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We obtain the rule governing many-body wave functions for particles obeying fractional 
statistics in two (space) dimensions. It generalizes and continuously interpolates the usual 
symmetrization and antisymmetrization. Quantum mechanics of more than two particles is 
discussed and some new features are found. 
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In two (space) dimensions, there are allowed to 
be ,particles of fractional angular momentum or 
spin.1.2 If there is a generalized spin-statistics con­
nection, such particles are expected to have unusual 
(fractional) statistics which continuously interpo­
lates between the normal bosons and fermions. 
(An example for such interpolation is known in one 
dimension. 3) The intriguing problem of how it 
works is interesting both from the viewpoint of 
theoretical principles and from the prospect of 
physical applications. A possible relevance of frac­
tional statistics to the quantized Hall effect has been 
recently suggested.4 

Two simple models have been proposed for parti­
cles obeying fractional statistics by Wilczek l , S Yang 
and Yang, 3 and Wilczek and Zee.6 Two-particle 
quantum mechanics was analyzed in detail. A low­
density expansion of the partition function interpo­
lating the standard statistics was obtained. As 
pointed out in these papers, Feynman's path­
integral formulation is a good starting point. How­
ever, the formalism in terms of wave functions may 

be practically more convenient. An immediate 
problem is the general rule governing the many­
body wave functions, namely how to generalize the 
usual rule to obtain a continuous interpolation 
between symmetrization and antisymmetrization. 
In this note I answer this question by deriving the 
desired rule in the two models mentioned above. 
As an application, I discuss the quantum mechanics 
of three particles, not yet touched in the literature. 
Some new features are found which are not present 
in the two-particle case. 

Anyons revisited.-Following Wilczek,S I denote 
composites formed from charged particles and mag­
netic flux tubes as anyons, since their spin 

11 = qct>/27T;;;;; O/27T (1) 

can take any real values. Here q is the charge and ct> 
the flux. ThatS interchange of two anyons leads to a 
phase e i9 is an indication of the fractional statistics. 
We here consider quantum mechanics for more 
than two anyons. 

The Hamiltonian for a charged particle orbiting 
around a flux tube can be written as 

H O=_I_[-i ~ -qA(r'q-r'f)]2+-
1-[-i ~ +QA(r'q-r'f)]2. 

2mq orQ 2mf orf 
(2) 

Here we consider the limit in which the size of the flux tube can be neglected. r' Q and r' fare two­
dimensional vectors. Let us assume that the flux tube has a finite effective mass mf in two dimensions. The 
form (2) has the advantage that the effect of the interaction is confined to the wave function in the relative 
coordinate. In a regular gauge the vector potential is 

(3) 

(with Ii being the unit vector normal to the two-dimensional plane), and the wave function is single-valued 
everywhere. 

Now we proceed to consider n identical anyons and neglect the electrostatic forces between them (i.e., con­
sider the limit Q - 0 with 0 iii q ct> fixed). The charged particle in each anyon feels the vector potential of the 
flux tube in the other. Using the Hamiltonian (1) and applying a procedure similar to that in Goldhaber7 for 
the charge-monopole composites, one finds that the anyon-anyon potential is equivalent to that of a charge 
interacting with twice the flux in one flux tube; namely 

H= ~_I_[_i ~ -2QIA(f'i-r'j)]2 (4) 
, - 1 2ma a r , j;1l! i 
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Let us adopt Eq. (3) for A( f; - fj) in the regular gauge in which the wave function tjJ is single-valued as in 
the one anyon case. To eliminate the long-range vector potential between anyons, we make the gauge 
transformation 

tjJ'( fl' ... , f n) = neXP!iJ...¢iJ)tjJ( fl' ... , f n ), 
;<j 1T 

(5) 

where ¢iJ is the azimuthal angle of the relative vector f; - fj. Now the new wave function tjJ' satisfies the 
free Schrodinger equation with no vector potential. 

