
tion can lead to fission of the rapidly collapsing core 
before collapse of the envelope has reached ap
preciable velocity. During the development of the 
prolate deformation which leads to fission, the core 
releases nuclear energy in amount ,_,10-s Mc2 ,_, 1059 

ergs into the envelope. This energy is sufficient to 
meet the luminosity requirement of the radio stars 
for 105 to 106 years. Upon fission the binary com
ponents collapse in ,_,Q,1 year to their gravitational 
radii. A turbulent, quasi-stable envelope of con
vecting, radiating material surrounds the rotating 
binary system. Other more complicated nonspherical 
internal structures could conceivably support the 
radiating envelope. 

(3) Appropriate choices for the parameters in
volved can be made which lead to lifetimes for the 
binary system also in the range 105 to 106 years. In a 
relatively short interval ('""'0.1 year) at the end of 
this period, gravitational radiation from the rotating 
binary, which does have a quadrupole moment, in
jects energy into the envelope material in amount 
,.._,lQ-2 Mc2 "' 1060 ergs. It is suggested that the re
sulting polar explosion may lead to the development 
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of the strong, extended radio sources with at least 
two components. 

(4) On the model discussed it is found that the 
gravitational resources of a massive star exceed the 
nuclear resources by only a factor of ten. Only 1% 
of the rest mass energy is made available for all forms 
of radiation. This and other problems are noted 
briefly at the end of Part III. 
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The Calculation of Stellar Pulsation* 

ROBERT F. CHRISTY 

California Institute of Technology, Pasadena, California 

INTRODUCTION 

In this paper we report methods of computation 
which have been developed to provide a theoretical 
understanding of the RR Lyrae and Cepheid type 
pulsating stars. The results reported are intended to 
illuminate the methods of calculation and to provide 
insight into the physical processes in these stars. A 
survey of pulsation in RR Lyrae models1 •2 using 
these methods has also been carried out and will be 
reported soon in another journal. A survey of pulsa
tion in Cepheid models has been initiated and will be 
continued.3 

*Work supported in part by the Office of Naval Research 
and the National Aeronautics and Space Administration. 

1 R. F. Christy, Astron. J. 68, 275 (1963). 
2 R. F. Christy, Astron. J. 68, 534 (1963). 
3 A. N. Cox, K. H. Olsen, and J. P. Cox [Astron. J. 68, 276 

(1963)] have reported some somewhat similar calculations on 
Cepheid models. Unfortunately, they have not included the 
deeper regions of the envelope or the hydrogen ionization re
gion near the surface. As a result, their calculations cannot be 
compared in detail with the observations. 

The methods reported here arose from investiga
tions4 (referred to as I) on the energy transport in the 
hydrogen ionization zone of giant stars. In that 
paper, some preliminary numerical integrations of 
the equations of motion were reported, and the pos
sibility of spontaneous generation of oscillations or 
pulsation was demonstrated. The machine code used 
at that time was, however, not suitable for more ex
tensive calculations and the work reported on here is 
the refinement and extension of the earlier calcula
tions. 

The general idea behind these calculations is that 
the observed pulsation motions in Cepheids and RR 
Lyrae (and other related) stars arise spontaneously 
because of the particular physical properties of the 
envelopes. The relevant physical properties are the 
equation of state and the opacity. The method of at
tack is to integrate the time-dependent equations of 
hydrodynamics (with spherical symmetry) and heat 
flow by numerical means. 

4 R. F. Christy, Astrophys. J. 136, 887 (1962). 
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Small amplitude linearized calculations on this 
problem have been carried out recently by a number 
of authors. 5-7 These calculations left many questions, 
particularly about the role of hydrogen ionization, 
unanswered. These calculations were also unable to 
achieve results that agreed with many characteristic 
features of the observations-such as the phase lag 
of the luminosity curve. It was to answer these ques
tions and to be able to compare the results directly 
with the large amplitude observed pulsations that the 
present program was pursued. 

EQUATIONS. OF MOTION 

The mass interior to r is given by 

M(r) = [4rr12p(r') dr', 
0 

where p(r) is the density at r. Then the specific vol
ume 

V = ljp(r) = 4rr2 dr/dM. (1) 

We use Lagrangian coordinates attached to the mass 
element r so that r(M,t) is the position of a given 
mass element. Then Newton's equation is 

ilr GM 1 aP 
at=-~--; ar' 

or 

a2r GM a aP 
atz = --;,-- 4rr aM' (2) 

where Pis the pressure atM. 
The heat flow is assumed to be entirely through 

radiation diffusion and the total luminous flux at 
some level is given by 

a4u d(T') 
L(r) = - 47rT 3 K(V,T) p(r) dr' 

where u is the Stefan-Boltzmann constant and 
K(V,T) is the (Rosseland mean) opacity in cm2/g. 
We can write 

(3) 

using M as the independent variable. Then the heat 
flow equation becomes 

as aQ d T-=-= --(L) at at dM 

6 S. A. Zhevakin, Astron. Zh. 30, 161 (1953). 
6 N. Baker and R. Kippenhahn, Z. Astrophys. 54, 114 

(1962). 
7 J. P. Cox, Astrophys. J. 138, 487 (1963). 

where Sis the entropy/g and Q the heat conducted/g. 
Writing 

T dS = dE + P dV , 

where E is the internal energy/g, we have 

(4) 

Energy conservation is vital for a discussion of 
dynamics. We can form a mechanical energy equa
tion by multiplying Newton's equation by r, so 

~ (~r2 _ GM) = 
dt 2 r 

4 2.aP 
- rr raM 

d ( 2. dV 
- dM 4rrrP) + Pdt. (5) 

The left-hand side represents the rate of change of 
the kinetic plus gravitational energy per gram. The 
first term on the right is the divergence of the flux of 
mechanical energy and the second term represents 
the work done. 

This equation can be combined with the heat equa
tion to give the over-all energy conservation equation 

The above theory is incomplete in that it omits 
convection. It is hoped to include a dynamical form 
of convection theory at a later date. 

EQUATIONS OF STATE AND OPACITY 

The equation of state was obtained by assuming a 
perfect gas of H, H+, He, He+, He++, and electrons. 
Ha (molecules) were ignored as being unimportant in 
consideration of the RR Lyrae and Cepheid in
stability strip. The relative numbers of the various 
ions were determined by solving the Saha equations 
of equilibrium, ignoring pressure ionization, ionic 
interaction, etc. This is a very good approximation 
for the very low density envelopes of these particular 
stars. The contribution of the various ionic species 
to the pressure and internal energy (including the 
ionization energy) was computed. 

The opacities used were Rosseland mean opacities 
obtained from A. N. Cox and J. N. Stewart (unpub
lished) of Los Alamos Scientific Laboratory in sum
mer 1962. We are very grateful for the use of these 
results prior to publication. These calculations in
cluded the effects of bound-bound transitions in 
addition to the usual bound-free, free--free, and 
scattering contributions. The calculations were aug-



mented by additional calculations8 of the continuum 
opacity, excluding bound-bound transitions, in the 
photospheric region. Interpolation formulas were de
veloped to provide a more convenient and continuous 
representation of the computed opacities. Details of 
these expressions will be published in another paper 
dealing with a survey of RR Lyrae stars. 

In I (p. 889) it was pointed out that there was a 
maximum flux that could be transported by convec
tion H. = 1()6 P ergs/cm2 sec, where Pis the pressure 
at ,...._, 104 °K corresponding to the extreme of trans
port of ionized hydrogen at a velocity near sonic. 
Also an estimate of Pat 104 °K (the ionization tem
perature) gave p! = 7(g./(T./104 0 ) 13]. These esti
mates, if translated to a line on the Hertsprung
Russel diagram by use of a mass-luminosity relation, 
correspond to a line just to the right (or slightly 
lower T .) than the line marking the Cepheid vari
ables and RR Lyrae stars. In fact, the limiting con
vective flux is about 10% of the total flux of such 
variables. We here use this result to eliminate further 
consideration of convection as a means of heat trans
port for these stars. This omission is probably not 
serious in the center or on the high temperature side 
of the unstable region. However, a suggestion arises 
in this work that it is the onset of effective convec
tion that determines the low temperature boundary 
of instability in the Cepheid and RR Lyrae stars 
that we will investigate. 

THE BOUNDARY CONDITIONS 

The calculation of the motion of the envelope will 
be carried out omitting the core of the star where 
nuclear energy is made available. This requires 
boundary conditions on the mechanics and on the 
heat flow both at the inner and at the outer boun
dary. It is essential that these boundary conditions 
be formulated in such a manner as to not falsify the 
damping or undamping of the oscillations. 

