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Figure 1:  Photo of trench dug into orange soil at rim of Shorty Crater, Apollo 
17. NASA AS17-137-20990 (see map and sketch, figures 21, 22). 

Introduction 
Note: Please see the exciting transcript in the section 
on 74240. 

The Orange Soil sample discovered at Shorty Crater, 
Apollo 17 (74220) is not like other lunar soil samples 
and is more like the green glass clod from Apollo 15. 
In fact the astronauts noted that it broke up in angular 
pieces, and one of these can be seen in the bag during 
PET.  74220 and most of the drive tube are nearly 

Orange Soil Samples 
Grams Is/FeO 

74220 1180 1 
74240-4 924 5.1 
74260-4 527 5 
74002 909.6 0.2 to 3 
74001 1072 0.2 
total 4567 

pure orange glass, while 74240 and 74260 and the top 
5 cm of the drive tube are mixtures of orange glass and 
an ancient mare soil. A high portion of the orange glass 
in the drive tube is devitrified, and now black, due to 
fine olivine needles and ilmenite feathers. This is often 
referred to as “black glass”, but compositionally, it is 
found to be the same as the orange glass. 

The orange and black glass samples were identified as 
a pyroclastic deposit (Heiken et al. 1974, Meyer et al. 
1975, Heiken and McKay 1977). Other origins (vapor 
condensation, impact) have been considered and 
rejected. Roedder and Weiblen (1973) considered an 
origin by meteorite impact into a lava lake, but this 
hypothesis has also been discounted (see also 
discussion in section on 74240). 

surface sample 
trench sample 
trench sample 
drive tube, top 
drive tube, bottom 
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Figure 2:  Sieved and washed fraction of orange soil, 
74220. Particle size is 100 microns.  NASAS73-15085. 

Mafic volcanic glasses are found all over the moon 
(Delano 1986), but the Orange Soil (74220) and the 
Green Glass Clods (15425-7) are the “type samples” 
for pyroclastic deposits. The Orange Soil was found 
to be enriched volatile elements (Zn, Pb, S, Cl etc) and 
the glass beads were found to have a thin coating of 
condensed volatiles (Meyer et al. 1975, Butler and 
Meyer 1976). The Orange Soil generally contains high 
levels of endogenous Ni (not due to meteorite 

Figure 3:  Grain size distribution of orange soil 
(74220) and core tube (74001) compared with typical 
soil (75081) (from Heiken et al. 1974).  Mean grain 
size of 74220 is 40 microns. 

contamination), as well as significant amounts of 
highly-siderophile-elements (Re, Os etc) that seem to 
be due to meteoritic contamination (Walker et al. 2004). 

While the age of the orange glass is known to be about 
3.6 b.y. (the same age as the mare basalts), the exposure 
age of Shorty Crater is ~17 m.y. (Eugster et al. 1981, 
Bogard and Hirsch 1978, Crozaz 1979). 74220, 74240 
and 74260 also have evidence for a pre-exposure, at 
depth, perhaps after the initial eruption on the surface. 

Note: Additional details on these samples can be found 
in the sections of 74240 and 74002. 

Petrography 
Although the orange soil is nearly pure orange glass, 
only about 1/3 of the sample is unbroken spheres and 
ovoids, while about 2/3 is made up of broken spheres 
and angular glass fragments (Heiken et al. 1974, Heiken 

Mineralogical Mode 
74220 74220 74240 74260 74001 74002top 74002 (90-150 micron) 

reference Heiken and McKay 1974 McKay et al. 1978 
Agglutinates 1.3 % 2.7 8 7.7 13.2 
Basalt 1.6 2 30 23.7 3.6 
Breccia 0.3 1.3 16.9 16.1 1.4 0.1 
Anorthosite, Norite 0.6 
Plagioclase 1 4.6 2.7 1.6 0.1 
Pyroxene 0.3 0.3 11.3 13.7 0.3 1.4 
Olivine 0.3 
Ilmenite 0.3 1.3 2.3 
Glass
 Orange 66.3 83.6 4 7.7 8
 Black 29.3 6.7 2 73.3 91.1 99.9
 Colorless 0.3 4.6 3.7
 Brown 1.3 2.6 1.7 16.6
 Ropy 0.7 14.3 18.1 0.1 

Other 0.3 0.3 0.3 
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Figure 4:  Photomicrograph of thin section of 
74220 illustrating orange glass beads and broken 
fragments. The orange glass partially crystallizes 
olivine needles with fine ilmenite margins.  Large 
bead in this photo is ~ 1 mm. NASA#S79-27295. 

