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0. INTRODUCTION

The purpose of this paper is to classify the finite simple groups which
arise as groups of standard type in the Trichotomy Theorem of Gorenstein
and Lyons [33]. We prove

THEOREM 1. Let G be a finite simple group of characteristic 2-type in
which all proper subgroups are K-groups and e(G) > 4. If G is of standard
type with respect to some (B, x, L) € . *(p) for some prime p € §,(G), then
G € Chev(2).

The definitions relevant to Theorem I and the statement of the Trichotomy
Theorem referred to above appear in the next section. If G is not of standard
type but satisfies the other hypotheses of Theorem I, then the Trichotomy
Theorem says roughly that either G contains a 2-local subgroup M with
0,(M) of symplectic type or G possesses a strongly p-embedded maximal 2-
local subgroup for various odd primes p. Proving the Trichotomy Theorem is
a major step in classifying finite simple characteristic 2-type groups G with
e(G) > 4.

The techniques of proof in this paper have appeared before in the solution
of odd standard component problems. The articles [23,35] survey the
literature on odd standard component problems and the methods involved. In
particular Finkelstein, Frohardt, and Solomon [17-22] have treated almost
all the cases of Theorem I.in which L is a group of Lie type defined over a
field of order 2. We originally intended to restrict ourselves to the remaining
cases. However it turned out that this dichotomy was artificial, and so we
give a proof of Theorem I which is independent of the work cited above.

* Partially supported by N.S.F. grant MCS76-05987.
"Partially supported by N.S.F. grants MCS76-07280, MCS78-02463, MCS80-03027.

383
0021-8693/83/020383-134$03.00/0

Copyright © 1983 by Academic Press, Inc.
All rights of reproduction in any form reserved.



384 GILMAN AND GRIESS

Much of that work is more general than required for the proof of Theorem I:
in many cases the hypothesis that all proper subgroups of G be K-groups is
avoided.

1. THE MAIN THEOREM OF (GORENSTEIN AND LYONS

The material in this section is taken from [33]. Standard definitions and
notations may be found in |27, 28, 31].

The known simple groups are discussed in [28, Chap. II]. A K-group is a
finite group all of whose simple sections are known. Let X be a finite group.
H is a 2-local subgroup of X if H= N,(T) from some 2-group T< X, T # 1.
X is of characteristic 2-type, if Cy(H)< O,(H) for every 2-local subgroup H
of X. By definition

e(X) = max{m, ,(X)|p ranges over all odd primes}, where for any odd
prime p

m, (X)= max{m,(H)|H ranges over all 2-local subgroups of X}
and

m,(H) is the maximal rank of an abelian p-subgroup of H.
Further

B(X) = {p|p an odd prime, m, ,(X) > k};

#P(X)=the set of elementary abelian p-subgroups of X. p an odd
prime:

& (X)={4 € EP(X) Im,(A) =k}

Frax X3 p)={B|B € #°(X), m,(B)=m, ,(X). and B lies in a 2-local

max

subgroup of X}.

We now define the notion standard type. Let G be a finite group and p an
odd prime. ¥ *(p) is the set of triples (B,x,L) where B € #%,,.(G,p)
X € B* and L is a component of C;(x) with the property that C;(L) has
cyclic Sylow p-subgroups. Define #(p) to be set of triples (B, x*, L*) with
B as before, x* € B*, and L* a p-component of C;(x*) with the property
that C,(L*/0,.(L*)) has cyclic Sylow p-subgroups.

If (B,x,L)E .7 *(p), a standard subcomponent of (B,x,L) is a pair
(D, K) such that x € D € #,(B), K=L(C,(D)) is a single component, and
D = C,(K), with the additional restriction that if p = 3 and there exists a pair
(D,, K,) satisfying these conditions with K, £ U,(2) or 4,, then necessarily
K#£UJ2)or A,.

This last condition involves a minor technical point and avoids certain
generational difficulties.
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If (B,x,L)€.*(p), and (B,x* L*)€ F#(p), we call (B,x* L*) a
neighbor of (B, x, L) in G provided the following conditions hold:

(1) (D, K) s a standard subcomponent of (B, x, L), where D = (x, x*)
and K = L(C,(D)):

(2) L*<(K').J=L,(Csxx*))

(3) x does not centralize L*/0,,(L*)

(In the situation in which this notation is used, K will be a subgroup of
L, (Cs(x*)).) We say that (B, x*, L*) is a neighbor of (B, x, L) with respect
to (D, K), if these conditions hold.

In the definition of standard type, L and L* will be covering groups of
Chevalley groups (including twisted groups) defined over GF(2") and the
integer p will divide either 2" — 1 or 2" + 1. To describe precisely which of
these two integers p divides, we need two further definitions.

Let p be an odd prime, and J be a covering group of a Chevalley group J
defined over GF(2") for some n. (We consider twisted groups to be defined
over the fixed field of the field automorphism involved in the twist.) We say
that p is a splitting prime for J or p splits J, if and only if one of the
following holds:

(1) Jis untwisted and p|2" — 1; or

(2) Jis twisted and p|2" + [; or

(3) J='D/(2") or *D,(2"), and p|2" — 1; or
(4) n=1and p=3.

We say that p is a half-splitting prime for J, or p half-splits J, if and only

if one of the following holds:
(1) p splits J; or
(2) J=B(2"), D,(2"), F{(2"), E;(2"), or E¢(2"), and p|2" + I; or
(3) J="A4,2") or *E,(2") and p|2" — 1; or
(4) J=A4)or Ej4). Z(/)=1,and p=5: or
(5) J=Az(2)and p=T;0r
(6) J=FEJ (2)and p=1.

Finally, if G is a group, p is an odd prime, and (B, x, L) € .7 *(p), we say
that G is of standard type with respect to (B,x,L) if and only if the
following conditions hold:

(1) L is a covering group of a Chevalley group of characteristic two:
(2) p is a splitting prime for L:
(3) every element of B induces an inner - diagonal automorphism on
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(4) B does not centralize every B-invariant 2-subgroup of C (x);

(5) for every neighbor (B, x*. L*) of (B, x, L) in G, B normalizes L *,
L* is a covering group of Chevalley group of characteristic two, and either p
half-splits L* or else x induces a nontrivial field automorphism on
L*/Z(L*);

(6) for every standard subcomponent (D, K) of (B, x, L), there exists a
neighbor (B, x*, L*) of (B, x, L) with respect to (D, K). Moreover for all
d€ D* [K, 0,(C;(d))] has odd order.

We now state the Trichotomy Theorem of Gorenstein and Lyons [33].

TriCHOTOMY THEOREM. Let G be a finite simple group of characteristic
2 type in which all proper subgroups are K-groups and e(G) > 4. Then one of
the following holds:

(I) G is of type GF(2);
(II) G is of standard type with respect to some (B, x, L) € & *(p) for
some prime p € §,(G); or
(II) G is of uniqueness type with respect to 6(G).

The définitions we have omitted can be found in [33].

2. PROPERTIES OF GROUPS OF LIE TYPE IN CHARACTERISTIC 2

Throughout this paper, we shall assume that the reader is acquainted with
the basic theory of the groups of Lie type, particularly the B, N-structure and
the commutator relations [12, 54, 55]. It will also be necessary to view groups
of Lie type as classical groups from time to time (e.g., 4,(g) = PSL(n + 1, q),
4,(q) = PSU(n + 1, q); see |12, 54].

In this section we list a number of results about groups over a field F
algebraic over F,. The finiteness of F is not important in many cases.

Notation. Suppose that G is a group of Lie type over I, but not type
’C,, *D,, *G, or ’F,. We let X be the associated root system. For each
a € X, there is an associated root group X, < G. Let E be a quadratic
extension of F. Then X, consists of elements x,(¢) or x,(¢, u) which satisfy
one of the following sets of relations

(i) x,(O)x,(u)y=x,(t+u) tbtuchk;
(i) x, ()x,(u)=x(t+u)t,uck;

(ili) x,(t,u)) X, (6 uy) = X, (4 + by wy tuy + (), 1, buy, u, €R
and f,f;=u;+u; for i=1,2. (note that x,(f,u) '=x(st+u) and
[xa(tys up) Xolt2y u)| = x,(0, 8, F5 + £115).
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If the roots a and B are in the same orbit under the Weyl group, then the
same relation is associated to X, and X;. Recall that two roots are in the
same orbit if and only if they have the same length.

The appropriate relations above are called Steinberg relations of type (A).
The commutator relations among elements of distinct root groups are called
relations of type (B) and they have one of the following shapes:

[x,(£), x5(u)] =1
=X p(tu)
=X, p(ti + fu)
=X, 1 p(tu) X, | (et
= Xo 4 (1) X2, p(t1U)
=X, (0, tid + tu),
[Xa(t, u), X5(0, W) = X120 4.5, (0,
[xa(t, u), x5(0)] = 1
= X, , p(@) x, , ,5(tv, uv?),
[x0(£), x5, 0)] = 1

=X, ,3(01) x,, , s(tu, vti)

for various a,fE€ X, t, u, v, wEE or F. See [54] for a more thorough
discussion and for the detailed list of relations for each group. The elements
x,(t, u) occur only in ?4,, n even. Note that the annoying plus or minus
signs vanish in characteristic 2.

If G has type D, over F and E is a degree 3 extension field of F, then X,
(as above) consist of elements x,(¢) satisfying relations (i) or (ii) above. The
commutator relations are of the form

[x,(2), xz(w)] =1
=X 1 p(14)
=x, , (1 + fu + i)
=X, , o(tF + Fu) X, , o5 (000 + Fiu + fuir)
< Xyq 4 p(FU + 0T + tF0D)

ST (1) SN (717) BN (17171 7) B SN (L V171 7 ¥
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We shall use the following conventions for root systems. When passing
from an untwisted group to a Steinberg variation, the root system changes as
follows (see |54}):

4,- CI1n+ IR

x_'Bn—l’

In the left column, there is one root length, while in the right column, there
are two. Following Steinberg [54], a root in the right column shall be a set
R={r}, {r.7} {r,7,F} or {r.7r+F} of distinct roots r,F,.., where the
overbar denotes a symmetry of the Dynkin diagram extended to the root
system ({r, 7, F} occurs only for D, and |{r, 7, r + 7} occurs only for 4,, n
even, and when it does, sets of the form {s}, where s =§, are not considered
roots in the twisted system). A root of the form R = {r, 7} or {r, 7, F} is
considered short, and the others are considered long.

The Steinberg relations for twisted groups are trickier than those for
untwisted groups; compare [36} and [55]. We point out that the Chevalley
commutator relations for untwisted groups look like

[xt(t)’xs(u)]: ]_[ xir+js([iuj)’

i,j>0

whereas the analogue of the relations for twisted groups looks like

[xg Xs] = H Xig +js-
Hi>0
i+j>0
ijel 27 i+je’

Let G be a simple group of Lie type perhaps extended by diagonal
automorphisms and defined over a finite field I, of characteristic 2. When
we write G=C,(q) for example, we mean that O®(G) is isomorphic to
C,(g). We never consider G=4,(q), ’C,(g), or *F,q). We adopt the
convention that if X is a root system with all roots the same length, then a
long root or a short root of ¥ means just a root of X.

We need information on the 2-local structure of G. Much of the next few
lemmas is in |16, Lemma 4.8]|. The lemmas follow from the commutator

relations above, or one can compute in 4,(q), C,(q), *4,(q), *4.4(q)-
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LemmA 2.1. Ifa+fis not a root, | X,, X;| =1 except for the case a,
long in *A(q), [ even.

LemMma 2.2. Ifa. B, a+ f all have the same length., then
(i) L1#|g h|forg€ Xy, hE€ XS,
(i) ifG+'Dyq), |8 Xs) =X, .z for g €XT;

(iii) if G="D,(q), and a, B, a + B are long, then the equation in (ii)
holds, while if a, B. a + B are short, then [X,, X;| =X, , s X, 13X30:5-

LEmMA 2.3. Ifa,a+ 8 are short, and f is long, g € X and h € X}, then
() If G+ °D,(q). then
L# (g h€X, X205~ KorsY Xag )
(ii) if G="D,(q), then

1#[8h] € Xo. 5 Xsns5Xsa+8X3a428—
(Xa+B U X2a+B U X30+B U X3a+2[5);

(1) [X,, X5 =X,,5Xs0.5 unless G="D,(q) or G is is untwisted
and g =2:

(iv) [XmXB] =Xo18X20+8%X30+8%X30+28 ifG= 3D4(‘I)§

(V) [XQ’Z(XB)I :Xn+BZ(X20+B)'

LEMMA 2.4. If a, B are short and a + f is long, then
(i) [X,.X;]|=11if G is untwisted;
(i) |8 Xgl=2Z(X,,;)for g € X2 if G is twisted.

