Fouriertransformation für zeitdiskrete Signale

Die Fouriertransformation für zeitdiskrete Signale, auch als englisch discrete-time Fourier transform, abgekürzt DTFT bezeichnet, ist eine lineare Transformation aus dem Bereich der Fourier-Analysis. Sie bildet ein unendliches, zeitdiskretes Signal auf ein kontinuierliches, periodisches Frequenzspektrum ab, welches auch als Bildbereich bezeichnet wird.

Unterscheidung zur Diskreten Fourier-Transformation

Bearbeiten

Die DTFT ist mit der Diskreten Fourier-Transformation (DFT) verwandt, welche mit diskreten Zeitsignalen und diskreten Spektren arbeitet. Die DTFT unterscheidet sich von der DFT darin, dass sie ein kontinuierliches Spektrum bildet, welches sich, unter Umständen, als abschnittsweise geschlossener mathematischer Ausdruck angeben lässt. Wie auch die DFT bildet die DTFT im Bildbereich ein periodisch fortgesetztes Frequenzspektrum, welches als Spiegelspektrum bezeichnet wird.

Im Gegensatz zur DFT besitzt die DTFT nur eine geringe Bedeutung in praktischen Anwendungen wie der digitalen Signalverarbeitung, primärer Anwendungsbereich liegt bei der theoretischen Signalanalyse.

Definition

Bearbeiten

Das Spektrum   eines abgetasteten (diskreten) Zeitsignals, repräsentiert als eine Folge   mit   und der Abtastzeit  , ist:

 

mit der imaginären Einheit   und der Kreisfrequenz  . Die inverse Fouriertransformation für zeitdiskrete Signale über das Basisband ohne periodische Spektralanteile ist gegeben als:

 

Um die Abhängigkeit von der Abtastzeit   in den Ausdrücken zu vermeiden, wird das Spektrum auf die Abtastfrequenz   normiert und mit der so normierten Kreisfrequenz

 

lautet die DTFT:

 

und die inverse DTFT:

 

Eigenschaft

Bearbeiten

Einige wichtige Eigenschaften der Fouriertransformation für zeitdiskrete Signale sind im Folgenden dargestellt.

Die im Zeitbereich verschobene Folge   entspricht einer Phasendrehung (Modulation) im Spektralbereich:

 

Beweis:

 
 

Analog dazu entspricht ein im Frequenzbereich verschobenes Spektrum   einer Phasendrehung im Zeitbereich:

 

Faltungseigenschaft

Bearbeiten

Die DTFT eines Produktes zweier Wertefolgen   und   entspricht der Faltung der Spektren:

 

Umgekehrt entspricht der Faltung im Zeitbereich die Multiplikation im Bildbereich:

 

Literatur

Bearbeiten