Rabinowitz9 showed for stars with giant envelopes 
that the amplitude of the motion is exceedingly small 
at small radii. For this reason, he found that the 
coupling with nuclear energy generation in the core 
was negligible. This suggests treating the central core 
as an inert heat source. Ultimately this boundary 
condition can be tested by varying the position 
where it is applied and checking the lack of sensi
tivity of the result. The physical properties we assign 
to the core are a constant rate of generation of heat 
energy and no generation of mechanical energy. It 

8 I want to thank J. Noble for assistance in performing the 
calculations. 

u I. N. Rabinowitz, Astrophys. J. 126, 386 (1957). 
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might be possible to represent these properties in an 
adiabatic gas sphere but the complications involved 
in a finite velocity of sound have led us to use a rigid 
sphere at the center. This means that at r = R1, 
U = t = 0. The constant heat source is given by 
L(R1) = Lo. It is clear that the condition U = 0 
means that no mechanical energy is transmitted 
across the boundary. 

At the upper boundary there are also complica
tions. It is straightforward to propose the appro
priate treatment of the heat flow: it should be done 
by a time-dependent and wavelength-dependent in
tegral equation of transfer. This problem has been 
examined and it would greatly complicate the subse
quent calculation. The purpose of the present cal
culation is to follow the general features of the mo
tion sufficiently accurately to compare with observa
tion, but it is not intended that the calculation should 
give all the details necessary for the understanding 
of spectra. 

The static, gray atmosphere, solution of the equa
tion of transfer is 

T4 = ! T![r + q(r)], 
where r is the optical depth and q( r) is to be found 
in Chandrasekhar.10 A fairly close approximation to 
this expression Qan be obtained as a solution of the 
time-independent diffusion equation. It is 

T4 = ! T!(r + c) , 
where c is a constant. We have, therefore, chosen a 
boundary condition on the time-dependent diffusion 
equation which is consistent with this form for the 
time-independent problem. We have taken c = j. 
This condition is written as 

d(T4)/drlsurface = £ T! = T4/!lsurface • 
If we calculate to the strict outer boundary of the 

star (where the density vanishes), then the mechan
ical energy flux must vanish since P = 0. Strictly 
speaking, we are not entirely sure where this bound
ary is since the star may be evaporating or losing 
mass by more violent means. We have chosen to de
fine the boundary of the star by P = 0 which defines 
the outer boundary condition. An accurate dynam
ical calculation might show that this boundary 
steadily expanded and left the body of the star. This 
would give rise to a damping of the mechanical en
ergy by the continual ejection of material. This kind 
of result is not precluded by the condition P = 0, 
however, the accurate treatment of such a motion 
(involving mass ejection), would require the consid-

10 S. Chandrasekhar, Radiative Transfer (Dover Publica
tions, Inc., 1960). 
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eration of the motion of very thin layers. Such layers 
would be optically thin and all of the basic physics 
involved would have to be reviewed and adjusted to 
these conditions. For these reasons, we will not at
tempt the calculation of mass loss in this paper. We 
can, however, consider sufficiently thin layers in the 
atmosphere that the effects of the propagation of 
acoustic waves, the formation of shock waves, and 
consequent dissipation of mechanical energy are 
taken into account. 

INITIAL CONDITIONS 

The procedure to be followed is the solution of the 
time-dependent partial differential Eqs. (2) and (4) 
subject to the boundary conditions outlined above. 
This is to be a time-dependent solution and will de
pend on the initial conditions. 

We could start from arbitrary initial conditions 
for T(M), V(M), and velocity U(M): presumably in 
the course of time, the solution would settle down to 
the correct final state, either static or pulsating as 
the case might be. However, it is clear that this would 
take a long time since the initial thermal energy con
tent, being incorrect, would have to relax in the time 
required for thermal relaxation of the inner envelope 
which is very long compared to the pulsation period. 

Since it is known that the amplitudes of pulsation 
are small in the deep interior, we suppose that the 
solution for T(M) and V(M) do not differ greatly 
from the static solution in the inner envelope. We 
therefore base our initial conditions for the time
dependent problem on the solution of the static en
velope problem for the same star. It would be pos
sible to use this static solution as the initial condition: 
if the envelope was unstable, small errors in the static 
solution would initiate a pulsation which would grow 
until the amplitude asymptotically leveled off at 
some final value. This is not, in most cases, a prac
tical procedure because of the excessively long com-· 
putation involved. 

We have chosen, instead, to initiate the pulsation 
by suitably modifying the static solution and follow
ing the time-dependent behavior. The best procedure 
would involve choosing initial values for T(M), 
V(M), U(M) that would be consistent with a natural 
periodic motion of the star. This is not possible since 
we don't know this motion. Actually, there are many 
(infinitely) modes of motion of the envelope and we 
wish to consider only the lowest ones, and only one 
at a time. The best way we have found for doing this 
is to start with the static solutions for T(M) and 
V(M) and superimpose some arbitrary U(M). This 
at least has the advantage that the pressure is 

initially in equilibrium so that we do not initiate 
arbitrary sound waves and shock waves. A disad
vantage of this procedure is that the true solution 
for a single harmonic never passes through this con
dition (because of nonlinearities and phase shifts), 
especially in the nonadiabatic region. This procedure 
necessarily then initiates a mixture of harmonics. Of 
this mixture, only the few lowest harmonics survive 
very long. 

THE DIFFERENCE EQUATIONS 

In order to integrate numerically the partial dif
ferential equations (2) and (4) of motion, it is neces
sary to express them as difference equations. Al
though there are many ways of doing this, they are 
restricted by the requirements of stability and ac
curacy. Up to a point, these questions are subject to 
analytic examination but in highly nonlinear prob
lems and in problems involving the coupling of hydro·· 
dynamics and heat conduction, as this does, the ap
proach is in large part based on experience. Richt
myer11 discusses these problems individually but not 
coupled. By far the principal experience with the 
coupled problem of this kind is to be found at the 
Atomic Energy Commission Laboratories at Los 
Alamos initially, and also at Livermore: unfortu
nately, most of this experience has not been made 
available. The procedure used here was developed 
after reading Richtmyer. A Los Alamos report12 was 
helpful on hydrodynamic questions, and a paper by 
Henyey et al.,'3 was helpful on the treatment of heat 
flow. Although the method developed here seems 
satisfactory, it cannot be claimed that it represents 
the highest state of the art (and it still is an art), 
which remains in laboratories like those mentioned 
above. 

The variable R(M,t) is represented by a discrete 
quantity R.(I) where the index n (integer) represents 
the time t• and the index I (integral) represents the 
mass M (I) internal to R•(I). I = 1 will represent the 
inner boundary and I = N the outer. The mass be
tween I and I - 1 is given by 

!1M(I - t) = M(I) - M(I - 1) . 

The specific volume of the mass element at I - ! is 

v·u- !) 
= t 1r{[R.(I)]3 - [R.(I- 1)]3 }/11M(I- t). 

11 R. D. Richtmyer, Difference Methods for Initial Value 
Problems (Interscience Publishers, Inc., New York, 1957). 

12 J. E. Fromm, Lagrangian Difference Approximations 
for Fluid Dynamics (Office of Technical Services, Department 
of Commerce, Washington, D. C., 1961), LA-2535. 

13 L. G. Henyey, L. Wilets, K. H. Bohm, R. Le Levier, and 
R. D. Levee, Astrophys. J. 129, 628 (1959). 



T"(l - !) and P"(l - !) are the mean temperature 
and pressure (at time t) of the mass element at 
I-t. 

For best centering in time, the velocity is defined 
at timet"+ i t:..t, i.e., it is labeled in time by n + t. 
It is ijn+!(J). Then we have 

where t:..tn+t is the time between t" and t"+l. This is 
kept separate from f:..t" which is the time between 
tn-! and tn+! since t:..t will be changed from time to 
time in order to satisfy the stability conditions. The 
time scale is defined by tn+l = t" + t:..tn+l and tn+! = 
td + f:..t", where f:..t" = i (f:..td + t:..tn+!). 

Shock waves are treated by the Von Neumann
Richtmyer method (Ref. 11, p. 216), which involves 
the introduction of an artificial "viscosity" which 
creates a pressure on rapid compression but none on 
expansion. The viscous pressure is given by 

Q"-tu _ 1 ) = c ru"-*(I) - un-tu- 1)]2 

2 Q V"(I- !) + yn-1(1- !) 

if U(I) - U(I- 1) < 0, 

= 0 if U(I) - U(I- 1) > 0. 

