Verband (Mathematik)

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 17. Oktober 2024 um 16:11 Uhr durch Rigormath (Diskussion | Beiträge) (Teilerverbände: Sicherheitshalber noch ≤ durch ≤_T ersetzt.).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Ein Verband ist in der Mathematik eine Struktur, die sowohl als Ordnungsstruktur als auch als algebraische Struktur vollständig beschrieben werden kann. Als Ordnungsstruktur ist ein Verband dadurch gekennzeichnet, dass es zu je zwei Elementen , ein Supremum gibt, d. h. ein eindeutig bestimmtes kleinstes Element, das größer oder gleich und ist, und umgekehrt ein Infimum , ein größtes Element, das kleiner oder gleich und ist. Als algebraische Struktur ist ein Verband dadurch gekennzeichnet, dass es zwei assoziative und kommutative Operationen gibt, für die die Absorptionsgesetze kennzeichnend sind: Für beliebige Elemente gilt

  und   .

Für jede in der Verbandstheorie vorkommende algebraische Aussage gibt es eine direkte Übersetzung in eine Ordnungsaussage und umgekehrt. Diese Übersetzung ist in den meisten Fällen auch anschaulich nachzuvollziehen. Die Möglichkeit, Ergebnisse doppelt zu interpretieren und dadurch besser zu verstehen, macht die Untersuchung und die Verwendung von Aussagen aus der Verbandstheorie so interessant. Der Begriff Verband wurde im hier beschriebenen Sinne von Fritz Klein-Barmen geprägt.[1]

Obwohl diese doppelte Charakterisierung auf den ersten Blick sehr speziell aussieht, treten Verbände häufig auf:

In der Literatur sind auch die Symbole und anstelle von und verbreitet. Diese Notation wird hier aufgrund von technischen Einschränkungen allerdings nicht verwendet.

In einer früher üblichen Terminologie wurde ein Verband (nach Richard Dedekind) auch als Dualgruppe bezeichnet.

Verbände als algebraische Strukturen

[Bearbeiten | Quelltext bearbeiten]

Ein Verband ist eine Menge mit zwei inneren binären Verknüpfungen (Vereinigung, engl. join) und (Durchschnitt, engl. meet), die folgenden Bedingungen für alle , , aus genügen:

Assoziativgesetze:

  • ,
  • .

Kommutativgesetze:

  • ,
  • .

Absorptionsgesetze:

  • ,
  • .

Aus diesen Bedingungen folgt die Idempotenz beider Verknüpfungen:

  • ,
  • .

ist also bezüglich jeder einzelnen Verknüpfung ein Halbverband, d. h. eine kommutative Halbgruppe, in der jedes Element idempotent ist. Die Verknüpfungen treten bei den Absorptionsgesetzen in Wechselwirkung.

Verbände als Ordnungsstrukturen

[Bearbeiten | Quelltext bearbeiten]

Man kann nach einer Idee von Leibniz auf eine Halbordnung definieren durch:

Mit dem Absorptionsgesetz erkennt man die Gültigkeit der Äquivalenzen

Bezüglich dieser Halbordnung hat jede zweielementige Teilmenge ein Supremum (obere Grenze) und ein Infimum (untere Grenze) . Dabei ist ein Element ein Supremum von , wenn gilt:

  • und (d. h. ist obere Schranke).
  • Aus und folgt (d. h. ist die kleinste obere Schranke).

Analoges gilt für das Infimum . Man kann per Induktion zeigen, dass jede nichtleere endliche Teilmenge ein Supremum und ein Infimum hat. Man schreibt allgemein das Supremum einer Menge als , und das Infimum von als , falls diese existieren.

Umgekehrt kann man für eine halbgeordnete Menge, bei der jede zweielementige Teilmenge ein Infimum und ein Supremum hat, definieren:

  und   .

Die beiden Verknüpfungen erfüllen dann die Verbandsaxiome, wie man leicht nachrechnet.

Hasse-Diagramme für einige Beispiele

[Bearbeiten | Quelltext bearbeiten]

Eine endliche halbgeordnete Menge kann man durch einen gerichteten Graphen darstellen, den man Hasse-Diagramm nennt.

