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Introduction

This paper is a contribution to the representation theory of Hopf—Galois extensions, as origi-
nated by Schneider in [16]. More specifically, we consider the following questions. Let H be a
Hopf algebra, and A, B right H-comodule algebras. Moreover, assume that A and B are right
faithfully flat H-Galois extensions.

(1) If A and B are Morita equivalent, does it follow that A°°# and B°H are also Morita equiv-
alent?

(2) Conversely, if A°°H and B# are Morita equivalent, when does it follow that A and B are
Morita equivalent?

These questions have been considered in [12] in the context of strongly group graded alge-
bras, the motivation coming from problems raised in the modular representation theory of finite
groups. The results of the present paper generalize the results of [12, Sections 2 and 3].

Given a right H-comodule algebra A, and a left H-comodule algebra B, we consider (A ®
B, H)-Hopf modules. These are at the same time left A ® B-modules and right H-comodules,
with a suitable compatibility condition. There are various ways to look at these Hopf modules:
they are Doi—Hopf modules (see [9]) over a certain Doi—-Hopf datum (with two possible descrip-
tions of the underlying module coalgebra), and they can also be viewed as comodules over a
coring (see Section 3). The main result of Section 2, and also the main tool used during the rest
of the paper, is a Structure Theorem for (A ® B, H)-Hopf modules, stating that the category of
(A® B, H)-Hopf modules is equivalent to the category of left modules over the cotensor product
A Oy B, under the condition that A is a faithfully flat H-Galois extension.

The results from Section 2 can be applied to relative Hopf bimodules: let A and B be right
H-comodule algebras, and consider (A, B)-bimodules with a right H-coaction, satisfying a cer-
tain compatibility condition. The category of relative Hopf bimodules is then isomorphic to the
category of (A ® B°P, H)-Hopf modules. In Section 4, we state the Structure Theorem for rela-
tive Hopf bimodules, and we investigate the compatibility of the category equivalence with the
Hom and tensor functors.

In Section 5, we apply our results to discuss the two problems stated above. We introduce the
notion of H-Morita contexts, and we show that if two right faithfully flat H-Galois extensions
are connected by a (strict) H-Morita context, then the algebras of coinvariants are also connected
by a (strict) Morita context. Our main result is the following converse result: if the algebras
of coinvariants are Morita equivalent, in such a way that the bimodule structure on one of the
connecting modules can be extended to a left-action by the cotensor product A Oy B°P, then A
and B are H-Morita equivalent.

In Section 6, we show that the Morita equivalence coming from a strict H-Morita context
between two faithfully flat H-Galois extensions respects the Miyashita—Ulbrich action. In Sec-
tion 7, we investigate the behavior of H-Morita equivalences with respect to Hopf subalgebras.

The category of relative Hopf modules and A-linear (not necessarily H -colinear) modules is
an H-colinear category. If two right H-comodule algebras are H-Morita equivalent, then the
induced equivalence between their categories of relative Hopf modules is H-colinear. In Sec-
tion 8, we study the converse property: when does every H-colinear equivalence between two
categories of relative Hopf modules come from a strict H-Morita context. This leads to a gen-
eralization of the Eilenberg—Watts Theorem (Proposition 8.3). The main result is Corollary 8.5,
stating that every H-colinear equivalence comes from a strict H-Morita context if the Hopf al-
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gebra H is projective, and the H-comodule algebras A and B are H-Galois extensions of their
subalgebras of coinvariants.

For basic results on Hopf algebras, we refer the reader to [8] or [13]. For a concise treatment
of corings and their applications, we refer to [4].

1. Preliminary results

Throughout this paper H is a Hopf algebra over a commutative ring k, with bijective an-
tipode S. We use the Sweedler notation for the comultiplication on H: A(h) = h() ® h().
MM (respectively M) is the category of right (respectively left) H-comodules. For a right
H -coaction p (respectively a left H-coaction A) on a k-module M, we denote

p(m)y=m@my and A(m)=m_13 Q mj.

The submodule of coinvariants M of a right (respectively left) H-comodule M consists of
the elements m € M satisfying p(m) =m ® 1 (respectively A(m) =1 @ m).

Let A be a right H-comodule algebra. 4 M and M X are the categories of left and right
relative Hopf modules. We have two pairs of adjoint functors (1 = A @ yeon —, G1 = (—)coH)

and (F, = — ® geon A, Go = (—)°°f) between the categories 4con M and 4 M*, and between
M peonr and ./\/lg . The unit and counit of the adjunction (F7, G1) are given by the formulas
MmN :N = (AQuon NP, ninm)=1®n;

1M A® geon M 5 M, e1.m(a®@m) =am.
The formulas for the unit and counit of (F>, G;) are similar. Consider the canonical maps
can: A ® eon A— AQ® H, can(a ® b) =abjy ® b13;
can:AQqoon A—> A® H, can(a ®b) = ajb ® a).

It is well known (see for example [11]) that can is an isomorphism if and only if can’ is an
isomorphism.

Theorem 1.1. Let A be a right H-comodule algebra. Consider the following statements:

(1) (F», G»2) is a pair of inverse equivalences;

(2) (F2, Gy) is a pair of inverse equivalences and A € 4con M is flat;
(3) can is an isomorphism and A € jcon M is faithfully flat;

(4) (F1,Gy) is a pair of inverse equivalences,

(5) (F1,Gq) is a pair of inverse equivalences and A € M 4o is flat;
(6) can’ is an isomorphism and A € M 4eon is faithfully flat.

We have the following implications:
B = 2 = 1) 6 = 6 = @.

If H is flat as a k-module, then (1) < (2) and (4) < (5). If k is field then the six conditions are
equivalent.
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If the first three conditions of Theorem 1.1 hold, then we call A a left faithfully flat H-Galois
extension; if the three other conditions hold, then we call A a right faithfully flat H-Galois
extension.

Proof. The equivalence of (2) and (3) is well known. It is essentially [15, Theorem 3.7], which
is an improvement of [10, Theorem 2.11]. For the equivalence of (5) and (6), we observe
that A is a left H°°P-comodule, so, by the left-handed version of the equivalence (3) < (2),
(6) is equivalent to flatness of A € M 4w and equivalence between the categories 4corn M and
Heor AM = A MH

The implications (2) = (1) and (5) = (4) are trivial.

If H is flat as a k-module, then Mf is an abelian category and the forgetful functor /\/lg —
M4 is exact. If F, is an equivalence, then the functor —® 4con : M g0 — M 4 is exact since it
is the composition of the forgetful functor and the equivalence F>. This shows that A is flat as a
left A°°H _module, and the implication (1) = (2) follows. (4) = (5) can be proved in a similar
way.

If k is a field, then the equivalence of the six statements in the theorem follows from [15,
Theorem I]. O

Let M be aright H-comodule, and N a left H-comodule. The cotensor product M Uy N is
the k-module

MDHNz{Zmi@)n,- EM®N‘Zp(m,-)@ni:Zmi@)»(ni)}-
i i i

If H is cocommutative, then M Uy N is also a right (or left) H-comodule.

Proposition 1.2. Let R be a k-algebra, and assume that P € Mg is flat. Take M € gM™ and
N € M, and assume that we have a right H-coaction on M that is left R-linear. Then the map

PRrMUy N)— (PRrM)Uy N, P®<Zmi®ni)'—>2(17®mi)®ni
i i

is bijective.
2. A Structure Theorem for (A ® B, H)-Hopf modules

Under our assumption on H, H @ HP is also a Hopf algebra, and H is a left H @ HP-
module coalgebra; the left H ® H°P-action is given by

k®1)-h=khS{),

forall h,k,l € H.