Figure 5:  Rare vesicle in glass sphere from 74001 
(from Heiken and McKay 1978).  Diameter of 
sphere is 140 microns. 

and McKay 1974). None of the glass in this sample is 
similar to lunar agglutinates, nor contains broken 
mineral or lithic fragments characteristic of impact 
glass. The average grain size of 74220 is ~ 40 microns 
(figures 3 and 24). The orange soil samples (as 
measured by the Is/FeO parameter) are extremely 

Figure 6:  Scanning-electron-microscope image of 
ion-etched thin section of “black glass” droplet from 
74002 ilustrating minute olivine, ilmenite and 
chromite quench crystals in glass matrix.  Ilmenite 
feathers are bright in this BSE image, but they cause 
the black appearence of glass beads.  From Heiken 
and McKay (1977). Black scale bar is 10 microns. 

immature (Morris 1978, Morris and Gose 1977). Thus, 
this soil is not like that of other lunar soils and is 
interpreted as a pyroclastic deposit (Heiken et al. 1974). 

The orange soil is mostly orange glass beads and broken 
fragments of the same (figure 2). Heiken and McKay 
(1974) and McKay et al. (1978) determined the 
mineralogical mode and described the shape and 
crystallinity of the glass beads (see table). The 
petrography of the core (74002, 74001) is described in 
McKay et al. (1978). The core varies in its ratio of 

Shape and Crystallinity of Glass Droplets (from Heiken et al. 1974, Heiken and McKay 1978) 
Sample # depth droplet shape crystallinity 

sphere ovoid compound glass partly crystalline 
74002,179 5 cm 47 % 42 11 46 % 30 24 
74002,181 18 46 37 17 15 19 66 
74001,98 32 70 26 4 4 11 86 
74001,113 44 53 34 13 2 9 90 
74001,125 57.5 35 23 41 2 5 93 

sphere ovoid broken fragments 
74220,85A 20 % 5 74 
74220,85B 30 11 58 
74220,85C 20 5 75 
74220,85D 32 2 66 
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orange glass to devitrified black glass. Many beads 
are broken, presumably by the impact that made Shorty 
Crater.  Few glass beads have vesicles (figure 5). 

The devitrification features of the orange and black 
glass spheres in 74220 and 74001 are described by 
Haggerty (1974), Arndt and Engelhardt (1987) and 
Heiken and McKay (1978). Quench crystals of olivine 
and ilmenite (figures 4 and 6) make devitrified orange 
glass appear opaque (black). These black glass droplets 
are found to have the same chemical composition as 
the orange glass (Heiken and McKay 1974). Olivine 
composition is Fo  (Prinz et al. 1973, Taylor and 68-82
Carter 1974 and Heiken et al. 1974). 

The grey samples collected from the ends of the trench 
(74240 and 74260) also contain highly-aluminous ropy 
glasses of presumed impact origin (Fruland et al. 1977, 
Korotev and Kremser 1992) as well as a variety of 
breccias and basalts. 

The surfaces of the orange glass spheres are found to 
have a unique coating of micromounds (100 to 1000 
ìm) (Heiken et al. 1974, Meyer et al. 1975, Clanton et 
al. 1978). In some places the coating has been scraped 
off (figure 7).  The coatings were found to be made of 
mixed salts, with ZnS as a main component (figure 8). 
Very few micrometeorite craters were found on the 
surfaces of the spheres. 

Surface-correlated volatiles 
Tatsumoto et al. (1973) was the first to notice that the 
74220 contained surface-correlated volatiles (Pb). 
Gibson and Moore (1973a,b) noted that 74220 was 
unusual as a lunar soil in that it gave off SO2 at a low 
temperature (figure 13). By analyzing different size 
fractions, Thode and Rees (1976) showed that the sulfur 
was enriched on the surfaces of the grains, but they 
found that 34S remained constant over different size 
fraction (unlike the case for all other lunar soils). 
Jovanovic et al. (1973) found that 74220 was enriched 
in Cl and Te and suggested that the source of high 
halogens was “fumarolic activity”. Jovanovic and Reed 
(1974) and Wanke et al. (1973) found 74220 to be 
enriched in halogens (table 6) and Goldberg et al. 
(1976) showed the F to be a surface deposit (figure 9). 

Meyer et al. (1975) and Wasson et al. (1976) 
hypothesized that halogens were in the vapor of the 
lava fountain, because of the increased volatility of 
various metals as chlorides and because some Cl and 
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Figure 7:  ZnS rich coating on glass sphere from 
74001 (from Clanton et al. 1978). 

Figure 8:  Ion microprobe mass scans of surface and 
ion-etched surface of orange glass sphere from 
74220 showing that Zn, Cu and Ga were present in 
the surface deposit, but etched away after 2 hrs. of 
ion bombardment (Meyer et al. 1975). 

Figure 9:  Flourine depth profile for samples of 
74220 (from Goldberg et al. 1976) 



Individual 74220 Orange Glass 
Orange Glass Beads Delano and Lindsey 1983 
Hughes et al. 1990 Lunar Basalts 
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Figure 10:  Orange glass compositions from 74220 
(data from Reid et al. 1973, Delano and Lindsey 
1983). Analyses of individual orange glass beads 
from other orange soil samples are variable (data 
from Hughes et al. 1990). 

F was found on the surface of the glass. Cirlin and 
Housley (1977) used a technique that involved HF 
treatment to enhance thermal release of Pb, to show 
that the Pb was indeed present as PbCl2 on the surface 
of the orange glass. Bell et al. (1974) reported evidence 
of FeCl2. 