Wenn man den Graph so anordnet, dass alle Kanten von unten nach oben gerichtet sind, dann kann man die Ordnung leicht sehen:

ist dann gleichwertig mit: ist durch einen (nach oben führenden) Kantenzug mit verbunden.
Hasse-Diagramme für einige Verbände
Verband der Teilmengen von {x,y,z} (eine Boolesche Algebra)
Verband der Teiler von 60
Partitionen der Menge {1,2,3,4}, durch „ist feiner als“ geordnet
Verband, der nicht distributiv, aber orthokomplementierbar ist
Die Menge der natürlichen Zahlen: Total geordnete Mengen sind Verbände
Diagramme, die keine Verbände darstellen
kein Verband, da c⊔d nicht existiert
kein Verband, da b⊔c nicht existiert (d und e sind zwar beide minimal größer, aber keins von beiden ist kleinstes der größeren Elemente)

Spezielle Elemente in Verbänden

[Bearbeiten | Quelltext bearbeiten]

Neutrale Elemente

[Bearbeiten | Quelltext bearbeiten]

Falls die Verknüpfung ein neutrales Element hat,

dann ist es eindeutig bestimmt und man nennt es das Nullelement des Verbandes. Bzgl. ist absorbierend und bzgl. der Ordnung das kleinste Element:

und

Man nennt den Verband dann nach unten beschränkt.

Falls die Verknüpfung ein neutrales Element hat,

dann ist es eindeutig bestimmt und man nennt es das Einselement des Verbandes. Bzgl. ist absorbierend und bzgl. der Ordnung das größte Element:

und

Man nennt den Verband dann nach oben beschränkt.

Ein Verband heißt beschränkt, wenn er nach unten und nach oben beschränkt ist, also für beide Verknüpfungen ein neutrales Element hat.

Komplementäre Elemente

[Bearbeiten | Quelltext bearbeiten]

Für ein gegebenes Element eines beschränkten Verbandes nennt man ein Element mit der Eigenschaft

  • und

ein Komplement von .

Ein beschränkter Verband, in dem jedes Element (mindestens) ein Komplement hat, heißt komplementärer Verband.

Im Allgemeinen kann es zu einem Element mehrere komplementäre Elemente geben.

Es gilt aber: In einem distributiven beschränkten Verband ist das Komplement eines Elements im Falle seiner Existenz eindeutig bestimmt. Man schreibt es oft als (vor allem bei Teilmengenverbänden), (vor allem bei Anwendungen in der Logik) oder .

In jedem beschränkten Verband gilt

  • .

In einem distributiven beschränkten Verband gilt: Falls ein Komplement hat, dann hat auch ein Komplement, nämlich:

  • .

Spezielle Verbände

[Bearbeiten | Quelltext bearbeiten]

Modulare Verbände

[Bearbeiten | Quelltext bearbeiten]
, der minimale nicht-modulare Verband

Ein Verband heißt modular, falls gilt:

  • für alle .

Für einen Verband sind wiederum jeweils äquivalent:

  • ist modular.
  • für alle .
  • für alle .
  • für alle .

Ein nicht modularer Verband enthält immer den Verband als Unterverband.[2]

Distributive Verbände

[Bearbeiten | Quelltext bearbeiten]
, der minimale modulare, nicht-distributive Verband

Im Folgenden meinen wir mit dem Verband stets den Verband .

Ein Verband heißt distributiv, wenn die Verknüpfungen in doppelter Hinsicht distributiv sind:

  • für alle und
  • für alle .

Da diese beiden Aussagen zueinander äquivalent sind, genügt es, die Gültigkeit eines dieser beiden Distributivgesetze zu verlangen.

Jeder distributive Verband ist modular, aber nicht umgekehrt. Ein modularer Verband, der nicht distributiv ist, enthält immer den Verband , den Verband der Untergruppen der Kleinschen Vierergruppe als Unterverband.[3]

Dies ergibt den Test: hat ein Verband weder einen Unterverband der Form noch einen der Form , dann ist er distributiv.

Distributive Verbände sind auch anders zu charakterisieren, denn Birkhoff (1933) und Stone (1936) haben gezeigt:

Ein Verband ist genau dann distributiv, wenn er isomorph zu einem Mengenverband ist.[4]

Boolesche Algebren

[Bearbeiten | Quelltext bearbeiten]

Ein distributiver komplementärer Verband heißt Boolesche Algebra oder Boolescher Verband.

Eine weitere Verallgemeinerung, bei der statt Komplementen nur relative Pseudokomplemente gefordert werden, heißt Heyting-Algebra.

