopic systems). The purpose of the present paper is
to suggest measurement of the AC effect in simply con-
nected systems in the quantum Hall effect regime.

The geometry of the transport problem considered
here is shown in Fig. 1(b). A two-dimensional wire (long
in the x direction and finite in the y direction) with two
tunneling barriers (along the x direction) is placed in a
strong magnetic field H normally oriented to the surface
(i.e., geometry of the quantum Hall effect). In this case
the magnetic moments of all the electrons are oriented
along the magnetic field. The distance between the bar-
riers along the x direction, L,, is supposed to be small
compared to the phase-breaking length / ¢=\/ Dty and
the normal metal coherence length
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where D ~vgl is the electron diffusion coefficient, vy is
the Fermi velocity, ! the elastic mean free path of the
electrons, 74 is the phase-breaking time, and T is the tem-
perature.

Restriction of the dimension of the wire in the y direc-
tion may be achieved via a confinement potential ¥V, usu-
ally of electrostatic nature. In this case an electric field is
applied in the plane of the wire. Electric and magnetic
fields cause motion of electrons along the boundaries via
edge states.!” Because electrons in edge states at opposite
sides of the wire move in opposite directions, backscatter-
ing (reflection) from the barriers requires tunneling jumps
from one side of the wire to another. This leads to for-
mation of a closed path of the electrons between the bar-
riers [see Fig. 1(b)] that results in the simultaneous ap-
pearance of the AB and AC phases.

We will describe the electric transport in the wire in
terms of the transmission ¢,(,, and the reflection r,(,, am-
plitudes of barriers 1 and 2. The total transmission prob-
ability (7) through the double-barrier structure for a sin-
gle edge channel, including contributions from all closed
electron trajectories between the barriers calculated to all
orders of reflections from the barriers, has the form (com-
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The AB and AC phases may be expressed in terms of
Egs. (1) and (3) with fluxes depending on sample
geometry, which determines the electron trajectory;
¢=H S (S is the area enclosed by the electron trajecto-
ry) and F=2EL .

In order to estimate the AC phase shift in Eq. (4) let us
consider the electric field associated with confinement of
the electrons in the y direction

__1v_ 1€
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and the magnetic moment u=gpup, where €y is the Fermi

energy, Ay is the length scale of substantial variation of

the confining potential, g is the g factor, and pup is the

Bohr magneton. This yields

2 L

Ay -’

€r Lx

s -
AC gmc2 Ay g

c

(5)

For semiconducting wires with large values of the g fac-
tor (~ 100, see Refs. 22 and 23) and for typical values of
the ratio vy /c ~ 1072, the system characteristic length ra-
tio L, /Ay may be chosen to be of the order 10%, yielding
an AC phase of the order of unity. To observe the AC
phase it may be more convenient to place an additional
magnetic field H; in the plane of the wire in the y direc-
tion. If this field is much stronger than the Hall magnetic
field (H ), the magnetic moments of all the electrons will
be oriented toward the plane of the wire. This leads to
effective cancellation of the AC phase [see Eq. (2)] and,
consequently, to a shift of the AB oscillations [that is,
dependence of T on the AB phase, see Eq. (4)]. Thus,
measurements with and without the magnetic field H,
would allow determination of ¢,c. In this context we
note that, using this method of measurement, experimen-
tal conditions for which ¢,-~1 are not essential.
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