Reed et al. (1977) and others have carefully studied 
the behavior of Zn, Pb and other elements during 
various kinds of leaching and conclude that although 
these elements are present in surface coating, they are 
not easily released. Krahenbuhl (1980) showed 
convincingly that Zn, Hg, Ge, Au and Ir were on the 
surfaces of the particles by carefully analyzing different 
grain sizes of the core tube 74002/1. Eugster et al. 
(1981) also showed that Br, and I were “anti-correlated” 
with grain size and thus on the surfaces of the glass 
beads. Meyer et al. (1975) used the ion microprobe to 
show that Zn, Cu, Ga, Pb and other elements were on 
the surfaces of glass beads from 74220. (figure 8). 
Butler and Meyer (1976) showed that the prevalent 
coating material (micromounds) contained sulfur. 
Nearly everyone agrees that the volatile element deposit 
on the glass beads was due to condensation of gas from 
volcanic eruption (figure 12). 

Double Drive Tube 74002 – 74001 
A 67 cm long double drive tube was collected from 
close to the trench at Shorty Crater.  Nagel (1978), 
McKay et al. (1978), Morris et al. (1978), Bogard and 
Hirsch (1978), Blanchard and Budahn (1978), Crozaz 
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Figure 11:  Normalized rare-earth-element pattern 
for composite of orange glass spheres from 74220 
(data from Philpotts et al. 1974). 

(1978) and Heiken and McKay (1978) studied the 
double drive tube. Eugster et al. (1979, 1980, 1981) 
determined the age and exposure history of this 
important sample. Clanton et al. (1978) and Cirlin et 
al. (1979) studied the surface coatings on the particles. 

Chemistry 
There are at least three important, variable, chemical 
components to consider in understanding the orange 
soil (endogenous volcanic melt, volcanic exhalation, 
and meteoritic contamination). The volcanic exhalation 
is seemingly coupled to the endogenous component in 
time (Tera and Wasserburg 1976).  Morgan and 
Wandless (1979) used volatile and siderophile element 
data from the core tube to unravel the contributions 
from meteorites and volcanic exhalations. Recently, 
Walker et al. (2004) have shown that the highly­
siderophile-elements (namely Os) are greatly depleted 
in the orange glass. 

Table 1 and figure 11 give the chemical composition 
of the bulk samples. Portions of the orange soil (74220) 
and the core (74002/1) are relatively uncontaminated 
by lunar regolith, and closely match the composition 
of the glass beads. However, in the bulk trench samples 
(74240 and 74260) and the top 5 cm of the core (74002), 
there is also a variable amount of mixing (by gardening) 
with lunar regolith. 74240 and 74260 are twice as 
aluminous as 74220 due to a high percentage of highly 
aluminous ropy glass (tables). 

Numerous investigators analyzed a large number of 
orange and black glass beads from Apollo 17 (table 5). 
Delano and Lindsey (1983) and Delano (1986) have 
identified several (~25) groups of volcanic glass, but 
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Figure 12:  Sketch of hypothetical lava fountain that 
could have produced the features seen in the volcanic 
glass beads in 74220 (from Meyer et al. 1975). 

found that the orange glass from 74220 was very 
constant in composition (figure 10). Hughes et al. 
(1990) analyzed some of the individual glass particles 
for a long list of elements (table 2). 

Delano (1986) found that mafic volcanic glasses always 
have relatively high Ni, so Ni, at least, is not an 
indicator of meteoritic contamination in these samples. 

The special feature of the orange glass samples is that 
they are found to be enriched in Zn, Cu, Ag, Cd, Tl, Br 
(and other metal halides) when compared to other lunar 
samples (Morgan et al. 1974, Duncan et al. 1974) and 
this has been much discussed (see section of surface-
correlated volatiles). Table 6 tabulates some of the 
analytical results for halogens and sulfur in the orange 
glass samples. While sulfur is not high in the bulk 
sample, it is an important component in the surface 
deposits (see Butler and Meyer 1976). 

Various investigators (Walker et al. 2004, Krahenbuhl 
1980, Wasson et al. 1976) have etched or leached the 
surfaces of the glass beads in an effort to separate the 
components (figure 14). 

Radiogenic age dating 
Husain and Schaeffer (1973), Huneke et al. (1973), 
Eberhardt et al. (1975), Alexander et al. (1978) and 

Figure 13:  Gas release profile of 74220 showing low 
temperature release of carbon and sulfur species 
(from Gibson and Moore 1973). 

Huneke (1978) determined the age of the orange glass 
spheres by 39Ar-40Ar plateau (figures 15, 16 and table). 
In a “tour-de-force”, Huneke dated individual glass 
beads at about 3.6 b.y. (figure 18).  Tera and Wasserburg 
(1976) used the lead isotopes leached from the surface, 
along with the residue, to date the age of formation of 
the orange soil (figure 17). U, Th and Pd data for 
74220, 74240, 74260 and 74001 are also given in Nunes 
et al. (1974), Silver (1974) and Tatsumoto et al. (1987). 
They note that 204Pb is relatively high and easily 
released by mild thermal heating, or leaching. 