At first sight the multivaluedness of the new wave function 'V seems to be very discomforting. One can 
manage to avoid it by imposing appropriate boundary conditions for tjJ' on certain cuts in the two-dimensional 
planes or formulating quantum mechanics on sections on fiber bundles. 8 However, these two methods are 
very hard to put into practice for more than two anyons. Actually, nothing is wrong with the multivalued­
ness of the wave function (5). The modulus squared, ItjJ'12, is single-valued, and the muitivalued phase fac­
tors are just right to keep track of the Aharonov-Bohm effect. 9 In my opinion once one understands the 
need for extending the notion of a wave function (i.e., not requiring it to be necessarily 21T periodic in ¢;), 
there is no difficulty in accepting and directly using the multi valued wave function (5) as everybody does 
with the double-valued spinors in three dimensions. 10 

By use of the complex coordinates Z; = X; + iy; and zt = X; - iy; instead of f; = (x;,y;), the wave function 
(5) can be put into a more elegant form 11: 

tjJ' (z;,z;*) = n (z; - Zj)o/rr j(z;,z;*), 
;<j 

(6) 

with f(z;,z;*) = (rij) -O/rr tjJ (z;,z;*) single-valued. f is totally symmetric (antisymmetric) in the pairs (z;,zn, if 
all the fields describing the flux tube and charged particle are bosonic (if the charged particle is fermionic). 
The equation (6) is the desired rule for many-body wave functions obeying () statistics. 

Solitons in point approximation.-The solitons in the (2 + 1 )-dimensinal 0(3) nonlinear sigma model, with 
a topological action, also provide a model for particles with fractional spin and statistics.3• 6 When widely 
separated solitons are approximately treated as point particles, the topological term (with the parameter ()) 
leads to an additional term 

(7) 

to the ordinary action So= f dt +m I; T;2. While this term does not affect the equation of motion, it deter­
mines the statistics of the particles via path integral. 

When one goes from path integral to wave functions, the term (7) also leads to the rule (6) for many-body 
wave functions associated with usual Hamiltonian containing no peculiar interactions. In fact, the change of 
¢ij can be always written as 

(8) 

with 0 ~ ¢/; - ¢/j < 21T. Thus, the propagator in the n-particle configuration space is a sum of "partial am­
plitudes," each corresponding to a distinct class of paths having the same winding numbers (nij): 

K ( fi' ,t"; f; ,r') = exp[i I (¢;; - ¢;j)] Iexp(i211 Inij) J-~;' [IilT;(t) ]nijexp(iSo). 
; <j nij ; <j r i 

As usual, a single-valued wave function tjJ ( f;,t) can be introduced such that 

( -"") Jd-'k(-" ".-' '),/,(-' ') tjJ r; ,t = r; r; ,t ,r ;,t 'f' r ;,t . 

We can eliminate the sum in Eq. (9) by introducing a new wave function 

~(f;,t)=exp{iJ... I¢iJ}tjJ(f;,t). 
1T ; <j 
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Then, corresponding to Eq. (10), now we have 

~( f;',t") 

fd -, K- (-" " -, ,).i,( -, ') = r i r i ,t ; r i,t 'I' r i,t , (12) 

(13) 

..:.. _ () ~ fi- f} 
mri=pi--"

I
_ -1 2 ' 

1T i <} ri- r } 

Here Pi is the canonical momentum conjugate to 
fl' It is easy to see that H is the same as given by 
Eq. (4) together with Eq. (3). We can repeat the 
same procedure in the last section to arrive at Eq. 
(6). However, the argument given from Eq. (8) to 
Eq. (14) has the advantage that it elucidates the re­
lationship between our wave functions and the path 
integral formulation. 

Properties of the wave function (6).-Equation (5) 
or the rule (6) is invariant under () - () + 21T; i.e., 
fractional statistics is 21T periodic in (), in agreement 
with the well-known periodicity of the Aharonov­
Bohm effect in the flux or that of the () parameter 
in the topological action. 

When () = 0 and 1T, the rule (6) coincides with the 
standard symmetric or anti symmetric rule. For in­
termediate () it gives a continuous interpolation 
between the two extreme cases. However, when 
() ;z!: 0, 1T, the many-body wave functions are not of 
the form of products of single-particle wave func­
tions. So generally we expect that the physical 
quantities of a system of many particles are not sim­
ply related to those for one particle. 

When n = 2, from Eq. (6) it is easy to recover the 
condition 1,5 

(15) 

For n ~ 3, Eq. (6) exhibits complicated behavior 

HIjJ = EIjJ, 
1 n 02 1 n 

H= -- I +-w2 Izz,* 
2 i-I OZiOZt 2 i-I I I' 

Note that the wave function ~ ( fi,t) is single­
valued on the universal covering space (or 
Reimann surface) of the n-particle configuration 
space. The integration over f; in Eq. (12) is taken 
on this covering space. By use of the complex coor­
dinates, it is easy to recover Eq. (6) from Eq. (11). 

