Idi na sadržaj

Množenje

S Wikipedije, slobodne enciklopedije

Množenje je jedna od četiri osnovne računske operacije u aritmetici. Množenje prirodnih brojeva predstavlja njihovo ponovljeno sabiranje.

i se nazivaju faktori. Rezultat, „a puta b“, se naziva proizvod.

Množenje viže uzastopnih brojeva

[uredi | uredi izvor]

Pri množenju više brojeva se koristi slovo Π iz grčkog alfabeta :

ili

Postoji i specijalni slučaj množenja prirodnih brojeva - faktorijel

Primjeri

Odnosno imamo da je

Ponovljeno množenje istih faktora zamjenjujemo potenciranjem

Notacija

[uredi | uredi izvor]
malo
malo

Npr. pišemo 3 · 4 za 4 + 4 + 4. To se čita „tri puta četiri“.

Umjesto 3 · 4 nekad se piše 3 × 4. U računarskim programima se često koristi znak *. Pri množenju varijabli možemo pisati npr. (5x, xy).

Suprotna operacija je dijeljenje.

Osobine množenja

[uredi | uredi izvor]

U skupu racionalnih, realnih i kompleksnih brojeva, svaki broj osim nule ima tačno jedan inverzan broj.

Inverzan broj broja je . Inverzan broj inverznog broja je broj

Množenje kroz skupove

[uredi | uredi izvor]

Cijeli brojevi

[uredi | uredi izvor]

Ako su u skupu cijelih brojeva faktori istog znaka proizvod je pozitivan, a ako su različitih predznaka onda je negativan.

Racionalni brojevi

[uredi | uredi izvor]

Proizvod racionalnih brojeva je racionalan broj kome je brojilac proizvod brojilaca faktora, a imenilac proizvod imenilaca faktora

Iracionalni brojevi

[uredi | uredi izvor]

Neka je iracionalan broj, tada je proizvod granična vrednost

gdje je racionalan broj i predstavlja približnu vrednost broja . kompleksan broj

Kompleksni brojevi

[uredi | uredi izvor]

Kompleksan broj možemo zapisati kao uređeni par ili u trigonometrijskom obliku:

Zbog je

.

Množenje vektora

[uredi | uredi izvor]

(Vektor množimo skalarom tako što se svaka njegova koordinata pomnoži skalarom. Ova operacija je komutativna)

(Skalarni proizvod vektora je skalar jednak zbiru proizvoda odgovarajućih koordinata)

gdje su , i jedinični vektori duž x, y i z ose

(Vektorski proizvod vektora je novi vektor, čiji je intenzitet jednak površini paralograma koji vektori-faktori zaklapaju, pravac mu je normalan na ravan koju vektori-faktori definišu, a smjer se definiše pravilom lijeve ili desne ruke, zavisno od konvencije. Ovaj proizvod je specifičan za , i antikomutativan je. Vektorski proizvod se računa kao determinanta matrice.)

(Mješoviti proizvod tri vektora je skalar koji je jednak zapremini paralelopipeda koji ti vektori zaklapaju. Zapisuje se kao )

Množenje matrica

[uredi | uredi izvor]

Neka su date matrice A i B veličine mA×nA i mB×nB. Proizvod AB je definisan ako je nA = mB, a dobijena matrica ima dimenzije mA×nB. Elementi matrice-proizvoda su

Množenje matrica nije komutativno. Matrice 1×3 i 3×2 možemo pomnožiti samo na jedan način, a 5×4 i 4×5 sa obe strane, ali proizvodi neće imati istu veličinu (5×5 na jedan i 4×4 na drugi način). Ako se pomnože dve kvadratne matrice iste veličine, proizvodi su takođe iste veličine, i može se definisati komutator

Također pogledajte

[uredi | uredi izvor]

Reference

[uredi | uredi izvor]

Multiplication