Йĕрке хисепĕ
Курӑнакан калӑплав
- Ку ăнлава грамматикăри Йĕрке хисеп ячĕпе пăтраштармалла мар
Йĕрке хисепĕ, е ординал (лат. ordinalis) — йышсен теорийĕнчи ăнлав
Литература
[тӳрлет | кодне тӳрлет]- Cantor, Georg (1883), "Ueber unendliche, lineare Punktmannichfaltigkeiten. 5.", Mathematische Annalen Т. 21 (4): 545–591, doi:10.1007/bf01446819, <http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN235181684_0021&DMDID=DMDLOG_0051>. Published separately as: Grundlagen einer allgemeinen Mannigfaltigkeitslehre.
- Cantor, Georg (1897), "Beitrage zur Begrundung der transfiniten Mengenlehre. II", Mathematische Annalen Т. 49 (2): 207–246, doi:10.1007/BF01444205, <http://www.springerlink.com/content/n3797702v6422612/>(ĕçлемен каçă) English translation: Contributions to the Founding of the Theory of Transfinite Numbers II.
- Conway, John H. & Guy, Richard (2012), "Cantor's Ordinal Numbers", The Book of Numbers, Springer, pp. 266–7, 274, ISBN 978-1-4612-4072-3
- Dauben, Joseph (1979), Georg Cantor: His Mathematics and Philosophy of the Infinite, Harvard University Press, ISBN 0-674-34871-0
- Ewald, William B., ed. (1996), From Immanuel Kant to David Hilbert: A Source Book in the Foundations of Mathematics, Volume 2, Oxford University Press, ISBN 0-19-850536-1
- Ferreirós, José (1995), "'What fermented in me for years': Cantor's discovery of transfinite numbers", Historia Mathematica Т. 22: 33–42, doi:10.1006/hmat.1995.1003, <http://www.sciencedirect.com/science/article/pii/S0315086085710038> Архиври копи, 11 Ака уйӑхӗн 2019 Wayback Machine çинче
- Ferreirós, José (2007), Labyrinth of Thought: A History of Set Theory and Its Role in Mathematical Thought (2nd revised ed.), Birkhäuser, ISBN 3-7643-8349-6
- Hallett, Michael (1986), Cantorian Set Theory and Limitation of Size, Oxford University Press, ISBN 0-19-853283-0
- Hamilton, A. G. (1982), "6. Ordinal and cardinal numbers", Numbers, Sets, and Axioms : the Apparatus of Mathematics, New York: Cambridge University Press, ISBN 0-521-24509-5
- Kanamori, A., "Set Theory from Cantor to Cohen", in Irvine, Andrew & Woods, John H., The Handbook of the Philosophy of Science, vol. 4 Mathematics, Cambridge University Press Архиври копи, 4 Ака уйӑхӗн 2012 Wayback Machine çинче — To appear.
- Levy, A. (2002), Basic Set Theory, Springer-Verlag, ISBN 0-486-42079-5
- Jech, Thomas (2013), Set Theory (2nd ed.), Springer, ISBN 978-3-662-22400-7, <https://books.google.com/books?id=GHjmCAAAQBAJ>
- Sierpiński, W. (1965), Cardinal and Ordinal Numbers (2nd ed.), Warszawa: Państwowe Wydawnictwo Naukowe Also defines ordinal operations in terms of the Cantor Normal Form.
- Suppes, P. (1960), Axiomatic Set Theory, D.Van Nostrand, ISBN 0-486-61630-4
- Tait, William W. (1997), "Frege versus Cantor and Dedekind: On the Concept of Number", in William W. Tait, Early Analytic Philosophy: Frege, Russell, Wittgenstein, Open Court, pp. 213–248, ISBN 0-8126-9344-2 Архиври копи, 24 Юпа уйӑхӗн 2018 Wayback Machine çинче
- von Neumann, Johann (1923), "Zur Einführung der transfiniten Zahlen", Acta litterarum ac scientiarum Ragiae Universitatis Hungaricae Francisco-Josephinae, Sectio scientiarum mathematicarum Т. 1: 199–208, <http://acta.fyx.hu/acta/showCustomerArticle.action?id=4981&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=39716d660ae98d02&style=> Архиври копи, 18 Раштав уйӑхӗн 2014 Wayback Machine çинче
- von Neumann, John (January 2002), "On the introduction of transfinite numbers", in Jean van Heijenoort, From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931 (3rd ed.), Harvard University Press, pp. 346–354, ISBN 0-674-32449-8, <http://www.hup.harvard.edu/catalog.php?isbn=9780674324497> Архиври копи, 20 Ҫурла уйӑхӗн 2017 Wayback Machine çинче — English translation of von Neumann 1923
Асăрхавсем
[тӳрлет | кодне тӳрлет]Хисепсен системисем |
|
---|---|
Шутла йышсем |
Натураллă хисепсем () • Туллисем() • Рационаллисем () • Алгебрăллисем () • Периодсем • Шутлавлисем • Арифметикăллисем |
Чăн хисепсем тата вĕсен анлăлатăвĕсем |
Чăннисем () • Комплекслисем () • Кватернионсем () • Кэли хисепĕсем (октавăсем, октонионсем) () • Седенионсем () • Альтернионсем • Дуаллисем • Гиперкомплекслисем • Вышкайсăр чăннисем • Гиперчăннисем • Сюрреаллисем |
Хисепсен системисене анлăлатмалли инструментсем | |
Хисепсен ытти системисем | |
Çав. пекех |
Ку лингвистика пирки вĕçлемен статья. Эсир статьяна тӳрлетсе тата хушса проекта пулăшма пултаратăр. |