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1. Introduction. The Feynman path integral is known to be a powerful tool
in different domains of physics and various mathematical approaches to its construction
were developed (see e.g. extensive reviews of the recent literature in [ABB], [SS], [K4],
[K5]). However, most of them work only for very restrictive class of potentials. More-
over, they are often defined not as genuine integrals, but as some generalized functionals
specified by some limiting procedure. In [K2], [K3] the author proposed a representation
of the solutions to the Schrödinger equation in terms of the well defined infinite dimen-
sional Feynman integral defined as a genuine integral over a bona fide σ-additive mea-
sure on an appropriate space of trajectories (usually the Cameron-Martin space). This
construction covers very general equations. In [K5] it is extended to the Schrödinger
equations with magnetic fields with even singular vector potentials defined as Radon
measures. The construction uses the idea of the regularization by means of the intro-
duction of continuous quantum observations or complex times and extends the approach
of Maslov-Chebotarev (see [MCh]) which was based on the pure jump processes that
appear naturally in the momentum representation of the Schrödinger equation, whose
potential can be presented as a Fourier transform of a finite complex measure (Ito’s
complex measure condition). The present paper sketches the various connections be-
tween pure jump and Wiener processes that are relevant to the path integral study of
the complex diffusion equations

∂ψ

∂t
= G

(

1

2
∆ − V (x)

)

ψ, ψ ∈ L2(Rd),(1.1)

where G is a complex constant with ReG ≥ 0, the case G = 1 (respectively G = i)
standing for diffusion (respectively Schrödinger) equation.

Section 2 is devoted to a unified construction of the Wiener and pure jump measures
on a path space that exploits the notion of complex Markov chains (as introduced in
[M]). It is based essentially on [K1] and extends the Nelson approach to the construction
of the usual Wiener measure. Section 3 discusses the Fock space lifting of the pure-
jump processes and the resulting possible interpretation of the pure jump path integral
in terms of the Wiener integral based on the Wiener chaos decomposition. The last
Section 4 presents a new asymptotic formula for the solutions of the Fourier transform
of the diffusion equation which is obtained by passing to the Brownian motion limit in
a representation of the solutions as expectations with respect to a pure jump Poisson
process.

2. Infinitely divisible complex distributions and complex
Markov processes. We present here a general construction of complex measures on
path spaces that can be used for the path integral representation of various evolutionary
equations.
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Let B(Ω) denote the class of all Borel sets of a topological space (i.e. it is the σ-
algebra of sets generated by all open sets). If Ω is locally compact we denote (as usual)
by C0(Ω) the space of all continuous complex-valued functions on Ω vanishing at infinity.
Equipped with the uniform norm ‖f‖ = supx |f(x)| this space is known to be a Banach
space. It is also well known (Riesz-Markov theorem) that if Ω is a locally compact space,
then the set M(Ω) of all finite complex regular Borel measures on Ω equipped with the

norm ‖µ‖ = sup |
∫

Ω
f(x)µ(dx)|, where sup is taken over all functions f ∈ C0(Ω) with

‖f(x)‖ ≤ 1, is a Banach space, which coincides with the set of all continuous linear
functionals on C0(Ω). Any complex σ-additive measure µ on Rd has a representation
of form

µ(dy) = f(y)M(dy)(2.1)

with a positive measure M and a bounded complex-valued function f Moreover, the
measure M in (2.1) is uniquely defined under additional assumption that |f(y)| = 1
for all y. If this condition holds, the positive measure M is called the total variation
measure of the complex measure µ and is denoted by |µ|. In general, if (2.1) holds, then

‖µ‖ =
∫

|f(y)|M(dy).

We say that a map ν from Rd × B(Rd) into C is a complex transition kernel, if for
every x, the map A 7→ ν(x,A) is a (finite complex) measure on Rd, and for every A ∈
B(Rd), the map x 7→ ν(x,A) is B-measurable. A (time homogeneous) complex transition
function (abbreviated CTF) on Rd is a family νt, t ≥ 0, of complex transition kernels
such that ν0(x, dy) = δ(y − x) for all x, where δx(y) = δ(y − x) is the Dirac measure in
x, and such that for every non-negative s, t, the Chapman-Kolmogorov equation

∫

νs(x, dy)νt(y,A) = νs+t(x,A)

is satisfied. (We consider only time homogeneous CTF for simplicity, the generalization
to non-homogeneous case is straightforward).

A CTF is said to be (spatially) homogeneous, if νt(x,A) depends on x,A only
through the difference A− x. If a CTF is homogeneous it is natural to denote νt(0, A)
by νt(A)) and to write the Chapman-Kolmogorov equation in the form

∫

νt(dy)νs(A− y) = νt+s(A).

A CTF will be called regular, if there exists a positive constant K such that for all
x and t > 0, the norm ‖νt(x, .)‖ of the measure A 7→ νt(x,A) does not exceed exp{Kt}.