Vollständige Verbände

[Bearbeiten | Quelltext bearbeiten]

Ein Verband heißt vollständig, wenn jede (auch die leere ebenso wie gegebenenfalls unendliche) Teilmenge ein Supremum und ein Infimum hat.

Es genügt, für jede Teilmenge die Existenz des Supremums zu verlangen, denn es ist

Jeder vollständige Verband ist beschränkt mit

  •   und  

Jeder endliche, nichtleere Verband ist vollständig, also auch beschränkt.

Eine minimalistische Definition ist: Ein vollständiger Verband ist eine halbgeordnete Menge , in der jede Teilmenge ein Supremum hat. So definiert, ist ein vollständiger Verband natürlich auch ein Verband, mit und .

In einem vollständigen Verband besitzt jede ordnungserhaltende (d. h. monoton wachsende) Abbildung einen größten und einen kleinsten Fixpunkt aufgrund des Fixpunktsatzes von Tarski.

Längenendliche Verbände

[Bearbeiten | Quelltext bearbeiten]

Wenn jede bezüglich der Ordnung totalgeordnete Teilmenge (Kette) endlich ist, nennt man den Verband längenendlich.[5] Für viele Beweise innerhalb der Verbandstheorie muss ein Verband nicht endlich sein, sondern es reicht, wenn er längenendlich ist.

Kompakte Elemente und algebraische Verbände

[Bearbeiten | Quelltext bearbeiten]

Man nennt ein Element eines vollständigen Verbandes kompakt (nach der verwandten Eigenschaft kompakter Räume in der Topologie), wenn jede Teilmenge von mit

eine endliche Teilmenge enthält, für die gilt:

Ein Verband heißt algebraisch, wenn er vollständig ist und wenn jedes Element von das Supremum von kompakten Elementen ist.

Dualität in Verbänden

[Bearbeiten | Quelltext bearbeiten]
Die beiden Verbände sind dual zueinander (aber offensichtlich nicht isomorph).

Vertauscht man in einem Verband die beiden Verknüpfungen und , erhält man eine neue Struktur . Man nennt die duale Struktur.

Ersetzt man in einer beliebigen Formel der Sprache der Verbandstheorie und setzt überall die beiden Zeichen und wechselseitig füreinander ein und ersetzt außerdem überall 0 durch 1 und umgekehrt, dann nennt man die entstandene Formel die duale Formel von .

Offensichtlich gelten in dem zu dualen Verband die dualen zu den in gültigen Formeln. Da in der Definition eines Verbands zu jeder Formel auch die duale Formel vorkommt, folgt, dass ebenfalls ein Verband ist, der als der zu duale Verband bezeichnet wird.

Aus dieser Beobachtung folgt:

  • Gilt eine Formel in allen Verbänden, dann gilt auch ihre duale Formel in allen Verbänden.

Das Modularitätsgesetz ist selbstdual und die beiden Distributiv-Gesetze sind zueinander dual und die beiden Komplementärgesetze sind zueinander dual. Daher gilt entsprechend:

  • Gilt eine Formel in allen modularen oder in allen distributiven Verbänden oder in allen Booleschen Algebren, dann gilt auch die duale Formel in den entsprechenden Verbänden.

Unterstrukturen

[Bearbeiten | Quelltext bearbeiten]

Ein Unterverband von ist eine Teilmenge , die mit den eingeschränkten Verknüpfungen von ein Verband ist, d. h. es liegen

  • und in für alle aus

Ein Teilverband von ist eine Teilmenge , die ein Verband ist, d. h. ist eine halbgeordnete Menge mit Supremum und Infimum für endliche Teilmengen.

Natürlich ist jeder Unterverband ein Teilverband, aber nicht umgekehrt.

Hier ist eine der wenigen Stellen, wo man den Unterschied in der Betrachtungsweise merkt: Für Verbände als Ordnungsstrukturen sind alle Teilverbände Unterstrukturen, für Verbände als algebraische Strukturen sind nur die Unterverbände Unterstrukturen.

Man geht weder bei Teilverbänden noch bei Unterverbänden davon aus, dass die neutralen Elemente in der Unterstruktur erhalten bleiben. Sonst muss man ausdrücklich von einem Verband mit und reden.