We present an alternative description of H as a left H ® H°P-module coalgebra. H ® HP
HeHwor M, with right H-action induced by the comultiplication on H, and k € y M via ¢, so
we have the left H ® H°P-module (H ® HP) g k. (H @ HP) ®p k is a coalgebra with
comultiplication and counit given by
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A((h@h")y®u 1) = (ha) ®hlp) ®u 1 ® (ho) @ hiy) ®n 1;
e((h®h) @ 1) = e(hl),
It is easy to show that (H @ HP) ® i k is an H ® H°P-module coalgebra.
Proposition 2.1. (H ® H°P) @ gy k and H are isomorphic as H ® H°P-module coalgebras.
Proof. Define
f{(HOHP)@uk—H, [f((h®h)®u1l)=hSH);
g:H—> (HOHP)@uk, gh)=nh®1)Qul.

f is well defined since for all h, h/,l € H

F((h @I @ 1) = hiyS(1y) = hSU)e) = f((h® ) @ ().
fis H ® H®P-linear since for all i, h', k, k' € H

F(kh@KRh)Qp 1) =khSK'h)=(*k®k")- (hSK)) =k @K)f((h®h") ®H 1).

f is a coalgebra map since for all i, h' € H

(f® oA ((h®K) @ 1) =h1)S(hiy) ®hx)S(hy)) = A(hS(R)).
and

(eo /)((h®@h)®@pu 1) =¢e(hS(H)) =e(hh).
It is obvious that f o g = H. Finally for all i,k € H
(go NHN((h®@k) ®nu 1) =g(hSk))

= (hS(k) ® 1) Xy l= (hS(k(])) ® l) R S(k(z))
= (hStka)ko) ®k3) @ 1=(h®k) @u 1. a

Let A be a right H-comodule algebra, and B a left H-comodule algebra. Then A ® B is a
right H ® H°P-comodule algebra, with coaction

p(a ®Db) = aj) ® bjo) ® aj1] ® by—1)-
Then (H @ H*P?, A ® B, H) is a left-right Doi—Hopf datum (see [6] or [9] for details), and

we can consider the category ggpM(H ® HP)H of Doi—Hopf modules. The objects of this
category are k-modules M with a left A ® B-action and a right H-coaction such that

p((a ® bym) = (ajo) ® bjopmoy ® apymyS(bi—1y),
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foralla € A, b € B and m € M. The objects of 4o M (H ® HP)! are called (A® B, H)-Hopf
modules. It is well known and easily verified that A ® B € agzM(H ® HP)H | with coaction
defined by

pla ® b) = aj) ® bo) @ aj1;S(b-1y)-

Lemma 2.2. With notation as above, we have that (A ® B)*°" = AOy B.

Proof. Take x =) ;a; ® b; € (A ® B)*°. Then

Y ai®bi® 1= aijo) ®bijo) ® aipy S(hir—1y).-

i i

Apply A to the second tensor factor. Then switch the second and fourth tensor factor, and multiply
the third and fourth tensor factor. It follows that

Zai ® bijo] ® bij—11 = Zai[()] ® bij0) ® aif11S (bi—2)bij—1) = Zai[()] ® b a1,
i i j

1

and then x € A Oy B. The converse inclusion is proved in a similar way. O
Recall (see for example [9]) that we have a pair of adjoint functors (F, G):
F:a0,8M — agsM(H @ HP)" | F(N)=(A® B) ®40,,5 N:
G:apsM(H®HP)" & 10 s M, G(M)=M<H.

The unit and counit of the adjunction are the following:

N = (A®B)®am,s N7, v =1, 150n;
em:(A®B) @40, M — M, ey@®b®m)=(a®b)m.

Proposition 2.3. Assume that H is flat as a k-algebra. Let A be a right H-comodule algebra,
and B a left H-comodule algebra. We have a right H -colinear map

f:A®uon (AOy B)y=F(AQy B) > AQ B, f<a® (Zai ®b,~>) =Y aa; ®b;.

If A is a right faithfully flat H-Galois extension, then f is an isomorphism.

Proof. f isright H-colinear since

p(f (a ® (Z ai ® bi))) = Za[o]ai[o] ® bijo) ® apaif1yS(bi—11)
i i

= ZG[O]ai ® bijo] ® ap11bi—21S (bif-17)

1
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= Za[()]ai ® b; @ aq)

1

~rom(o(as (Zi:“" =)

On A ® 4con A and A ® H, we consider the following right H-coactions:
p(a®b) =a® by ® byj; pla®h)=a®hu) ®hq).

Then can: A ® qoon A - A ® H is right H-colinear, so we can consider the map can Uy
B:(A®yeon A) Oy B— (A® H)Ug B. If A is a right faithfully flat H-Galois extension,
then can [y B is bijective, and applying Proposition 1.2, we see that f is the composition of the
following isomorphisms:

A ®ACOH (A DH B) = (A ®ACOH A) DH B
=Z=(AQH)UgB=A®(HUg B)=A®B. O
The following Structure Theorem is the main result of this section.

Theorem 2.4. Let A be a right H-comodule algebra, and B a left H-comodule algebra. If A is
a right faithfully flat H-Galois extension, then (F, G) is a pair of inverse equivalences between
the categories s, gM and sgpM(H ® HCoP)H

Proof. Take N € 4, pM. We have a well-defined algebra map A" _ Ay B, sending a
toa® lg,and N is a left A< -module, by restriction of scalars. Consider the isomorphism

ay=f®a0,8N:FI(N)=AQpcon N=AQpeon (AU B) @a0,8 N
— F(N)=(A® B)®s0,8 N.
Itis easy to see that ay (@ ® n) = (@ ® 1) ® 40, B 1, and ay is right H-colinear since
(ay ® H)((ay ®n) ® apn) = (a1 ® D ®an,p 1) @ am=p(@®@ 1) @n).
It follows that v restricts to an isomorphism
@S (A @ georr N)°H - ((A® B) @ary5 N) 7.
It is then easily seen that
v =ay?ony.
n1,n 1s an isomorphism by Theorem 1.1, and it follows that 5y is an isomorphism.
Take M € pqpM(H ® H°P)" Then M is a left A-module, by restriction of scalars, and a

relative Hopf module since

plam) = p((a ® 1)m) = (ago) ® Dmo) ® apympyS(1) = agoymyo) ® apiymyy).
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It is then easy to see that
EM O pjcoH = EL M-

It follows from Theorem 1.1 that & 37 is an isomorphism, and this implies that &), is an isomor-
phism. O

3. Connection to comodules over corings

Let A be a ring. Recall that an A-coring C is a comonoid in the monoidal category 4. M 4. For
a detailed discussion of the theory of corings and comodules, we refer to [4]. One of the results is
that we can associate a coring to a Doi-Hopf datum, and that the category of Doi—Hopf modules
is isomorphic to the category of comodules over this coring.

Let us describe the A ® B-coring C associated to the left—right Doi—Hopf datum (H & H P,
A ® B, H) that we have discussed in the previous section. We have that C = H ® A ® B, with
left and right A ® B-action given by

@Y h®a®b)(a @b = aEI]hS(bE_I]) ® ajgjaa” @ bjybb".
The comultiplication and counit are given by the formulas

Ah®a®b)=(ho)®@14® 1) Qags (ha) ®a ® b);
eh®a®b)=¢c(h)a®b.

The category € M of left C-comodules is isomorphic to 4z M (H ® HP)H |
A Galois theory for corings can be developed (see [3,5]). Let x be a group-like element of a
coring C, and let
A°C — (g e A|ax =xa).
Then we have an adjoint pair of functors between 4coc M and C M. If this adjoint pair is a pair
of inverse equivalences, then the map

can: A @ oc A—C, can(a ®b)=axb

is an isomorphism of corings (see [5, Proposition 3.1]). If, in addition, A is flat as a right
AC_module, then it also follows that A is faithfully flat as a right AC_module (see [3, Propo-
sition 3.8, (2) = (1)]). We will apply this to the coringC=H @ AR B. lpy ® 14 lpisa
group-like element of H ® A ® B, and the associated pair of adjoint functors is precisely (F, G).
It can be easily verified that the corresponding canonical map is precisely the map

can: (A® B)®a0,5 (A®B) > H® AR B,
can((a Rb)® (a/ ® b/)) =amSb-1)® a[o]a’ ® b[o]b/. @))
Proposition 3.1. Let A be a right H-comodule algebra, and B a left H-comodule algebra.

Assume that A is a right faithfully flat H-Galois extension. Then can is an isomorphism. Fur-
thermore, A ® B is faithfully flat as a right A Oy B-module.
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Proof. It follows from Theorem 2.4 that (F, G) is a pair of inverse equivalences, hence can is
an isomorphism.

We will now show that A ® B is flat as a right A Oy B-module. Assume that N — N’ is a
monomorphism of left A Oy B-modules. Using Proposition 2.3 and the fact that A is flat as a
right A°°H -module, we find that

(A®B)ADHBN;A®A00H N— A ®AcoH N/; (A®B)ADHBN/

is injective. As explained above, it then follows from [5, Proposition 3.8] and Lemma 2.2 that
A ® B is faithfully flat as a right A g B-module. O

4. Application to Hopf bimodules

Now let A and B be right H-comodule algebras. A two-sided relative Hopf module is a k-
module with a left A-action, a right B-action, and a right H-coaction, such that

p(amb) = ajoymo)bjo) ® apiymnbyy,

forallae A,be Bandme M. AM[B{ is the category of two-sided relative Hopf modules with
k-module maps that are A-linear, B-linear and H-colinear.

B is a left H-comodule algebra, with left coaction A given by A(b) = S~ (bj1}) ® bjo;. We
can then apply the above results to A and B°P. In particular, A ® B°P is a right H ® H°°P-
comodule algebra.

Lemma 4.1. Let A and B be right H-comodule algebras. Then the Doi—Hopf modules category
Ao M(H @ HPYH s isomorphic to the category of two-sided relative Hopf modules A./\/lg .

