Satz von Kurepa

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Der Satz von Kurepa (englisch Theorem of Kurepa) ist ein mathematischer Lehrsatz aus dem Teilgebiet der Mengenlehre. Er geht zurück auf den jugoslawischen Mathematiker Đuro Kurepa.[1][2][3]

Der Satz beinhaltet eine logisch äquivalente Formulierung des Auswahlaxioms in der Sprache der Ordnungstheorie.

Formulierung des Satzes

[Bearbeiten | Quelltext bearbeiten]

Der Satz von Kurepa lässt sich wie folgt formulieren:[4][1][2]

Das Auswahlaxiom ist logisch äquivalent mit der Bedingung, dass jedes der beiden folgenden Prinzipien  ) und     Gültigkeit hat:
     : Auf jeder Menge     existiert eine lineare Ordnung   .
   : Jede Antikette einer jeden teilweise geordneten Menge ist in einer bezüglich maximalen Antikette enthalten.

In formelhafter Kurzdarstellung lässt sich der Satz auch so angeben:

Auswahlaxiom      

Originalarbeiten

  • G. Kurepa: Über das Auswahlaxiom. In: Math. Ann. Band 126, 1953, S. 381–384 (MR0058686).

Monographien

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. a b Harzheim: S. 52.
  2. a b Sierpiński, S. 428
  3. Oft auch unter dem Namen Đuro Kurepa genannt oder (meist im englischen Sprachraum) unter Djuro Kurepa; kyrillisch Ђуро Курепа (* 16. August 1907; † 2. November 1993) – Dura Kurepa. history.mcs.st-andrews.ac.uk
  4. Kurepa: Über das Auswahlaxiom. In: Math. Ann. Band 126, 1953, S. 381.