LEMMA 2.5. If G has type *A,(q), n even, a, B are long and }(a + f) is
short, then [ g, Xz =X, for gE X, —Z(X,) and [Z(X,), X;] = 1.

Let H be a Cartan subgroup corresponding to our choice of root groups

for G. Possibly H = 1.

LEMMA 2.6. Suppose x € Z(X,)* for some a €X; and if a is short,
suppose G is not twisted. Define

Q= (X,|(@.f)> 0),
L = (X,|(a. f)=0).

481'80/2-8
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The following conditions hold:

(i) Q is a 2-group;
(i) L normalizes Q;
(iii) H normalizes Q and L;
(iv) L is a central product of groups of Lie type, or L = 1;
(v) Q=O0,(HLQ):
(vi) LQ=O0%(HLQ);
(vii) ifg€ G, and x* € Z(X,,)*, then g € HLQ;
(viii) N (Z(X,))=HLQ:
(i) Colx) = Cylx) LQ = Co(Z(X,)).

Proof. Conditions (i)-(iii) follow from the commutator relations and the
fact that H normalizes every root group. Likewise [LQ, Z(X,)|=1 and
HLQ < Ni(Z(X,)) whence (vii) implies (viii) and (ix). Further, (iv) is a
consequence of the Steinberg—Curtis—Tits presentations discussed above and
in Proposition 2.27, and (vi) holds because H has odd order.

It remains to prove (v) and (vii). Pick a fundamental system I7 for 2’ such
that « is the highest root of its length in X with respect to /1. Observe that
(. ) <0 for every yE 1. Let U and V be the Sylow 2-subgroups of G
corresponding to the positive and negative roots, respectively. Note U < LQ.
Every g € G has a unique representation

g=uhn_u"

and one consequence of this fact is UM ¥ =1. Check that IT contains a
fundamental system for the root system corresponding to L. As a conse-
quence UN L, VN L € Syl,(L) which together with (UNL)N(VNL)=1
forces O,(L)= 1. Now (v) must hold.

To check (vii) suppose g is as above and for some y € Z(X,)*, yg = gx.
Reduce gx to standard form and notice that yg = gx forces w(a) =a. By [12,
Corollary 2.5.4] w is a product of reflections corresponding to roots
orthogonal to a. Thus n, € HL. Since U< LQ, we have g € (LQ)(H)(HL)
(LQ)= HLQ.

The method of proof of the preceding lemma works also for the next two
lemmas.

LemMa 2.7. Suppose x € X7 for some short root ¢ € X and G = R ()
Let {y, —y} be the unique pair of roots such that y is short and y + a is long.
Define

0 = (X;](a, B) > O);
L ={(X;|(a, B)=0,8# £y).
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L,=(X,, X_,y=A,(q") and there is an involution n € N, (H) such that n
inverts HNL, =7, _,, n normalizes X,, n permutes X, and X_,, and n
induces a field automorphism on (X, X _,) = A,(q*). Further, the following
conditions hold:
(i) Q is a 2-group;
(i) L normalizes Q;
(iil) H normalizes Q and L;
(iv) L/Z(C)=’4, (o
(v) [nL|=1and |nQ|<Q;
(vi) Q= 0,((n) HLQ);
(vii) ifg€ Gand x* € X,, then g € (n) HLQ;
(vill)  Ng(X,) = (n) HLQ;
(i) ColX,)=CylX,) LQ;
(x) there is a subgroup ECX,, ExE,, such that for x € E”,
Celx) =(n) Cy(x) LQ = C(E).

LEmMMA 2.8. Suppose x € X7 for some short root a € X and G = *E((q).
Define

Q = (X;l(a, B) > 0);
L = (X;|(a,)=0andp is long).

For any y such that (a,y)=0 and y is short, L, =(X,, X_Y=A4,(¢"), and
there is an involution n € Ny (H) such that n inverts HONL>Z2, ,, n
normalizes X, and n induces a field automorphism on (X_,,X_,)=A,(q°).
Further the following conditions hold:

(i) Qis a 2-group;
(ii) L normalizes Q;
(iit) H normalizes L and Q;
(iv) L/Z(L)=Ayq):
(v) [n.Q]<0. [n LKL, and n induces a graph automorphism on

(vi) Q=0,((n) HLQY);
(vii) fge€ Gand x*€X,, then g € (n) HLQ;
(viii) Ng(X,)= (n) HLQ;
(ix) CG(Xn) = CH(Xa) LQ;
(x) there is a subgroup E<X,, Ex=E_, such that for x € E”,
Calx) = (n) Cy(x) LQ = C4(E).
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LemMmA 2.9. Let a be a root in £ with a long if G ="D,(q), *D,(q), or
“Eq). If x € Z(X )", then C(x)/LQ is cyclic.

Proof. Let R=Z(X,) and recall C,(x) < N,(R)=HLQ. It suffices to
show that C,(r)/HNL is cyclic If G=A4,4q) or ’4,(g), use matrix

ranracantatinne In the ramaining ragag I hnog a rant guctam af ranl Ana lace
LLpiLotiiniativils. 1 e LViLialiiilly vadud Lo ildd a 1UUL dYyDJiLill Ul Tallh ulic I€SS

than that of G. Further, except for G =E(g), *Es(g)L admits no outer-
diagonal automorphisms whence H=(HMNL)X C,(L) and the result
follows. In the case G = E¢(q) use the representations of H as characters on
Z® and calculate directly that |C,,(r): HNL| =1 or 3. Finally use the usual
embedding of *E¢(q) in E4(q°) to prove the same result for G = *E (q).

A consequence of the last lemma is the following:

LemMa 2.10. If x€ Z(X,)* for some a € X, with a long if G="'D,(q)
or *D,(q), then

(i) Calx) = (Xgl(a, ) 2 0) Cpylx).
(i) If a € Aut(G) with RN R+ 1, then R® = R.

Proof. The first assertion is clear, and we know the second holds if a is
inner. Since Aut(G) = Inn(G) N, (R), (ii) is valid for a.

LemMma 2.11. Let R=Z(X,) for some a € X. Take a to be long if G is
any twisted group. Let Q = O,(N;(R)) and J={(R.Z(X_,)). The following
conditions hold:

(i) 10.Ql=R<=Z(Q);

(iil) Ng(R) has no central factors on Q/R unless G =A4,(2);
(iii) O (G)={J. Q)
(iv) if G< A< Aut(G). then O,(N,(R)) S Q;

(v) if rER* and G<ALAuw(G), then C,(r)=N,R) and
[R. 0,(C (r)] = 1.

Progf. Condition (i) follows from the commutator relations and
preceding lemmas which describe the generation of Q. Likewise in the
notation of the preceding lemmas, N, (R) = {(Q, L. H) is a maximal parabolic
in G whence (Q,L,H,Jy=G. But HL normalizes ¢ and J whence
(Q,J) <1 G and (iii) holds.

To verify (iv) suppose a € O,(N,(R)) — G with a* € G. Since q is even, a
is a field or graph automorphism. Assume that « is the highest root of its
length with respect to some fundamental system II < X' and take o to be the
standard automorphism (with respect to IT) for which d =0~ 'a is an inner-
diagonal automorphism of G. If G=C,(g) or F,(q) with o a graph
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automorphism, then d maps R to a root group X, with § and a of different
lengths. But using the decomposition

d = uhnu,

one sees that d cannot act on G in such a way. Otherwise ¢ normalizes R,
whence d does too. Since a € O,(N ,(R)), it follows that ¢ induces an inner-
diagonal automorphism on LQ/Q and centralizes HLQ/Q. Examination of
cases yields (iv).

For G=4,(q), 4,(g), or C,(q) use matrix representations to prove (ii).
(Note that L(G) simple implies G # 24,(2).) In the remaining cases use the
results and methods of [16, Sects. 3 and 4].

The first part of (v) is a consequence of Lemma 2.6(viii) and 4 = GN ,(R).
From Lemma 2.6(ix) we deduce O*(N,(R))< C,(r)=N,(R) whence
0,(C ,(r)) < O,(N,(R)). Now the second assertion of (v) follows from (i)
and (iv) except when G =4,(2), 4,(2), or 4,(4). In the first two cases
R ={r) and the assertion is immediate, while in the last case it may be
checked directly.

LEMMA 2.12. Assume the notation of the preceding lemma, and take
G ="E(q) or *A,(q), and a.short

i) ([, 2l R)<= Z(Q):
(i) N.(R) has no central factors on Q/R;
(i) 0*(G)=(/, Q)
(ivy if G= A< Aut(G), then 0,(Ns(A)) < Q;
(v) ifrER*and G <A< Aut(G), then C (r) S N (R).

Proof. A proof similar to the preceding one works. In this case N;(R) is
not a maximal parabolic, but one can show that (N,(R),J) contains a
maximal parabolic containing N;(R).

The next four lemmas are proved by matrix calculations and the methods
of |16, Sects. 3 and 4].

LEMMA 2.13. Let R =Z(X,) for some a € X with a long if X has roots
of two lengths. Let Q = O,(N (R)). Then Q/R is a nontrivial irreducible
N {(R)-module except when G =A,(q) or F,(q).

LEmMa 2.14. Let G="E(q), *A,(q), n>3, or C,(q). n>2, and take
R = X, with a short. Let Q = O,(Ng(R)); then Q has a unique subgroup U
with RcUc Q and U <1 Ny(R). Also U=Z(Q) and U is generated by R
together with the two root groups X, for which a and § have different lengths
and (a, ) > 0.
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LEMMA 2.15. Let G=A,q), R=X,, and Q= 0,(Ny(R)). Assume
n>3 or g>2. There are two subgroups U such that Rc Uc Q and
U <O Ng(R). Both subgroups are generated by various root groups
corresponding to roots f with (a,f)>0. U/R and Q/N are nontrivial
irreducible N;(R)-modules.

LEMMA 2.16. Let G=F,(q), R=X,, and Q= 0,(N;(R)). There is
unique subgroup U of Q such that RcUc Q and U<aNyR). U is
generated by X together with the root groups X for which (a, 8) > 0. and «
and B have different lengths.

LEMMA 2.17. Let R=Z(X,) with a long if G is twisted. Define Q as in
Lemma 2.6. If J is a summand of L, then Q = [Q,J] R.

Proof. Let U=[Q,/|R and suppose Uc Q. By Lemma 2.11(i),
[Q. Q] < R, and it follows that U= [Q, JQ]| R. As JQ <1 N4(R), U <1 N,(R)
also. The possibilities for U are listed in the preceding lemmas, and it is
straightforward to find in each case a root group of G which lies in J and
acts nontrivially on @/¥, contradicting [Q, J] < V. In many cases we already
know that J must equal L and that Q/R is an irreducible L-module.

The group G may be described as the fixed points of a standard algebraic
endomorphism ¢ of an adjoint algebraic group G defined over the algebraic
closure K of our finite field. Here Cg(o) includes all the diagonal
automorphisms of G. Let 2 be a root system for G with root groups X;,
d € £. Given a fundamental system 1T for Z, the choices for ¢ are listed in
{8, Table 1|. In each case o corresponds to a certain symmetry of the
Dynkin diagram and the root system, and also to isomorphisms of the root
lattice and the Weyl-group W. We denote all these maps by o.

Cy(o) is the Weyl group of G; and with an adjustment when G = 24 ,(q),
n even, the orthogonal projection of £ onto the fixed points of ¢ on RZ gives
Z. the root system of G. With the same exception, root groups of G
correspond to orbits of root groups of G under ().

The method of Burgoyne and Williamson [10] is useful in answering
questions about classes and centralizers of elements of G of order prime to g
(where T, is the field of definition of G). We give a sketch of the method.

Denote by I’ the dual lattice to 7X. Each element n € I’ defines a
homomorphism K* » T, T a fixed Cartan subgroup of G, which sends
AEK* to t(n,A)ET. The element t(n, 1) is itself defined by giving its
corresponding character y

1 ZE - K*,

xfa) =A™, a€ L.
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Fix a primitive pth root of unity A € K* for some p with (p,g) = 1; and let
t(n) = t(n, A). Every element of T of order p is t(n) for some n € I
The Weyl group W of £ acts on I' by

wila) =n(w 'a)
and the semidirect product W. pI” acts by
(w, pu) n = win + py.

