

The Fundamentals of LiDAR

Erika Podest, Ph.D., Jet Propulsion Laboratory, California Institute of Technology

Mar. 16, 2021

Webinar Overview

- March 16 Fundamentals of LiDAR and its Applications & Accessing and Analyzing ICESat-2 LiDAR Data
- March 18 Accessing and Analyzing GEDI LiDAR Data
- March 23 The Fundamentals of Solar Induced Fluorescence and its Applications
- March 25 Accessing and Analyzing SIF Data for Vegetation Studies

Learning Objectives

By the end of this session, you will understand:

- Fundamental concepts of LiDAR
- Applications of LiDAR data
- Characteristics of ICESat-2 LiDAR data
- How to access and analyze ICESat-2 LiDAR data

Active and Passive Sensors

Passive Sensors

Active Sensors

LiDAR - Determining Distance

LiDAR - Determining Elevation

Multiple Echoes

Source: NEON

Penetration Through the Canopy

Source: www.awatrees.com

LiDAR Platforms

Source: Shang and Chazette, 2015

LiDAR Wavelength

LiDARs focused on terrestrial studies operate at either Green or NIR wavelengths.

Source: NEON

LiDAR Detector Modalities

Discrete

- Records individual returns representing the peaks in the waveform curve.
- A discrete system may record 1-5 returns from each laser pulse. A collection of discrete return LiDAR points is known as a LiDAR point cloud.

Full Waveform

- Records the distribution of returned light.
- Data are more complex to process but can contain more information than discrete LiDAR sensors.

Photon Counting

 Records the arrival time associated with a single photon detection occurring anywhere within the vertical distribution of the reflected signal.

Discrete LiDAR

-73

-The pulse represents peaks in energy.

-The returned pulse is classified into one or more discrete returns:

• X, Y, Z intensity

- Returns are recorded when the intensity exceeds a predefined system threshold.
- Multiple returns are recorded (usually 1-5). The last returns are especially important for detecting the ground.

Discrete LiDAR (Cont.)

Source: NEON

Full Waveform LiDAR

- The waveform is the distribution of the return.
- More useful information can be extracted from the entire waveform than from discrete returns.
- Data processing is complex.
 Need to apply algorithms to filter the data and extract useful information.

Source: Ralph Dubayah, University of Maryland, College Park

Comparison of Discrete and Full Waveform LiDAR

Photon Counting

Photon Counting (Cont.)

ATL03_20190319234325_12450208_206

Source: Amy L. Neuenschwander and Lori A. Magruder, 2019.

Processing the Data: Estimating Surface and Canopy Height

- Identify the last hit for every pulse. Assume that the last hit is the ground, however, sometimes it is not (e.g., especially in dense forests).
- Identify the first point or those relevant to the vegetation.
- Calculate relative vegetation height by subtracting the vegetation hits from the ground hits.
- Extrapolate your samples to estimate surface height and canopy height for your region of interest.

Differences Between LiDAR and Radar

m

<u>Lidar</u>

- Optical Frequencies: Near IR and Green (wavelengths 532 and 1064 nm)
- High frequency and focused beam provide high spatial resolution
- Limited to clear atmospheric conditions.
 Can operate day/night.

Radar

- MicrowaveFrequencies:Wavelengths ~100,000times longer than NIR
- Beam width and antenna size (even synthesized) limit the spatial resolution
- Can operate under almost any type of weather condition. Can operate day/night.

LiDAR Applications

m

- Fires Vegetation Loss
- Habitat Characterization (Structural and Vertical Components)
- Carbon Storage
- Forest Inventory
- Changes in Surface Deformation

Vegetation Height

Source: GEDI

Cover Fraction

Source: GEDI

Contacts

- ARSET Disasters Contacts:
 - Erika Podest: <u>erika.podest@jpl.nasa.gov</u>
 - Amita Mehta: <u>amita.v.mehta@nasa.gov</u>
 - Sean McCartney: sean.mccartney@nasa.gov
- General ARSET Inquiries:
 - Ana Prados: <u>aprados@umbc.edu</u>
- ARSET Website:
 - appliedsciences.nasa.gov/arset

Follow us on Twitter @NASAARSET