Lee et al. (1997) reported the Hf, W and tungsten 
isotopic composition of bulk 74220 and handpicked 
glass beads. 

Cosmogenic isotopes and exposure ages 
Keith et al. (1974), Fruchter et al. (1978) and Murrell 
et al. (1979) determined the radioactivity of 74220 and 
74002/1, due to cosmic ray interaction (table 4). Based 
on 22Na, 26Al activity, Fruchter et al. (1978) found that 
the top 2-3 cm of the core has been actively mixed 
with mare components (gardened) and about 2 cm of 
soil might be missing from the top of the core. Murrell 
et al. (1979) found the top of the core was 
undersaturated in 53Mn. 

Kirsten et al. (1973), Fleischer and Hart (1974), 
Hutcheon et al. (1974) and Crozaz (1978) reported 
nuclear track ages for orange soil samples (~ 10 m.y.). 

Kirsten et al. (1973), Schaeffer and Husain (1973) and 
Hintenberger et al. (1974) reported the exposure age 
of 74220 as 30 m.y., 32 m.y. and 27 m.y., respectively. 
However, Bogard and Hirsch (1978) found that the data 
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Figure 14:  Concentration of highly-siderophile-element (HSE) elements in etchates and residue 
of hand-picked orange glass spheres (large and small), from 74220 and 74001 (core).  Data and 
figure from Walker et al. (2004).  See table 3. 

for the nearby core required a two-stage cosmic-ray 
exposure – 20 m.y. initially, followed by 10 m.y. (the 
presumed age of Shorty Crater). Eugster et al. (1977 
and 1981) offer a different irradiation model based on 
an age of ~17 m.y. for Shorty Crater.  The sample may 
have also been irradiated for up to 35 m.y., right after 
it erupted ! 

Another interesting discovery was that the Apollo 17 
orange soil sample is unique among all lunar soils, in 
that it shows no surface 18O, 30Si or 34S enrichment, 
which means it could not have been exposed to the 
lunar surface for any length of time (Taylor and Epstein 
1974, Thode and Rees 1976). 

Processing 
The location of the trench and core tube on the rim of 
Shorty Crater are discussed in Muehlberger et al. (1973) 
and Wolfe et al. (1981) (figure 21 and 22) and the 
samples were described in Apollo 17 PET (1973). 

Only a portion of 74220 was sieved. A large clod of 
orange soil can be seen in the bag when it was opened 
in PET.  In the sieving that was done, there were some 
orange glass clods that were found, but these remain 
unstudied (figure 20). There also remain unsieved 
portions of 74240 and 74260 (figure 23). 

Various investigators (e.g. Krahenbuhl 1980, Eugster 
1981) also sieved the samples to obtain results on 
different size fractions. 
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Figure 17:  Pb/Pb diagram for orange glass 
spheres and composites from 74220 (from Tera and 

Figure 15:  Argon release diagram for composite Wasserburg 1976). 
of orange glass spheres from 74220 (from
 
Huneke et al. 1973).
 

74001 
Husain and Schaeffer 1973 3.71 ± 0.06 b.y. Ar/Ar 
Eberhardt et al. 1973 3.67 ± 0.04 
Eberhardt et al. 1975 3.66 
Huneke et al. 1973 3.54 ± 0.05 
Huneke 1978 3.60 ± 0.04 
Alexander et al. 1978 3.66 ± 0.03 
Saito and Alenxander 1979 3.7 
Tatsumoto et al. 1973 3.63 
Tera and Wasserburg 1976 3.48 ± 0.03 
Hutcheon et al. 1974 ~3.7 (fission track age) 
Note: Beware decay constant. 

Figure 16:  K/Ar data for orange glass from 74220 
(from Alexander et al. 1978). 

Summary of Age Data for 74220 and 74001 
Ar/Ar Pb/Pb 

Figure 18:  Argon release patterns for individual 
orange glass beads from 74220 (from Huneke 1978). 
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Other Measurements for Orange Soil 

Viscosity and heat capacity 
Uhlmann et al. (1973) 

Magnetics 
Brecher A. and Morash K.R. (1973) 
Brecher et al. (1974) 
Olhoeft G.R. and Stangway D.W. (1973) 
Stone et al. (1982) 

Isotopes 
Epstein S. and Taylor H.P. (1973) 
Taylor H.P. and Epstein S. (1973) 
Thode H.G. and Rees C.E. (1976) 
Silver (1974) 
Tatsumoto et al. (1973, 1978) 
Tera and Wasserburg (1976) 

Rare Gasses 
Eberhardt et al. (1975) 
Eugster et al. (1977, 1979, 1980, 1981) 
Bogard and Hirsch (1978) 
Hintenberger et al. (1974) 
Kirsten et al. (1973) 

Gas release 
Epstein S. and Taylor H.P. (1973) 
Gibson E.K. and Moore G. (1973) 
Gibson E.K. and Moore G. (1974) 
Jovanovic S., Jensen K. and Reed G.W. (1973) 