In this expression, the constant CQ is chosen as a 
compromise between the requirements of stability 
and accuracy. The effect of the pressure Q is to 
artificially spread the shock front over several mass 
points. A larger value of C Q makes a thicker shock 
front but greater stability. 

The equation of motion is then, for I = 2 toN - 1, 

U"+t(I) = U"-!(I) _ t:..t { GM (I) 
[R"(/)]2 

+ 4~:;~;t [P"(I + !) - P"(I- !) 

+ Q"-!(I + !) - Q"-i(I- !)] } 

where 

t:..M(I) = ! [t:..M(I + !) + t:..M(I- !)] . 

The boundary conditions are, at I= 1, ijn+l(1) = 0, 
and for I = N we define a fictitious pressure at 
N + ! which is the negative of P(N - !), thereby 
insuring P = 0 at R(N). Then 

U"+t(N) = U"-i(N) _ t:..f { GM(N) 
[R"(N)] 2 

- i;}~f/~)r) [2P"(N- !) + Q"-t(N- !)]}. 
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HEAT CONDUCTION 

We have used T 4 = Was the temperature variable 
since it is approximately linear in M over much of 
the envelope so that the difference equations will be 
more exact. it is not known, however, whether this 
in fact resulted in any reduction of error. The total 
luminous flux through radius R"(l) is given by 

L"(I) = {47r[R"(I)]2 }2[W"(I- !) 

- W"(I + t )]2F"(I) 

where 2F"(I) is a suitable difference approximation 
to t a/Kf:..M. A possible expression would be 

F"(I) = !o/[K"(/ + !)t:..M(I + !) 

+ K"(I- !)t:..M(I- !)] 

where K(l + !) is the opacity in cm•jg at I + t. 
An appropriately centered energy transport equa

tion is then 

(E'+l(I + !) - E"(I + t) + { t[P"(I + !) 
+ p"+l(I + !)] + Q"+i(I + !)}[V"+l(I + !) 

- V"(I + !)])t:..M(I + !) = t t:..t"+t[L"+l(I) 

+ L"(I)- L"+l(I + 1) - IJ'(I + 1)], 

which has been time centered at n + ! and space 
centered at I + t. (E is the internal energy.) This 
form of the energy equation, which involves the new 
(not yet computed) temperatures at three adjacent 
mass points, is an implicit (Ref. 11, p. 91 et seq.) form 
of the heat conduction equation.14 Experience with 
linear forms of the equation suggests that this should 
be unconditionally stable for arbitrary time intervals. 

The solution of this equation for the new tempera
tures at n + 1 presents an additional problem since 
the equation is nonlinear. One possible method 
would be to expand and linearize the equation and 
solve as a set of N coupled linear equations. We have 
instead chosen to solve by a process of iteration. The 
iteration is continued until the solution converges to 
any desired accuracy. This process of iteration, to-
gether with the boundary conditions, and difference 
approximations, sometimes fails to converge. Each 

14 The reason that an implicit form of the heat conduction 
equation is so necessary for stabilit;y as well as to make 
physical sense can be understood as follows. The explicit form 
of the equation computes the new temperature from knowl
edge of the old temperature at three adjacent points. Thus, 
temperature information is able to propagate at most one 
mass point per time cycle. In a region of low heat capacity or 
high conductivity (such as near the stellar surface), however, 
the heat is able to propagate in fact over what may be many 
mass points in one time cycle. The implicit form of the equa
tion, which makes a simultaneous solution for all new tem
peratures, clearly permits temperature information to propa
gate all the way from the boundaries in each time cycle, and 
thereby is able to correspond to reality. 
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time this situation has arisen, it has been possible to 
so modify the procedure as to avoid the difficulty. 

In the solution of the N coupled linear equations 
which arise in the course of iteration, attention is 
drawn to the rapid procedures outlined in Richtmyer 
(p. 101). Conventional matrix inversion would be 
quite unsuitable in this connection. 

The boundary condition at I = 1 is 

£n+l(l) = {47r[Rn+\1)]2}2[Wn+l(t) 

- Wn+l(! )]2?'+1(1) = Lo, 

where Lo is the mean luminosisy. This equation 
serves to determine Wn+1(!). The boundary condi
tion at I = N - ! is 

(Ji!'+\N- !) - En(N- !) + {! [r(N- !) 

+ pn+t(N- !)] + QnH(N- !) }[Vn+l(N- !) 

- Vn(N- !)])~M(N- !) = ! ~rt{Ln+l(N- 1) 

+ Ln(N- 1) - 2a-47r[Rn(N- 1)]2Wn(N- !) 

- 2a-41r[Rn+l(N- 1)]2W+l(N- ~-)} . 

This expression incorporates the boundary condition 
that the luminosity is 2o-41l"R2Ti, where T, is the 
surface temperature. The radius R(N - 1) is chosen 
rather than R(N) since it is subject to much less 
error and allows to some extent for curvature. 

Throughout the setting up of the difference equa
tions, there are many alternative approaches. To 
some extent, these have been explored by others and 
the present method has been guided by the Refs. 11, 
12, and 13. However, to a large extent in this prob
lem, the various alternate approaches have not been 
explored. It is not known whether better approaches 
exist. The point of view has been to continue adjust
ing and correcting the procedure until it seemed 
satisfactory. 

THE MASS DIVISION 

In order to explore in more detail the structure of 
the envelope, it is useful to examine a simple model 
-namely a plane parallel example. Let H be the 
radiative flux/ cm2 sec; P is the gas pressure (we 
neglect radiation pressure), g is the acceleration of 
gravity (assumed to be constant), and m is the 
mass/cm2 above a certain layer. Then the static pres
sure distribution is given by P = mg and 

! (o-/K)d(T4)/dm = H =a-T!. 

Now we find that a good approximation to Kat tem
peratures above 2 X 104 0 is K = a + bP(l04/T)4 • 

If we now consider the equation for the variable 

P /T4 , we see that the solution rapidly tends to 

! (gjKT!) = P/T4 • 

If we use the expression forK above, we can readily 
solve for P jT• which tends to a constant, implying 
that K tends to a constant. 'Ve are interested par
ticularly in cases where K » a. There results 

For the case of 45% He and 0.2% heavy elements 
that we will discuss later, these relations give 

(z)· = o.13 \ (L) 2 

104 g' 104 

and 

K = 0.17 gi(l04/T.)2 • 

Because of these relations, we have used the variable 
W = T4 since it is approximately linear in P and m. 

The Courant condition (Ref. 11, p. 218) requires 

l = c~t/ ~R < lo = 1 , 

where c is the velocity of sound. If we approximate 
c = (Pjp)i, we have 

c~t P~t mg~t 
=--=--=--

~R cp~R c~m 

Thus, if ~m/m is kept constant, l decreases slowly as 
the temperature increases. Actually, where con
vergence sets in toward the center, l increases again. 
For these reasons, we have used approximately 
~m/m = const, or what is the same, the ratio of 
successive values of ~iVI is constant. 

Now the number of mass points is proportional to 
m/ ~m and the time to compute one time cycle is 
proportional to the number of mass points. Further, 
~t, as restricted by the Courant condition, varies 
roughly inversely as the number of mass points and 
the number of time cycles per period of oscillation is 
proportional to the number of points. Therefore, we 
see that the time to compute one period is propor
tional to the square of the number of mass points. 
This means that the mass division and the Courant 
condition must be carefully watched and the minimum 
number of mass points must be used consistent with 
the accuracy required. It was found that 30 to 40 
points was sufficient for a reasonably accurate sur
vey and, under these conditions, one period of the 
motion took about 100 time cycles. Under these con
ditions, one time cycle took about ! sec on a 7090 
computer, one period took about 1 minute and a 
typical run was 600 time cycles, or about 6-7 



minutes, and covered 6-7 periods of the motion. Oc
casionally, calculations with up to 100 mass points 
have been used but it was, in general, not practical 
to follow these for very many periods except for a 
very few special cases. 

The requirements represented by the Courant con
dition represent one reason why the core of the star 
should not be calculated in detail unless it is the seat 
of essential elements of the physics. The velocity of 
sound in the core is very great and if it were divided 
into sufficient mass points to give some detail in its 
behavior, the most severe restriction on the time 
interval would arise in the core and the number of 
cycles to compute a period of oscillation would prob
ably increase by an order of magnitude. 