The conjugacy classes of elements of order p in G correspond to orbits of
W.pI' on I. If [n] denotes the orbit of #, then the corresponding class
intersects the finite group G if and only if [#] = [on]. GN [#n] is a union of
G-classes each corresponding to a pair [#, vo] with v € W and vou — u € pI.
For any such pair ¢(n) centralizes I, 0, where [, is any inner automorphism
of G defined by some element of the coset of N(«,(T)/T corresponding to v.
By Lemma 2.33 [,0 is conjugate to o by an inner automorphism of G. Thus,
G = Cg(I,0), and in fact the centralizer in G of an element of |7, va| is
isomorphic to Cg(t(n)) M Cg(l,0). For example when p|g + 1, it turns out
that the classes of p-elements of G which intersect B*, an elementary abelian
p-group of G of maximum rank, are |7, wo| where w interchanges positive
and negative roots of Z.

If t(n) € [n, vo], then G, = O (C4(t(n))) is a central product of groups of
Lie type defined over I, (the field of definition of G) or finite extensions of
F,. G, can be recogmzed from the action of vo on £, = {d@|n(d)=1}. If
v = 1, then the orbits of (¢) on Z, give a system of root groups for G, which
correspond to a root system EOEE In general G, does not have a root
system which is a subsystem of X.

LeEmMMA 2.18. Using the notation introduced above, let ¢ be a standard
algebraic endomorphism of G with 0¥ (Ci0)) < G < Cx(0), and let p=1,.0.
Suppose X is a root system such that

Z,c %,
{p.6) acts on £,,
and such that the restriction of v to X, is in the Weyl group of £,. Further

suppose that if @, ,3 € £, and [X;, X5] # 1, then all linear combinations of &
and f in £ lie in z,.



396 GILMAN AND GRIESS

Let Gy=(X;la€X,) and G,=0"(Cs(p)). The following conditions
hold:

(i) GO is a central product of Chevalley groups defined over K and
corresponding to the orthogonal summands of X

(it) there is an inner automorphism of G which carries C,(0) 1o C(p)
and CG”(O') to Cq; (p);

(iii) G, is a central product of groups of Lie type defined over [t or its
finite extensions;

(iv) G, has a root system Z,< Z, and any choice of root groups for
G, corresponding to X, extends to a system of root groups for G with the
convention that when G =*A4,(q), n even, an abelian root group of G, may
become the center of a nonabelian root group of G.

_ Progf. It suffices to find z € G such that (1.)"' pI. = ¢ and I, normalizes
G,.

Let £, consist of all roots in % orthogonal to ZX,. and let
G,=(X;|8€ Z,). G, is a central product of Chevalley groups over K, and
[G,.G,| = 1. Choose v, in the Weyl group of £, so that v restricts to v,. By
[12, Corollary 2.5.4], (v,)~' v = v, for some v, in the Weyl group of Z,. By
Lang's theorem choose y € G,G, such that (I,)"'pl,=1,0 for some
xETCHG,G)=T.

It is a consequence of Hilbert’s Theorem 90 that for any g=2" and
1 € K* there exists y € K* with gu~?=A. It follows in a straightforward
way that there exists v € T such that (/,)~' I o/, = o, whence we may take
z=1yh.

As an application of the preceding lemma suppose £,={xd} for some
@ € ¥ with p(d) = +4, o(d@) = 4. We see that every root group of

is a root group of G. When p =1, 0 and w is the element of the Weyl group
W of G which interchanges positive and negative roots, then C;{p) is tran-
sitive on the set of roots d of a fixed length with g(d) = —a. In fact we may
take & to be the highest root of its length whence o(d@) = d automatically.

LemMA 2.19. Let p =1 0o with w interchanging the positive and negative
roots of X. If p{(@) = —d. then any root group of
C(,\',;..\ ,(;)(p)

is the center of a root group of G corresponding to a root a € X. When Zor
L has roots of two lengths, the possibilities are as follows:
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G

a

G a

A, *A4,(q) long long
C, C.(q9) short short
C, C.(q) long long
D, D, (q) long
D, ‘D,(q) long
Eg *Eq(q) long
F, F.q) short short
F, F,(q) long long

397

We make one more application of Lemma 2.18 to the cases G = E(2) and
Eg4(2) with p = 7. Choose extended fundamental root systems of type E¢ and

E, as follows:

ay as a; a, as a

@,

as

Qg

where «a, is the lowest root in both cases. Let w; and w, be the involutions
of the Weyl group corresponding to roots «; and «,, respectively. Define v

in the Weyl group of E, by

Us = a,

a,— a,

dy — Us.

Define the endomorphism p of the corresponding algebraic groups E4(K) and
Eg(k) by p=1,0, and p=1,,0,, respectively. Here I, € E¢(K) corresponds
to v and I, € E4(K) corresponds to w=w,wy. We consider elements of
order 7 in the groups E (2) and E4(2). In the notation of Burgoyne and
Williamson [10], [2#, + #5, p] denotes a conjugacy class in E(2) each of
whose elements has centralizer isomorphic to

'D,(2)x Z,,
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while {ng + n,, p| is a class in Eg(2) with corresponding centralizers
E(2)x Z,.
Let G = E4(K) or E4(K) and G = Cg(p).

LEMMA 2.20. In terms of the definitions above, if x is a root group of G
corresponding to a,, then Cy(p) is a root group of G.

The following lemma is proved by the method of Burgoyne and
Williamson.

LEmMMA 2.21. Let x be an element of order 7 in G with L = L(Cg(x))
and J = Cgi(x) N Ci(L). For each G below we list L and J as x ranges over
representations of each G-class of elements of order 7. We also give the
corresponding class in the algebraic group. These classes do not split in G.
The fundmental roots are labeled as above.

G L J Classin G
E¢(2) 4,(2) Ly, no+ M+ N+ s
4,(2) X 4,(2) i 2, + 1, + 1,
'D,(2) z, n + 275
‘D,(2) I 21, + s
Ey(2) E¢(2) Z, e + 1,
'Dy(2) X A,(2) I, Ny + s

We mention some general results which are contained in [10, Sect. 5.2].

LEMMA 222, If y€G has odd order, then O*(Cy4(y)) is a central
product of groups of Lie type defined over fields of characteristic 2. and
C ()N C,(O*(C,(y)) has odd order.

LemMA 2.23. Suppose y € G has odd order and normalizes R = Z(X,)
whose X, is a root group of G with G # D (q), *E(q), *D,(q) or *4,(q), n
odd, if a is short. Then O,(Cy, z)(1)) < O,(Ng(R)).

Proof. This follows from the structure of Ng;(R) given in Lemma 2.6,
The element y acts as an inner-diagonal automorphism on Ng(R)/0,(N4(R)).

Apply the preceding lemma.
For various computations we will need the following information.

LEMMA 2.24. Ler p be an odd prime and q =2".
(i) Ifp°llg—¢e a>1and ¢= =1, then p®*'|q" — &
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(it) ifs=Za,q", and e = £1, then (s,q —¢)=2¢e"a,
(iil) ife==+!1, t=+1, then
(24— 20 —7)=210 | if e=1t=1
— 2(a.b) +1 lf £ = (_l)a/(a.b), 7= (_l)b/(a.b)
=1 otherwise.

Proof. To prove (i) let g —e=>5bp° ptb and expand (bp° +¢)’ =q”.
Since p is odd, p|(%), and the only terms not divisible by p®*? equal
e 4+ (P)bpe? ' =¢+ bp®t'. Thus, ¢° — e =bp°"" modulo p*2.

The last two assertions are proved by induction. The induction steps are

(s,q—€)=(s—a,q" " '(q—e)q—¢)=Ze"a,
and assuming a > b
(2° -2 —1)=(Q9—£e 2772 —1),2°—1)
=2 %1 —¢20 1)

=297 —1¢,2° —1).

LEMMA 2.25. With g and p as above and m > 2

(l) |Am~l(qp)|*|Apm——2(q)‘ ifp|q_ l* and
(ii) 1’4, ,(@"N1’4,, @) if plg+ L.

Proof. Let ¢=1 if (i) fails, and ¢ =—1 if (ii) fails. Cancelling terms
which appear in both order formulas and replacing 1/(m,q” —¢) with
1/(g” — ¢), we obtain

qmp _ sm pm—1
r=—r_ I .
" —¢ | 1 (¢—¢) (*)

phj

Note that r is an integer by the preceding lemma. Likewise replace each

factor (¢’ —¢’) in (x) by its greatest common divisor with g™ —¢™ and
conclude that r divides some power of g™ —¢™. Let
S:(Eq)m(pfll+(€q)m(p72>+__.+ 1. (**)

We have s(g™ — ¢™) = g™ — ¢™ divides g” — ¢ times some power of g" — &".
By Lemma 2.24(i, ii), p|is and (s,q™ —¢&™)=p. Note that p|g — ¢ implies
plg™ — €™, so Lemma 2.24(1) is applicable.
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Our conditions force s| p(g” — ¢) whence s  p(¢” — ¢). The summands in
() are of decreasing magnitude and are all positive or alternate in sign. It
follows that g™" " s whence ¢"* "< p(g” +e)<pg”*"'. Thus
qun S0p - 4p -2 gp As p> 3. zlm—li(p—lh g q(m—l)(p—li gp forces m = 2.
and likewise p = 3.

Now ¢'+q° +1=r<plg" +€)=3(q" +¢) implies g=2, ¢=—1, but
r=21 does not divide p(g” + ¢) = 217.

LEMMA 2.26. In the following table |A|}|B].

A B
7”5(q) or*D,(r). r A,(q) or *4,(q) )
‘D {q) OrAz( ) Dy(q) or A5(q)
'D(q) or *A,(q°) *Di(q) or *A(q)

Proof. Similar to that of the preceeding lemma but easier.

ProposITION 2.27 (The Steinberg Relations). Let X be an indecom-
posable root system of rank at least 2 and let < be an ordering on X [54]. To
each a € X. let there be associated a group X, (a “‘root group™). Suppose
that for any pair of roots «, B with a + —f the following holds; whenever
x,E X, and x; € Xy, there are elements x,€ X, for every y € X of the form
y=ia + jB, i. j nonnegative integers or half-integers such that

[Xar x5l =] [ ;. (+)
.

where the order of the product is given by <

Let G be the group generated by all X, a € Z, subject to the relations in
X, (relations of type (A)) and all relations (+) (relations of type (B)).

Suppose that G is a quasisimple group of Lie type over F generated by a
usual set of root elements X,. for x,€X,, a€ X such that there is a
homomorphism G %G sansfymg X, — X, , for all x,. Then ker ¢ < Z(G).

Proof. See Steinberg |51, 53, 54]. Our hypotheses imply that Gis a
Chevalley group or a Steinberg variation, or in the family °F,.

LEMMA 2.28. Let X be an indecomposable root system and W the Weyl
group. Let @ =13,1,2}, OX = {Ar|A € O, r € XL}, and define the following
equivalence relation on the set of unordered pairs in & X Z: {r, s}~ {r'.s'} if
and only if
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(i) the set of lengths in |r.s} equals that for {r',s’\.
(ii) {(r.s={r'.s'. where {(v. w denotes the undirected angle between
the nonzero vectors v and w.

(iii) r+s€0OX ifand only if r' +s5' € OF.

Let £ be the set of equivalence classes. Then each member of Q is an orbit
under W with the following exceptions:

(a) X has type A,. n > 2; the equivalence classes of (r,s). <r.s =mn/3
and 2n/3:

(b} X has type D, n> 3 the equivalence class of (r,s), <r,s =n/2.

In any case, if {r.s}~ {r'.s'}, then the rank 1 or 2 root systems they
generate are conjugate under W,

Proof. Exercise.

LEmMMA 2.29. Suppose that X is an indecomposable root system of rank
at least 2 for the twisted group K € Chev(2). Let W be the usual subgroup of
K isomorphic to the Weyl group of X and let W* =|w € W | when w is
expressed as the product of fundamental reflections, the number of short
roots is eveny.

Then (i) W* is transitive on the sets of roots of the same length; (ii) for
w€E W* and a € X such that a* = a, x,(t)" = x () for all ¢ (iii) when K has
rype ‘4A,,(q), wEW* and a is a long root satisfying a*=a,
X, (& u)" = x,(¢t, u) for all appropriate t, u.