CTFs appear naturally in the theory of evolutionary equations: if Tt is a strongly
continuous semigroup of bounded linear operators in C0(Rd), then there exists a time-
homogeneous CTF ν such that

Ttf(x) =

∫

νt(x, dy)f(y).(2.2)

In fact, the existence of a measure νt(x, .) such that (2.2) is satisfied follows from the
Riesz- Markov theorem, and the semigroup identity TsTt = Ts+t is equivalent to the
Chapman-Kolmogorov equation. Since

∫

νt(x, dy)f(y) is continuous for all f ∈ C0(Rd),

it follows by the monotone convergence theorem (and the fact that each complex measure
is a linear combination of four positive measures) that νt(x,A) is a Borel function of x.

We say that the semigroup Tt is regular, if the corresponding CTF is regular. Clearly,
this is equivalent to the assumption that ‖Tt‖ ≤ eKt for all t > 0 and some constant K.

Now we construct a measure on the path space corresponding to each regular CTF,
introducing first some (rather standard) notations. Let Ṙd denote the one point com-
pactification of the Euclidean space Rd (i.e. Ṙd = Rd ∪ {∞} and is homeomorphic to

the sphere Sd). Let Ṙ
[s,t]
d

denote the infinite product of [s, t] copies of Ṙd, i.e. it is the
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set of all functions from [s, t] to Ṙd, the path space. As usual, we equip this set with
the product topology, in which it is a compact space (Tikhonov’s theorem). Let Cylk

[s,t]

denote the set of functions on Ṙ
[s,t]
d

having the form

φf
t0,t1,...tk+1

(y(.)) = f(y(t0), ..., y(tk+1))

for some bounded complex Borel function f on (Ṙd)k+2 and some points tj , j = 0, ..., k+
1, such that s = t0 < t1 < t2 < ... < tk < tk+1 = t. The union Cyl[s,t] = ∪k∈NCyl

k
[s,t]

is called the set of cylindrical functions (or functionals) on Ṙ
[s,t]
d

. It follows from the
Stone-Weierstrasse theorem that the linear span of all continuous cylindrical functions

is dense in the space C(Ṙ
[s,t]
d

) of all complex continuous functions on Ṙ
[s,t]
d

. Any CTF

ν defines a family of linear functionals νx
s,t, x ∈ Rd, on Cyl[s,t] by the formula

νx
s,t(φ

f
t0...tk+1

)
(2.3)

=

∫

f(x, y1, ..., yk+1)νt1−t0(x, dy1)νt2−t1(y1, dy2)...νtk+1−tk
(yk, dyk+1).

Due to the Chapman-Kolmogorov equation, this definition is correct, i.e. if one considers
an element from Cylk

[s,t]
as an element from Cylk+1

[s,t]
(any function of l variables y1, ..., yl

can be considered as a function of l+ 1 variables y1, ..., yl+1, which does not depend on
yl+1), then the two corresponding formulae (2.3) will be consistent.

Proposition 2.1. If the semigroup Tt in C0(Rd) is regular and ν is its correspond-
ing CTF, then the functional (2.3) is bounded. Hence, it can be extended by continuity

to a unique bounded linear functional νx on C(Ṙ
[s,t]
d

), and consequently there exists a

(regular) complex Borel measure Ds,t
x on the path space Ṙ

[s,t]
d

such that

νx
s,t(F ) =

∫

F (y(.))Ds,t
x (dy(.))(2.4)

for all F ∈ C(Ṙ
[s,t]
d

). In particular,

(Ttf)(x) =

∫

f(y(t))Ds,t
x (dy(.)).

Proof. It is a direct consequence of the Riesz-Markov theorem, because the regularity
of CTF implies that the norm of the functional νx

s,t does not exceed exp{K(t− s)}.

Formula (2.3) defines the family of finite complex distributions on the path space,
which gives rise to a finite complex measure on this path space (under the regularity
assumptions). Therefore, this family of measures can be called a complex Markov pro-
cess. Unlike the case of the standard Markov processes, the generator, say A, of the
corresponding semigroup Tt and the corresponding bilinear ”Dirichlet form” (Av, v) are
complex.

The following simple fact can be used in proving the regularity of a semigroup.
Proposition 2.2. Let B and A be linear operators in C0(Rd) such that A is bounded

and B is the generator of a strongly continuous regular semigroup Tt. Then A+ B is
also the generator of a regular semigroup, which we denote by T̃t.

Proof. Follows directly from the fact that T̃t can be presented as the convergent (in
the sense of the norm) series of standard perturbation theory

T̃t = Tt +

∫ t

0

Tt−sATs ds+

∫ t

0

ds

∫ s

0

dτTt−sATs−τATτ + ...(2.5)

Of major importance for our purposes are the spatially homogeneous CTFs. Let
us discuss them in greater detail, in particular, their connection with infinitely divisible
characteristic functions.
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Let F(Rd) denote the Banach space of Fourier transforms of elements of M(Rd),
i.e. the space of (automatically continuous) functions on Rd of form