In order to cover the envelope in about 35 steps, 
since m varies over rv7 powers of 10, it is necessary 
to use a [ = t:.M(I - 1)/ t:.M(I)] up to 1.5. This large 
fractional change per division might seem too large 
for accuracy; however, checks will be shown later 
which demonstrate the validity of the results. 

In the region around 104 0 , the opacity law changes 
abruptly from a strongly increasing function of tem
perature in the photosphere to a decreasing one in 
the region of higher temperatures discussed above. 
Associated with this abrupt change in opacity, we 
also have hydrogen changing its ionization state. The 
net result of these conditions is that a static integra
tion shows the temperature increasing very abruptly 
with depth in this region (see Figs. 3 and 4). If the 
mass is divided according to the discussion above, 
we find a near discontinuity in temperature, internal 
energy, opacity, at this point. The variable W = T4 

jumps by a factor of > 10 and, at most, one mass 
point lies in the region of partial hydrogen ionization. 
At just the same region (actually for T just below 
104 0), the addition of the electrons to hydrogen 
causes a very rapid increase of density by a factor 
approaching 2 as the temperature falls, providing 
hydrogen is abundant. This increase of density of the 
higher layers is, of course, also responsible for the 
violent convective instability of this region. This 
density increase also reduces t:.R suddenly so that if 
a is constant, the most severe limitation on flt from 
the Courant condition arises just in these same layers. 

This now poses a quandary: on the one hand, the 
accurate treatment of radiative transport demands 
an especially small t:.M just in the hydrogen ioniza
tion zone. On the other hand, the requirements of 
rapid calculation and stability demand an extra large 
t:.M in this zone. We have chosen an approximately 
constant value of a in this region in order to make 
rapid calculations and have given special attention 
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to the energy transport so that a satisfactory treat
ment could be found in spite of the discontinuity in 
physical properties associated with the relatively 
large t:.M. 

The method of treating the heat transport equa
tion is discussed in the next section. It has the prop
erty that the relation of temperature change to heat 
flow across this region is not precise under most con
ditions but is accurate on the average. As a result, if 
the zone of discontinuity-which moves up and 
down during the pulsation-moves over several mass 
zones during one period, then the average behavior 
of the discontinuity zone is correct. During a period, 
the temperature oscillates as the discontinuity moves 
across a mass zone but if there are several oscillations 
to a period, they can be averaged out. 

The condition that the discontinuity cross several 
mass zones during a period prevents these calcula
tions giving accurate results on the luminosity curve 
except for fairly large amplitude motions. Thus, it is 
not easy to extend the calculations accurately into 
the very small amplitude range where the linear 
theory should be correct. 

This condition that the region near 104 0 should 
cross several mass zones is also related to the effi
ciency of convection. Thus the number of cycles to 
ionize one mass point is q = eflm/H flt, where e is 
the ionization energy/ g and we require q not too 
large. Also, l = cfltj t:.R < pc!ltj flm. A ratio that 
is relevant in the efficiency of convection is the ratio 
of the velocity of ionized matter required to trans
port the heat flux to the velocity of sound. This ratio 
{3 should be small if convection is to be able to trans
port the heat. We have 

H Hflt t:.m 1 {3-------
- pee - flm pc!lt - ql • 

Therefore, for l fixed <Zo, the requirement of effective 
convection ({3 small) is that q should be large. Thus, 
where our method works well is just the region where 
convection is unimportant, which justifies our neg
lect of convection. Where, on the other hand, our 
method becomes poor, because q is large, it is also 
suggested that convection can no longer be ignored. 

THE DIFFERENCE EXPRESSION FOR 
RADIATIVE TRANSPORT 

We have seen that the temperature undergoes a 
very abrupt increase in the neighborhood of 104 0 • In 
order to find suitable difference expressions for F, 
defined earlier by a relation equivalent to 

H(I) = 2F(I)[W(I - !) - W(I + !)] , 
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we have made approximate integrations of the static 
equation for the various regimes. 

At the photosphere temperatures where K increases 
approximately as K ,...._, T 12 , the static heat flow 
equation 

H = t (rr/K)(dW/dM), 

with 

has the solution 

HM = const - t rr(a/2W2) 

and we can form the difference equation 

H(M2- Mt) = j rr(Wt/W2Kt + W2/W1K2)(W2- Wt). 

On the other hand, where K = b/W, the equation 

integrates to 

HM = j (rr/b)(W2 + const), 

so 

For other power laws, similar expressions can be 
found but the constant in front would be different. 
We approximate the above two difference equations 
by 

H(M - M) =A (W2/K2 + Wt/Kt) (W - w) 
2 I 3 U WI + w2 2 1 1 

which approximates the above forms for a strongly 
varying opacity-even if K2 differs by an order of 
magnitude from Kt and is exact for a constant 
opacity. This leads to 

F(I) = a rr[W( .. + !)/K(I + !) + W(I- !)/K(l- !)] 
[LlM(I + !) +Ll M(l- !)JLW(I I!)+ W(I- !)] . 

This has permitted the use of an interval near 104 0 

such that neighboring values of W differ by more 
than an order of magnitude and yet the equations 
still make some sense. It is not claimed that this is a 
highly precise form of the difference equation, but it 
is a reasonable compromise between the varying re
quirements. 

It appears from this, and experience with different 
expressions, that the essential requirement for a cor
rect treatment of the opacity in a zone where the 
opacity in fact changes by a large factor is to. use 
some approximation where the lowest opacity in the 
zone dominates the mean, rather than the greatest. 
The reason is that in the region of large opacity, the 
temperature gradient concentrates to a very large 
value and thereby largely nullifies the high opacity, 
leaving the heat flow to be determined in large meas
ure by the lower opacity region. 

STATIC MODELS AND INITIAL CONDITIONS 

Following the discussion of the mass division, we 
are now able to integrate static models. These are 
integrated inward from the outside to some inner 
radius and some maximum temperature. The mini· 
mum radius is usually around i-Ro and the maximum 
temperature is usually greater than 106 0 • In general, 
an envelope calculated in this way would not be ac
ceptable if integrated to the center. However, the 
envelope properties in this region are not sensitive 
to the possibility of integrating in to the center, and 
apart from the values of M and Lo, we are not here 
concerned with the central region. 

In addition to the mass ratio of successive mass 

points which determines the fineness of the division, 
we must choose the initial LlM of the first layer. In 
general, it was attempted to choose this to corre
spond to considerably less than unit optical depth, 
and normally it corresponded to optical depth less 
than 0.1. The reason for the fine zoning in the at
mosphere was so that the velocity could be studied 
as a function of depth in the photosphere in order to 
see how the velocity observed in the Doppler shift of 
the spectral lines (assumed to correspond to optical 
depth 0.1 to 0.2) differed from the velocity of the 
photosphere itself. Some deviation from constancy 
of a was often made in the photosphere in order to 
satisfy the above requirement, and also at high tem
peratures (above 105 0 ) in order to avoid a rapid in
crease in l near the center. 

Since the treatment of heat transport was not ac
curate except in the average for the region near 1Q4 ° 
and this average required a relatively large ampli
tude, calculations were usually initiated with a rela
tively large amplitude (about ! the final amplitude) 
motion by choosing a suitable deviation from the 
static model. It was desirable to choose this deviation 
as near as possible to a single normal mode so that 
the resulting motion would resemble as closely as 
possible a periodic oscillation. In general, of course, 
the initial conditions generated a superposition of 
several normal modes. 

At this point, it may be appropriate to define a 
normal mode in a nonlinear problem of this kind. 
The definition probably must depend on the system. 
Our definition is based on a system where certain 
modes of motion are almost periodic and have almost 



constant amplitude. Where the motion can be fol· 
lowed for several periods at nearly fixed amplitude, 
we can define the fundamental as that periodic mo
tion of longest period. The first harmonic is the 
periodic motion of the next shortest period, etc. In 
fact, the distribution of U(r) closely resembles the 
linear case and the fundamental has no node in the 
body of the star, the first harmonic has one node, etc. 