Proof. See [36].

ProposiTion 2.30. (a) Suppose that G = (K, W) where K € Chev(2), W
is the Wevl group of a root system X of rank at least 2.

Suppose further that (i) X, <X is a root system for K, and (ii)
W, =WnOK is the Wevl group of K in its action on X,; (iii) X, X 2,
contains representatives of every W-orbit on X X ZX; and (iv) W,:=
{w€ Wia"=a} normalizes X, for a € X' and X, the roof group of K
associated to a. Then G € Chev(2).

(b) The hypothesis (a(iii)) follows if X, is indecomposable and
contains roots of all lengths which occur in X, and (i) X, has rank 3 and X
has only one root length, or (ii) X, has rank 4 when X has type B, or C,,
n>4or (i) X, =X when X has type F,.

Proof. (a) For a €X, let W, ={w€ W|a" =a}). Set W=W if K is
untwisted and let W = W*, the group of Lemma 2.29, when K is twisted. By
Lemma 229, W is transitive on roots of the same length in X. Set
W, =W, NW.
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We define root elements for f€ X by the formula xﬂ(t) X, (O o
xg(t, u) = x,(t, u)*, where a € X, and w € W satisfy f=a"*. To check that
this is a good definition, we need to have elements of W, centralize X, .
Since W, is generated by the reflections in it and since the set of such
corresponding to long (short, respectively) roots fall into W_-conjugacy
classes, it suffices to check a representative from each such W _-class. But we
may take such w,in W, M W, since L, X X, meets every W-orbit on ~ X X.
If K is untwisted or « is long or y is long, [X,, w,] = 1. If ¢, y are short and
a+y€Z, |X,.w,|=11If a, y are short and a + y € X, then w, induces a
“field automorphlsm on X,. Thus, [X,, W, | =1, and the well- deﬁnedness
of the root elements follows.

Let I be the field of definition of K and E a quadratic extension, if
appropriate. Call w € W an even element if wE€ W and odd if we W — W.
We have the relations

X () =x,.(D) if a is short and w is odd,
X ()" =x,.{¢)

X (8 u) =x,.(t u)

otherwise

for all appropriate ¢, u and a € X, when ¢ — { generates Gal(F/F).

We verify the Steinberg relations for these root elements; see Proposition
2.27. The relations of type (A) follows easily by conjugation under W. Now
for type (B). Take a,f€ X with a # —f, xE X,, y € X, and w € W so that
a".fr€X,. Then |x", y*| is a product of certain root elements as in the
relations of type (B) for K. The totally of relations thus obtained is a set of
Steinberg relations for some group of Lie type. See [54] for a display of the
relations for the untwisted groups and [36] for a display of the relations for
the twisted groups. Thus, (K, W) € Chev(2), as required.

The proof of (b) is an exercise.

ProposiTioN 2.31. (a) Suppose that G=(K,,..K,, W), where
K,... K, are quasisimple with components in Chev(2), W is the Weyl group
of an indecomposable root system X of rank at least 2.

Suppose further that (i) for each i = 1...., m, there is a subset £, X so
that X, is a root system for K. and (ii) W, = W N K, is the Weyl group of K
in its action on X; and (iii) Y[, Z; X Z,; contains representatives for every
W-orbit on £ X X and that for every i, j such that ,NX; # 3, X, is the
same group for a € X, as for a €X;, and that if a, fEL, N, the
commutator of elements in X, and X, is independent of taking a,f € X, or
a.fEX,. (iv) W, :=|w€& Wl|a" =a} normalizes X, for eacha € I, £

Then G € Chev(2).
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Progf. Imitate the proof of Proposition 2.30. A bit of care is needed to
see that root elements are well defined for m > 2.

Tables B, C and P. The following three tables are critical to this paper.
They contain information about elementary abelian p-subgroups and
elements of order p in K € Chev(2) whose centralizers are in standard form.

(2.32) Table B. In the table which follows. we list simple groups
K € Chev(2), certain _odd primes p, subgroups B €& B K5 p), where
Inn(K) < K < K. and K is the full group of inner-diagonal automorphisms of
K. Every such B contains at least one subgroup {x) of order p such that
Ch(L(C,(x))) = {x) except in case K has type 4,(q), *C,(q) or type 4,(q)
such that p=3 divides ¢ — 1 or (p.q)=(3.2) and K has type 4,(2), n <2,
in which cases there are none.

We also list B* € SCp(I?), where B* > B. Then |B*: B|=1 or p and B*
is unique up to conjugacy in Cg(B). Finally, we list m(B), m(B*), A(B),
A(B*).

The method of verification of these assertions involves standard techniques
from the theory of groups of Lie type, and is omitted. We do single out two
results, Theorem 2.33 and Lemma 2.34, as relevant tools.

We construct B* in this manner. Either B* is available in a standard
Cartan subgroup or we do the following. Let G be the ambient algebraic
group containing K. Thus, G has an algebraic endomorphism ¢ with
K =L(C4(0)). Choose L € Chev(2) such that K < L < G such that L has
the same type as G (so L is untwisted), p divides the order of H, a standard
Cartan subgroup of L and L = L°. Let W be the standard copy of the Weyl
group in L. Thus, W N,(H)=HW. For w& W, if f§ is the corresponding
inner automorphism, f¢ is conjugate to ¢ by an inner automorphism of G.
So, by choosing w appropriately, a conjugate of 2,(0,(Cy,(0f))) is our
desired B*.

Once we have B*, the possibilities for B may be read off from the
maximal parabolics of K, as U (B;2)+ {1}.

Uniqueness of B* up to conjugacy in Aut(K) is shown in Lemma 2.35.
Thus, the B* constructed above is essentially the only one.

Actually, the table contains a few cases where p neither splits nor half-
splits K. See Section 1 for a full discussion.

LEMMA 2.33 (Lang’s theorem). (i) Let G be a connected linear algebraic
group and ¢ an endomorphism of G onto G such that |C(0)| is finite. Then
X+ x " 'x% is a surjective map G - G.

(ii) If in addition, o is an endomorphism of G such that a = af for
some inner automorphism B of G, there is y € Inn(G) such that y 'oy = a.
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Proof. (i) See [6, E, 2.2] or [54]. We deduce (ii) from (i) as follows. For
g€ G, we have g* =g°® =y~ 'g% for some y € G. Write y~' =x~'x° for
some xE€G. Then g* "% = (xgx ") =x"'x%g%(x 'x°) "=y 'gy=g°.
Take y to be conjugation by x.

LEmMA 2.34. Let G & Chev(2), H a standard Cartan subgroup, and
g=uhn,u’' € G an element in standard form (see (6, 53]). For k€ H,
g€ C.(k) if and only if

(i) we W fixes k,
(ii) when u and u’ are written as products of root elements ||, x,,

where the product is taken in an appropriate ordering, we have that each x,,
centralizes k.

Proof. Exercise.

LEmMMA 2.35. Suppose K € Chev(2) and p is an odd prime.

() If KcK<Au(K) with K acting as inner-diagonal
automorphisms on K and if B* € SC (K) with mp(B*) m,, p(K) then B* is
the unique elementary abelian p-group of its rank in a Sylow p-subgroup of K
except for K=A4,(q), p=3|g—1, K="4,(q), p=3lg+ 1, K=G,(q) or

D(q) with p=3;
(ii) if K, p appears in Table B, and B realizes the 2-local p-rank of K,
then B is unique up to conjugacy in K

(iii) if K is a covering group of K and E is an elementary abelian p-
group acting as inner-diagonal automorphisms on K with my(E) > m,, p(EK)
and EES C,,(EK ), then E projects onto a group B* of (i) except for
K =A,(q) or *A,(q) as in (i);

(iv) suppose G is of standard type with respect to (B, x, K) € & *(p)

and e(G)>4. Then m, (BK)=m, (G) except perhaps when

=’Eg(q),p=3lg+1, mB*)=7 or K="4,q), pl@+Ln+1)
m(B*)=n+ 1. In any case m, ,(B*K) > 4.

Proof. (i), (ii), (iii) We may assume that the Lie rank of X is at least 3,
by inspection of the low rank cases.

Case 1. plg—1, then B=B* We may take B=0,(0,(H)), H is a
standard Cartan subgroup. Let A be another elementary abelian p-group in X
such that 4 € SC,(K). Then, as B =B*, we may assume that (4, B) <
PESyl(K). Then we may take z€R,(Z(P))NANB, z#1 Set
C = Cx(z). From [54] we get the shape of C. Set E = (Cy_(z)|a € Z), where
X' is a root system for K with root groups X,. If E # 1, by induction we may
assume that EMN A =EMB. Thus, A and B both stabilize all the normal
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subgroups of E, whence 4 induces inner diagonal automorphisms on each
normal subgroup E; of E. If p}|Z(E,)|, then we may apply induction. If
PI|Z(E;)l we may apply induction to E;|Z(E;) as long as E, does not
contain a p-group @ with the property that 1+ Q' <Z(E,) but
m(Q/Q N Z(E,)) > m(A/A N Z(E,)). Since E; is the family 4, or E,. the
only possibility is E; of type 4,(g), for p = 3. Note that when this occurs in
our induction situation, E;>=SL(3,q). Thus, ANE, and BNE, are
conjugate. Moreover, induction actually gives us that the images of 4 and B
in [ [; Aut E; are conjugate by an element of [ [, Inn E;. So, assume E = 1.
Then AN B=(z). Without loss, 4 {B. Pick a€N,B)—C,B). If
O,(Ng(H)/Ngz(H)N Cy(B)) = 1. then for some n€ N;(H). (a.a") acts as
SL(2,p) on V={z,z"). But E+# 1 for some and hence all » € V'*. Thus,
O,(N;(H)/N,(HY"N C;(B))# 1 and the Weyl group is S, or D,,. Using
E =1, we have p=3 and K/Z(K)=A4,(g). The assertion of the lemma can
be checked directly in this case. (Use the fact that the centralizer of a 3-
central element of order 3 in *D,(q) is isomorphic to SL(3, p).)

Case 2. p|q+ l. Let G be the ambient algebraic group over F,. Then
B* lies in a Cartan subgroup H of L, where K < L, L is finite and untwisted
in the same family as G, and o has order 2 on L, where K = 0*'(C(0)). Say
A<K, A=B*

Suppose m(B*)=m,(H). We quote Case | to get g€ L with Af=B*
We argue that we may arrange for g € Cy(o). We have that ¢ and of
centralize B*. Since m(B*) =m,(H), C,,(B*)= H(o). Also, ¢* € Ho and
0%(0%)* € C(H). Since H has odd order and ¢ has order 2 on H, Sylow’s
theorem applied to H(a)/{c?) implies that there is h € H with 0 = 0*". Thus,
gh € C,(0) and 4" = (B*)" = B*, as required.

Now to prove uniqueness of B up to conjugacy in case m(B*) = m,(H).
Without loss, B < B*. Suppose A < K. A = B and A lies in a 2-local of K.
Let 4 < A* € SC,(K) By the above, we may assume 4 < 4* = B*.

From Table B. we see that, with a few exceptions, B = [B*, W], where

= A (B*) is generated by a set of fundamental reflections and W is
generated by a subset of fundamental reflections. If W is unique up to
conjugacy in W. uniqueness of B follows: this is the case. except for
(W. W)= (W, W, =W,)and (W, . W, ). But here. the uniqueness of
B via conjugacy in Aut(K) may be checked, case by case.

Suppose m(B*) < m,(H). According to Table B, K has type A,(g) or
E.(g). By inspecting the standard module for 4,(g), it is easy to check the
statement. Finally, let X have type E(q).

Let A < K satisfy 4 =B*. We may assume that {4, B) < P € Syl (K).
Since Ci(B*) is abelian, 4,(B*)= W, implies that P is abelian for p > 5.
So, for p>5, A=B and we may assume that p = 3. Let (z) = 2,(Z(P)).
Then L(C,(z)) = SU(3. q) « SU(3, q), | Cx(z): L(Cx((2))| = 3 and elements of
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C,(z) — 0¥ (Cy(2)) induce outer diagonal automorphisms. It is now an easy
exercise to see that 4 and B are conjugate in Cg(z).