V (x) = Vµ(x) =

∫

Rd

eipx µ(dp)(2.6)

for some µ ∈ M(Rd), with the induced norm ‖Vµ‖ = ‖µ‖. Since M(Rd) is a Banach
algebra with convolution as the multiplication, it follows that F(Rd) is also a Banach
algebra with respect to the standard (point-wise) multiplication. We say that an element
f ∈ F(Rd) is infinitely divisible if there exists a family (ft, t ≥ 0,) of elements of F(Rd)
such that f0 = 1, f1 = f , and ft+s = ftfs for all positive s, t. Clearly if f is infinitely
divisible, then it has no zeros and a continuous function g = log f is well defined (and
is unique up to an imaginary shift). Moreover, the family ft has the form ft = exp{tg}
and is defined uniquely up to a multiplier of the form e2πikt, k ∈ N . Let us say that a
continuous function g on Rd is a complex characteristic exponent (abbreviated CCE),
if eg is an infinitely divisible element of F(Rd), or equivalently, if etg belongs to F(Rd)
for all t > 0.

It follows from the definitions that the set of spatially homogeneous CTFs νt(dx)
is in one-to-one correspondence with CCE g, in such a way that for any positive t the
function etg is the Fourier transform of the transition measure νt(dx).

Proposition 2.3. If V is a CCE, then the solution to the Cauchy problem

∂u

∂t
= V

(

1

i

∂

∂y

)

u(2.7)

defines a strongly continuous and spatially homogeneous semigroup Tt of bounded linear
operators in C0(Rd) (i.e. (Ttu0)(y) is the solution to equation (2.7) with the initial
function u0). Conversely, each such semigroup is the solution to the Cauchy problem
of an equation of type (2.7) with some CCE g.

Proof. This is straightforward. Since (2.7) is a pseudo-differential equation, it follows
that the Fourier transform ũ(t, x) of the function u(t, y) satisfies the ordinary differential
equation

∂ũ

∂t
(t, x) = V (x)ũ(t, x),

whose solution is ũ0(x) exp{tV (x)}. Since etV is the Fourier transform of the complex
transition measure νt(dy), it follows that the solution to the Cauchy problem of equation

(2.7) is given by the formula (Ttu0)(y) =
∫

u0(z)νt(dz − y), which is as required.

We say that a CCE is regular, if equation (2.7) defines a regular semigroup.
It would be very interesting to describe explicitly all regular CCE. We only give here

two classes of examples. First of all, if a CCE is given by the Lévy- Khintchine formula
(i.e. it defines a transition function consisting of probability measures), then this CCE
is regular, because all CTF consisting of probability measures are regular. Another class
is given by the following result.

Proposition 2.4. Let V ∈ F(Rd), i.e. it is given by (2.6) with µ ∈ M(Rd). Then
V is a regular CCE. Moreover, if the positive measure M in the representation (2.1)

for µ has no atom at the origin, i.e. M({0}) = 0, then the corresponding measure D0,t
x

on the path space from Proposition 2.1 is concentrated on the set of piecewise-constant

paths in Ṙ
[0,t]
d

with a finite number of jumps. In other words, D0,t
x is the measure of a

jump-process.
Proof. Let W = WM be defined as

W (x) =

∫

Rd

eipx M(dp).(2.8)

The function exp{tV } is the Fourier transform of the measure δ0+tµ+ t2

2
µ?µ+ ... which

can be denoted by exp?(tµ) (it is equal to the sum of the standard exponential series,
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but with the convolution of measures instead of the standard multiplication). Clearly
‖ exp?(tµ)‖ ≤ ‖ exp?(tf̄M)‖, where we denoted by f̄ the supremum of the function f ,
and both these series are convergent series in the Banach algebra M(Rd). Therefore
‖eV t‖ ≤ ‖eWt‖ ≤ exp{tf̄‖µ‖}, and consequently V is a regular CCE. Moreover, the
same estimate shows that the measure on the path space corresponding to the CCE V
is absolutely continuous with respect to the measure on the path space corresponding
to the CCE W . But the latter coincides up to a positive constant multiplier with the
probability measure of the compound Poisson process with the Lévy measure M defined
by the equation

∂u

∂t
=

(

W

(

1

i

∂

∂y

)

− λM

)

u,(2.9)

where λM = M(Rd), or equivalently

∂u

∂t
=

∫

(u(y + ξ) − u(y))M(dξ).(2.10)

It remains to note that as is well known the measures of compound Poisson processes
are concentrated on piecewise-constant paths.

Therefore, we have two different classes (essentially different, because they obviously
are not disjoint) of regular CCE: those given by the Lévy-Khintchine formula, and those
given by Proposition 2.4. It is easy to prove that one can combine these regular CCEs,
more precisely that the class of regular CCE is a convex cone, see [K1].