Proof. It is well known that 4gpor M is isomorphic to the category of bimodules 4 Mp. The
isomorphism respects the compatibility of the action and coaction. O

A ® B is a two-sided Hopf module, with coaction p(a ® b) = ajo; ® bjo) ® ap1b17. Fur-
thermore (A ® B°P)° = A Oy B°P. Applying Theorem 2.4, we obtain the following Structure
Theorem for two-sided Hopf modules.

Theorem 4.2. Let H be a Hopf algebra over the commutative ring k, with bijective antipode,
and consider two right H-comodule algebras A and B. We have a pair of adjoint functors (F =
AQ® B® @0, 0 — G = (=) between the categories Ay oo M and A./\/lg. If Aisa
right faithfully flat H-Galois extension, then (F, G) is a pair of inverse equivalences.

Remark 4.3. Assume that A (respectively B) is a right (respectively left) faithfully flat H-Galois
extension. The proof of Theorem 2.4 shows that via appropriate transport of structure, the func-
tors

(A®BOp) ®ADB°P -, A®AcoH -, —®BcoH BZADBopM%AMg

are naturally isomorphic equivalences of categories. It follows immediately that we may define
the functors
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— ®AcoH — BDAOPM X AMC — BMC7
— ®gcoH —:gMy x ADCOPM — pMc.

Proposition 4.4. Let A, B, C be right H-comodule algebras. If M € A./\/lg and N € BMg, then
M ®p N € AMg . If A and B are right faithfully flat H-Galois extensions, then the map

fiMOH @peon N - (M@ N)°H,  fm@n) =men,
is an isomorphism. Consequently M ® peorr N°H is a left A Oy CP-module.

Proof. Itis clear that M ® g N is an (A, C)-bimodule. A right H-coaction on M ® g N is defined
as follows:

p(m ®p n) =mo) @p njo] @ mnq1-

It is easy to show that p is well defined, and that this coaction makes M ®p N € AM? .
By restriction of scalars, M € AMH and N € g M 1t follows from Theorem 1.1 that

1M A Qycon MH 5 M and e1.N:B Qpeon NH o N

are isomorphisms. Let g be the composition of the maps

e1.m Qpeort NOH 1 A@pe0 MO @ poors NOH — M @ georr N©OH
and

M®p e n:MQpeon N =M @p B@geon N°H - M @3 N.
g is bijective, and is given by the formula

gla@m@n)=am Qpn,

forae A,m e M°H and n € N Tt is clear that g is left H-linear. g is also right H-colinear,

since g(ajo) ® m ® n) @ ap] = apym @ n ® ag) = p(am ®p n), and it follows that g is an
isomorphism in 4 M and, by Theorem 1.1 that

gCOH . (A ®AcoH MCOH ®BcoH NCDH)COH — (M ®B N)COH

is an isomorphism. The map f is an isomorphism since it is the composition of g and the
isomorphism

coH
nl,MC°H®BC(,HNC°H :MCOH ®BcoH NCOH — (A ®AcoH MCOH ®BcoH NCOH) .

Finally, the left A () C°P-action on (M ®p N)®°H can be transported using f to M°H ® geons
Nco H .o
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In the sequel, we will use the adjoint pair of functors (F, G), with unit  and counit ¢ intro-
duced after Lemma 2.2, in the cases where the algebras involved are respectively A and B°P,
A and C° and B and C°P. If A and B are right faithfully flat H-Galois extensions, then these
three adjunctions are pairs of inverse equivalences, by Theorem 4.2. We will use the same nota-
tion (F, G) and (5, &) for the three adjunctions, no confusion will arise from this.

Take M| € 40, por M and Ny € g, cor M, and denote

M = (A ® BOp) ®ADHB°P M] € AMg,
N = (B ® COP) ®BDHCOP N] € BMg
Using Theorem 4.2 and Proposition 4.4, we find isomorphisms
My ®@geont N1 = MH @ peon N = (M @ N)°H € 40, cr M.
Transporting structure, we find that M| ® georr N1 € a0, cov M, and we have a functor
- ®BcoH — ADHB"PM X BDHCOPM —> ADHCOPM'
Corollary 4.5. Let A, B, C be right H-comodule algebras, and assume that A and B are right
faithfully flat H-Galois extensions. Take M\ € s, pow M and N1 € pn,, coo M. With notation as
above, we have that M| @ geoorr N1 € a0, co0 M, and we have an isomorphism
h:(A® C®) ®am,cor (Mi ®peon Ni) — M ®p N
in A./\/lg. This isomorphism is natural in M1 and Nj.
For later use, we observe that the naturality of & means the following. Let u;: My — M i

and vy : N| — Ny be morphisms in respectively o, goo M and g, cor M, and let u = F(u1),
v = F(v1). Then 4| ® geor V1 is @ morphism in 43, cor M, and the following diagram commutes

F(pri1®vr)
F(My ® geont Ni) ————" = F(M{ @ geort N})
ih lh @)
nev
M®@pN M ®p N'.

From now on, let H be a projective Hopf algebra (this condition is always fulfilled if &k is a
field); let A be a right H-comodule algebra, and M, N € AMH  Then the map

v: aHom(M,N)® H — sHom(M,N ® H), v(f ®h)(m)= f(m)Qh

is injective (see for example [2, Proposition 11.4.2, p. AIL.75]). A direct computation shows that
the map p: g.Hom(M, N) - s.Hom(M, N ® H) defined by

B()m) = f(mpoDio ® S~ (mp1y) £ mpopp
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is left A-linear. Let ;HOM(M, N) be the k-submodule of s Hom(M, N) consisting of the maps f
for which p(f) factorizes through 4Hom(M, N), or, equivalently, for which there exists fjo] ®
fi11 € AHom(M, N) ® H such that

fior(m) ® fi = f(mpopio) ® S~ Gmpy) £ (mpopy. (3)
for all m € M. It follows from the injectivity of v that fjo) ® fj1; is unique if it exists.
AHOM(M, N) is called the rational part of 4,Hom(M, N). If H is finitely generated and pro-
jective, then v is bijective, and ,HOM(M, N) = s.Hom(M, N). We have a map

p=v"0p:sHOM(M,N) > sHom(M,N)® H, p(f)= fio ® fi1].

Proposition 4.6. Let H be a projective Hopf algebra, A a right H-comodule algebra, and
M,N € soMH . Then (4HOM(M, N), p) is a right H-comodule.

Proof. N ® H € 4 M under the diagonal coaction. We know that five of the six faces of the
following diagram, namely all faces except the top one, commute.

LJHOM(M, N) AHom(M, N)® H
\ FoH
(voH)o(id®A)
c JHom(M., N)® H JHom(M, N ® H)® H
l v
4Hom(M, N) ’ JHom(M,N ® H) )
X ' \
AHom(M,N®A)
AHom(M, N)® H +Hom(M, N ® H® H)

This implies that the top face also commutes; this means that, for all f € sHOM(M, N),
v ® H)(fiog ® A1) = A(fio) ® fi)s
and therefore fjo] ® f{1] € AHOM(M, N) ® H. We then also have that
v ® H)(fio) ® A(fi1)) = (v ® H) (o (fio) ® finy).
and, since v ® H is injective,
Jio1 ® A(fp) = p(fio) ® f1y-

We therefore have shown that p: ;\HOM(M, N) - 4HOM(M, N) ® H is a coassociative map.
Finally, it follows immediately from (3) that ( f{1}) fijo; = f, forall f € ;\HOM(M,N). O
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An alternative description of sHOM(M, N) is the following: s.Hom(M, N) is a left H*-
module, with action (see [8, 6.5] in the case where k is a field):

(h* - £)(m) = (h*, S~ (mpn) f (mpop ) f (miopor-

AHOM(M, N) is then the subspace of sHom(M, N) consisting of left A-linear f: M — N for
which there exists a (unique) fj0] ® fj1] € aAHom(M, N) ® H such that

(B - f)(m) = (B, fi1)) fioy(m).

Proposition 4.7. Let A be a right H-comodule algebra, with H a projective Hopf algebra, and
M,N € aAMH_ If M is finitely generated projective as a left A-module, then ,HOM(M, N)
coincides with ;.Hom(M, N). For f € \HOM(M, N), we have

p(f) =Y mi- fmiopo ® S~ (i) f (migop)a). “4)

where ), m} @ m is a finite dual basis of M € 4 M.

Proof. We used the following notation: for m* € yHom(M, A), and n € N, m* -n € y\Hom(M,
N) is defined by

(m™ - n)(m) =m™*(m)n.