Case 3. piq® + g+ 1. These few special cases are left as an exercise
with Lang’s theorem (2.33).
(iv) By definition of standard type, B acts nontrivially on a 2-group
T< C,(x). If [T, K]+ L, then the first assertion of (iv) is clear. Otherwise
|[T.K] =1+ [B, T] forces some b € B to induce an outer automorphism on
K. and the assertion follows from checking the possibilities for L on Table B.
Now m, ,(B*K) > 4 except perhaps if K = ’4,(q), p|(qg + 1.n + 1). But then
m(B*)=4 and {x)=C,.(K) imply n> 3 whence p|n + 1 forces n >4 and
(iv) holds.

(2.36) Table P. In the next table, we list all triples (K, p, L) where L is
quasisimple with L/Z(L) € Chev(2), K is_a standard component in L for the
prime p, where p half-splits K or L, L < L>1L, and L is the group of inner-
diagonal automorphisms on L, unless L has type D,(q) in which case Lis
the group of inner-diagonal-graph automorphisms on L. The restrictions on n
are for making mp(f,) > 3 and the G-L restriction consists of an additional
condition to make (D,K) a standard subcomponent of (B,x,L); see
Section 1 for these notations. In particular, no case with m,(K) =1 is listed.

Note that in most cases, but not all, p half-splits both K and L.

The completion of this table requires straightforward applications of
standard techniques from the theory of groups of Lie type. See (2.31) and
(2.32). Tables of a similar nature were compiled by Burgoyne and
Williamson: see [10] and {33, Appendix to Part I].

(2.37) Table C. In the following table, we record all instances of the
following: K € (Chev 2), B < K as in Table B, and K, K, such that (i) G, =
L(Ci(z). (i) (B,z;,K,)E.7 *(p) (with respect to G,), i=1,2, (iii)
K=(K,,K,). (iv) p splits G, or G, and half-splits both. In the event that
there is L € Chev(2) such that B K < L and G,=L(C,(z})), (B,z;,G;) €
S¥(p). for i=1 and 2. we subscript (K, K,) with an *. For each occurence
of an *, K,, K,, K and L are listed at the end of the table.

The table is used by choosing some K, down the left column, choosing an
admissible K, above the solid line in row K, then reading (K|, K,) just
below K,. Directly below (K,, K,) is the subcomponent L,=L(K,NK,).
Restrictions are written above K.

Lemma 2.38. Let G, =(K,K,) be any entry in Table C except

An+2(2):<An(2)’A[1n+lw2](4)>’ p=3’
All(z):<A8(2)’Al(8)>~ p=1,
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TABLE P

K.p L G — L restriction

A,q)plg—1.n2>2 A4,..4)

An+1(q)7p[n +3
Cn+l(q)
Pn+l(q)

D,.,(q)
E,H,(q),n: 5’ 6. 7* (n,p);k (7s 3)
Eyg),n=8p=13
Adg' ). n=2.piqg'* — 1

Azwl(‘l”)-A2n+z(qm)~">3 . 9)=(3.4)
A(ghplg+1,n>3 A, .2(9) »q9)=32)
Efg)n=5 ».q)=(3,2)or (5 4)
A,(8).p=7 A4(2)
Ax(16).p=5 A4,(4) Z(K)=1
, A2\ p=1 4,(2)
A @ plg—lin23 A,.1(q)hn>3
Dyghn=3
s ‘Egflg)n=35
A, plg+ Lnz2 A, (@)
A, .(q).pln+3
Cooil@) (n,q)#(3.2)
D, (q) nodd*
Dn+l(q)’n0dd
‘D, (g). neven
’D,..(q). neven
on(Q)le:S
*Eg(g"" (n,p)=1(2,3)
Eyq)n=26
Eyghn=8.p=3
Edfq)n=T.p+3
Clg)plg—t.n>2 C,ii(q)
Fyg)hn=13
Clq)plg+Lin>2 C,.(q)
Fiqhn=3 (nq)# (2,2)°
D, (q).plg—1.n>2 D,..(q)
E, (g).n=5167
Eﬁ(‘])- n= 4sp =3
D,(g\.plg+ln>2 D, (@)
E(q)n=4,p=3°
. E(g).n=6
D,g)plg—1,n>3 ‘D, .\(q)
IE(,(q),n=4

“The only standard subcomponent of D,(q) is 4,(g) = *D,(q) for plq + L.
"We record this as an official restriction even though it does not apply since we require
my (Cpo (@) 23, ie, n>4

“This applies only when £ = 0*(L). Table continued
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TABLE P (continued)

K.p L G — L restriction

D,@)plg+1ln>3 D, (9

Efq)n=4
Efg).n=5
Eyq)n=1

'Dg)p=33lg~1 Dy(q")

'Dyghp=33g+1 D,(q")

'Dghplg’ +q+ L Eq(q) p=Tq9=2
plg—g+1 E(q) p=Tgq=12
Eq).plg—1 E{(q)

plg+1 none (p9)=(.4)
plg’ +g+1 Eq(q) (pq)=(1.2)
*Eg).qlg—1 none
plg+1 E.(q)
E.(g)prlg—1 Eg(q)
plg+1 Ey(q)
Elq).plg—1 none
pig+1 none
Fiq)plg~1 none
plg+ 1 none
G,(g)pig—1 Dy(g)p=3
Gyg)plg+1 D,(g).p=3
Fighplgtl none
or (*)
E((2) =(A4,(2), 45(2)). p=3

Let R be the center of a root group X, of Ly=L(L,NK,) with a long if L,
is any twisted group. For J=K, K,, G, or G, R is the center of a root
group X of J with B long if J is twisted except that for the entries

45(q) = (CA5(q), 45(¢%)), plg—1,
and (**)
Eq(q) = CAs(q), *Hs(q)),  plg—1

B is short if J is twisted.

Proof. First suppose L,, K,, K,, and G, or G, are all defined over [,
with p|g — 1. Then G, or G, is the layer of Cz(o) for an algebraic group G
and standard endomorphism ¢. It turns out that the element of z, € B with
K, =L(Cg4 (2,)) is in a G -class (or G,-class)

(7, 0]
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(in the notation of Burgoyne and Williamson defined above); and if £ is a
root system for G, then K , is the layer of the centralizer of ¢ on the root
groups of G corresponding to roots of = in the kernel of x. the character
assoctated to f(r7). We can always find a root & in the kernel of y and fixed
by o. In fact L, is located inside K, exactly as K, is in G, or G,. and we can
choose @ to correspond to a root group of L,. If X is the root group of G
corresponding ro ., then Cg(o) is a root group of L,. K, and G, or G,.
Since the subgroups corresponding to roots of a given length are all
conjugate in L,, we may take R = Ci(o). The same argument works with
respect to L, K, and G, or G,.

If Ly. K,. K, and G| or G, are all defined over g with p|q + 1. we proceed
as above using Lemma 2.19 and the endomorphism p defined there. We pick
d with p(@) = —d. Note that if G, or G, = F,(q). p|q" — 1, then the roots of
L, involved in K, or K, may form a root system of type B, or C,. However
for any field F of characteristic 2 there is an isomorphism B,(F)— C,(F)
which maps root groups to root groups, so we obtain a root group of
K ;= C,(g) with respect to a root system of type C, in either case.

The remaining entries in Table C are (x), (%), and E4(2) = (E(2), E<(2)),
p=7. In the cases (xx) we proceed along the same lines as above taking ¢
with (a, o(@)) = 0. In the last case use Lemma 2.20.

LemMa 2.39. Consider the entries

Ar1+1(2):<An(2)’A1n+l)x2](4)>» p:3
A411(2) = (44(2), 4,(8)), p=T,

in Table C and let L, = L(K,NK,), J=K,, K,, or G,. Pick a root group R
of Ly and let N=N,(R), Q = O,(N,(R)). The following conditions hold:
i) <[Q Ql.R) < Z(Q);
(ii) N has no central factors on Q/R;
(i) ifJ=GCGyand Z(Q)c Uc Q with U <1 Ny(R), then {L,,Uy=1J;
(iv) ify acts on J and centralizes r € R”, then y normalizes R;

(v) if v acts on J and y € O,(N, ,(R)), then y induces an inner
automorphism.

Progf. Use the standard matrix representation of J. For (v) proceed as in
the proof of Lemma 2.11(iv).

LemMMA 2.40. In any entry G,=(K,,K,) of Table C with L(K, " K,) =
A4,(4), C; (D) contains elements acting as outer diagonal automorphisms on
L(K, M K,). Further there is no entry with K, = A4,(4).
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Proof. We always find some K; = 4,(4), 45(2), or A,(2). Look in C,(D);
cf. Table C.

LEMMA 2.41. Consider the entry
E((2)=(45(2),45(2)), p=3,

in Table C. Let Ly=L(K,NK,)=A4,(4) and J=L,, K, or K,. Pick a root
group R of L, and let N=N,R), Q= O,(N,(R)). The following conditions
hold:
i) (0. QI R)<= Z(Q):
(i) N has no central factors on Q/R;

(iii) ify acts on J and centralizes r € R”, then y normalizes R;

(iv) if y acts on J and y € 0,(N,, ,,(R)), then y induces an inner
automorphism.

Proof. Use the preceding lemma and the method of proof of Lemma
2.39.

LEMMA 2.42. For any entry G, =(K,,K,) of Table C, L(K, " K,) has
a root system of rank at least two with the following exceptions:

D((q)=(’Du(q). '4:(@))»  pla+1,
Ei(q)=("Di9). "Dy(@))»  pla+1,
in which cases L(K, N K,)=*4,(q), ¢ > 2.

Progf. Check the possibilities for L(K, M K,) in Table C and determined
that the standard component (B, x,L) has L =4,(q), C,(q), *D,(g), or
’D,(q). Invoke Table B and m(B) > 4 to eliminate the first three possibilities.
Consult Table C again.

LEMMA 2.43. There are no entries in Table C with K, = A,(2) or 4,(2).
or with L(K, N K,)=A,(2). The entries with L(K, N K,)=A,(2) are
G, = 4,(2) = (4,(2), 4,(2)). p=3,
G, =Dy(2)=(*D,2),’D.(2)), p=3,
and
G, < Gy=Eq2),
G, = E{(2)=(A442), 'D,(2)), p=3.

In all these cases B=B* has rank 4 and BN L(K,NK,) is conjugate in
N¢(B) to D.
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Proof. B = B* has rank 4 from Table B. Exhibit G, as Cz(p) where G is
the appropriate algebraic group and p =1, 0,. Take D = {t(n,), t(n,)); here
t(n,) is in the standard form given by [10, Appendix 2]. Now L(K,NK,) is

Cz(p) for an algebraic group K generated by root groups of G forming a root
system of type A4,. Further BNL(K,NK,)=BNK=(t(n,), t(n,)), and
reducing #(n;), t(m) by the algorithm of [10, Appendix 2] gives the last
assertion of the lemma.

In the same way we prove

LEmMA 2.44. In the entry
G, = E((2) = (45(2), 45(2))

of Table C, L(K,NK;)=A4,(4), B=B* has rank 4, and BNL(K,NK,) is
conjugate in N (B) to D.

LEmMMA 2.45. Let G be a simple group which appears as G, or G, on
Table C, and let a be an automorphism of G of order p. One of the following
holds:

(i) a is G-conjugate to an inner automorphism induced by an element
of B*:

(ii) a is G-conjugate to an automorphism centralizing B*, and a is
conjugate by an inner-diagonal automorphism of G to a standard (with
respect to some system of root groups of G) field automorphism of G;

(iii) one of the following occurs:

G 0% (C4a))
n+1
A,(q)plg—1,pln+1 A,(q”),r=T~ 1
n+1
4,(g):plg+ 1,pln+1 A,(q°), r= -1
E(q)p=3, plg—1 JDa(q)o"Az(qJ)
Eg(q)p=3, plg+1 *D,(q) or *4,(q")
D,g)p=3, plg—1 G,(q) or 4,(q)
D,g»p=3, plg+1 G,(q) or *4,(q)
D4(Q)’P=3 3D4(")’ r3=q

Proof. If a is inner-diagonal, then the method of Burgoyne—Williamson
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yields either (i) or one of the first few cases listed in (iii). Suppose a is not
inner-diagonal. By [8, Proposition 1.1] either one of the last three cases of
(iii) holds or a is conjugate by an inner-diagonal automorphism of G to a
standard field automorphism o.