Ideale und Filter

[Bearbeiten | Quelltext bearbeiten]

Ein Ideal ist ein Unterverband eines Verbandes , der zusätzlich folgende Bedingung erfüllt: sind und , dann ist . (Die Definition entspricht also formal der Definition, die man in einem Ring erwartet).

Bezüglich der Halbordnung auf gilt aber . Daher kann man die Definition auch so interpretieren:

Ein Ideal ist ein Unterverband, der zusammen mit einem Element auch alle Elemente von enthält, die kleiner als sind.

Filter werden dual zu Idealen definiert:

Ein Filter ist ein Unterverband, der zusammen mit einem Element auch alle Elemente von enthält, die größer als sind.
Die Funktion ist monoton aber kein Homomorphismus; zum Beispiel ist die hier dargestellte monotone Abbildung zwischen den Verbänden und kein Homomorphismus, da , aber . Außerdem ist aus demselben Grund das Bild zwar ein Verband (mit ), aber kein Unterverband von .

Sind und zwei Verbände und eine Funktion, sodass für alle aus gilt

dann heißt Verbandshomomorphismus. Ist zusätzlich bijektiv, dann heißt Verbandsisomorphismus und die Verbände und sind isomorph.

Falls und vollständig sind und sogar

für alle erfüllt, nennt man einen vollständigen Verbandshomomorphismus. Jeder vollständige Verbandshomomorphismus ist offensichtlich auch ein Verbandshomomorphismus.

Die Klasse aller Verbände bildet mit diesen Homomorphismen jeweils eine Kategorie.

Ein Verbandshomomorphismus ist gleichzeitig ein Ordnungshomomorphismus, d. h. eine isotone Abbildung:

  • aus folgt

Jedoch ist nicht jede isotone Abbildung zwischen Verbänden ein Verbandshomomorphismus.

In beschränkten Verbänden gilt: Die Menge der Elemente von die durch einen Verbandshomomorphismus auf das Nullelement des Bildes abgebildet werden, bilden ein Ideal von und dual, die Menge der Elemente, die auf das Einselement abgebildet werden, bilden einen Filter.

Weitere Beispiele für Verbände

[Bearbeiten | Quelltext bearbeiten]

Total geordnete Mengen

[Bearbeiten | Quelltext bearbeiten]

Jede total geordnete Menge ist ein distributiver Verband mit den Verknüpfungen Maximum und Minimum. Insbesondere gilt für alle , , aus :

  • ,
  • .

Nur im Fall einer ein- oder zweielementigen Menge ist der Verband komplementär.

Beispiele für die übrigen Eigenschaften:

  • Das abgeschlossene reelle Intervall und die erweiterte reelle Gerade ( mit und ) sind jeweils vollständige distributive Verbände (und damit beschränkt).
  • Das offene reelle Intervall , die Mengen , und sind jeweils unvollständige unbeschränkte distributive Verbände.
  • Das rationale Intervall ist ein unvollständiger beschränkter distributiver Verband.
  • Die Menge ist ein unvollständiger distributiver Verband mit Nullelement .

Teilerverbände

[Bearbeiten | Quelltext bearbeiten]

Betrachtet man für eine natürliche Zahl die Menge aller positiven Teiler von , dann ist ein vollständiger distributiver Verband mit Einselement (neutralem Element für ggT) und Nullelement (neutralem Element für kgV). Er heißt Teilerverband von . Die Absorptionsgesetze und Distributivgesetze für ggT und kgV folgen dabei z. B. mit der Primfaktorzerlegung aus den Eigenschaften von max und min, man kann sie aber auch durch Teilbarkeitsbetrachtungen herleiten.

Für die Halbordnung des Verbandes ergibt sich die Teilt-Relation . Denn für gilt

Der Verband ist genau dann komplementär (und damit boolesch), wenn quadratfrei ist, d. h. wenn keine Quadratzahl als Teiler hat.