For every m € M, we have that m = Zi m;"(m)mi, hence

p(m) =" mfm)oymijo) ® mi (m)pymip).- ®)

1

We then compute that

fmpopo; ® S~ (mpy) f (mpo)p
(5=) Z f(m;((M)[O]mi[O])[o] ® s—1 (m;ﬁ(m)[l]mi[l])f(m;k(m)[O]mi[o])[l]
=Y mim)po)f (migopio) ® S~ (i) S~ (m (m)gy)m; (m)py f (migoppny
= Zm;k(m)f(mi[O])[O] ® S (mipy) (i)

=Y m¥- fmio)or(m) ® S~ (mipn)) f (i),

and (4) follows from (3). O
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Proposition 4.8. Let H be a projective Hopf algebra, and A, B, C right H-comodule algebras.
IfM e A./\/lg and N € ;oM then

AHOM(M, N) e gpME.
We have a map
B: aHOM(M, N)*°# — ,conHom(M©H N©H),

If A is a right faithfully flat H-Galois extension, then B is an isomorphism of left B 0 C°P-
modules.

Proof. We consider the following (B, C)-bimodule structure on 4Hom(M, N):

(b- f-o)m)= f(mb)c.

It is clear that b - f - ¢ is then left A-linear. Take f € AHOM(M, N); in order to show that
b-f.ce HOM(M, N), it suffices to show that bjoy - fio7 - cfo] ® br1y frijcrny satisfies (3). This
can be seen as follows: for all m € M, we have

(broy - fio - crop) (m) & by fijeqn
= fio1(mbyopcio) ® by finiep
= f(mbropio1) g 101 ® b S~ (mbropin) f ((mbropion) ety
= f(mbroDorcio) ® bz S~ b S~ (mpny) f (mpobrop)pen
= f(mb)orcro; ® S~ (mpny) f (moyb)nyep
= (f (mpoib)e) gy ® S~ mpu (f (miob)e)

=(b- f-)moo ® S~ mp) (- f - &) mpoppy,
as needed. This shows also that o(b - f - ¢) = bjo) - fio] - cjo) ® bp11finjcr1), hence that

AHOM(M, N) (S B./\/lg.
Now take f € AHOM(M, N)*°#  Then p(f) = fio; ® fi1], so

Fm)® 1= f(mpopio ® S~ (mpi) £ moDiys

forallm e M.If m € M®H  then it follows that f(m) ® 1 = p(f(m)), so f(m) € N©H_ Thus
f restricts to amap B(f) = fOH : M©H 5 N©H Using the fact that f is left A-linear, we see
that the diagram

A®fCOH
A®ACOH MCOH A®ACOH NCOH

81,M\L \LQ,N
f

M N
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commutes. If A is right faithfully flat H-Galois, then we define the inverse of g as follows:
B (@) =eino(A®goe . O
Combining Proposition 4.8 with Theorem 4.2, we obtain the following result.

Corollary 4.9. Let A, B, C be right H-comodule algebras, and assume that A and B are right
Saithfully flat H-Galois extensions. Let M| € sgor M and N1 € gscoo M, and consider

M = (A® B®) ®mpor M1 € aMY,
N=(A®CP)®4rcon N1 € aM.
Then
aconHom(M1, Ni) = 42HOM(M, N)*° ¢ grco M
and
AHOM(M, N) = (B ® C*) ®@pricor 40 Hom(My, Ny).

Proposition 4.10. Let A, B, C be right H-comodule algebras, and consider M € AME N e
aME. Then the evaluation map

¢:M®p sAHOM(M,N) — N, ¢(m®p f)=f(m)

is a morphism in A./\/lg.
If A and B are right faithfully flat H-Galois extensions, then the evaluation map

MCOH ®BcoH AcoHHOIn(MCOH, NCOH) —> NCOH
is left AQOy CP-linear.
Proof. We first show that ¢ is right H-colinear.

(@@ H)(p(m® f)) = (¢ @ H)(mjo] ®5 fio) @ my11fi1)
= fioj(mpo)) ® myu) finy

@ f(mpopioy ® mpy S~ (mpny) f (mpop
= p(fm) = p(p(m @5 ).

¢ is left A-linear and right C-linear since

plam® f-c)=(f-c)lam)= f(am)c=af(m)c =ap(m Qp f)c.

The composition
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coH
MOH @ peorr yeornHom(MH  NoOH) MZCP, preofl @ yJHOM(M, NY©H
coH
L (M @5 sHOM(M, N))©? £ yeott

is the required evaluation map. If A is right faithfully flat H-Galois, then § is an isomorphism of
B Oy C°P-modules, by Proposition 4.8, and then M°H ® g is an isomorphism of A Iy C°P-
modules, by Corollary 4.5. If B is right faithfully flat H-Galois, then f is an isomorphism of
AUOpg C°P-modules, by Proposition 4.4. ¢ is a morphism in AMg ,hence ¢ # is left Ay CP-
linear, since (—)°# is a functor from A./\/lg to 40, coo M. O

Proposition 4.11. Let A be a right H-comodule algebra, and M € s M™ . Then ,\END(M)P is
a right H-comodule algebra.

Proof. Applying Proposition 4.8 (with M = N, B = C = k), we see that ;\END(M) is a right
H-comodule. We have to show the compatibility relation

p(go f) =gl o fio ® finen: (6)

forall f, g € AEND(M). To this end, it suffices to show that the right-hand side of (6) satisfies (3).
Indeed, for all m € M, we have

(gro1 © fioD (m) ® fingn
& g1 (f (mpopoy) ® ST omp) £ (miopingn
E g(f(m[ol)lol)[o] ® S~ (m) f (mpop 215~ (f(m[O])[1])g(f(m[0])[0])[1]
= g(f(m[O]))[o] ®s~! (m[l])g(f(m[O]))[l]
= (g o /moDioy ® S~ (mp)(g o Hlmpopy. O

Proposition 4.12. Let A, B be right H-comodule algebras, and consider M € A./\/lg . Then the
map

v:B — sEND(M), ¥ (b)(m)=mb

is a morphism in BMg.
If A is a right faithfully flat H-Galois extension, then the map

yeo ot — JEND(M)®" = jconEnd(M )
is left B Oy B°P-linear.
Proof. We first show that ¢ is right H-colinear and well defined. Indeed,
V(D)o ® ¥ (b)) = ¥ (brop) ® by,

since
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¥ (b) (myo)o] ® S~ (m)yr (b) (o))
= (myo1b)j0 ® S~ (mp1)) (moyb) 1y
= myopbio) ® S~ (mpapmynby)
=mbyo) ® bp1) = ¥ (bjo) (m) ® byyy.

Y is left and right B-linear since
Y (b'bb")(m) = mb'bb" = (b - ¥ - b") (b)) (m),

for all b,b’,b” € B and m € M. The second statement then follows immediately from Corol-
lary 49. O

Remark 4.13. The map 1 in Proposition 4.12 is also a morphism of right H-comodule algebras
between B and 4\END(M)°P.

Proposition 4.14. Let A, B, C be right H-comodule algebras, and consider M € A/\/lg , N e
aME. Then the map

pn:aAHOM(M, A) @4 N — 4HOM(M, N), u(f ®n)(m)= f(m)n
is a morphism in BMg .If A is a right faithfully flat H-Galois extension, then the map
uM: onHom(MPH  AH) @ oon NOH = (LHOMM, A) @4 N)*"
— pconHom(MH N©H) = ;HOM(M, N)«°H
is left B Oy C°P-linear.
Proof. In order to prove that p is right H-colinear, we have to show that
p(n(f @) = 1 fio) @ nop) ® fiynqy-
It suffices to compute that
w(fio) ® njop (m) ® fring @ f(mppgomnoy ® S~ (mpn) £ (myoppyngy
= (f(m[o])”)m] ®s! (m[l])(f(m[o])n)m

= (M(f@n)(m[O]))[O] ®S_l(mU])(M(f®n)(Wl[0]))[1]-

Finally, u is left B-linear and right C-linear, since

(b f @ne))(m) = fmbyne = u(f @ m)mb)e = (b u(f ®n) - c)(m). O
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5. Morita equivalences
In this section, we study Morita equivalences induced by two-sided relative Hopf modules.

Definition 5.1. Let A and B be right H-comodule algebras. An H-Morita context connecting A
and B is a Morita context (A, B, M, N, «, B) such that M € A./\/lgl, NegMi o MQ@p N —
A is a morphism in A/\/lg and B: N ®4 M — B is a morphism in BMII;.

A morphism between two H-Morita contexts (A, B, M, N,«a, ) and (A, B', M', N', o', B')
is defined in the obvious way: it consists of a fourtuple (k, A, u, v), where k : A — A’ and A: B —
B’ are H-comodule algebra maps, u: M — M’ is a morphism in 4 M and v:N — N’ is a
morphism in B./\/lf such that k oo =’ o (u®@v) and Ao B =B o (v ® u). Morita’ (A, B)
will be the subcategory of the category of H-Morita contexts, consisting of H-Morita contexts
connecting A and B, and morphisms with the identity of A and B as the underlying algebra
maps.

Proposition 5.2. Let (A, B, M, N, «, B) be a strict H-Morita context. Then we have a pair of
inverse equivalences (M ®@p —, N ® 4 —) between the categories AMHP and g MH.