Let us apply the simple results obtained sofar to the case of the pseudo-differential
equation of the Schrödinger type

∂ũ

∂t
= −G(−∆)αũ+

(

A,
∂

∂x

)

ũ+ V (x)ũ,(2.11)

where G is a complex constant with a non-negative real part, α is any positive constant,
A is a real-valued vector (if ReG > 0, then A can be also complex- valued), and V is a
complex-valued function of form (2.6). The standard Schrödinger equation corresponds
to the case α = 1, G = i, A = 0 and V being purely imaginary. We consider a more
general equation to include the Schrödinger equation, the heat equation with drifts
and sources, and also their stable (when α ∈ (0, 1)) and complex generalizations in
one formula. This general consideration also shows directly how the functional integral
corresponding to the Schrödinger equation can be obtained by the analytic continuation
from the functional integral corresponding to the heat equation, which gives a connection
with other approaches to the path integration. The equation on the inverse Fourier
transform

u(y) = (2π)−d

∫

Rd

e−iyxũ(x) dx

of ũ (or equation (2.11) in momentum representation) clearly has the form

∂u

∂t
= −G(y2)αu+ i(A, y)u+ V (

1

i

∂

∂y
)u.(2.12)

One easily sees that already in the trivial case V = 0, A = 0, α = 1, equation (2.11)
defines a regular semigroup only in the case of real positive G, i.e. only in the case of the
heat equation. It turns out however that for equation (2.12) the situation is completely
different. The following simple result (obtained from Proposition 2.3 and the Trotter
formula, see [K2] for details) generalizes the corresponding result from [MCh] on the
standard Schrödinger equation to equation (2.11).

Proposition 2.5. The solution to the Cauchy problem of equation (2.12) can be
written in the form of a complex Feynman-Kac formula

u(t, y) =

∫

exp

{

−

∫ t

0

[G(q(τ)2)α − (A, q(τ))] dτ

}

u0(q(t))D0,t
y (dq(.)),(2.13)
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where Dy is the measure of the jump process corresponding to equation (2.7).
Examples including the Schrödinger equation for a anharmonic oscillator and also

some stochastic Schrödinger equations can be found in [K1], [K3], see also Section 4. In
principle, the method covers all Schrödinger equations, because in the spectral repre-
sentation of an arbitrary self-adjoint operator A, this operator is the operator of multi-
plication by a continuous real function f(x) in L2(X) with some locally compact space
X. The solution to the equation φ̇ = iAφ is given by the multiplication by exp{itf(x)},
and this family of operators defines a regular semigroup (in the above sense) on C0(X).
However in practice, finding a spectral representation is a difficult task, and moreover
one often wishes to find a solution in some given (physically natural) representation
(e.g. in the position, momentum, or the occupation number representation). Hence, it
is worth noticing that the method works generally for the equation of the type

∂φ

∂t
= i(A− B)φ,

where A is a self-adjoint operator with the spectral representation in L2(X) and where B
defines a bounded operator in C0(X) in this representation. Let us notice for conclusion
that as any complex measure has a density with respect to its total variation measure,
it is easy to rewrite the integral in (2.13) as an integral over a positive measure (see
[ChQ], [PQ], [K2]).

Remark. Let us point out the connection with the well known infinite oscillatory
integrals of Albeverio and Hoegh-Krohn. This approach works for potentials V of the
Schrödinger equation belonging to the space F(Rd), i.e. being given by (2.6), and is

based on the possibility to represent the function exp{
∫ t

0
V (y(s))ds} (as a function of

a curve y(.)) as the Fourier transform of a finite measure MV on the Cameron-Martin
Hilbert space of curves with square integrable derivatives. The theory developed above
yields a precise description of this measure MV . Namely, as was noted in [M] and is

easy to show, the function exp{
∫ t

0
V (y(s))ds} is the Fourier-Feynman transform of the

measure of the pure jump process generated by µ, i.e. of the measure from (2.13).
Passing from momentums (velocities) to positions leads to the measure MV on the
Cameron-Martin space: it is concentrated on piecewise linear paths (denoted CPL in the
next section), with the jumps of derivatives being distributed according to the measure
µ from (2.6).

3. Regularization and the Fock space lifting. In this section we give
an alternative direct and remarkably elementary construction of the measures on path
spaces associated with pure jump processes bypassing the general theory of the previous
section. In particular, no hard results as the Tikhonov or the Riesz-Markov theorems
will be used.

Let CPL denote the set of continuous piecewise linear paths (broken lines) and let
CPLx,y(0, t) denote the class of paths q : [0, t] 7→ Rd from CPL joining x and y in time
t, i.e. such that q(0) = x, q(t) = y. By CPLx,y

n (0, t) we denote the subclass consisting
of all paths from CPLx,y(0, t) that have exactly n jumps of their derivative. Obviously,

CPLx,y(0, t) = ∪∞
n=0CPL

x,y
n (0, t).

Notice also that the set CPLx,y(0, t) belongs to the Cameron-Martin space of curves
that have derivatives in L2([0, t]).