Beispiele für Teilerverbände
T2 ist Boolesche Algebra (und lineare Ordnung)
T4 ist lineare Ordnung
T6 ist eine Boolesche Algebra
T12 ist nicht komplementär
T30 ist eine Boolesche Algebra
ist beschränkt und distributiv, aber nicht komplementär. Jeder Teilerverband ist als Unterverband enthalten

Teilmengenverbände

[Bearbeiten | Quelltext bearbeiten]

Für eine Menge bildet die Potenzmenge mit den Verknüpfungen Vereinigung und Durchschnitt einen algebraischen booleschen Verband mit Nullelement (neutrales Element bezüglich ) und Einselement (neutrales Element bezüglich ) sowie Komplement für alle . Er heißt Potenzmengen- oder Teilmengenverband von . Die Halbordnung auf ist die Mengeninklusion:

  • falls (oder äquivalent dazu )

(Trägermengen von) Unterverbände(n) von heißen Mengenverbände (zwischen den Verbänden und ihren Trägermengen wird oft nicht unterschieden). Diese Verbände sind immer distributiv, müssen jedoch weder vollständig sein, noch neutrale Elemente oder Komplemente haben. (Ein Beispiel dafür ist der Verband der rechts-unendlichen reellen Intervalle mit aus , der isomorph zum Verband der reellen Zahlen ist.)

Unterstrukturenverbände von algebraischen Strukturen, Untergruppenverbände

[Bearbeiten | Quelltext bearbeiten]

Für eine Gruppe bildet die Menge aller Untergruppen von einen algebraischen (im Allgemeinen nicht modularen und damit auch nicht distributiven) Verband mit den Verknüpfungen Erzeugnis der Vereinigung und Durchschnitt. Er heißt Untergruppenverband von .

Beispielsweise ist der Untergruppenverband der kleinschen Vierergruppe, der gerade dem Verband entspricht, nicht-distributiv, aber modular.

Ebenso bilden

mit analogen Verknüpfungen einen modularen algebraischen Verband. Die Untergruppen einer beliebigen Gruppe und die Unterverbände eines beliebigen Verbands ergeben zwar immer einen algebraischen Verband, dieser muss aber nicht modular sein.

Ganz allgemein bilden die Unterstrukturen einer algebraischen Struktur stets einen algebraischen Verband (wobei auch die leere Menge als Unterstruktur betrachtet wird, falls der mengentheoretische Durchschnitt – also das Infimum bezüglich der Mengeninklusion – von der Menge aller Unterstrukturen leer ist).

Insbesondere ist ein Verband genau dann algebraisch, wenn er isomorph ist zum Verband der Unterstrukturen einer algebraischen Struktur (daher auch der Name algebraischer Verband).

Schränkt man die Menge der Untergruppen auf Obergruppen einer festen Untergruppe ein, so bilden alle diese Zwischengruppen auch einen beschränkten Verband. Analog dazu gibt es Verbände von Zwischenringen, Zwischenkörpern, Zwischenmoduln, Zwischenidealen.

Besonderes Interesse hat man am Untergruppenverband der Galoisgruppe einer galoisschen Körpererweiterung , denn er ist isomorph zum dualen Zwischenkörperverband von .

  • Rudolf Berghammer: Ordnungen, Verbände und Relationen mit Anwendungen. 2. Auflage. Springer+Vieweg, Wiesbaden 2012, ISBN 978-3-658-00618-1.
  • Garrett Birkhoff: Lattice Theory. 3. Auflage. AMS, Providence RI 1973, ISBN 0-8218-1025-1.
  • Hilda Draškovičová: Ordered Sets and Lattices. AMS, 1992, ISBN 0-8218-3121-6.
  • Hans Hermes: Einführung in die Verbandstheorie. 2. Auflage. Springer-Verlag, Berlin/Heidelberg 1967.
  • Heinz Liermann: Verbandsstrukturen im Mathematikunterricht. Diesterweg Salle, Frankfurt a. M. 1971, ISBN 3-425-05317-5.
  • Gábor Szász: Einführung in die Verbandstheorie. Akademiai Kiado, Budapest 1962.
Commons: Verband – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise und Anmerkungen

[Bearbeiten | Quelltext bearbeiten]
  1. Leo Corry: Modern Algebra and the Rise of Mathematical Structures, Springer, 2004, ISBN 3-7643-7002-5, S. 267
  2. H.Gericke, Theorie der Verbände. 2. Auflage. Mannheim 1967, S. 76 (Figur dazu auf S. 70)
  3. H.Gericke, Theorie der Verbände. 2. Auflage. Mannheim 1967, S. 111
  4. G.Grätzer, Lattice Theory, 1971, S. 75
  5. Helmuth Gericke: Theorie der Verbände. Bibliographisches Institut, Mannheim 1963, § 6.2