Proof. Let P € g M. Then M ®p P € 4 M* | with right H-action

p(m ®@p p) =mo] ®B pro] @ m1p[1)-

The rest of the proof is straightforward. O
We will now give an H-comodule version of [1, Proposition 4.2.1].

Example 5.3. Let A be a right H-comodule algebra, and M € 4 MH . Then B = 4END(M)°P is
also a right H-module algebra, by Proposition 4.11. Then M € 4 M#  with right B-action given
bym- f= f(m),forall f € Bandm € M.Indeed, (m- f)-g=m-(go f), and

mpoj - fio] ® mpy fing = fio1(mpop) ® mpi fin

3 _
9 fmpopio) ® mpy S~ (mpn)) f (mpop

= p(fm)) = p(m - 1).

It follows from Proposition 4.8 that N = sHOM(M, A) € gMH and from Proposition 4.10 that
the map

a:M®gN—>A, aoam@n)=n(a)
is a morphism in 4 M ‘Z . It follows from Proposition 4.14 that the map
B:N®s M — ,END(M), Bn@m)(x)=n(x)m

is @ morphism in B/\/lg . Straightforward computations then show that (A, B, M, N, «, §8) is an
H -Morita context. We call it the H-Morita context associated to M € 4 M*.
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Proposition 5.4. The H-Morita context associated to M € 4 M is strict if and only if M is a
progenerator as a left A-module.

Proof. If the Morita context is strict, then M is a left A-progenerator by [1, Theorem III.3.5].
Conversely, if M is a left A-progenerator, then M € 4 M is finitely generated and projective,
hence \Hom(M, X) = \HOM(M, X), for all X € 4 MH . If we forget the H-comodule structure
in the H-Morita context, then we obtain the Morita context associated to M € 4 M, as in [1,
Proposition 11.4.1]. By [1, Proposition I1.4.4], this Morita context is strict. O

Proposition 5.5. Let (A, B,M,N,«a, ) be a strict H-Morita context. Then M is a left
A-progenerator, and the H-Morita context is isomorphic to the H-Morita context associated
toM € AMH.

Proof. M is a left A-progenerator by [1, Theorem II1.3.5]. Then 4End(M) = 4END(M), and
by [1, Theorem I1.3.4], ¥ : B — AEND(M)°P, v/ (b)(m) = mb is an isomorphism of k-algebras.
It is an isomorphism of H-comodule algebras, by Remark 4.13. It follows from [1, Theorem 3.4]
that

¢:N—-> ,HOM(M, A) = y\Hom(M, A), ¢@(n)(m)=o(m n)

is an isomorphism of (B, A)-bimodules. We verify that ¢ is H-colinear. For every n € N, we
have to show that

@(no) @ nip =M ()] @)

Using the right H-colinearity of «, we find

a(mio ®g m)o) ® S~ (mpa(m @5 n)
= cx(m[o] XB n[()]) ® S_l(m[z])m[l]n[l] =a(m@p l’l[()]) & niiy,

and (7) follows from (3). From classical Morita theory (see [1]), we know that (A, ¥, M, ¢) is an
isomorphism of Morita contexts; since ¥ and ¢ are H -colinear, it follows that is an isomorphism
of H-Morita contexts. O

Definition 5.6. Assume that A and B are right faithfully flat H-Galois extensions of A%
and B°H | A Oy-Morita context between A and B# is a Morita context (A% BoH
M, Ni,aq, B1) such that M| (respectively Np) is a left A Oy B°P-module (respectively
B Oy A°P-module) and

o a1: M Qpgeon N1 — A©H g left Ay A°P-linear,
o B1:N1 ®peon M1 — B®©H s left By B°P-linear.

A morphism between two [Jz-Morita contexts connecting A° and B°# | is a morphism
between Morita contexts of the form (A°H, BOH 11, v)), where u; is left A Oy B°P-linear
and vy is left B 0y A°P-linear. The category of [1z-Morita contexts connecting A and B« H
will be denoted by MoritaD# (A< H  peofly,
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Theorem 5.7. Let A and B be right faithfully flat H-Galois extensions of A°H and B°H .

Then the categories Morita’ (A, B) and MoritaD# (A°H  BOHY qre equivalent. The equiva-
lence functors send strict contexts to strict contexts.

Proof. Let (A, B,M,N,«a, ) be an H-Morita context. It follows from Theorem 4.2 that
M € 40, pwM, and N°H € pry, 40 M. It follows from Proposition 4.4 that we have a
left A0y A°P-linear map

o) =OlCOH of:MCOH ®BCOH NcoH — (M ®p N)coH — AcoH’
and a left B Oy B°P-linear isomorphism
,31 :ﬂcoH Of:NCOH ®AcoH McoH — (N ®4 M)coH — BcoH.

From the description of f in Proposition 4.4, it follows that we have a commutative diagram of
isomorphisms

McoH ®BcoH NcoH ®Aan MCOH - (M ®p N)COH ®AcoH McoH

i |

M @peon (N @4 M)®H ———— (M®@p N @4 M)™H.

Now a ®4 M =M Qp B implies (« @4 M) = (M ®5 B)°°, and it follows that
a1 ® goort MO = MOH @ peors B.

In a similar way, we have that
B1 ®peort NOH = NOH @, con a

and it follows that (A H  BoH ppcoH NcoH o) B))isaMoritacontext. If (A, B, M, N, a, B)
is strict, then (AH  BOH peoH NeOH o B1)is also strict.

Conversely, let (AH BeoH A Ny, B1) be a Oy -Morita context. Then M = F (M) =
(A® B) ® 401, v M1 € aMH and N = F(Ny) = (B ® A®) @, a0 N1 € g M. Also ob-
serve that A = F(AH) = (A® A) @ s, 400 AP and B = F(B°¥) = (B® B®®) ®p7,, pov
B°H We definea: M ®p N — Aand B: N ®4 M — N by the commutativity of the following
two diagrams, where the isomorphisms % are defined as in Corollary 4.5:

Flar)
F(M) ®peorn N1) —— F(AH)

lh l; ®)

M®gN —%  ~ A,
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F(B1)
F(Nl ®BcoH Ml) E—— F(BCOH)

L
B

N®s2M —— > B.

It is clear that @ € oM% and B € gM¥ . We claim that (A, B, M, N, a, B) is an H-Morita
context. To this end, consider the following diagram

M®B
M®@pN®&sM M ®p B

h! h!
F(M®B1) o
F(M; ®peoti Ni ® geoti M1) ——— F(M| Qgeorr B©™)

F(ai®Ny)
F(M; ®@peon N1 @ g0 M7) _reery F(ACOH ®i‘oH ND)
h h

a®@aM
MQpNQQA M AQa M.

The top square and the bottom square commute by the definition of « and g, and because of
the naturality of / (see (2)). The square in the middle commutes because (A B<°H# pM Ny,
a1, B1) is a Morita context. So the whole diagram commutes. The composition of the left vertical
morphisms is the identity of M ® p N ® 4 M, and the composition of the right vertical morphisms
is the natural isomorphism M ®p B = A ®4 M. So it follows that the diagram

M®pgNQ®sM M ®p B
\La@M lé
A@s M - M

commutes. The commutativity of the second diagram in the definition of a Morita context is
proved in a similar way. O

Recall that M € 4 M is a progenerator if and only if A and M are mutually direct summands
of finite direct sums of copies of the other. Now let M € 4 M. If this property holds in the
category 4 M, then we call M an H-progenerator.

Corollary 5.8. Assume that A and B are right faithfully flat H-Galois extensions. If (A, B, M, N,
o, B) is a strict H-Morita context, then M is an H-progenerator.

Proof. Let (A BoH pp, Ni,ay, B1) be the corresponding strict (Jy-Morita context, as
in Theorem 5.7. It follows from classical Morita theory that M, is a left A°# -progenerator.
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The claim then follows from the equivalence A ® 4con — between the categories 4con M and
H
M7 O

Theorem 5.9. Assume that A and B are right faithfully flat H-Galois extensions, and let (A |
BH M Ni,ai, 1) be a strict Morita context. If My has a left A Oy B°P-module struc-
ture, then there is a unique left B Oy A°P-module structure on Ny such that (AH BeoH pp
N1, a1, B1) is a strict Oy -Morita context.

Proof. We know that M = A ® yeon M) € A/\/lg . We have seen in Proposition 4.12 that we
have a morphism v/ : B — 4END(M) in g M#  and a left B Oy B-linear map ¢ °# : Bt
AEND(M)®H =~ AcoHEnd(MCOH), see also Corollary 4.9. ¥°°# is an isomorphism, because
the Morita context is strict. Since B is right faithfully flat H-Galois, it follows that ¢ is an
isomorphism in B/\/lg . Since M is a progenerator as a left A°®*-module, M is a progener-
ator as a left A-module. Let N = ,HOM(M, A). Then N°° = ,..sHom(M, A°°H) as left
B Oy A°P-modules (see Corollary 4.9); 4con Hom(Mj, A®HY) and N are canonically isomor-
phic as (B —-A%H)_bimodules, since the Morita context is strict. Using this isomorphism, the
left B Oy A°P-module structure can be transported to Ni. The H-Morita context (A, B, M, N)
associated to M is strict by Proposition 5.4. The corresponding (g -Morita context from Theo-
rem 5.7 is canonically isomorphic to (AH BeoH MyUNY B1). This proves the claim. O

We end this section with the following result.