Exhibit G as 0*'(Cz(p)) as above and take an appropriate pth root 4 of p
such that 1 and ¢ differ by an inner-diagonal automorphism of G. Observe
that A centralizes C;(p) where T is an appropriate Cartan subgroup of G
containing B*. It follows that a centralizes some group of inner-diagonal
automorphisms isomorphic to B*. But by the discussion preceding Lemma
2.33 there is just one such group up to conjugacy by an inner automorphism,
so (ii) holds

DEFINITION 2.46. Let the quasisimple group K satisfy |Z(K)| odd and
K/Z(K) an untwisted group or a Steinberg variation in Chev(2). Let X be a
root system and X, a € Z, root groups for K. If K has type ?4,(q), n even,
and a is long, let w, = x_(0, 1) x_,(0, 1) x,(0, 1). Otherwise, let w, = x,(1)
x_,(1)x,(1). Finally, let H be a standard Cartan subgroup of K and set
N={(H,w,|a€Z). If H+ 1, N= N (H). We call a complement to H in N
a standard copy of the Weyl group. The group W= (w,|a € Z) is called
the standard copy of the Weyl group; it will be shown in Lemma 2.50 that it
is isomorphic to the Weyl group.

If B* is a subgroup of K described in Table B, a complement to C,(B*)
in N (B*) is called a standard copy of 4,(B*).

These notions all extend in a natural way to finite central products of
groups as above.

LEMMA 2.47. Let K be a field, H a group, M a KH-module. Then there
exists an extension of KH-modules O0-M->N->T-0 where (i)
T=Exty,(K,M)=H"'(H,M) is a trivial module; (ii) if the extension is
restricted to any nonzero submodule of T, it remains nonsplit; (iii) if
0-M->N-T,-0 is an extension of KH-modules with T, a trivial
module having property (ii), then there is a commutative diagram

O-M->N-T,-0

| |

O-M->N->T-0.

In particular, all vertical arrows are inclusions.

Proof. The existence of 0- M - N T'- 0 follows from the properties
of the Baer sum, described in [46, p. 69], for example. We give a sketch,
Namely, let {f;|i € I} be a K-basis of Exty,(K, M). To each f;, we have an
extension 0 » M »* E, » K — 0. Define N=| [, E;/M,, where M, is the set
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of all (ma)€[];Ma;<|],E;, m€M, Y, ,m=0. The “universal
property” may be proven using a Zorn’s lemma argument.

LEMMA 2.48. Let r be an odd prime, W an indecomposable Wevl group
of rank at least 2 and let M be the nontrivial irreducible constituent of the
natural I-lattice A for W reduced modulo r. Then dim¢ H (W, M) =1 when
W=W, and rln+1 or W=W, and r=3 and dim; H'(W,M)=
otherwise.

Proof. By inspection, M is faithful for W. If O,(W)+ 1, we quote [14]
or [50]. Say O,(M). Then W= W, or W,_.

Case 1. W= W, . Then n> 2. Itis easy to check the result for n =2 or
3, so assume 7 > 4 and that the result is true for W,, - Let V be a natural
copy of W, _ in W. Consider an extension 0 — M — NS T 0, where T'is a
trivial F,Wmodule and Cy(W)=0.

Suppose H'(¥, M) = 0. Then, V has a fixed point in any nonzero coset of
M in N. Thus, N=M @ U, as F,V-modules. Let t € W be a transvection not
in V. We have dim C(t) =dim N — 1. Thus, W=(V,t) and C(W)=0
imply that dim T =dim U =0 or 1. We, thus, get dim H'(W, M) =1 in case
rin + 1 by inspecting the permutation module over 7 reduced modulo r. In
case r|n+ 1, the restriction H'(W, M)— H'(V, M) is a monomorphism,
whence H'(W, M) =0, as required.

We now argue that H'(V, M) =0. Suppose otherwise. Then r|n and
dim H'(V, M,)=1 by induction, where M, is the nontrivial [ -constituent
within M (we also need H'(V,F,)=Hom(V,F,)=0). Since rfn+ 1,
dim M = n. By Lemma 2.47 and dim H'(V, M) =1, C,,(V) # 0. Since M is
irreducible for W. this means that M is a quotient of the natural permutation
module § for F W, whence M =S,. where S=S,® K. Thus, M is
isomorphic to the natural permutation module F,¥. Then Lemma 2.45
implies that H'(¥V. M) = 0, as required.

Case 2. W=x=W, . H'(W.M)#0. Then r||W|=2"3"5, whence r=3
or 5. We claim that »= 3. Say r= 5. Since W contains a natural copy of
W, with index prime to 5, case 1 gives H'(W, M) =0. Thus, r = 3.

Let N be the natural “-lattice for W reduced modulo 3. Since the
quadratic form on the lattice given by the Cartan matrix has determinant 3,
we have a submodule N,, the radial of the F,-valued form. Thus, dim N = 6.
dim ¥, > 1. Since W contains a natural W), -subgroup, we have
dim N/N, > 5. whence dim N, = | and M = N/N,. From [57], there is some
Z-lattice in Q& A, stable under W, whose reduction modulo 3, E, is
indecomposable. Therefore, Ext'(Z,,M)# 0. Since M is self-dual, either
statement gives H'(W, M) # 0. Consider an extension 0 - MM, - T—0
with T a trivial module and C,, (W)=0 and T=H'(W,M); see Lemma
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2.45. Regard E as a submodule of T. Let V. V| be natural W, , W -
subgroups of W, respectively. Since dim H'(V,E)<1 by Case l,
dim C,, (V) > dim T. Since M, =C,, (V,)® [M, V] and dim[M,, V] =35,
dim Cy, (V) > dim T. Without loss, ¥ ™ ¥V, contains (), a group of order 5.
Since M, = [M, h]| ® C,, (h) and dim{M,, h| =4, dim C,, (h) =1+ dim T.
Since C,, (M) >Cy, (V) and C, (V,). we get C, (M)NC, (V)#0 if
dim T2 2. So, if dimT>2, W=(V,V,) has a fixed point on M,, a
contradiction. Therefore, dimT=1, E=M, and dim H'(W,H)=1, as
required.

LEMMA 2.49. Ler G,, K,, K,. L, be as in Table C with G, of type
D,(q). *D,(q) or C,(q)- If D=C,.(L,) and K = L(C; (2)) for some z € D*
and {z) = Cy(K), then K=K, or K,.

Proof. We sketch the proof. Let M be the standard 2n-dimensional
module over F,. By Table C, one of the following holds: L, has type
D,_,(q), *D,_,(q) or C,_,(q) and centralizes a 2-dimensional nonsingular
subspace: or p|q — 1, L has type 4,,_,(q) or 4, _,(¢q) and leaves invariant a
pair of maximal totally singular subspaces meeting trivially; or p|g + 1, L,
has type *4,_,(q) or *4,_,(q) and [M, L,] may be regarded as the natural
n— 1- or n — 2-dimensional F ,-module for L,. By the action of (B*,L,) on
M, any such K must be of type D,_,(q), D, _,(q), A,_,(q) or ’A,_,(g)in a
natural representation as above. By inspecting the possibilities, one gets the
lemma.

LEMMA 2.50. Assume the notations of Definition 2.46. Let K be defined
over .

(1) w,=w_, is an involution, for all « € X, and W= (w_ {a € X) is
isomorphic to the Weyl group of K.

(it) If H is a standard Cartan subgroup of K and V < K so that
HV =HW and HN\V =1, then there is a inner-diagonal automorphism f in
C nuir(H) such that V® = W, unless possibly K has type *A,(q) or *E(q). In
the latter cases, there are B,y € Aut K such that V*'= W, where f§ is as
before and y € Inn(K) and y centralizes H, = {y € H|y*' = 1}.

(iti) Let B* be the subgroup of K described in Table B, p|q* — 1. Then
there is a standard copy W* of A, (B*) in K and any two such are conjugate
by an element of C,  x(B*) in the group of inner-diagonal automorphisms,
with the exception described in (ii) when B* lies in a standard Cartan
subgroup of K, where K has type ’A,(q) and p|q — 1.

Let W be as in (ii). Then, replacing W or W* by a conjugate in Aut K, we
have the following containment relations:

4R1-802-10
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A,(qplg—1 W=w* D(q)plg—1 W=W*

plg+1 W>Ww* plg+1 WLWH
Cug)plg—1 W=Ww* E(q).plg—1 W=w*
plg+1 W=Ww* plg+1 W>Ww*
D,(q).plg—1 W=W*  2EJq).plg=1 W=W*
pla+1 W>Ww* plg+1 W< w*
Fiq)E(q)n=178,plgx1 W=W*
A.(9).pla* +q+ 1,p#3 W > W+
Ei(q),plg°+q+ 1,p#3 W> W+
Efq).plg* +q+1,p#3 W > w*

(iv) Suppose L <K, O,(LY=1 and L is generated by a nonempty,
proper subset of {X,,Z(X,)|a € Z}. Then W L is a standard copy of the
Weyl group for L. Furthermore, the standard copy of the Weyl group for L is
contained in one for K,

(v) Let L be as in (iv). (a) If plg* — | and B} is a subgroup of L as
in Table B, B} is contained in a K-conjugate of B*. Furthermore, if B** is
such a K-conjugate, then B**  C (L) Cx(Cy(L)), unless L has type A,(q),
K has type A, ,(q) with p|g + 1, n even and n’' odd or L has type A,(q), n
even, plq + 1 and K has type D,.(q), n' even or type *D,.(q), n" odd, type
C,Aq), *4,.Aq) or Fy(q). (b) If W¥ is a standard copy in L of A (B*), then
W lies in a K-conjugate of W*. (c) Let B B* as in Table B, p|q* — 1,
and let (B, x, L) be a standard subcomponent. Say W* =Wy, as in (b).
Then W* N L is a standard copy of A,(B*).

Proof. (i) Since our field has characteristic 2 the structure of the
(X;, X_,) implies that w’ centralizes K = (X, | f € ), whence |w,|=2. To
show that W is isomorphic to W, the Weyl group of X, we verify the
appropriate relations among the w, .

Let m,; be the order of w,w, where bars denote images under W — W;.
Set u,, = (w, wz)™5. We want to show that u,, = I. We can use induction
on the Lie rank of K to reduce to the case of rank 2, where the root system is
possibly decomposable. If decomposable, K is a central product and the
result is clearly true. If not decomposable, then K has type 4,, C,, G,, *4;,
’A,, or *D,. By dropping to the fixed point subgroup of the field
automorphism, which contains W, it suffices to treat the cases 4,, C,, G,.
These cases may be done by inspection.

(ii) The statement that V" and W are H-conjugate would follow from
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the assertion H'(W, H)=0. This follows from [14] or [50] unless W has
type A, or E. The remaining statement follows from Table B, Lemmas 2.48
and 2.49, and the structure of Aut K.

(iii) Let us first suppose that B* lies in a standard Cartan subgroup H
of K. Then the statements follow from (i) and (ii). Thus, we may suppose
otherwise.

We have that B* lies in H,, a standard Cartan subgroup of K,, where
K <K, €Chev(2) and K =L(Cy (a)) where a is a field or field-graph
automorphism of order 2 or 3 of K,. We shall do the case where |a|=2 in
detail, and leave {a| = 3 as an exercise.

Let W, be the standard copy of the Weyl group for K, W, < N (H,). By
Table B and the accompanying discussions, we may take a = w, g, where ¢
is the standard field or field-graph automorphism of K, and w, € W,
(considered as a subgroup of Aut K,), |w,| =2, ow, = w,a. Since W =W,
Cyw,=Cyla)Cy (a). The required copy of A4,(B*) is the subgroup
Cu',(a)-

The statements about conjugacy follow as in the proof of (ii). The table is
filled by studying the construction of Table B and the standard modules for
the groups in Chev(2).

(iv) The statement about WM L is clear from the definition of W and
the fact that if X', is a subset of X which is itself a root system under the
addition of X, then Wy =(w,|a€ XZ,). If W is a standard copy of the
Weyl group of L, the last part of (iv) follows unless possibly not all such
groups are conjugate in L. In this case, however, L is proper in K and L has
type A4,, ‘A,, E, or E,. Thus, A,(L) induces the full group of inner-
diagonal automorphisms on L, whence all such standard copies of the Weyl
group of L are conjugate in N, (L), and we may proceed as above.

(v) It suffices to treat the case that B* does not lie in a Cartan
subgroup of K.