To any σ-finite measureM on Rd there corresponds a unique σ-finite measureMCPL

on CPLx,y(0, t), which is the sum of the measuresMCPL
n on CPLx,y

n (0, t), whereMCPL
0

is just the unit measure on the one-point set CPLx,y
0 (0, t) and each MCPL

n , n > 0, is
the direct product of the Lebesgue measure on the simplex Simn

t of the jump times
0 < s1 < ... < sn < t of the derivatives of the paths q(.) and of n copies of the measure
M on the values q(sj) of the paths at these times. In other words, if

q(s) = qs1...sn
η1...ηn

(s) = ηj + (s− sj)
ηj+1 − ηj

sj+1 − sj
, s ∈ [sj , sj+1](3.1)
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(where s0 = 0, sn+1 = t, η0 = x, ηn+1 = y) is a typical path in CPLx,y
n (0, t) and Φ is a

functional on CPLx,y(0, t), then

∫

CPLx,y(0,t)

Φ(q(.))MCPL(dq(.))

=

∞
∑

n=0

∫

CPL
x,y
n (0,t)

Φ(q(.))MCPL
n (dq(.))(3.2)

=

∞
∑

n=0

∫

Simn
t

ds1...dsn

∫

Rd

...

∫

Rd

M(dη1)...M(dηn)Φ(q(.)).

Similarly (see [K2],[K3]) one can construct measures on piece-wise constant paths.
Using these measures one easily gets a mathematically rigorous representation to the
solutions to a rather general one-dimensional Schrödinger equation (see [K2]), but the
class of finite dimensional Schrödinger equations that can be treated by these measures
directly is rather restrictive. It includes,of course, the equations with potentials sat-
isfying the Ito’s complex measure conditions (see e.g. previous section). In general, a
regularization is required. Seemingly, the most physically natural regularization consists
in the introduction of a continuous quantum observation (see [K2], [K3] and for physical
discussion also [Me]) leading to the path integral representation of the Belavkin quan-
tum filtering equation (see [AKS]). However, for simplicity we shall use a technically
much more transparent regularization by complex times, e.g. instead of the Schrödinger
equation ((1.1) with G = 1) we shall consider the equation

∂ψ

∂t
=

1

2
(i+ ε)∆ψ − (i + ε)V (x)ψ.(3.3)

To stress the wide applicability of the method we shall work directly with singular
potentials that are given by Radon measures.

Following essentially [A] we shall introduce the dimensionality of a Borel measure
V on Rd as the least upper bound of all positive numbers α such that there exists a
constant C = C(α) such that

V (Br(x)) ≤ Crα(3.4)

for all x ∈ Rd and all r > 0. The dimensionality will be denoted by dim(V ). The
following result is proved in [K3] and in a more general situation (with magnetic fields)
in [K5], the main ingredient of the proof being the observation that the representation
of the path integral as the sum of finite-dimensional integrals (3.2) corresponds in this
context to the usual series of perturbation theory solving the Schrödinger equation.

Proposition 3.1. Let V be a finite Borel measure on Rd with dim(V ) > d − 2.
Then

(i) to the operator −∆ + V one can give a meaning as a rigorously defined self-
adjoint operator in L2(Rd);

(ii) for arbitrary ε > 0 there exists a unique solution Gε(t, x, y) to the Cauchy
problem of equation (3.3) with Dirac initial data δ(x−y). This solution (i.e. the Green
functions for (3.3)) is uniformly bounded for all (x, y) and t in any compact interval of
the open half-line and is expressed in terms of path integrals as

Gε(t, x, y) =

∫

CPLx,y(0,t)

Φε(q(.))V
CPL(dq(.)),(3.5)



8 VASSILI N. KOLOKOLTSOV

with

Φε(q(.)) =

n+1
∏

j=1

(2π(sj − sj−1)(i + ε))−d/2(−(ε+ i))n exp{−
1

2(i+ ε)

∫ t

0

q̇2(s) ds}

=

n+1
∏

j=1

(2π(sj − sj−1)(i + ε))−d/2(−(ε+ i))n

× exp{−

n+1
∑

j=1

|ηj − ηj−1 |2

2(i + ε)(sj − sj−1)
};

(3.6)

(iii) for arbitrary ψ0 ∈ L2(Rd) the solution ψ0(t, s) of the Cauchy problem for
equation (3.3) with the initial data ψ0 and ε > 0 has the form

ψε(t, x) =

∫

CPLx,y(0,t)

∫

Rd

ψ0(y)Φε(q(.))V
CPL(dq(.))dy,(3.7)

and the solution to (3.3) with ε = 0 can be expressed as an improper (not absolutely
convergent) path integral

ψ(t, x) = lim
ε→0+

∫

CPLx,y(0,t)

∫

Rd

ψ0(y)Φε(q(.))V
CPL(dq(.))dy,(3.8)

where the limit is understood in L2-sense.
The examples of interest (see relevant references and a more detailed discussion in

[K3]) are given by measures V on R3 concentrated on a Brownian path, potentials
being the finite sums of the Dirac measures of closed hypersurfaces in Rd and measures
with densities V ∈ L∞(Rd) + Lp(Rd) with p > d/2, which includes, in particular,
the Coulomb potential in d = 3. In [K5] one can find also the two sided exponential
estimates for the Green function (3.5).