Theorem 5.10. Let A be a (right) faithfully flat Galois extension of A°H. Assume that M
AMH s a progenerator as a left A-module. Then B = \END(M)P is a (right) faithfully flat
H-Galois extension of B if and only if M is an H-progenerator.

Proof. The H-Morita context (A, B, M, N = 4HOM(M, A), , B) from Example 5.3 is strict
by Proposition 5.4.
If B is a faithfully flat H-Galois extension, then M is an H -progenerator by Corollary 5.8.
Conversely, let M be an H-progenerator. M € AMg (see Example 5.3), hence M| = M coH o
acoi M peorr. From the fact that the categories 4 M and ,con M are equivalent, it follows that

M is a left A°®H _progenerator. From Proposition 4.8, we know that B°# = ,.,,End(M;)°P
and that N©°H = Aacon Hom(Mj, B HY) The Morita context

(AH, Bt =\ onEnd(M1)*P, My, qonHom(My, B€™), a1, B1)

associated to M| € 4eon M 1is strict, S0 M| @ georr —: geon M — 4o M is a category equiva-
lence. A ® georr —: georn M — 4 MH is an equivalence since A is a right faithfully flat H-Galois
extension, and M @ —: p M — 4 MM is also an equivalence (see Proposition 5.2). Using the
fact that A @ ycon M1 = M (A is a right faithfully flat Galois extension), we see easily that the
following diagram of functors commutes:

M]®BC0H_

BCOHM BCOHM
B®BcoHi \LA®ACOH
M®p—

g M g M.
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Three of the four functors in the diagram are equivalences, hence the fourth one, B @ gcon —
is also an equivalence (see the observations following Corollary 7.2). M;, A and M are right
faithfully flat over B, A°H and B respectively, hence it follows that B is right faithfully
flat over B . Thus condition (5) of Theorem 1.1 is fulfilled, and it follows that B is a right

faithfully flat H-Galois extension. 0O

6. Application to the Miyashita—Ulbrich action

Let A be a right faithfully flat right H-Galois extension, and consider the map

ya=can lo(a®@ H): H = A® qeot A.

Following [14], we use the notation

VA(h) = le(h) ®AcoH ri (h)

y4 (h) is then characterized by the property

Zli(h)’”i Moy ®@ri(h)=1®h.

1

The following properties are then easy to prove (see [16, 3.4]): for all h, i’ € H and a € A, we

have

ya(h) € (A® yoon AYA";
yalhay) @ hay =Y _Li(h) ® yeort ri(W)yo) ® ri (W)1y;

1

yalh@) ® Sthay) =Y _1i(h)j0) ® gcort i (h) ® L () :

1

> lithyri(h) = e(h)14;

> apylitan) @ rilam) =1®a;

L

y (') =Y " 1i(h)Lj(h) @ peort 7 () ().
i,j

Combining (11) and (12), we find

D L)) ® acort i (h)j0) ® i ()1 ® 7y (W)

1

12
@ Zli (h2)) ®pcorr Fi(h(2))0] @ S(h(1)) ® ri(h2))n

1

(10)
a1

12)

13)

(14)

15)
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1
o Zli (h2)) ® 4o ri(h(2)) ® S(h(1)) ® h(3). (16)

i

Let M be an (A, A)-bimodule. On M ACOH, we can define a right H-action called the
Miyashita—Ulbrich action. This was introduced in [10], and we follow here the description given
in [14]. It is given by the formula

mh= Zli (Wymr; (h).
i
It follows from (10) and (15) that we have a well-defined right H -action. In particular, for X, Y €
My, Hom(X, Y) € 4 M 4, with left and right A-action given by
(a-f-a)x)= f(xa)a'.
It is easy to see that
Hom(X, ¥)4“" = Hom yeon (X, Y),

and the Miyashita—Ulbrich action is then given by (see [16, Corollary 3.5])

(f =M@ =D f(xli(w)ri(h).
i
Lemma 6.1. Let A and B be right faithfully flat right H-Galois extensions. For all b € B, we
have that
X = )/(S_l(b[l])) ®bo) € A Q yeon (A Oy BOp).

Proof. We have
Zl “Hbnn) @ geor ri(STHBIN) gy @ i (ST b1 1y © broy

11 _ _
@ y(S7Hbu) ® SHby) ® b,

hence x € (A @ geon A) O BPZ A Q@ peon (AOm BP). O

Now we assume that (A, B, M, N, «, B) is a strict H-Morita context connecting the right
faithfully flat H-Galois extensions A and B. For X € M4, we have the isomorphism

X
©: X @ peot MCOH§X®AA®ACUH MCOHM

X®aM,
given by

O(X @ pgeon M) =X @4 M.

We have that X ® 4 M € M p, and its right B-action can be transported to X ® 4o M coH e
compute this action in our next lemma.
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Lemma 6.2. The transported right B-action on X ® ycon M is given by the formula

(x ®pcorrm) b=y xli(ST (b)) @ g0t (ri (ST (b11))) ® byoy)m. (17)

i
Proof. Observe first that the action (17) is well defined, since M°# € ,Hpp M, and by

Lemma 6.1. For the sake of simplicity, we introduce the following notation: for ), a; ® b; €
Ay B and m € M°H  we write

(Zai ®bl> -m = Zaimbi.
i i

We have to show that ¢ is right H-linear. Indeed,
gz)((x ® pcon M) -b = le' Sil(b[l])) QAT (Sil(b[l]))mb[o]
le ¢ )ri(S 71(5[1])) ®a mbio

& )sz (b[]]) ®a mbg) =x @4 mb. O

Consider the setting of Theorem 5.10: (A, B, M, N, «, B) is a strict H-Morita context con-
necting the right faithfully flat H-Galois extensions A and B, and (A°H BeoH ppco nycol
ay, B1) is the corresponding Morita context connecting A©H and BH For X,Y € My, we
have an isomorphism

¢ :Homyeon (X, Y) — HochoH(X ® peoH Mty ® peott McoH)’ (18)
given by ¢(f) = f @4eon MH . Tt follows from Lemma 6.2 that Hom(X ® geon M,
Y ® pcon M"Yy is a (B, B)-bimodule, and we can consider the Miyashi—Ulbrich action on

HochnH(X ®AcoH MCOH, Y ®AcoH MCOH).

Proposition 6.3. With notation as above, the map ¢ from (18) preserves the Miyashita—Ulbrich
action.

Proof. We will use the notation

)/B(h) ZZk](h) ®BcoH q](h) € B®BCOH B.
J

‘We have to show that
d(f)—h=¢(f —h),

for all right A°°# _linear f:X — Y and h € H. For x € X and m € M*°f| we compute
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(®(f) < h)(x ® geonr m)
= Zw) ((x ® geort M)k () g (h)

- Z ki (M) @ acorr i (S~ (K (W)17))mk ; (o] ()

= Zf [t (S (k; (M) Jip (S~ (g D)

i.j.p

® geo i rp(S_l (g () ri (S (kj () )mk  (W)jo1g (o)

= >t (STHShay)) 1y (ST (h3))

i,j.p

®peort Tp (S~ (h3))ri (ST (Shy))mkj (h2)q; (h2)

(2> Zf(xl,' (h(])))lp(Sil(h(z))) & gcoH }"p(Sil(h(z)))r,' (h(]))mlg
i,p

© N Flithay)p (57 () (S ) ri (hty) @ geors m
i,p

5™ £ (ki 0)ri(h) ® geon m
= (f = h)X) @ o0 m = ($(f — ) (x ® geor m).

The equality (x) can be justified as follows. From Lemma 6.1, we deduce that, for all i:

Zli (571 (k;(W)1))) @ pcon La ® geor ri (ST (kj(M)11)) ® kj (o

i
and

D 14 ® e 1p(S™ (g (W) @acort 75 (S~ g (M) ® g ()0

lie in (A ® geor A) @ peorr (A Op BP). Consequently (A @ georr A) ® yeor (A Oy B°P) also
contains

Zl k (W ) & gco lp(S_l (qj(h)[l]))rp(S_l(qj(h)[l]))ri (S_l (kj(/’l)[l]))

® kj(Mo1q;(h)o)

13), (16 _ _
(13).(16) Zli(h(l)) Q peoH lp(S 1(/’1(2))) ® pcoH rp(S l(h(z)))ri (h)) ® 1p
i,p
=:Z®l1p.