Nuclear Tracks 
Crozaz (1978, 1979) 
Kirsten et al. (1973) 
Fleischer and Hart (1974) 
Hutcheon et al. (1974) 

Experimental Petrology 
Green et al. (1975) 
Sato (1979) 

Adsorption Isotherms 
Cadenhead and Stetter (1974) 
Cadenhead and Buerget (1974) 

Depth Profile 
Murrell et al. (1979) 
Fruchter et al. (1978) 

Surface features 
Carter et al. (1973) 
Holmes et al. (1974) 
Butler (1978) 
Grant et al. (1974) 

Spectra 
Pieters et al. (1980) 
Mao et al. (1973) 
Vaughan and Burns (1973) 

Figure 19:  Experimental crystallization of 74220 
orange glass at high pressure (from Green et al. 
1975). 

Figure 20:  Clods of orange soil, sample number 
74220,8. Scale in mm. NASA photo# S75-34259. 

Lunar Sample Compendium 
C Meyer 2010 



Table 1a.  Chemical composition of Shorty Trench. 
core ave. 

reference Kieth 74 Rhodes 74 Wiesmann Rhodes Rhodes Wiesmann Rhodes Nava 74 Nava 74 Rose 74 Rose 74 Blanchard 78 
weight 74220 74220 (b) 74220 (a) 74240 74241 74241 (a) 74260 74220 74241 74241 74261 74001/2 
SiO2 % 38.57 40.78 41.55 41.22 38.9 42.3 42 42.08 
TiO2 8.81 8.5 8.61 7.45 7.68 8.96 7.33 7.9 7.45 8.9 
Al2O3 6.32 12.54 13.35 13.25 6.38 13.69 13.19 13.7 5.8 
FeO 22.04 15.84 14.89 15.31 22.34 14.66 14.84 14.96 23.7 
MnO 0.3 0.24 0.22 0.23 0.255 0.202 0.2 0.19 0.27 
MgO 14.44 9.15 9.19 9.47 14.76 9.88 9.17 9.56 15 
CaO 7.68 11.36 11.54 11.37 7.01 10.89 11.56 11.25 7.6 
Na2O 0.36 0.38 0.48 0.38 0.43 0.48 0.43 0.42 0.42 
K2O 0.082 0.09 0.084 0.12 0.12 0.12 0.12 0.076 0.123 0.14 0.13 
P2O5 0.04 0.09 0.1 0.09 0.097 0.124 0.1 0.09 
S % 0.07 0.14 0.12 0.12 
sum 

Sc ppm 59 57 48 
V 75 70 
Cr 4650 2676 2874 3284 5200 
Co 28 38 66 
Ni 83 80 101 99 126 133 
Cu 28 32 
Zn 292 96 96 109 37 35 
Ga 10 10 
Ge ppb 
As 
Se 
Rb 1.2 1.107 2.3 2.5 2.423 2 1.8 2 
Sr 205 209 163 154 159 167 144 151 
Y  49  80  74  75  90  74  
Zr 182 185 235 232 218 239 352 286 
Nb 15 19 19 19 14 23 
Mo 
Ru 
Rh 
Pd ppb 
Ag ppb 
Cd ppb 
In ppb 
Sn ppb 
Sb ppb 
Te ppb 
Cs ppm 
Ba 76.4 112 84 140 
La 6.25 9.95 5.9 
Ce 19 28.8 21 
Pr 
Nd 17.8 24 
Sm 6.53 8.55 6.9 
Eu 1.8 1.6 1.88 
Gd 8.52 12.6 
Tb 1.6 
Dy 9.4 13.7 
Ho 
Er 5.1 8.07 
Tm 
Yb 4.43 7.45 10 7.2 4.2 
Lu 0.611 0.59 
Hf 6.3 
Ta 1.2 
W ppb 
Re ppb 
Os ppb 
Ir ppb 
Pt ppb 
Au ppb 
Th ppm 0.65 1.32 0.4 
U ppm 0.164 0.16 0.37 
technique (a) IDMS, (b) XRF, (c ) INAA 
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Table 1b.  Chemical composition of Shorty Trench. 
spheres bulk  500-62 micron 

reference Philpotts 74 (a) Korotev 92 Wasson 76 Wanke 73 
weight 74220 74220S 74241 74220 74241A 74241B 74261 74220 leach etch residue total 74220 74241 
SiO2 % 38.3 40.8 41.3 41.3 (c ) 39.36 42.36 
TiO2 8.8 8.7 7.6 7.5 (c ) 8.09 6.49 
Al2O3 6.8 12.9 13.8 13 (c ) 6.52 13.9 
FeO 22.4 16.2 15.4 15.8 23.8 0.68 2.56 20.97 24.19 (c ) 21.87 15.18 
MnO 0.275 0.01 0.03 0.23 0.272 (c ) 0.25 0.19 
MgO 14.28 8.8 9.02 9.68 (c ) 14 9.27 
CaO 7.8 11.1 11.4 11.1 6.16 0.18 0.01 6.16 6.43 (c ) 7.4 11.4 
Na2O 0.078 0.064 0.124 0.366 0.457 0.471 0.476 0.274 0.01 0.03 0.206 0.247 (c ) 0.4 0.45 
K2O 0.076 0.1 
P2O5 0.048 0.1 
S % 
sum 