Another way to derive the same result is the fol­
lowing. The Hamiltonian corresponding to L 0 + L' 
is 

(14) 

under permutation or interchange of the positions 
of particles. Complication occurs even when we ex­
change only two particles in the presence of a third 
particle. We have to specify along what loop parti­
cle 1 moves from f 1 to f 2 and particle 2 from f 2 

to fl' The resulting phase change will depend on 
whether the "spectator" 3 is enclosed inside this 
loop or not. This situation is a reflection of the fact 
that the configuration space of identical particles is 
multiply connected. It is the origin of the difficul­
ties pointed out in Refs. 5 and 6 in dealing with 
more than two particles. The acceptance and direct 
use of the multivalued wave functions (6) make the 
many-particle problem accessible to approach, since 
the complications mentioned above have been sim­
ply built into the factors III</Zi-Z)IJ/l'. 

Physically, the long-range interactions due to () 
statistics are coded in the factors IIi <} (Zi - z) ) 9/1'. 

Moreover, these factors imply the existence of an­
gular momentum barriers between any pair of parti­
cles when (};z!: O. Thus the many-body wave func­
tions are expected to vanish when any two of the 
particles coincide (if () ;z!: 0), although the particles 
are not fermions for () ;z!: 1T. 

Three particles, harmonic well.-As an application 
let us use the many-body wave functions (6) to at­
tack the problem of three identical particles in a 
harmonic potential. The Schrodinger equation (for 
n particles with m = 1) is 

(16) 

where IjJ satisfies the rule (6) with f totally symmetric. (We have omitted the prime on IjJ). 
The n = 2 case has been analyzed in Refs. 5 and 12. In our approach we recover the complete set of solu­

tions as follows: 

IjJ = W IL Iw II +24IL~IL 1)(2wZZ*)Ln(il +241) (t wzz* )exp[ tw (Z1zj + z2zi ) 1. 

E = (2N + IL I + 2n + II + 2~1 + 2)w, 

(17) 

(18) 

where N,n ~ 0 are principal quantum numbers for the center-of-mass and relative oscillators respectively; L, 
I + 2~ are angular momenta in the center-of-mass and relative coordinates. (! must be even.) Ll?m) (x) are 
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the Laguerre polynomialsY We have used the following notation for brevity: Z = + (ZI + Z2), Z = ZI - Z2 and 

_ {z if L > 0, w = {z if 1+ 2Li > 0, 
W - Z· if L < 0, z· if I + 2Li < O. (19) 

Since () appears only in the form of II + 2LiI, the 27T periodicity of () is made clear. It is also easy to verify the 
continuous interpolation between the spectrum (including degeneracies) of bosons and that of fermions 
when () varies from 0 to 7T. 12,14 

For n = 3, we have obtained the following solutions for 0 ~ () < 7T: 

where all N" N 2, L, m, I are nonnegative integers, 
and I, m such that after symmetrization P does not 
become identically zero. Moreover, R2= IZI +z2 
+z31 2, r2= I ilzil 2, 

p2= 12zl -Z2 -z312 +cyclic permutation. 

We note that the parity transformation Zi - zt and 
() - - () is a good symmetry of the equation (16) 
and the rule (6). So applying it on the solutions 
(20) will lead to more solutions (with I, m such that 
ljJ has no singularities at Zi* = z/). We know that 
this set of solutions does not exhaust those of the 
problem; e.g., the three-fermion ground state is 
missing when () = 7T . 

Even so, we are able to see some important 
features not present in the solutions of two parti­
cles. First, for sufficiently small (), the ground-state 
energy is E o=(3+3(}/7T)w. For n particles, it is 
E o=[n+n(n-1)(}/27T]w. Thus, the n depen­
dence of Eo has a quadratic part which looks like 
two-body interaction energy. Second, when () = 7T 
the above energy level moves to 6w, which exceeds 
the energy of the three-fermion ground state 
E6 = 5w. So when () varies continuously from 0 to 
7T, there must be level crossing and, therefore, the 
emergence of new ground states at certain values of 
(), This effect may lead to interesting phenomena 
in realistic systems obeying () statistics when () can 
vary under certain circumstances. 

To conclude, I stress that though the rule (6) is 
derived in two concrete mdoels, it is generally true 
for any fractional statistics in two dimensions, what­
ever its origins. This will be confirmed in a model­
independent formulation in a forthcoming paperY 

The author thanks M. Baker, D. Boulware, 
L. Brown, R. Tao, F. Wilczek, and A. Zee for use­
ful discussions and comments. This work was sup­
ported in part by the U. S. Department of Energy. 
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