The initiation was chosen by superimposing on the 
static model some suitably chosen velocity distribu
tion U(M). It might be thought that in the function 
space U(M), any mode could be generated com
pletely free of contamination of other modes. It is 
true that suitably chosen distributions U(M) can 
simulate arbitrary modes. However, these modes 
have a well-defined relative phase. It turns out that 
it is not possible to remove all the higher harmonics 
by choosing some particular U(M). In general, it 
would be necessary to add a new correction with 
some new U'(M) at a time 90° later in phase in 
order to eliminate unwanted modes. This added 
complication was not followed so that, in general, 
the modes studied had more or less contamination. 
This contamination was most serious in the mixture 
of fundamental and first harmonic. However, it was 
found that by averaging the results over several 
periods, this difficulty could be minimized. 

The specification of the initial conditions was to 
superimpose on the static solution a velocity dis
tribution which was actually U(R) where R is the 
radius of the mass point in question. For generating 
the fundamental, a power law U I"V R" where n is 
near 6 is satisfactory. n can be varied to minimize 
the unwanted higher harmonics. For generating the 
first harmonic, a distribution U I"V a1R"• + a2R"• was 
used. Typical values would be U1 = -20(R/Ro)10 + 
6(R/Ro)5 • The same form could also be used for the 
fundamental, i.e., Uo = -10(R/Ro) 10 - 5(R/Ro)5 • 

Harmonics above the first have not been initiated as 
yet but it is clear that a three-term velocity ex
pression to give two nodes would be necessary for 
the second harmonic. 

These expressions for U(R) also demonstrate the 
requirements on the minimum radius. At the mini
mum radius R1, the amplitude of these modes is very 
small provided the minimum radius is less than about 
l Ro. We have always chosen R1 < t Ro. 

Although, as has been explained, the calculations 
were most reliable at fairly large amplitude, it was 
not at all easy to explore the maximum amplitude 
where the amplitude remains constant, by this 
method. The reason apparently has to do with a dis
tortion of the normal mode when dissipation at large 
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amplitude becomes important. This dissipation is 
large just in the surface zones where the shock waves 
develop and introduces changes in the phase rela
tions. The result is that if the motion is initiated at 
large amplitude, the introduction of unwanted con
tamination by the first harmonic becomes more and 
more prominent and the resulting calculated motion 
deviates more and more from a simple periodic one. 
If the conditions are such that the first harmonic is 
strongly damped, then the large amplitude can be 
explored. However, in most cases of interest, the first 
harmonic is weakly damped if at all so that the very 
large amplitude initiation leads to considerable un
certainty in the results. 

RESULTS 

In order to illustrate the methods, the results ob
tained in the study of the following model will be 
discussed. The model has the defining parameters 
M = 0.75 X 1033 g ( =0.4 M0), L = 1.5 X 1035 

erg/sec (Mbol = +0.75), T. = 6500°K, and Ro = 
3.41 X 1011 em. This is a possible model for an RR 
Lyrae (or cluster) variable star but the best models 
appear to have a mass nearer M 0 and about twice 
the luminosity. The composition was chosen to be 
X = mass fraction of H = 0.548, Y = mass fraction 
of He = 0.45, and Z = mass fraction of other ele
ments = 0.002. 

The reason for choosing this example for illustra
tion was that because of the relatively low mass, the 
envelope was of lower than normal density. This re
sulted in a considerably more rapid approach to the 
ultimate limiting amplitude than would be true for 
a more massive model. It was thus possible to fol
low this example to its limiting amplitude with a not 
unreasonable computing time. 

Figures 1, 2, 3, 4 and Table I show various features 

Radius 

• 20 20 J2 ,. 
Moss Point 

FIG. 1. The radii (em) of the 38 mass points of the static 
model. The amplitude of the resulting oscillation of each point 
is shown by the limits. 
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of the static model which preceded the dynamic cal~ 
culation. The static model was set up with 38 mass 
zones and a surface mass zone of 3 X 1024 g 

10 

~ 7 

.'l 

J6 20 
Moss Point " " 

FIG. 2. The log10 of the pressure (dynes/cm2) of the mass 
points of the static model. The amplitude of the oscillation is 
shown by the limits. 
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FIG. 3. The log10 of the temperature ( °K):0f the mass points 
of the static model. The amplitude of the oscillation is shown 
by the limits. 
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FIG. 4. The solid curve is the log10 T vs log10 P for a fine 
mass division. The points X are the results of the 38 mass 
point static model. 

(2.03 g/cm2); subsequent mass zones increased by a 
factor of 1.4 each step until at a temperature of about 
2 X 105 °K the ratio was made slowly to increase in 
order to keep the sound travel time from zone to 
zone nearly constant. This resulted in a ratio of 2.3 
at the deepest mass zone which extended from 
R = 7.48 X 1010 em to 4.79 X 1010 em. The CRosse
land mean) optical depths of the first few mass zones 
in the stellar photosphere are r = 0.008 at the 
center of mass point 38, r = 0.034 at 37, r = 0.103 

TABLE I. The static model. 

Mass Radius 
Temper-

ature Pressure 
Specific 
volume 

point .<1M(1024 g) (1011 em) (oK) (dyn/cm2) (cm3/g) 

38 3.00 3.43 5.46 X 103 4.29 X 102 6.94 X 108 

35 8.23 3.41 5.99 X 103 5.03 X 103 6.49 X 107 

32 22.6 3.38 2.37 X 104 1.80 X 104 1.44 X 108 

29 62.0 3.31 3.26 X 104 5.63 X 104 6.32 X 107 

26 170 3.21 4.55 X 104 1.74 X 105 3.00 X 107 

23 467 3.08 6.10 X 104 5.49 x 10• 1.31 X 107 

20 1.28 X 103 2.91 7.95 X 104 1.82 X 106 5.17 X 106 

17 3.51 X 103 2.71 1.06 X 106 6.40 X 106 1.96 X 106 

14 9.64 X 103 2.46 1.49 x w• 2.44 X 107 7.24 x 10• 
11 26.8 X 103 2.16 2.12 X 1Q5 1.06 X 108 2.38 X 106 

8 83.9 X 103 1.79 3.05 X 105 5.89 X 108 6.12 X 104 

5 340 X 103 1.34 5.02 X 106 5.76 X 109 1.03 X 104 

2 2.72 X 10a 0.75 1.22 X 106 3.03 X 1011 4.76 X 102 

at 36, T = 0.297 at 35, and r = 1.81 at 34. On Figs. 
1, 2, and 3, which show the run of R, T, P against 
mass point, the amplitude of the resulting oscillation 
is also shown. The most noteworthy feature is the 
vanishingly small amplitude at small radii. It is this 
feature that justifies the neglect of the interior and 
replacing it by a boundary condition. A particular 
feature of the temperature distribution is shown in 
Fig. 3 plotted against mass point, and in Fig. 4 
plotted against pressure. Starting from the surface 
at T./21, the temperature rises at an ever increasing 
rate until the rise becomes almost vertical at T "" 104 

°K. This takes place at a characteristic pressure P1 
which depends on g and on the effective temperature 
approximately as gi T!. After the abrupt rise in 
temperature, the temperature soon approaches a law 
T4 ex: P throughout the rest of the envelope. The 
solid curve in Fig. 4 shows T(P) for a calculation 
with a very fine mass division in order to cover cor
rectly the abrupt rise. The points marked X are 
those resulting from the 38 mass point division of the 
envelope. The close approximation of the points to 
the curve, even in the region of 104 °K, shows that 
the difference approximations in the expression for 
the opacity of a mass point were successful. 

The dynamical calculation which was initiated 



from this static model is illustrated in Figs. 5 and 6. 
They show the time-dependence of the velocity of 
mass point 36 (which approximates the level of for-
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Fro. 5. The luminosity (ergs/sec), velocity (km/sec) of mass 
point 36, and radius (em) of mass point 35 as a function of 
time for the first 20 periods of the motion. 
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Fro. 6. The luminosity (ergs/sec), velocity (km/sec) of 
mass point 36, and radius (em) of mass point 35 as a func
tion of time for the next 17 periods. 

mation of weaker spectral lines), the radius of mass 
point 35 (which approximates the photosphere), and 
the luminosity. The initial conditions were U = 
-13.0 (R/Ro) 10 - 7.0 (R/Ro) 5 (km/sec). It is ap
parent that the initial behavior deviates from a 
strict periodicity in that the fine detail of the velocity 
and light curves are variable, but in the main the 
curves repeat. This is ascribed to a mixture of modes 
or harmonics, in particular there is a small admixture 
of the first harmonic so that the second, fifth, etc., 
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outgoing velocity maxima are larger than average. 
AB time goes on, however, the higher harmonic con
tent dies out and the curves approximate ever more 
closely to the periodic ones to be found toward the 
end of Fig. 6. The general features of these curves 
are shown in more detail in Fig. 7 where the velocity 
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FIG. 7. The velocity for one period at the end of the calcu
lation for each of mass points 36, 34, 32, 30, 28, 26, 24, 22, 20. 
The luminosity for one period at the end of the calculation 
for each of mass points 38, 36, 34, 32, 30, 28, 26, 24, 22, 20. 

for one period is shown for various mass points down 
to mass point 20 and also the luminosity at various 
levels is shown. 