S. Caenepeel et al. / Journal of Algebra 314 (2007) 267-302 293

This means that
(A ®AcuH A ®AcuH pA)(Z) ® 1B == Z ® 1[-I ® 1Ba
hence
Z € (A ®ACOH A ®ACOH A)COH = A ®ACOH A ®ACOH ACOH,

since A/A®H is faithfully flat. O
7. Hopf subalgebras

Throughout this section, H is a Hopf algebra with bijective antipode over a field k, and K
is a Hopf subalgebra of H. We assume that the antipode of K is bijective, and that H is (right)
faithfully flat as a left K-module. Let K™ = Ker(eg). It is well known, and easy to prove (see
[17, Section 1]) that

H=H/HK'=HQ®gk
is a left H-module coalgebra, with operations
h~Z=hl, AE(E)ZE(U@E(Q), EE(E)ZS(h).
The class in H represented by & € H is denoted by h. 1 is a group-like element of H, and
we consider coinvariants with respect to this element. A right H-comodule M is also a right
H-comodule, by corestriction of coscalars:
pg(m) =mo @ m(1).

The H -coinvariants of M € M¥ are then

M©H = (m e M |mg ®@mp=m®]1)
={meM|pm)e MK} =MOy K.

If A is aright H-comodule algebra, then AcH iy right K -comodule algebra, and (A° H yeok —
ACO H'

Proposition 7.1. (See [16, Remark 1.8].) Let H, K and A be as above, and assume that A is a
faithfully flat H-Galois extension. Then A is right faithfully flat as a right A" -module, and

can:A®AmyA—>A®17, can(a®b)=ab[o]®l_7[1]

is bijective. The functors (A ® ,com — (—)°H)Y form a pair of inverse equivalences between the

M and AM(H)H.

categories Aco
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We also have an adjoint pair of functors (Fy = A® .07 —, G4 = (=)°H =~ _ Oy K) between
the categories ACOEMK and 4 M . This can be seen directly, but it is also a consequence of a
more general result: we apply [7, Theorem 1.3] to the inclusion morphism between the Doi—Hopf
data (K, A°°H K)and (H, A, H).

Take N € ACOﬁMK . Forgetting the K -coaction, we find that N € Aco 7M. Then it is easy to
see that the counit map ny: N — (A ® a0 N coHy s a morphism in Amg/\/lK , and coincides
with the counit map from the adjunction (Fs, G4). Since ny is an isomorphism, the unit maps
of the adjunction (F4, G4) are isomorphisms. In the same way, we can conclude that the counit
maps are isomorphisms, and we conclude

Corollary 7.2. Let H, K and A be as above, and assume that A is a faithfully flat H-Galois
extension. Then the adjoint pair of functors (Fs = A ® ,con — G4 = (—)°H ~ _ Oy K) estab-
lishes a pair of inverse equivalences between the categories ,c, aMX and ,MH.

Before stating our next corollary, we recall some elementary facts from category theory. If
(F1, G1) and (F», G7) are pairs of adjoint functors, respectively between categories C and D,
and between D and &£, then (F = F, o F1, G = G| o G») is a pair of adjoint functors between C
and &. If two of these three pairs are inverse equivalences, then the third one is also a pair of
inverse equivalences. This follows from the following formulas, which give the relations between
the units and counits of the three adjunctions: for all C € C and D € D, we have

nc=Gi1(m2,/ ) °N1,C; eg =2,k o F2(81,6,(E))-

This can be applied to the following situation. Assume that we are in the setting of Proposi-
tion 7.1 and Corollary 7.2. We have adjunctions

e (F1=AQp0n —, G1= (=) HY petween coti M and aMH
[ (F3 = ACOH ®ACOH — G3 = (—)COK) between ACOHM and AcoﬁMK;
o (F4=A®,0n — Ga= (—)°H = _ Oy K) between the categories ACOﬁMK and 4 MH

Itis clear that F1 = Fyo F3 and G| = G3 0 G4. (F1, G1) and (F4, G4) are pairs of inverse equiv-
alences, by Theorem 1.1 and Corollary 7.2. Hence (F3, G3) is also a pair of inverse equivalences,
and using Theorem 1.1, we obtain the following result.

Corollary 7.3. Let H, K and A be as above, and assume that A is a faithfully flat H-Galois
extension. Then A is a right faithfully flat K -Galois extension.

Theorem 7.4. Let H and K be as before: K C H are Hopf algebras with invertible antipode
over a field k, and H is faithfully flat as a left K-module. Let A and B be (right) faithfully flat
right H-Galois extensions, connected by a strict H-Morita context (A, B, M, N, a, B).

(1) Ac° H and B*° H are connected by a strict K -Morita context, with connecting modules M° H
and N°H B

(2) we have apaizofinverse equivalences (M ®p —, N ® 4 —) between the categories sMH)H
and A M(H)";
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(3) the following diagram of categories and functors commutes to within natural equivalences

of functors:
aME! sM(H)!
M®p—
A®Ac017, (7)“017 B®BCOE_ (*)COH

H

Nee ®Acoﬁ_

ACOEM BCOEM M
MCOH®BCOH_

Proof. (1) We have the following commutative diagram of inclusions

AcoH Ok (Bop)coﬁ < AcoH Q (Bop)coﬁ
cl lc
Ay BP s A® B,

By Theorem 5.7, we have a strict (g -Morita context (A, BeoH peotl _NeoH oy g1) By
restriction of scalars, A is a left A g (B°P)*°H _module. Then we can apply Theorems 5.7
and 5.9, with H replaced by K, and taking into account that A°# and B! are right faithfully

flat K -Galois extensions, by Corollary 7.3. We find that A®° H and B®H are connected by a strict
K -Morita context. The first connecting module is

ACH @ on MOH = F3G1 (M) = G4F4F3G (M)

= G4F G (M) = Ga(M) = M®H.
In a similar way, we find that the second connecting module is N coH
(2) The proof is an easy adaption of the proof of Proposition 5.2.
3) Bl s a right K-comodule algebra, and, by corestriction of coscalars, a right
H-comodule algebra, so we can consider the categories AcoﬁMgcoﬁ and AMZCOE' It is then
easy to see that the inverse equivalent functors of Corollary 7.2 also define a pair of inverse

equivalences between these two categories of relative Hopf bimodules. Now M € A./\/l';lcoﬁ , SO

M=A® ,con MeoH 4 right B H _modules. It follows that we have, for all P € p.,5 M,

A® yoor MM @ pooit PEM ® peors P =M ®p B ® goors P.
In a similar way, we can show that

B®BCOITI NC0H®ACOITI Q;N®AA®ACOH Qv
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for all QAC(,ﬁ./\/l. Finally, take U € AM(H)E. Then

(N ®A U)COE o~ (N ®A A ®Acoﬁ UCOE)COH

~ (B ® geo NCeoH ® ot UcoH)COH ~ NeoH ® o UcoH’
and, in a similar way, for V € BM(H)E,
(M ®p V)coﬁ ~ Mcoﬁ ® peort Vcoﬁ. O
Finally recall that if the algebras A and B are Morita equivalent, then there is a Morita equiv-

alence between A ® A°P and B ® B°P sending A to B. In particular, this implies that the centers
of A and B are isomorphic. In our context this generalizes as follows.

Corollary 7.5. Assume that (A, B, M, N, «, B) is a strict H-Morita context.

(1) Let K and L be Hopf subalgebras of H with bijective antipodes, and assume that H @ H
is faithfully flat as a right K ® L-module. Then the categories AcoH/HK+ ./\/lAC()H/HLJr and
peor/uk+ Mpgeonui+ are equivalent.

(2) There is an isomorphism

CA(ACOH) ~ CB(BCOH)

of left H-module right H-comodule algebras, where C 5 (A°H) denotes the centralizer in A
Of Aco H‘

Proof. (1) The objects M ® N € A®Aop/\/lg§g,p and N M e B®Bop./\/l£1§1ﬁp induce a Morita
equivalence between A ® A°P and B ® B°P. Now the assertion follows from Theorem 7.4, where
we replace Hby HQ H, Kby K® L, Aby A® A°® and B by B ® BP.

(2) Note that

Ca(AH) = End geon g gop (A)

as H-module H-comodule algebras. Since under the equivalence of (1) (where we take K =k
and L = H), A corresponds to B, the statement follows from Proposition 6.3. O

8. H-colinear equivalences

Let H be a projective Hopf algebra, and A a right H-comodule algebra. Let 4 M be the cat-
egory with relative Hopf modules as modules; the set of morphisms between two objects M and
N is ;\HOM(M, N). AMH is aright H-colinear category in the following sense: s HOM(M, N)

is aright H-comodule (see Proposition 4.6); the map

o: M AHOM(M,N) - N, om® f)= f(m)
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is right H-colinear (take B = C = k in Proposition 4.10); if N is a third object in 4 M, then
the composition

¥ : AHOM(L, M) ® \HOM(M, N) - \AHOM(L, N), V¥ (f®g) =gof
is right H -colinear. The following result is then obvious.