We shall discuss now the Fock space lifting of the formulae above and the resulting
representation of (3.5) in terms of the Wiener measure. The paths of the spaces CPL are
parametrised by finite sequences (s1, x1), ..., (sn, xn) with s1 < ... < sn and xj ∈ Rd,
j = 1, ..., d. Denote by Pd the set of all these sequences and by Pd

n its subset consisting of
sequences of the length n. Thus, functionals on the path space CPL can be considered
as functions on Pd. To each measure ν on Rd there corresponds a measure νP on
Pd which is the sum of the measures νn on Pd

n, where νn are the product measures
ds1...dsndν(x1)...dν(xn). The Hilbert space L2(Pd, νP) is known to be isomorphic to
the Fock space Γd

ν over the Hilbert space L2(R+×Rd, dt×ν) (which is isomorphic to the
space of square integrable functions on R+ with values in L2(Rd, ν)). Therefore, square
integrable functionals on CPL can be considered as vectors in the Fock space Γd

V (dx)
.

It is well known that the Wiener, Poisson, general Lévy and many other interesting
processes can be naturally realized in a Fock space: the corresponding probability space
is defined as the spectrum of a commutative von Neumann algebra of bounded linear
operators in this space. For example, the isomorphism between Γ0 = Γ(L2(R+)) and
L2(W ), where W is the Wiener space of continuous real functions on half-line is given
by the Wiener chaos decomposition, and a construction of a Lévy process with the Lévy
measure ν in the Fock space Γν can be found in [Mey]. Therefore, using Fock space
representation, one can give different stochastic representations for path integrals over
CPL rewriting them as expectations with respect to different stochastic processes.

Of course, a straightforward probabilistic interpretation of the infinite-dimensional
integral(3.5) is given in terms of an expectation with respect to a compound Poisson
process. The following statement is a direct consequence of Proposition 3.1 and the
standard properties of the Poisson processes.

Proposition 3.2. Suppose a measure V is finite and satisfies the assumptions of
Proposition 3.1. Let λV = V (Rd). Let paths of CPL are parametrized by (3.1) and let
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E denote the expectation with respect to the process of jumps ηj which are identically
independently distributed according to the probability measure V/λV and which occur
at times sj from [0, t] that are distributed according to the Poisson process of intensity
λV . Then the function (3.7) can be written in the form

ψε(t, x) = etλV

∫

Rd

ψ0(y)E(Φε(q(.))) dy.

A much more involved interpretation of our path integral can be given in terms of
the Wiener measure. In order to obtain such a representation for the Green function
(3.5) let us first rewrite it as the integral of an element of the Fock space Γ0 = L2(Simt)
with Simt = ∪∞

n=0Sim
n
t (which was denoted P0 above), where Simn

t is as usual the
simplex {0 < s1 < ... < sn < t}. Let

gV
0 = gV

0 (t; x, y) = (2πt(i + ε))−d/2 exp

{

−
(x− y)2

2t(i + ε)

}

and let

gV
n (s1, ..., sn) = gV

n (s1, ..., sn; t; x, y) =

∫

Rnd

Φε(q
s1...sn
η1...ηn

) dη1...dηn

for n = 1, 2, ..., where Φε and qs1...sn
η1...ηn

are given by (3.6) and (3.1). Considering the

series of functions {gV
n } as a single function gV on Simt we shall rewrite the r.h.s. of

(3.6) in the following concise notation:

∫

Simt

gV (s) ds =

∞
∑

n=0

∫

Simn
t

gV
n (s1, ..., sn) ds1...dsn.

The Wiener chaos decomposition theorem states (see e.g. [Mey]) that, if dWs1
...dWsn

denotes the n-dimensional stochastic Wiener differential, then to each f = {fn} ∈
L2(Simt) there corresponds an element φf ∈ L2(Ωt), where Ωt is the Wiener space of
continuous real functions on [0, t], given by the formula

φf (W ) =

∞
∑

n=0

∫

Simn
t

fn(s1, ..., sn) dWs1
...dWsn ,

or in concise notations

φf (W ) =

∫

Simt

f(s) dWs.

Moreover the mapping f 7→ φf is an isometric isomorphism, i.e.

EW (φf (W )φ̄g(W )) =

∫

Simt

f(s)ḡ(s) ds,

where EW denotes the expectation with respect to the standard Wiener process. Since
(see e.g. again [Mey])

∫

Simt

dWs = eW (t)−t/2,

it follows that if the function gV belongs not only to L1(Simt) (as is the case in Propo-
sition 3.1) but also to L2(Simt), then formula (3.5) can be rewritten as

Gε(t, x, x0) = EW (φgV exp{W (t) − t/2}).(3.9)

In particular, the following result holds.
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Proposition 3.3. Under the assumptions of Proposition 3.1 suppose additionally
that V is finite and dim(V ) > d − 1. Then the Green function (3.5) can be written in
form (3.9).