The ultimate velocity curve can be described as 
an outgoing shock which rapidly raises the velocity 
from about 30 km/sec falling to about 30 km/sec 
rising, followed by a slow rise to 45 km/sec ·and 
then a decrease almost at constant acceleration to a 
point at minus 25 km/sec where a second small shock 
or bounce raises the velocity by about 15 km/sec 
after which it falls again to minus 30-35 km/sec with 
another small bounce, after which the cycle repeats. 
The first "bounce" of the atmosphere can be followed 
in depth to the zone at mass point 27. It will be in-

. teresting to be able to find in more detail the causes 
of this behavior. 

The luminosity curve at the surface shows a sharp 
rise by a factor of about 2.5 which is nearly coinci
dent with the shock in the velocity curve. After the 
peak, it decays slowly until a second small bump ap
pears coincident with the "bounce" in the velocity 
curve. It can be ascribed to the heating associated 
with the compression accompanying the bounce. At 
greater depth-near zones 30 and 32-there is a 
small spike in the luminosity ahead of the main pulse. 
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This seems to be due to a shock wave running ahead 
and can also be seen in the velocity curve. At still 
greater depth, near zones 26, 24, and 22, the lumi
nosity shows a very great peak of short duration. 
This peak arises from the helium ionization zone. 
The heat absorption in this zone delays the rise in 
temperature which causes an abnormally large tem
perature gradient and heat flux into the region. On 
expansion, the opposite effect prevails until the flux 
is reduced to a small value again to await the next 
cycle. The phase delay and general form of the lumi
nosity curve is first apparent at mass point 28 just 
above the helium zone. The delay becomes pro
gressively larger nearer the surface and the lumi
nosity develops its final form on passage through the 
hydrogen zone. 

With the choice of conditions as outlined, the mo
tion was followed until the amplitude had almost 
ceased to grow. Experience has shown that the most 
reliable measure of the amplitude--that measure that 
is most independent of the harmonic mixture--is the 
gain in peak kinetic energy of the envelope in a 
period. Actually, to minimize the influence of the 
first harmonic which has a period about l of the 
fundamental, and therefore gives a super period of 
about 3 times the fundamental, the increase in 
kinetic energy was measured for 3 periods. Figure 8 
shows the mean fractional increase 118/S for the 
kinetic energy per period plotted against the peak 
kinetic energy. It is apparent that the curve can be 
extrapolated to a final peak energy not much greater 
than the maximum already present. In this way, the 
approach to the maximum amplitude was followed. 
The curve can be crudely fitted by .Mjperiod = 
aS(l - S/Smax)2 , where a = 0.04. 

Attempts have been made to find measures by 
which the calculated pulsations can be compared to 

observed ones. One measure is the phase relation be
tween the luminosity and the dynamics. The simplest 
measure of this phase relation is to be found in the 
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FIG. 8. The fractional increase per period of the peak 
kinetic energy of the envelope as a function of that peak 
energy. 

phase relation between the luminosity and velocity 
curves since these curves are so similar. However, 
since the curves are nonsinusoidal, this phase dif
ference must be defined with respect to some charac
teristic feature of the observations and calculations. 
Although, observationally, it is common to use the 
peak luminosity for this purpose, it does not seem 
that that is the most convenient for comparison with 
theory since the peak may be sensitive to small de
tails in shape. We have chosen to use the time when 
L = Lo the mean luminosity (on the rising branch) 
as a time point in the luminosity curve. Similarly, 
we have chosen the time when the velocity = 0 (at 
minimum radius) as a suitable epoch on the velocity 
curve. We then define a phase lag as the lag of the 
luminosity curve behind the velocity curve divided 
by the period of the motion. Clearly, in this notation 
the classic "!11' phase lag" corresponds to zero lag as 
defined here. The phase lag is shown in Table II as 
a function of time for the calculation which was dis-

TABLE II. The dynamical model. 

Number of 
t.R ILA periods Period Phase 8 tiS Umax -Umin 

after start R LoX penod (1()3 sec) lag <R (1089 erg) 8 (km/sec) (km/sec) 

2 0.1082 0.0831 58.63 0.127 1.302 2.874 0.036 24.36 20.11 
5 0.1154 0.0919 58.70 0.105 1.256 3.244 0.035 26.92 23.80 
8 0.1216 0.0961 58.90 0.100 1.265 3.603 0.035 28.92 24.39 

11 0.1281 0.0997 58.77 0.096 1.285 4.003 0.034 30.57 26.30 
14 0.1350 0.1038 58.70 0.091 1.301 4.414 0.033 32.26 27.93 
17 0.1438 0.1067 58.66 0.089 1.348 4.874 0.031 34.05 28.65 
20 0.1499 0.1103 58.68 0.086 1.359 5.286 0.028 35.77 28.25 
23 0.1568 0.1130 58.69 0.085 1.388 5.724 0.026 37.57 27.50 
26 0.1633 0.1152 58.70 0.087 1.418 6.149 0.022 39.46 28.04 
29 0.1690 0.1187 58.72 0.085 1.424 6.540 0.019 41.31 30.34 
32 0.1726 0.1213 58.76 0.080 1.423 6.879 0.014 42.44 31.73 
35 0.1751 0.1234 58.76 0.075 1.420 7.144 0.011 43.59 32.22 
38 0.1775 0.1256 58.77 0.071 1.413 7.365 0.009 44.56 32.70 
41 0.1794 0.1272 58.77 0.069 1.410 7.542 0.007 45.30 33.41 



cussed above. We see that the lag was slightly posi
tive at small amplitude and decreased somewhat as 
the amplitude approached its maximum value. The 
correspondence with phase lags as observed is, how
ever, good. 

Another measure of the nature of the motion is to 
be found in the ratio of luminosity amplitude to the 
radius amplitude. To this end, we define the radius 
amplitude as (R=x- Rmtn)/Ro = 11R/Ro. As in other 
measures, if the motion involves a superposition of 
harmonics, we can considerably reduce the error by 
averaging over 3 periods since this removes the prin
cipal source of variation due to the first harmonic 
because its period is = £ the period of the funda
mental. In the technique employed here for treating 
the radiation transfer, the temperature and lumi
nosity tend to oscillate around their true values be
cause of the finite size of the mass zones near 104 0 • 

As a result of this, the luminosity amplitude is not 
accurately given and we have found that the 
f (L - Lo) dt is a better quantity to use. We then 
take the amplitude of variation of the above quan
tity which is 

JL-.L0 falliDg 

(L - Lo) dt = ILA 
L-L0 rising 

(the integrated luminosity amplitude). 

Then we define a measure of the luminosity ampli
tude as ILA/ Lo X period. We are now able to define 
a ratio CR = (11R/R)/(ILA/Lo X period). CR, as well 
as 11R/Ro and ILA/Lo X period, is shown in Table II 
for various times during the calculation. 

. It is apparent that CR is fairly constant, independ
ent of amplitude. In another paper we will find that 
CR is a very useful measure of the pulsation. It is par
ticularly so since it is reasonably independent of 
amplitude and can therefore be studied in the inter
mediate amplitude situation which is computa
tionally easier to examine than the full amplitude 
problem being discussed here. 

In order to explore the basic physics of the pulsa
tion, we have plotted in Fig. 9 the P-V diagrams for 
a number of the mass points over one period of the 
motion at t = 18 periods from the start. By integrat
ing the area inside these loops, we can find where the 
energy is being generated and where dissipated in 
the model. The results of this calculation are shown 
in Fig. 10. It is apparent that there are two zones of 
energy generation, one near mass points 26 and 27 
and one near mass points 32 and 33. By reference to 
the static model in Table I, we see that the tempera
ture in the zone 27 is 4.0 X 1Q4 °, and in zone 26 is 
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FIG. 9. P-V diagrams for mass points 32, 30, 28, 27, 26, 
24, and 22 after 18 periods, The abscissa is the total volume 
for each mass point. 