(a) Suppose that some Z(X,) lies in L, where « is a root in £ such
that a* = {8 € X'| a L B}has rank one less than the rank of X and « is long in
case there are two root lengths. Suppose further that K does not have type
B,(2) or 24,(2) or 24,(2). Then S =(Z(X,), Z(X,)) = 4 ,(q) for some g and
Cy(S) = L(C4(S)) is a central extension of a group in Chev(2). We may
arrange for B¥ = B* M .S to have order p. Then B* { Cp(Bf) = Hg « Ci(S)
where Hj is the group of order ¢ + 1 in S containing Bf. If S has rank at
least 2, we apply induction to the pair (L M Cr(S)’, C,(S)’) in place of
(L,K). If L=S, the result is clear. If L has rank 1 but L+ S, then
L = SU(3, q) and K has type ’4,(q). The embedding of B* in K makes the
result clear in his case. Finally, dropping the assumption that K have type
B,(2), ’A,(q) or *4,(2), we verify (a) directly in these cases.
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Now suppose that Z(X_,) and @ may not be chosen as above. Then either
K has type 4,(q), for n, g or else X' has two root lengths and the root groups
in L are associated to only one root length. If K has type 4 ,(q), the result is
clear from the structure of Aut(K). So, assume K does not have type 4,(q).
Let / be the Lie rank of K, /> 2. Suppose X has type B,. Since the extended
Dynkin diagram looks like

the root lengths for L are short. In X, the sum of two orthogonal short roots
is a long root. So, K is untwisted, i.e., K has type B,(g)=C,(g) and L is a
direct factor of II(x,,x_,), where {a, —a} sums over all n pairs of distinct
short roots. But here. it is clear that L contains a copy of Z]_ . as required.
(Perhaps a more proper interpretation here is that for this K, the a’s should
be regarded as long roots in a root system of type C,.)

Suppose X has type C,. Since the extended Dynkm diagram looks like
commm o o—=—=o0, the roots for L are short. The
structure of Z shows that we may arrange for L to lie in the natural 4,_,(q)-
subgroup of K. where X has rank / and K has type C,(q) or *4,(g'"?) for
r=2—1 or 2l Our assertions now follow from inspection of the standard
module.

Suppose X has type F,, K of type F,(q) or *E,(q). p|q + 1. The extended
Dynkin diagram looks like

a B
o o

o]

o———-0

the three roots on the left are long. In X, the sum of two orthogonal short
roots is long. So, if K = “E(q). the roots for L are short and L has rank at
most 2. By properties of X, we may assume that L < (X, ,, X,,), and the
assertions are easily checked. If K = F,(q) and the previous sentence does
not apply, we may use the graph automorphism to invoke symmetry.

(b) By replacing B* by a conjugate, we may assume that B} is the
group of Table B in L. If B* lies in a Cartan subgroup of K, this is clear.
Supposing otherwise, we proceed as follows. Since L < K, Ny (L) induces on
L the full group of inner-diagonal automorphisms, where all standard copies
of A, (B*) fuse in Ny(L). We claim that H'(4,(B*), B*)=0. We have that
B* =B, X B, as 4,(B*) modules. where |B,,A4,(B*)] =1, B, is indecom-
posable of dimension the rank of 4,(B*) as a Weyl group. We have already
established that H'(4,(B*), B*/Cy.(4,(B*))) =0; see Lemma 2.48. Since
A,(B*) is generated by elements of order 2, H'(4,(B*). C;.(4,(B*)))=0
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whence the claim follows. The claim now implies at once that the standard
copy of A,(B*) fuses into the standard copy of 4,(B*) in N (B*).

(¢) By (a) and (b), it suffices to treat the case that L is not
generated as in (iv). According to Table P, this means that p|g + 1 and
(L. K) is one of

(A1 Ad@).  (CA09) D, 5(9), =12,
(‘44(9), *Dy.5(@)),  0=12,
C4,9).C, (@) (C4,49)-E, ()
(D@ ’Dy(@). (D), Doy (@),
CE«(q) E+q)).

The assertion may be verified, case by case.

3. LINEAR GROUPS, PRESENTATIONS AND A
FusioN CONTROLLING PROPERTY OF K-GROUPS

The first several results in this section are mainly concerned with
answering the following question: given (B, x, L) and B < B* as in Sections
1 and 2, what are the possibilities for 4,(B*)? We know that 4 .(B*) is a
subgroup of GL(m(B*),p) in which the stabilizer of a nonzero vector is
essentially 4, (B*), a Weyl group.

Once we determine 4 ,;(B*), the action on B* is essentially unique, i.e., the
reduction modulo p of the weight or root lattice when R(B¥*):=
({r € Az(B*)|r is diagonalizable with eigenvalues {—1, 1, 1,..., 1}) is a Weyl
group. This is an induction argument when R(B*) =~ W,., W, or Wc;an
exercise when R(B*) >~ W, (use the natural containments W, < W, ) and
R(B*)= W, (use O,(W, )~ PARES )

LEmMMA 3.1. Let p>0 be an odd prime, W an indecomposable Weyl
group of rank n >3 and M a nontrivial F, W-module which is a section of
the reduction modulo p of the natural 7-free 7W-module of rank n. Let
H< W, H a homocyclic group of rank t > 1 and exponent p¢ > 3. Suppose
that ry=dimM, ry=dim C,,(H). Then t+ r,<r,. The same conclusion
holds vacuously if W is a Weyl group of type D, extended by a group of
graph automorphisms.

Proof. We first do the case that H lies in a subgroup ¥ < W, where V is
generated by fundamental reflections and V=X, ., where n' =n or n — 1. If
W has type A,, we require V' = W. Note that this case always occurs when
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W has type A,, B,=C,, D,, E; and E,. In this case, r,=n', n’ —1 or
n—2and M I’FuV is a section of the natural V-permutation module M,

In the natural action of V on {I, 2,..., n'}, let 0,, 0,,..., 0, be the orbits of
H. Also, r, = [ by the structure of M,. We argue that n’ — > {(p® — 1). We
first prove the inequalities n, — 1 > t,(p® — 1), where n,=|§;| and ;> 1 is
the rank of U '(H/Cy(8,)) for i€ {l..,1} such that r,>1. These
inequalities follow from the fact that for £, to contain Z7}. as a semi-regular
subgroup we must have n; > ¢, p°. Now sum these inequalities over i and use
the fact that °, ., t, > t, which follows from H< Z,..

Now to prove that ¢+ ry <r,. Suppose t+r,>r,. Then n' —2r <
t+ry<t+n" —t(p®— 1), whence 2 > f(p* — 2) > 3t > 3, a contradiction.

We have now done a special case, and it remains to treat the case where H
does not obviously lie in a suitable V. Thus, W has type E,, E, or E; and
p*=35,Tor9.(E,is out since p° > 3; and W is not an extension of W, for
the same reason.) If p =7, then n =7 or 8 and there is a suitable V' = X, in
W.Ifp*=5and =1, V=X, works. If p° =5 and ¢t = 2, then n = 8 and we
have HV, X V,, V, =V, =X, (think of V| X V, < W,_ corresponding to
the natural containment O~ (4 2)X07(4,2) <078, 2)) Thus, r, =38,
r0 < 2, and r = 2 satisfy the required inequality. Finally, we look at the case
p°=9. Since W, has Sylow 3-group Px~Z,~Z, for n=6,7 and
P~(Z,~Z,)X Z, "for n = 8, it follows that 7 = 1 and H= (h) = Z, satisfies
ro<r —3, whence ro+t<r —2<r,, as required.

LEmMA 3.2. If r. s are conjugate reflections in a Weyl group, then
[rs|=1,2 or 3.

Proof. Let p: W~ (n, R) be the natural representation of the Weyl group
W. Since the eigenvalues for rs lie in R, |rs|=1, 2,3 or 6. If |rs| = 6, there
are associated roots forming an angle of 57/6, i.e., W= W . But then r and
s are not conjugate.

LemMmA 3.3. Ifr, s, t are reflections in a Weyl group W and if

s

rAt

is satisfied, then {r,s,t)= X% or Z,.

Proof. Let H={(r,s,t). Since r* is a class of 3-transpositions in W, any
solvable subgroup S of H inverted by r has order 2, 3 or 6. By Lemma 3.2,
H is a quotient of Z2X,. Let p be the natural representation p: W — O(n, R).
Then H” < O(3,R), whence any elementary abelian 3-subgroup of H has
order 3. Thus, 32}|H|. So, if H£ X,, O,(H)=Z,XZ,and H> X,.
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ProposITION CF. Let F be a field of characteristic p+ 2 and B and F-
vector space of dimension n+ 1, n > 3. Suppose that B has a basis b,,..., b,
and that H= RS < Aut,(B), where R ={r,..., 1, is elementary abelian of
order 2" and bi="b, if i #j and bli= b, and where S =~ X, acts on R and
{b,..., b,} in the natural way.

Suppose that K < Aut.(B), K is finite and H = Cyg(b,) or n=4,
Cilby) = Wy or W, (y) where y is the graph automorphism. Assume that
H* =N ({by))=H X {c) S K where c centralizes (b,,..,b,). Let ry be
defined by by =by"' and b*=b, if i 0. Let R* = (R, r,). Then one of the
Sfollowing holds

(@) r¥N(H* —1,)C R* and either
(i) R*<K andK/R*;E"H; or

(ii)) p>0, K=O,K)H*, O,(K) is elementary abelian and is an
F,H*-submodule of the stability group of B 2(b,,... b,) 2 1.

(b) r¥N(H*, —1,)¢ R* and either

(i) n=3, 0,(K)=2\"", K/Z(K)= W*/Z(W*) where W* =W, , a
subgroup of index 2 in W, , or W, (y) where y is the graph automorphism of
W, (depending on F, there may be more than one possible K satisfying these
conditions if W* = W, (y)); or

(i) n=3,p=3, K'=A,, K/Z(K)= X, or AutA; and K has a
subgroup isomorphic to Xy, if K/Z(K)=~ AutA,, K/K" = Dy, in any case
-1 eXKk.

(i) n=4,p=3, H= W, and K=Z, X Wy_or H is isomorphic to
W, [(0), where 6 is a graph automorphism of order 3, —1,& H*,
(g H*)=Z, X Wy and K= W,..

Proof. We begin by observing that it does no harm to assume that
—1, € H*. The conclusions where —1, & H* are easily deduced from those
where —1, € H*. Also, similar considerations allow us to assume that every
element of K has determinant +1 on B. So, henceforth, we have —1, € H*
and if k € K, det k= +1. Thus, c=r,. Define K, =(k € K |detk=1).

We first show that if O(K)+ 1, then we are in case (a)(ii). Namely,
O(H*)=1 means that C,,(r,) =1, whence O(K) is abelian. Denying
(a)(ii) gives O,.(K)# 1 whence |0,(K)| =3 and dim.{B, O(K)] = 2. Thus,
H* has a 2-dimensional constituent on B, contradiction. So, O(K) = 1, and
we also get that Z*(K) = (—1,) since H* c K.

First dispose of the special case n =4 and 32 ||H|, i.e., H is an extension
of W, by X, its group of graph automorphisms or H= W, or W.(y)
where y is the graph automorphism of F,. Work in K,, so that
H =H*MNK = H satisfies O,(H,)=~2\** and H,/OH )=Z,XZ; or
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2,0 Z,. Since z=r ryryr,=—ro& Z*(K,), there is t € zX' N H,, t # z. By
looking at traces, t & O,(H,); also t does not invert O, ;(H,)/O,(H,) since z
has trace —3. It follows that U, = Cy, 4 ,(t) = @ o1 73.If @4, take g € K s0
that ¢*=z. But then the above remarks about fusion of z force
U*NO,H;)=1. a contradiction. Thus, U, #Q,. Now let
U=({U, t)=2Z;. N= Ng (U). Our fusion information implies that
N=W, =~Z;Z,. Fusion in H, and in N imply that N’ meets two K -classes
of involutions, i.e., those of z and of v € O,(H,)~(z), |v| = 2. Also, if tE N
represents a transposition in 2. and ¢ and z have the same set of eigenvalues,
then 7 ~ 4 z. Suppose |K,: N| is even. Since z is 2-central in K, this means
K =W, (y). We argue that y & K|. We have that V'=C, (y)= D . Take
g€ K, so that y* € T, a Sylow group of the subgroup of H, corresponding
to W, . We may assume that y* = v or z and that V¥ < T(y), as x and v are
extremal in T(y). Since z*+# z. we have V* M O,(H,)=1, a contradiction.
So. |K:N| is odd, H £ W, (y) and so H =W, -XZ,. Now take the
standard monomial matrix representation p for N. We may assume that

Then

(z2t)° = 1

0 1

1 0
Taking traces, we see that z¢ does not fuse into N'. Thus, K’ = K| has index
2in K, and C4.(z)=2."%(Z, X Z,) has a Sylow 2-group isomorphic to that
of A,. Since K  GL(5, F), a theorem of Gorenstein and Harada [29] iden-
tifies K'=(5,3) (and p=3). Thus, K=Z,X 0(5,3)=Z, X W, ie,
conclusion (b)(iii) holds.