Proof. Due to the discussion above, one needs to show that the corresponding
function gV belongs not only to L1(Simt) (as follows from Proposition 3.1), but also to
L2(Simt), i.e. that the series

∞
∑

n=0

∫

Simn
t

(gV
n (s1, ..., sn))2 ds1...dsn

converges. From the definition of gV
n it follows that

gV
n (s1, ..., sn; t; x, y) = (2π(t − sn)(i+ ε))−d/2

×

∫

exp{−
(x− η)2

2(i + ε)(t − sn)
}gV

n−1(s1, ..., sn−1; sn; η, y)V (dη)

for n = 1, 2, ... In particular,

|gV
1 (s; t; x, y)| = (2π)−d((1+ε2)(t−s)s)−d/2

∫

exp

{

−
ε(x−η)2

2(1+ε2)(t−s)
−
ε(η−y)2

2(1+ε2)s

}

V (dη).

Simple manipulations imply

|gV
1 (s; t; x, y)| = (2π)−d((1 + ε2)(t − s)s)−d/2

×

∫

exp

{

−
εt

2(1 + ε2)(t − s)s

(

η −
sx+ (t − s)y

t

)2
}

× exp

{

−
(x− y)2

2(i+ ε)t

}

V (dη)

= (2π)−d((1 + ε2)(t − s)s)−d/2 exp

{

−
ε(x− y)2

2(1 + ε2)t

}

×

∫

exp

{

−
tεη2

2(1 + ε2)s(t − s)

}

Ṽ (dη),

where Ṽ is obtained from V by shifting on (sx+ (t − s)y)/t. To estimate this integral,
let us write the r.h.s. as I1 + I2 by dividing the domain of integration into two parts
D1 ∪D2 with

D1 =

{

η :
tεη2

2(1+ε2)s(t−s)
≤

(

t

s(t−s)

)ω

⇐⇒|η| ≤
√

2(1+ε2)/ε

(

s(t−s)

t

)(1−ω)/2
}

.

By the assumption dim(V ) > d−1 (and as the dimensionality is not changed by a shift)
it follows that

I1 ≤ C(2π)−d((1 + ε2)(t − s)s)−d/2 exp

{

−
ε(x− y)2

2(1 + ε2)t

}

(

s(t − s)

t

)(1−ω)α/2

with some α > d− 1 and C > 0, and consequently

I1 ≤ C(2π)−d((1 + ε2)−d/2t−(1−ω)α/2[s(t− s)]((1−ω)α−d)/2 exp

{

−
ε(x− y)2

2(1 + ε2)t

}

.

Moreover, since

exp

{

−

(

t

s(t− s)

)ω
}

≤ C(ω, β)

(

s(t − s)

t

)β
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for arbitrary β > 0 and some constant C(ω, β) (and because V was supposed to be a
finite measure), it follows that I2 does not exceed I1 (up to a constant) and hence the
above estimate for I1 is also an estimate for gV

1 . Consequently

|gV
1 (s; t; x, y)| ≤ C|gV

0 (t; x, y)|t−((1−ω)α−d)/2[s(t− s)]((1−ω)α−d)/2

with some constant C (depending on d, α, ω, ε). Using the recursive formula for gV
n one

obtains by induction the estimate

|gV
n (s1, ..., sn; t;x, y)| ≤ Cn|gV

0 (t; x, y)|[s1(s2−s1)...(sn−sn−1)(t−sn)/t]((1−ω)α−d)/2 .

It remains to show that the series

S =

∞
∑

1

Cn

∫

{0<s1<...<sn<t}

[s1(s2 − s1)...(sn − sn−1)(t − sn)]β−1ds1...dsn

converges, where β − 1 = (1 − ω)α − d. One can choose ω ∈ (0, 1) in such a way that
β > 0, because α > d − 1. Calculating the terms of this series by induction and using
the Euler β-function

B(p, q) =

∫ 1

0

xp−1(1 − x)q−1 dx = Γ(p)Γ(q)/Γ(p + q),

yields

S =

∞
∑

n=1

Cnt(n+1)β−1B(β, β)B(β, 2β)...B(β, nβ) =

∞
∑

n=1

Cn (tβΓ(β))n+1

tΓ((n + 1)β)
.

At last, Stirling’s formula for Γ((n + 1)β) implies the convergence of this sum for all
t > 0. This completes the proof of Proposition 3.3.

Remarks. 1. The assumption that the measure V is finite was made for technical
simplifications, and seemingly can be removed. 2. The assumption dim(V ) > d − 1 is
essential for (3.9) to be true. However, one can regularize (3.9) appropriately to include
more general V (see [K2]). 3. There is seemingly some overlap of ideas between our
construction of the Wiener path integral for the Schrödinger equation and the theory
of rough paths of T. Lyons [L]. 4. It is worth noting that the natural topology on the
path space CPL is the one induced from the uniform topology of continuous paths (or
from the Hilbert space topology of the Cameron-Martin space). This topology enjoys
the following properties: (i) it is compatible with the measure, (ii) when reduced to
any finite-dimensional simplex it yields its natural Euclidean topology, (iii) any simplex
Simn

t is the boundary for the simplex Simn+1
t , (iv) the topology is not locally compact,

but the whole space is a countable union of locally compact spaces.