4.5 X 1Q4 °, and corresponds to the second ionization 
of He which takes place just at these conditions. The 
temperature at zone 33 is 2.0 X 104 0 and at 32 is 
2.4 X 104 0 • This temperature is clearly related to 
the ionization of hydrogen and the first ionization of 
He and it is. apparent from Fig. 3 that these points 
cycle through the ionization conditions of hydrogen 
and helium. The total of the positive contributions 

-2 

-4 

-6 

-8'~~~~~~3~4~32~~30~2~8~~~~~~2~2~2~0~18~±16-~~ 
MASS POINT 

FIG. 10. The work done per period (positive or negative) 
for various mass points after 18 periods. 
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to the energy production is 6.3 X 1038 which is 7.2% 
of Lo X period (at maximum amplitude, about 11% 
of the luminous flux is converted into mechanical 
energy per period). Of this, the hydrogen ionization 
zone produces 33% and the second helium ionization 
produces 67%. The total dissipation at this time is 
4.9 X 1038 erg/period and the increase in kinetic en
ergy per period is 1.5 X 1038 erg/period. The reason 
for the sensitivity of this quantity to slight errors in 
the treatment of the hydrogen zone is apparent. 

The importance of the second He zone has been 
demonstrated by Zhevakin5 and developed more 
fully by Cox7 and by Baker and Kippenhahn.6 The 
significance of the hydrogen zone was suggested by 
Eddington15 who, however, was unable to correctly 
develop its consequences. The hydrogen zone was 
discussed rather more fully by the author4 where the 
possibility that it was an important contributor to 
the instability was pointed out.16 

The basic reason for the energy generation in the 
ionization zones has already been discussed in I. We 
may say, simply, that because of their small 'Y (ratio 
of specific heats) and high heat capacity, the ioniza
tion zones find themselves cooler, relative to their 
surroundings, on adiabatic compression and hotter 
on adiabatic expansion. This means that they will 
absorb heat when compressed and give it off when 
expanded. This behavior is just the behavior ap
propriate for the generation· of work and is just the 
behavior we see exemplified in the ionization zones 
in Figs. 9 and 10. 

The importance of the ionization zones as men
tioned above, is also conditioned by their depth in 
the envelope. If T. is too great, the ionization zones 
are too near the surface and consequently will in
volve too little material to provide any significant 
heat capacity. As a result, the phase delay of the 
temperature is too small and the energy production 
is reduced so that the dissipation will dominate and 
the star will be stable. The boundary to the unstable 
region on the low T. side is more obscure. Estimates 
suggest it may be associated with the onset of ef
fective convection. Since convection has been ig
nored in these calculations, we are unable to settle 
this question at this time. 

In regions of constant ratio of specific heats, it is 

15 A. S. Eddington, Monthly Notices Roy. Astron. Soc. 
101, 182 (1941). 

16 In that paper, the contribution of the hydrogen zone to 
the pulsation was considerably overestimated because of an 
incorrect surmise about -the value of D. V, the change in volume. 
It was guessed that the whole expansion of the star might 
arise from the expansion of the hydrogen zone. In fact, only 
about 19% arises there, about 37% in the He zone and the 
rest deeper in the envelope. 

also known that the dependence of opacity on tem
perature and density is very important. The usual 
dependence K ,...._, ljVT3 ·5 leads to dissipation since 
the heat transport is greatest when the material is 
compressed adiabatically. This accounts for the dis
sipation in the deeper regions of the envelope. 

The time-dependent calculation that has just been 
discussed depends on many somewhat arbitrary 
parameters in addition to those that determine the 
static solution. In most cases, the choices made were 
a compromise between accuracy and speed. In order 
to evaluate these compromises, a series of test cal
culations was made to explore the sensitivity of the 
results to the choices that were made. These test 
runs were carried in time only far enough to evaluate 
the trend of the results. This was about 6 periods of 
the motion. The test runs were then compared with 
the corresponding time portion of the main calcula
tion. The quantities that were insepected in this 
comparison were just those quantities listed in Table 
II which were chosen as the most suitable simple 
numerical measures of the motion. 

Before comparing the test runs with the main cal
culation, it is worth inspecting Table II in order to 
understand the sensitivity of the results. Some 
quantities in the table behave very smoothly and 
others somewhat irregularly. There are two sources 
of the irregularity. The first has to do with the initial 
conditions which have introduced various high har
monics. The averaging over three periods that has 
been carried out removes some, but not all, of this 
irregularity. A more serious irregularity results from 
the coarse zoning near 104 0 • Although the calcula
tion is able to deal with the principal effects of the 
opacity behavior in this region, the coarse zoning 
leads to residual irregularities in the temperature 
and luminosity and energy production. In particular, 
these quantities are still somewhat sensitive to the 
location of the zone boundary in the 104 ° region at 
the minimum luminosity of the cycle. Depending on 
where this zone boundary is, there is either a larger 
or smaller than normal value of ILA and also of ~8. 
Since, as the amplitude grows to the maximum, the 
location of this temperature at minimum crosses 
about one zone, there is a corresponding variation of 
ILA and of ~8 to be found. In particular, we note 
that at the initiation time ~8 is near its maximum 
positive excursion and ILA its minimum. As a result, 
we find these quantities unusually sensitive to any 
changes-these almost certainly leading to a de
crease of ~8 and an increase of ILA. 

With this in mind, we have examined the test runs 
for significant changes. The series that was carried 



out is displayed in Table III. The parameters were 
explored and the results were as follows. In this 
discussion, only noticeable or significant effects are 
mentioned. Quantities not mentioned did not change 
appreciably. 

The effect of the precision of the iteration pro
cedure for the temperature equation was explored in 
the first test. This precision is defined by the maxi
mum value of !:i.T(I) that is permitted without 
iterating again. Normally, this has been 1 °K and the 
location where the error is usually largest is near 
104 °. An average 3 to 4 iterations is usually needed 
for this precision. A value of !:i.T = 10°K was tried 
in test 1, the only perceptible change was a reduction 
of 6.8/8 by 1% of its value. This was fortunate since 
the latter half of the main calculation had been 
carried out with this value in order to improve the 
rate of convergence which had become worse be
cause of the strong shocks. Also, many of the subse
quent tests used this same value of 10°K. 

The second test explored an over-all reduction of 
the time between cycles by 1/ v'2 by reducing Z3 (the 
maximum permitted value of c2 !:i.t2/ !:i.R2) by two. The 
result was again that no significant changes were 
found. The most sensitive quantity 6.8/8 was re
duced by 1%. This result was in marked contrast 
with the methods used in I which are also discussed 
in Appendix B. 

Test 3 involved an increase of C 0 from 1 to 4. This 
change led to a reduction of M/8 by 38%. This led 
to a reduction in amplitude but no noticeable change 
in the amplitude insensitive quantities such as the 
ratio <R, the period and the phase lag. Test 4 then 
reduced C0 to 0.2 and used !:i.T = 10° since this small 
a value of Co leads to noticeable fluctuation of the 
points. Compared to the standard, this changed only 
6.8/8 which was increased by 10% of its value. The 
results of these tests show that the choice of C 0 = ·1 
for the parameter in the artificial viscosity was satis
factory. It is also worth noting that the treatment is 
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marginal in this respect since C 0 can not be made 
much smaller without an undesirable increase in 
fluctuation. 

Test 5 explored the effect of increasing a, the ratio 
of masses of successive zones, to 1.6 and a consequent 
reduction in the number of zones to 28. This reduced 
the computing time for the same number of periods 
to 60% of its value. However, significant changes in 
results were found. The phase lag was reduced by 
0.025, the period was increased by 0.5%, and the 
M/8 was reduced by 20%. Test 6 reduced a to 1.2, 
increasing the number of zones to 66. The computing 
time was doubled. The principal effect was an in
crease of M/8 by about 6%. In addition, the period 
was reduced by 0.5%, <R was increased by 3%, and 
the phase lag was reduced by 0.006. The evidence 
suggests that the small effects other than 6.8/8 are 
largely spurious. 

In test 7, the surface mass zone was reduced to 
1.0 X 1024 g. No significant changes resulted ex
cept an almost 30% increase in computing time. The 
choice of the topmost zone sizes was in fact dictated 
by a desire to reproduce the dynamics of the region 
above the photosphere where the spectral lines are 
formed. Since the topmost zone shows deviations in 
its motion, this meant that the second or third zone 
from the top should still be at optical depth about 
0.1. The test indicates that the motion computed 
was apparently reliable. 