Sc ppm 48.3 61 57.3 53.9 37 1 0.18 35 36 (c ) 42.5 50.2 
V 130 
Cr 4650 2780 2800 2950 5030 136 456 4460 5050 (c ) 4030 2320 
Co 61.5 26.3 26.7 30.2 68 2.4 6.7 60 69 (c ) 55.5 24.5 
Ni 113 90 140 120 110 3.6 8.9 71 83 (c ) 67 82 
Cu 25 21 
Zn 194 43 5.3 17 65 (b) 270 88 
Ga 16.1 2.9 0.79 2.5 6.2 (b) 16.5 13.4 
Ge ppb 401 80 20 143 243 (b) 260 210 
As 15 22 
Se 
Rb 1.11 0.644 2.55 1.86 
Sr 206 205 155 235 170 210 140 160 140 
Y 44 61 
Zr 184 194 565 175 270 200 250 162 204 
Nb 13 15.1 
Mo 
Ru 
Rh 
Pd ppb 
Ag ppb 
Cd ppb 314 122 7.2 28 157 (b) 
In ppb 29 6.6 0.41 0.71 7.7 (b) 
Sn ppb 
Sb ppb 
Te ppb 
Cs ppm 0.078 
Ba 78.4 73.9 116 78 120 109 127 (c ) 130 120 
La 5.94 9.72 9.93 9.37 5.4 0.35 0.06 5.2 5.6 (c ) 6.5 10.9 
Ce 19.9 17.7 29.6 18.1 29 29.5 27 19 0.9 0.2 19 20 (c ) 18 34 
Pr 2.5 4.4 
Nd 17.9 17.4 24.8 17 22 24 17 16 31 
Sm 6.5 6.4 8.8 6.71 9.05 8.72 8.21 5.2 0.29 0.06 5.3 5.6 (c ) 6.7 8.7 
Eu 1.84 1.83 1.64 1.79 1.68 1.55 1.63 1.7 0.05 0.02 1.6 1.67 (c ) 1.83 1.65 
Gd 8.46 8.5 12.2 (c ) 9.3 11.1 
Tb 1.48 2.19 2.1 1.91 (c ) 1.6 1.9 
Dy 9.16 8.82 14 9.5 14 
Ho 1.9 2.8 
Er 4.82 4.59 7.85 5.4 
Tm 
Yb 4.2 3.96 7.6 4.31 7.78 7.52 6.95 4.1 0.16 0.05 3.7 3.9 (c ) 4.24 7.3 
Lu 0.627 0.608 1.14 0.59 1.12 1.09 0.96 0.5 0.02 0.01 0.51 0.54 (c ) 0.58 1 
Hf 5.79 7.59 7.21 6.98 5.4 0.16 0.65 5 5.8 (c ) 5.3 6.4 
Ta 1 1.26 1.19 1.18 0.9 0.02 0.11 0.75 0.88 (c ) 1.1 1.3 
W ppb 83 200 
Re ppb 0.2 
Os ppb 
Ir ppb <6 3.5 4 4.5 0.35 0.03 0.04 0.19 0.06 (b) 7.9 
Pt ppb 
Au ppb <4 3.5 4 <6 1.01 0.08 0.02 0.244 0.34 (b) 1.5 2.6 
Th ppm 0.42 0.99 1.24 1.1 0.61 0.02 0.09 0.58 0.7 (c ) 
U ppm 0.13 0.4 0.26 0.23 (c ) 0.15 0.37 
technique (a) IDMS, (b) RNAA, (c ) INAA 
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Table 1c.  Chemical composition of Shorty Trench (cont.). 
bulk spheres 

reference Duncan 74  Morgan 74  Morgan 79  Krahenbuhl 80 Miller 74 
weight 74220 74220 dark orange 74001 74241 74001 74001 74001 74002 74002 74001 74001 74220 
SiO2 % 39.03 39.58 
TiO2 8.72 7.45 7.66 7.52 7.52 10 
Al2O3 6.47 6.6 
FeO 22.13 21.23 
MnO 0.273 0.27 
MgO 14.44 15.1 
CaO 7.62 9.23 
Na2O 0.34 0.47 
K2O 0.077 
P2O5 0.043 
S % 0.073 
sum 