4. Two remarks on parabolic equations in momentum rep-
resentation. As was already mentioned, the first definition of the Feynman path
integral representing solutions for the Schrödinger equation as a genuine Lebesgue inte-
gral arising from a pure jump Markov process was given in [M], [MCh]. This integral
was defined for the Scgrödinger equation in momentum representation with potentials
satisfying Ito’s complex measure condition. This was an important breakthrough. As
for the diffusion equation the familiar Feynman-Kac representation exists, the analogous
result for the diffusion equation in momentum representation did not receive much at-
tention. This is also due to the fact that unlike Schrödinger equation the momentum
representation for the diffusion equation often does not seem very natural physically,
though it does make sense in the study of tunnel effects in quantum mechanics. A re-
cent paper [Ch] is devoted to an interesting detailed analysis of the underlying jump
processes for diffusion equations in momentum representation under Ito’s complex mea-
sure condition for sources (potentials) and drifts. In this section I like to point out two
simple observations about this theory. Firstly, in some cases one can get meaningful
path integral representation for diffusion equations in momentum representation even
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when the source does not satisfy Ito’s condition (so that the underlying process is not
of pure jump type) and when an unbounded source prevents the possibility of using the
standard Feynman-Kac formula with the Wiener measure. Secondly, a curious asymp-
totic formula can be obtained by passing to a central limit in a pure jump path integral
representation for the diffusion equation. Moreover, instead of just diffusion equations
one can directly consider more general parabolic differential and even pseudo-differential
equations without any increase in the complexity.

1. Stable laws for parabolic equations. Consider the pseudo-differential parabolic
equation

∂ψ

∂t
= −G|∆|αψ + |x|βψ(4.1)

in Rd, where α > 0, G > 0, β ∈ (0, 1) are given constants (in fact, instead of |∆|α one
can take even more general operators f(|∆|) with non-negative continuous function f).
Since

|x|β = c

∫

Rd

(eixξ − 1)|ξ|−d−β dξ

with some c depending on d and β (see any book discussing stable processes, e.g. [K2]),

in momentum representation, i.e. for u(p) =
∫

e−ipxψ(x) dx, the equation (4.1) takes
the form

∂u

∂t
(p) = −G|p|2αu(p) + c

∫

(u(p+ ξ) − u(p))|ξ|−d−β dξ.(4.2)

As the second operator in this equation generates the Feller semigroup of a β-stable
Lévy process, the following result is straightforward.

Proposition 4.1. Solution to (4.2) with an arbitrary bounded initial function u0 is
given by the formula

u(t, p) = Ep

[

exp{−G

∫ t

0

|y(s)|2α ds}u0(y(t))

]

,

where Ep denotes the expectation with respect to the corresponding β-stable Lévy motion
starting at p.

2. A central limit for pure jump path integrals. Consider now the equation

h2 ∂ψ

∂t
= −Gh2+2α|∆|αψ + V (x)ψ,(4.3)

with a small parameter h > 0, α, G are again positive constants and V (x) =
∫

eixξM(dξ)
with some finite positive measure M , i.e. V satisfies Ito’s condition. Suppose also that
M is symmetric in the sense that

∫

ξM(dξ) = 0, and that it has finite moments at least

up to the third order. Denote by ν(M) = {νij(M)} the matrix of the second moments
∫

ξiξjM(dξ) of M . Performing the h-Fourier transform (which is usual in the theory of

semiclassical asymptotics, see e.g. [MF]), i.e. passing to the function

uh(t, p) =

∫

e−ipx/hψ(t, x) dx ⇐⇒ ψh(t, x) = (2πh)−d

∫

eipx/hu(t, p) dp

yields for uh(t, p) the equation

∂u

∂t
= −G|p|2αu+

1

h2
V

(

h

i

∂

∂p

)

u(4.4)

for uh(t, p).
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Proposition 4.2. For the solution of (4.4) with the initial condition u0 the following
asymptotic formula holds:

lim
h→0

exp{th−2‖M‖}uh(t, p) = EW exp

{

−G

∫ t

0

|p+W (s)|2α ds

}

u0(p+W (t)),(4.5)

where EW denotes the expectation with respect to the d-dimensional Wiener process
W (s) with the covariance matrix ν(M), and where ‖M‖ is, of course, the full measure
M(Rd).

Proof. Using the properties of pure jump processes, one can write the solution to
(4.4) with the initial condition u0 as the path integral

uh(t, p) = exp{th−2‖M‖}Ep
h

exp

{

−G

∫ t

0

|y(s)|α ds

}

,(4.6)

where Ep
h

denotes the expectation with respect to the process of jumps which are
identically independently distributed according to the probability measure µ(dp) =
M(d(p/h))/‖M‖ and which occur at times sj from [0, t] that are distributed accord-
ing to the Poisson process of intensity h−2‖M‖. Observing that

h−2V (hx) = h−2

∫

(eihxξ − 1)M(dξ) + h−2‖M‖

= −

d
∑

i,j=1

xixjνij +O(h) + h−2‖M‖,

we conclude that the characteristic exponent of our compound Poisson process converges,
as h → 0, to the characteristic exponent −(ν(M)x, x) of the Wiener process indicated
above. This implies the convergence of the corresponding measures on trajectories, and
(4.5) follows.
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