Tests 8, 9, and 10 were attempts to explore the ef
fects of the choice of the lower boundary Rt. In test 
8 the same zoning was used but the two lowest zones 
were deleted, increasing Rt to 9.72 X 1010• There was 
a significant reduction of 6.8/8 by 22%. The phase 
lag was increased by 0.013, <R increased by 3%, and 
the period reduced by 0.2%. Tests 9 and 10 at-:
tempted to separate these effects into those due to 
the extra large zones at the bottom and those due to 
a change in Rt. Thus, test 9 maintained a constant 
toRt = 5.25 X 1010• There resulted a 6.5% reduc-

TABLE III. The test runs. 

Test 

Parameter Standard 1 2 3 4 5 6 7 8 9 10 

AT (°K, maximum error in iteration of temperature) 1 10 1 1 10 10 10 10 10 10 10 

lmax (maximum value of Courant parameter c At/ AR) 0.6 0.6 0.3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

Co (artificial viscosity parameter) 1 1 1 4 0.2 1 1 1 1 1 1 
a (ratio of successive mass zones) 1.4 1.4 1.4 1.4 1.4 1.6 1.2 1.4 1.4 1.4 1.4 

AMo (surface mass zone in units of 1024 g) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0 3.0 3.0 3.0 
Rt (radius of inner boundary, 1010 em) 4.8 4.8 4.8 4.8 4.8 6.3 3.4 1.8 9.7 5.2 7.6 
Temperature above which a is allowed to increase ( 10' °K) 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 20 20 
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tion in f::.S/8 compared to the standard problem and 
no other significant changes. Test 10 then, with con
stant a, increased R1 to 7.65 X 1010 • There resulted a 
reduction of f::.S/S of 12% compared to the standard 
problem. In addition, (ft increased by 2%, the period 
decreased by 0.1 %, and the phase lag increased by 
about 0.005. 

Following the above tests, two tests (11 and 12) 
were made to investigate the approach to the limit
ing amplitude from different initial conditions. Test 
11 initiated a motion with initial kinetic energy 
equal to that present in the main calculation after 26 
periods. There was, at first, considerable dissipation 
due to a shock running ahead of the main luminous 
flux peak and releasing energy at the surface in a 
flash which preceded the principal peak. This be
havior continued until the kinetic energy was re
duced by about 5% to equal that present in the main 
calculation at 24 periods. At that time, the results of 
test 11 showed every indication of joining those of 
the main calculation. This took about 6 periods. A 
test was then made to initiate the calculation at a 
kinetic energy equal to the (extrapolated) maximum 
in the main calculation. This led to a series of violent 
shocks (only every third period since the shock re
sults from a strong first harmonic component) with 
emission of early flashes from the star. The kinetic 
energy in this way was diminished by about 25% 
after six periods and the test was discontinued. These 
trials show that great ingenuity in the initial condi
tions must be used to initiate these motions at near 
their maximum amplitude without introducing 
violent harmonic admixtures which are slow to de
cay. These tests also tend to confirm the independ
ence of the final motion to the initial conditions 
which, of course, is to be expected on physical 
grounds. 

As a result of these tests, it can be concluded that 
the technique used was reasonably reliable. It is also 
apparent that the result that is most sensitive is the 
magnitude of the instability f::.S/S. This, of course, 
was expected since it is a derivative. For envelopes 
of significantly lower T., the surface opacity is greatly 
reduced and the surface zones can be taken much 
thicker. This permits a reduced value of a for a fixed 
number of zones. However, the other critical point
the number of zones crossed by the level 104 0 in a 
period-is reduced and the results on f::.S/S tend to 
become, for this reason, more uncertain. 

CONCLUSION 

We have shown that it is possible to compute the 
pulsation behavior of a stellar envelope (when con-

vection can be ignored). It is thereby possible to ex
plore in detail all of the peculiarities shown in these 
motions as well as to explore the causes of the in
stability. The attempt to extract information about 
the stars from the wealth of observational material 
which is available, or can be obtained, can now be 
greatly extended. This program is now being pursued 
and results on RR Lyrae stars will soon be reported. 
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APPENDIX A. SPECIAL TECHNIQUES 

A facet of the calculation where numerical diffi
culties arise is the treatment of the deeper regions of 
the envelope. These regions are characterized by very 
small changes in T (or W) and in R during the mo
tion and yet the change in internal energy and in 
potential energy associated with these small changes 
are very large because of the very large mass per 
zone. As a consequence, round-off errors of w-s in 
W or R, associated with the computer can lead to 
large errors in the energetics and in the behavior of 
the system. In the interest of speed, it was desired 
to avoid double precision calculation so this problem 
was handled by separately storing both the original 
value of the W and of R and also the accumulated 
small changes or increments in W and R. The round
off error in the increments was negligible and the 
present value of W or R could always be found by a 
single operation of adding the accumulated incre
ments to the original value without having a suc
cession of round off-errors. 

The equation of state and opacity were used in the 
form of a table, stored in the computer, up to 
T = 3.1 X 105 0 • Above this temperature, both 
helium and hydrogen are essentially completely 



ionized and the material can be treated as a perfect 
gas. Also, the opacity can be approximated by a 
simple analytic law in this region. The treatment 
then involved using a table for all mass points 
initially below T = 2.4 X 105 o and using a simple 
formula for all points initially above T = 2.4 X 105 0 • 

By assigning the same law at all times to each point 
and making a (slight) change in the equation of state 
and opacity at a given mass layer, the possibility of 
inadvertently supplying energy by changing equa
tions of state in time was avoided. In addition, the 
storage requirement was reduced by the limited 
table. 

APPENDIX B. COMPARISON WITH THE 

NUMERICAL CALCULATION OF I 

In the first attack4 on the numerical calculation of 
pulsation, there were two objectives. The first was to 
demonstrate the existence of the pulsation instability 
associated with hydrogen ionization and the second 
was to demonstrate the feasibility of direct numerical 
integration of the dynamics of an envelope. Both 
these objectives were reached and the existence of 
exponentially growing pulsations was demonstrated 
numerically. Apart from these objectives, it was de
sired to keep the calculation as simple and fast as 
possible. 

The treatment differed from the present one in 
several respects. The opacity law was crude, the 
equation of state was somewhat approximate, and 
the envelope was plane rather than spherical. In 
addition, there were two significant differences in the 
numerical work. First, the hydrodynamics was 
treated by an implicit rather than an explicit method. 
The implicit method is able to take longer time steps 
than permitted by the Courant condition but is un
able to handle shocks. The other difference lay in 
the treatment of the nonlinear heat flow equation. 
It was approximated by expanding all functions of 
T by Taylor series and so linearizing to get an ex
plicit set of coupled equations for the !1T's. This 
procedure necessarily is less accurate than the one in 
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use in the present treatment, which solves the set of 
coupled nonlinear equations by iteration. 

It is not known which of the two numerical dif
ferences was responsible for the fact that there was 
in the calculation a numerical damping of pulsation 
which depended on the size of the time interval. 

In order to get a reliable result for the exponential 
growth rate, it was necessary to recalculate for sev
eral values of !1t and extrapolate to zero 11t. Because 
of this problem and because of the inability to handle 
shocks, the current treatment was introduced. 

APPENDIX C. THE PROBLEM OF VIBRATIONS 

OF A NONLINEAR SYSTEM 

Starting with the work of Fermi, Pasta, and Ulam 
on numerical integration of a loaded string with non
linear coupling, mathematical interest in such non
linear problems has increased.17 The author believes 
that the experience here in solving what amounts to 
2N nonlinear coupled difference equations, may be 
of interest in other cases. 

The essential result here is that periodic solutions 
can be found. These are strictly periodic but of fixed 
amplitude only if we confine ourselves to the large 
amplitude case, but also there are almost periodic 
solutions of arbitrary amplitude. Here, the designa
tion 11almost periodic" refers to the slowly growing 
or decaying solutions. This demonsrration of periodic 
solutions is in some contrast to the results of Fermi 
et al., who found that there was no indication of 
equipartition but also no indication of periodic solu
tions, but rather that the energy migrated from the 
fundamental mode to higher modes and back again. 
The different results here probably are essentially re
lated to the presence of dissipation so that when dis
continuities appear, they are able to lead to dissipa
tion rather than arbitrary higher modes. Our results 
in this problem remind one, in fact, of "limit cycle" 
type problems except that we here deal with partial 
differential equations rather than ordinary ones. 

t7 For references, see E. A. Jackson, J. Math. Phys. 4, 686 
(1963). 