Sc ppm 47.9 47 47.6 45.7 46.9 
V 132 
Cr 4680 3790 
Co 62 62.8 63.6 62.3 60.3 63 
Ni 74.7 67 70 72 68 64 66 51 53 
Cu 26.3 
Zn 253 230 45 141 148 86 178 185 151 196 103 140 134 
Ga 
Ge ppb 250 41 191 105 155 144 179 122 193 170 170 119 
As 
Se 640 129 460 350 340 380 490 353 
Rb 1.5 0.95 0.66 0.77 0.76 2.3 
Sr 200 
Y 43.8 
Zr 186 
Nb 13.6 
Mo 
Ru 
Rh 
Pd ppb 1.1 1.3 1.7 
Ag ppb 111 320 75 72 25 82 116 75 
Cd ppb 320 92 260 25 210 59 18 9 178 35.5 45.9 11.4 
In ppb 29 10 14 6.3 35.4 19.3 10 8.3 
Sn ppb 
Sb ppb 0.65 1 25 1.16 0.55 1.25 0.73 0.77 
Te ppb 62 10 49 38 24 79.3 50.8 105 61.9 
Cs ppm 0.053 0.03 0.045 0.037 0.107 
Ba 82 
La 6.11 5.85 6 5.64 7 
Ce 29 26.7 31.4 26.6 
Pr 
Nd 
Sm 
Eu 1.9 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 
Hf 
Ta 
W ppb 
Re ppb 0.052 0.014 0.055 0.213 0.296 0.014 0.016 0.024 
Os ppb 0.045 0.049 0.035 
Ir ppb 0.411 0.114 0.214 0.021 2.78 0.042 0.048 0.016 0.024 0.019 
Pt ppb 
Au ppb 0.99 0.23 1.07 0.705 1.01 0.67 1.04 0.73 1.1 0.88 0.8 1.03 
Th ppm 
U ppm 0.168 0.13 0.115 0.141 0.33 0.143 0.15 0.151 0.138 0.126 0.16 0.148 
technique (a) IDMS, (b) RNAA, (c ) INAA 
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Table 2.  Chemical composition of Individual Glass Beads. 
74221,86 74,241,143 74,241,171 

reference Hughes 90 
weight (a) 15.5 12.6 2.8 3 3.7 16 1.8 2.3 
SiO2 % 39.2 39.1 38.8 39 38.7 38.3 40.4 39.1 (c ) 
TiO2 9.2 9.3 8.7 8.7 9.8 8.8 8.6 9.6 (c ) 
Al2O3 5.9 5.8 5.8 5.8 6.5 5.9 7.8 6.3 (c ) 
FeO 22.3 22.5 22.9 22.8 23.1 22.9 21.3 22.6 (c ) 
MnO 0.29 0.26 0.26 0.27 0.28 0.28 0.3 0.31 (c ) 
MgO 14.5 14.7 14.9 15 12.2 15.1 12.2 12.8 (c ) 
CaO 7.4 7.2 7.4 7.3 8.3 7.6 8.4 8.1 (c ) 
Na2O 0.44 0.47 0.44 0.46 0.5 0.17 0.52 0.49 (b) 
K2O 0.06 0.03 0.07 0.08 0.08 0.08 0.1 0.08 (b) 
P2O5 
S % 
sum 

Sc ppm 45.4 46.3 47.6 46.7 49.8 48.2 47.8 49.2 (b) 
V 
Cr 4310 4379 4516 4447 4584 4516 4310 4516 (b) 
Co 58 59 61 60 59 61 51 51 (b) 
Ni 27 96 75 18 123 108 68 69 (b) 
Cu 
Zn 
Ga 
Ge ppb 
As 
Se 
Rb 
Sr 230 280 220 220 230 190 270 140 (b) 
Y 
Zr 160 170 150 190 280 150 220 210 (b) 
Nb 
Mo 
Ru 
Rh 
Pd ppb 
Ag ppb 
Cd ppb 
In ppb 
Sn ppb 
Sb ppb 
Te ppb 
Cs ppm 0.04 0.05 0.15 0.19 0.06 0.05 0.14 (b) 
Ba 120 59 161 31 80 129 79 124 (b) 
La 5.3 5.6 5.7 6.2 5.2 6.6 7.9 6.3 (b) 
Ce 16.7 15.2 16.2 18.4 18.6 18.7 21.2 18.4 (b) 
Pr 
Nd 14.9 16.8 17.5 15.4 21.7 19.5 17.2 19.5 (b) 
Sm 6.9 6.7 6.9 6.8 7.4 6.8 7.5 7.8 (b) 
Eu 1.72 1.74 1.83 2.04 2.14 1.91 1.81 2.18 (b) 
Gd 
Tb 1.42 1.49 1.42 1.65 2.02 1.77 1.5 1.89 (b) 
Dy 
Ho 
Er 
Tm 
Yb 3.5 3.4 3.6 3.6 4.1 3.7 4.4 4.4 (b) 
Lu 0.39 0.48 0.5 0.47 0.49 0.54 0.46 0.6 (b) 
Hf 5.5 5.9 5.8 5.5 6.5 5.8 6.3 6.5 (b) 
Ta 0.96 1.1 1.2 1.3 1.2 1.3 1.3 (b) 
W ppb 
Re ppb 
Os ppb 
Ir ppb 
Pt ppb 
Au ppb 
Th ppm 0.3 0.3 0.35 0.04 0.48 0.22 0.65 0.77 (b) 
U ppm 0.12 0.22 0.22 0.34 0.28 0.12 (b) 
technique (a) micrograms, (b) INAA, (c ) elec. Probe 
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Table 3:  Highly Siderophile Elements in 74220 and 74001. 
74220 74220 74001 74001 74001 74001 
44 - 74 micron 74 - 150 micron 44 - 80 micron 80 - 200 micron  > 200 micron  > 80 micron 
etchate residue etchate residue etchate residue etchate residue etchate residue leachate residue 