Proposition 8.1. Letr H be a projective Hopf algebra. Let (A,B,M,N,«, ) be a strict
H-Morita context connecting the right H-comodule algebras A and B. Then the functors
M ®p — and N ® o — induce a pair of inverse right H-colinear equivalences between g M™

and ;4 M.

The functors F = M @ p — and G = N ® 4 — are right H-colinear in the following sense: for
V,W e gMH  the map

F:gHOM(V, W) - 4HOM(M ®p V.M Q@p W), F(f)=MQp f
is right H -colinear.
In this section, we investigate when the converse of Proposition 8.1 holds: suppose that we
have a pair of inverse right H-colinear equivalences between g M and 4 M . Is this equiva-

lence induced by a strict H-Morita context? To this end, we will give an H-colinear version of
the Eilenberg—Watts Theorem.

Proposition 8.2. Let A and B be H-comodule algebras, and T : ;s MY — g M an H-colinear
Sfunctor. Then N =T (A) € AMH  and we have a natural transformation  : F =N Q4 — —> T,
such that o N @4 A — T(A) = N is the natural isomorphism.

Proof. In the sequel, V and W will be objects in 4 M. The fact that T is right H-colinear
means that

T (fio) ® fi1=p(T(f)). (19)
for f € AHOM(V, W). We claim that the map
oy :V —> AHOM(A, V), o¢yv)(a)=av
is well defined and right H -colinear. To this end, it suffices to show that
()0 ® p()11 = @ (v[oy) & 1y, (20)
forallve V.Foralla € A, we have
(§0V(v)(a[0]))[o] ®s! (Cl[l])(‘PV(U)(a[O]))[l]

= ajopvio) ® S~ (@ppanvy)
= avjo] ® v1] = ¢v (vjo) (@) ® 13,
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and (20) follows using (3). ¢y satisfies the following property:

gy (av) =@y (v) o pa(a), 2L

foralla € A and v € V. Indeed,

pv(av)(c) = cav = gy (v)(ca) = (v (v) 0 pa(a))(c).

On N =T (A) € pMH, we define a right A-action as follows:

na=T(pa(a))(n),

foralla € A and n € N. This makes N an object of BM{Z, since

n(ac) =T (pa(ac))(m) E T (pa(@) 0 94(0)) ()
= (T (pa(@) o T(pa(c)))(n) = (na)c;
(bmya =T (pa(@)(bn) =bT (p(@)) (1) = b(na);
niojajo) ® npjapy = T (¢(ago)) (no) ® nnary

20
T (p(@)0) (10D ® nye (@

© T(¢(@) ) (rio) @ T (¢(@))

2 T (¢(@))(nopio; @n S~ ()T (9(@)) (o))

=T (p(@))0; ® T (p(a))(W)1) = p(na),

—

foralla,ce A,be Bandn e N.

Forevery v e V, gy (v): A — V is left A-linear, hence T (¢py (v)): T(A) =N — T (V) is left
B-linear. By (19), (20), we also have that

T (¢v (wiop) ® vy = (T (v (). (22)
Now we define
YvIN@AV = T(V), Yy ®4v)=T(pyv®)m).
Yy is well defined since
Yy (1 ®a av) =T (v (@v)m) E (T (ov @) o T (pv @))) (n)
=T (pv(v))(na) = Yy (n @4 v).

Yy is right H-colinear, since
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Yy (njo) ®4 vio) @ npv = T (ev (Vo)) (o)) @ npijvpy

BT (ov ) g (10 ® T (v ),

@ (T(fpv(v))(n[()]))[o] ®n[Z]S_l(n[l])(T((PV(U))(”[0]))[1]
= p(T(QOV(U))(n)) = ,O(Wv(n A v)).
Yy is left B-linear, since

Yy (bn @4 v) =T (pv (v)) (bm) = b(T (v (v)) (m)) = by (1 @4 v).

In order to show that i is a natural transformation, we first observe the following property. For
f:V—Win s MY veVandae A, we have

ow (f (W) (@) =af () = f(av) = f(ev©))(a),

s0 ow (f(v)) = f o ¢y (v). We can now show that the diagram

N®sV T(V)
Neszl iT(f)
Yw
NQaW (W)

commutes:

(T(H)oyy)n®av)=(T(f)oT(pvv)))n)
=T(fopv()(m) =T (pw(f(©))(n) = Yw(n ®@a f(v)).

It follows that ¢ is a natural transformation. Finally, it is easy to compute that the map
Ya:N®s— T(A)=Aisgivenby ya(n ® a) = T (pa(a))(n) =na, as needed. O

We are now ready to prove the following generalization of the Eilenberg—Watts Theorem (cf.
[1, 11.2.3]).

Proposition 8.3. With notation and assumptions as in Proposition 8.2, assume that A is a genera-
tor of AM™, and that T, viewed as a functor 4 M — g MH | preserves cokernels and arbitrary
coproducts. Then the natural transformation W : F = N ® 4 — — T from Proposition 8.2 is a
natural isomorphism.
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Proof. Let / be an index set, and A) the coproduct of copies of A indexed by I. Fori € I, let
ritA— A be the natural inclusion. Since Y is a natural transformation, we have a commuta-
tive diagram

FA) —— " 1

F(n)l \LT(”)

Vam
F(A(I)) - s T(A(I)).
Let n; : T(A) = T(A)D be the natural inclusion. Then the diagram

Dics (niova)
FA)D — 0 1ayd

Dicr F(’i)i \L@iel T(ri)

Va
FAD)y ———— = 1(AD)

also commutes. The vertical maps in the diagram are isomorphisms, since F and 7 commute
with direct sums. We have seen in Proposition 8.2 that the top horizontal map is an isomorphism,
so it follows that ¥ 4« is an isomorphism.

Now take an arbitrary V € 4 M* . Since A is a generator of 4 M, we have an exact sequence
AD I AD Ly

in AMH . Since Y is a natural transformation, and F and G preserve cokernels, we have the
following commutative diagram with exact rows in g M

F () F(p)
F(AY) ———— F(AD) F(V) 0
l V) l ) Y
T (7 T(p)
T(AY) = T(AD) T) 0.

We know from above that ¥4 and ¥ 4) are isomorphisms, and it follows from Lemma 5 that
Yy is also an isomorphism. O

Theorem 8.4. Let A and B be H-module algebras, and suppose that they generate the cat-
egories AMH and g M. If (T, U) is a pair of H-linear inverse equivalences between the
categories AMH and BMH, then there exists a strict H-Morita context (A, B,M, N, «a, B)
suchthat T =N Qs —and U =M Qp —.

Proof. Since (T, U) is also a pair of inverse equivalences between AMH and gMH | T and
U preserve coproducts and cokernels. Applying Proposition 8.3, we find M € AMg and N €
pMH suchthat T=N®4 —and U= M ®p —.
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(T, U) is a pair of adjoint functors, and the unit  and the counit ¢ are natural isomorphisms.
We define o = ngl :M®pN — A.Thena € 4 M* . Let us show that « is also right A-linear. For
every c € A,themap f.: A — A, f.(a) = ac is left A-linear. Since 7 is a natural transformation,
the diagram

NA

M®pN®sA

A
fcl \LM®3N®AJ‘L:
A

M®pN®sA

commutes. Evaluating the diagram at 1 4, we find that n4(ac) =na(a)c.

We define § =¢p: N ®4 M — B. Applying the above argument to the adjunction (U, T)
with unit ¢! and counit n‘l, we find that ep is right B-linear.

Take W € g MH . For every w € W, we consider the left B-linear map g, : B — W, g, (b) =
bw. Since ¢ is a natural transformation, the diagram

EB

N®aM®pB

B

N®AM®ng l 8w

&w

NIAMpW ——— W

commutes. Evaluating the diagram atn @ 4 m ®p 1, we see that ey = ep Qp W.
From the properties of adjoint functors, we know that er(y) o T(ny) =T (V), for all V €
AMH  Taking V = A in this formula, we see that the diagram

N®ana
N®a N®sMpN
E\L \L&N=€B®BN
N = B®p N

commutes. This diagram is one of the two diagrams in the definition of a Morita context. The
commutativity of the other diagram follows in a similar way. O

Corollary 8.5. Let H be a projective Hopf algebra, and assume that the right H-comodule
algebras A and B are H-Galois extensions of A" and B! respectively. If (T, U) is a pair
of H-colinear inverse equivalences between the categories s M™ and g M™, then there exists a
strict H-Morita context (A, B, M, N,«, B) suchthat T =N @4 —and U =M Qp —.

Proof. It is well known that A°# is a generator of 4con M; since (F1, G1) is a pair of inverse
equivalences (see Theorem 1.1), F; (A°Hy=Aisa generator of AMH In a similar way, B is a
generator of g M and we can apply Theorem 8.4. O
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