Ru  - - - - 0.26 0.17 0.51 0.017 0.04  - - 0.241 (a) 
Pd  - 1.528  - 0.127 0.97 0.79 0.328 0.037 0.825 0.044 0.064 0.253 (a) 
Re 0.0106 0.067 0.0264 0.002 0.013 0.023 0.046 0.003 0.0058 0.0008 0.0025 0.0372 (c ) 
Os 0.158 0.0245 0.189 0.009 0.116 0.167 0.0074 0.0068 0.0363 0.0026 0.0067 0.352 (b) 
Ir  - - - 0.015 0.17 0.134 0.0046 0.0096  - 0.024 0.0058 0.205 (a) 
Pt  - 0.265  - 0.346 0.83 0.712 0.706 0.0028 2.75 0.016 0.05 0.62 (a) 

ppb by (a) ICP-MS, (b) IDMS neg. (c ) calculated from Os isotope (Walker et al. 2004) 

74220 74241 74001 
Ru <1 3 <1 
Os 0.7 0.8 20 

ppb by Jovanovic and Reed 1974 

74220 74220 size fractions (microns) 
500 - 62 microns 500 62 20 
l + e residue to 62 to 20 to 0.1 

Au 0.86 0.274 0.34 0.605 1.7 
Ir 0.65 0.21 0.06 0.28 0.38 

ppb by RNAA (Wasson et al. 1976) 

Table 4:  Comic ray induced activity Orange Soil. 
ref: depth (cm) 26Al dpm/kg 22Na 54Mn 56Co 46Sc 48V 

74220 Kieth 74 ~ 6.5 45 51 50 31 19.1 13 
74002 Fruchter 78 0.3 78 125 

0.75 85 142 
1.25 75 135 
1.75 71 110 
2.75 54 103 

74001 7 48 74 
37 33 38 
57 33 29 

Table 5.  Microprobe analysis of Orange Glass (groups). 
74220 74220 74240 74220 74001 74220 74220 74220 A 17 

reference Delano 81 Reid 73 Reid 73 Prinz 73 Carter 73 Glass 73 Roedder 73 Heiken 74 Mao 73 Philpotts 73 Warner 79 
# beads 140 47 80 19 inc. black red black 47 
SiO2 % 38.5 38.55 38.63 39.2 38 39.4 39.5 38.73 38.88 38 40.1 39.2 
TiO2 9.12 8.87 8.96 9.4 8.87 9.3 8.56 9.46 8.7 9.6 9.9 8.9 
Al2O3 5.79 5.85 5.87 5.8 5.51 6.02 6.41 5.98 5.76 5.4 6.3 5.9 
FeO 22.9 21.96 22 22.4 22.4 22.7 22.2 22.6 22.21 23.4 23.8 22.4 
MnO 0.3 0.32 0.24 0.28 
MgO 14.9 14.99 14.79 14.1 14.5 15.5 14.4 14.2 15.81 17.3 15.1 14.6 
CaO 7.4 7.16 7.31 7.6 6.99 6.42 7.13 7.73 7.17 6 7 7.2 
Na2O 0.38 0.33 0.37 0.31 0.39 0.69 0.51 0.35 0.42 0.4 0.38 0.36 
K2O 0.08 0.04 0.06 0.08 0.07 0.06 0.09 
P2O5 0.04 0.05 0.04 
S % 
sum 

Sc ppm 
V 
Cr 4721 3762 3762 4174 4789 3558 4037 5063 4584 

Table 6:  Halogens and sulfur in Orange Soil. 
Jovanovic 74 Wanke 73 Thode 76 Gibson 74 Gibson 78 
74220 74220 74241 74001 74220 74241 74220 74241 74220 74220 74260 74001 - 2 74220 

F ppm 102 61 230 <2 (a) 69 210 (b) 
Cl ppm 72 103 59 40 20 
Br ppb 1580 420 800 180 
I ppb 14 13 13 6 
S ppm 420 940 560 750 1080 548 820 
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Figure 21:  Map of Shorty Crater showing locations of samples. Figure 1 was taken from the position marked W. Pan. 

Figure 22:  Sketch of trench and core tube on rim of 
Shorty Crater (from Muehlberger et al. 1973).  The 
orange soil (74220) and the core (74002/1) were taken 
from the middle of the trench and the grey soils (74240 
and 74260) from either end.  The core was from just 
behind the trench. 

Figure 23:  Top-level flow diagram of sample 
weights and allocations. 
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Figure 24:  Grain size distribution of 74220 as 
depicted by graf 1993, based on data by McKay’s 
group (see also 74240 for comparisons). 
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