We consider another special case, that of Q@ = 0,(K)> (—1,). We may
assume that Qs R*. Define Ry=(r;r;|i,j=1,2,.,n)=Z}"'. We claim
that n=3. Define Q,=QMNK,. Letting Q,=N, (R), we have that Q,
stabilizes C,(R) = (b,). whence Q,=(R.,—1,) or n=3. If n>4, N, (Q,)
preserves {(b,)...., (b,)}, the eigenspaces for Q,, whence @, =0, and
K=H*. So, n=3 and a similar argument gives that @, = O,(H* N K,) =
2'74% Since Cn(Q,) < H*, it follows that Q,= Q= C,(Q) and that
K/Z(K)— Aut Q. This leads to case (b)(i).
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Having disposed of these special cases, we now have O(K)=1,
O0,(K)=(—1;), H= W, and H*=Z, X W, . We now deal with the cases
(a) and (b).

(a) Since Z*(K)=(—1,), ri MH*+# {r,}. An eigenvalue argument
shows that rSH*={ry,r,, 1y r,}. Thus, N=N (R*) satisfies
N/R*=ZX, ...

For v € N, define property (*): if g € K, v* €N, then g € N. We have (*)
for r,, and |K: N| is odd.

Let w,=ror, - rifori=0, l..,n—1, C;=Cg(w), C{ = Cc,({bgs.r by))s
Ci =Ccf(b;, s by)). Since N ((b;)) <N for all j, C/ and C; lie in N for
all i. Since r, € C; and r, € C; for all i, (*) implies that C, < N for all i.
Take g € K so that w5 € N. Write w§=rs for r€E R*, s € S. Assume 5 # 1.
The eigenvalues for w, restrict s to be (up to conjugacy) y, or £y, f,;. If w§
centralizes some r;, then r,€ Cf < N*, whence g€ N, a contradiction.
Therefore, we may assume n = 3 and w$ = t,, ;. In the group K = K/{~1,),
R* is a self-centralizing eights group. Thus, we quote a result of Harada
[40] to identify K. Since K- GL(5,F) and O,(K)=Z(K), the only
possibility is K'=A4,, whence (r,, K')=ZX,. But then (a) is violated. It
follows that (*) holds for w,. Now take any w; and any g & K so that
wi€ K. Then w{ centralizes some N-conjugate w’ of w,, whence
w' € CFC N* Using (*), g€ N. Thus, (*) holds for each w;. Define
@ =)'z  wk. Then K,=(Z) satisfies a criterion of Aschbacher [2],
whence K, has a strongly embedded subgroup (as O(K,) = 0,(K,)=1), a
contraction.

(b) Here, we must prove that n = 3. Take ¢t € rK M H*, t € R*. Then,
an eigenvalue argument shows that we may assume ¢=t,,, where
t; €S =X, is the element interchanging b; with b; and fixing the other b;.
Define C=Cy{t), C' =C([B,t]), C~ =C(Cy(t)) as before. Then
C*'NH*=R,S where R, =(r;|j#1,2)=Z} 'and S, ={;|i,j# 1. 2) =
X, »and C* =Z77'X, _|. Let 7 be the natural projection of C* onto £, _,.
Then (ry) X R, S, < C*, where R, = (r;|j#0, 1,2) = Z7~% Suppose n > 5.
Then, (R,S,)" must contain a natural copy of Z,_,. Since rj commutes with
this image, r; = 1, i.e., ry € (R*)* where g € K satisfies r§ = ¢. But 1 € (R*)*
and Cg,nR,S,) is a conjugate of (r,.r,r,--- r,) which contains only
one element with the eigenvalues of r,. So ry =1 which is absurd. This
leaves the cases n =3 and 4.

If n =4, then it is easy to see that r, is 2-central in H* and in K. We may
then imitate the special argument given at the beginning of the proof to get
K =2Z,X W, . But this is a contradiction since 32y|H*| here.

We have n=3, H*=Z, X W, =Z, X Z, X X,. Since F*(K) is not a 2-
group, a theorem of Harada {40] implies that F*(K) >~ A4, and p = 3. This
leads to (b)(ii).
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The proof of our proposition is compiete.

(3.5) ProPOSITION D. Let F be a field of characteristic p+# 2 and B an
F-vector space of dimension n+ 1, n> 3. Suppose that B has a basis
by by,.... b, and that H< H* c K are finite subgroups of Aut.(B) with the
Jfollowing properties:

(i) H*=Ny((by)) < NK(<bl 302500 b))

(ii) Cgk(b,) contains the subgroup H and H= C(b,) or n=4 and
C(b,) contains H as a normal subgroup of index 3 (hence H = 0% (Cy(b,))
is characteristic) where H=RS, R=(uylij=1,.,n i#j)=2Z5",
S, bh=b"if i€ {j,k} and b**=b, otherwise, and where S acts
naturally on {b,,..., b,} and on R.

(ili) H* = (Cylby), c) where ¢ normalizes H.

(iv) Cp(H)=2Z(H) - Cpu({by, byrr b,)).

Let m be an integer such that n=2m or 2m+ 1 and let z=wu,, u,, ---
Uym_1.2m € R*. Define R* = (R, —1p). Then one of the following holds.

(a) (=z2)*M{H* —1,>< R* and either
(i) Thereis uy, € K so that b%'=b, if k &€ {0, 1} and bio' = b, ' if
k€ (0,1}, (Riup) <Kand K=W, ,We orW, X{—l),
(i) K=Wg or W X{—~lz)andn=5orp=3andn=A4,
(iii)) p>0, K=0,K)H*, O,K) is elementary abelian and is an
F,H*-submodule of the stability group of B> (b, b,,....b,)> L.
(iv) K=Z,orZ;X{(—1lz)and n=3.
(b) (=2)* M (H*,—1,>E& R* and either
(i) K= WE"+|forn:6or 7,
(i) KzZiorZyX{(—lg),p=3n=3,
(i) n=3, O,K)=2'*" and K/Z(K)=W/Z(W) where

0, ,(WXYSc We W*=W, and W/O, ,(W*) is the group of order 2 in
W*/0, (W)=~ Z, X Z, satisfying W & SL(4, F) and R = Cy(R).

Proof. We begin by observing that it does no harm to assume that
—1, € H*. The conclusions where —1, & H* are easily deduced from the
conclusions where —1, € H*. Also, similar considerations allow us to
assume that every element of K has determinant +1 on B. So, henceforth, we
have —1,€ H* and if k€ K, detk = +1. Define K, =(k€ K|detk=1),
and when n is odd, u,, = —z.

If Cy(by)= W, or an extension of W, by 2, the group of graph
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automorphisms, then we may quote Proposition CF to identify K. So, we
assume that this does not happen.

Our next reduction is to identify K in case O(K) # 1 (we get (a)(iii)) and
0,(K)> Z(K) = {—1,) (we get (a)(i), (b)(iii)). The case O(K) # | is handled
as in Proposition CF, so we have O(K) = 1. In case Q = 0,(K) 2 Z(K), we
argue as in Proposition CF to get n=3 and O,(K)=2."*. The slight
changes in the argument are left to the reader.

Suppose R 41 H*. The structure of H <] H* then implies n = 4 and some
3-group in H* transitively permutes the three subgroups of O,(H) which are
normal in O,(H*) and isomorphic to Z3. We eliminate this situation with a
special argument. The difficulty to keep in mind is the fact that the 2-fusion
does lead to some simple groups. But we are safe because none of these lies
in GL(5, F).

Here is the special argument. Take & € H* so that |/] is a power of 3 and
R" R. Define Hy,= Cy(b,). Since n=4 is even and (z)=Z(T)N T for
T € Syl,(K), clearly H* = C,(z) and T € Syl,(K). Since H, does not contain
We, O)(Hg)=2\"* and H,=2'"*(Z, X Z,) is an extension of W), by a
graph automorphism of order 3. Since O,(H,) is absolutely irreducible on
(b,, b,, by. b,), the structure of Aut(2'**)=Z}Z,~ Z,) and the fact that
H, does not contain W implies that Hf = (c) X H,. Since detc = +1,
|c|=2. Define T, =TNK,. Then T, is isomorphic to a Sylow 2-group of
H,. Since T, is isomorphic to a Sylow 2-group of M,,, a look at the
conclusions of a theorem of Gorenstein and Harada [29] shows that
K, < GL(5, F) implies K, = O(K | )(H* "N K,), i.e., conclusion (a)(iii) holds.

Thus, we have R <1 H* from now on. We quote [49] to see that
H*=H:C,.(H) or n is even and H*/C,.(H)= W . We show that this
latter case does not occur. Suppose it does and take ¢ € H* so that
Cule)=2Z57'%Z,_,. Then ¢ € C(H)N C({b, 5., b,)). Since detc= +1 and
¢ normalizes (b,) = Cz(H), we get c*= 1. But now, ¢ or —zc lies in H,
whence H contains a copy of W, a contradiction. Therefore, in all cases,
H* = (c) X H where c is trivial on ¢b,,...,b,) and is —1 on (b,). We keep
this structure of H* in mind during the rest of the proof, which breaks up
into treatments of cases (a) and (b). Of course, we also have O(K) =1 and
0,(K) = Z(K).

(a) Let TESyL,(H*). K, =(kE€K|detk=1)T,=TNK,.
Case 1
n is even. Then z is 2-central in H*, (b,)=C,(Z(T)NT,) whence
T € Syl,(K) and C,(z) < H*. Since (a) holds, an eigenvalue argument shows

that z¥ N H* = {z}. Therefore, Glauberman’s Z*-theorem [24] implies that
z€ Z*(K)=Z(K) and so K = H*, a contradiction.
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Case 2

n is odd. Then R* is generated by .# = {y € R* |y has two eigenvalues
—14, a set of ("}') elements which is the union of the two H*-classes
l1tg; |/ = Ly n} and {u;;| 1 <i <j< n}. In either case (—z)* M R* generates
R*, which forces T € Syl,(K). Let N=N,(R*). Then N/R*= X,  or Z,
according to whether .# is in one K-conjugacy class or not.

Subcase. #+# (—z)" M R* We examine C=Cg(u,,). Let B°=
IbEB|b*n=b""}, C°=CB %) where le,—¢}={+,—}. Then B~ =
(by, b, BY =1{b,,.... b,}. Since |K: CNN| is odd, the action of CMN on
B~ shows that (u,,, u,,, maps isomorphically onto a Sylow 2-subgroup of
C/C*. In this subcase, u,, does not fuse to u,, = ugy, 4y, modulo C", whence
C/C* is 2-nilpotent. Since C/C* — GL(2,F), u,, inverts O(C/C") and
either O(C/C") is cyclic and completely reducible on B~ or p> 0 and
O(C/C™) is an elementary abelian p-group.

Suppose that O(C/C*)=0(C)C"/C*. Set V = (uf, N C). Then V/O(V)
is elementary abelian. A theorem of Goldschmidt [26] implies that
M = (ul,> has the property that M/O(M) is elementary abelian. Since
O(K)=1, we have O(M)=1 which gives M =R* and K =N, ie. (a)(i)
holds.

We now have that 1 # O(C/C ") > 0(C)C*/C". Thus, Out(C") contains
an element of odd order, whence n=5 and 3 =|0O(C/C*): 0(C)C*/C"|.
Thus, as CN N contains a Sylow 2-group of K, it is easy to see that
K,NN=(—1,)xX Z3A, and K,/{(—1,) is a fusion-simple group with a
Sylow 2-group isomorphic to that of 4,. We then quote a theorem of
Gorenstein and Harada [30] to conclude that K, = U,(2). Therefore.
K>~Z,x W, . as required.

Subcase. .# = (—z)" M R*. Define C; ;= C(u;), and let C} ;= Ce, (B
where B =|b€ B|b""=5b""}. {6, —}={+,—} Set C=C,,, B'=B;,.
C"=Ct,. Since B* =(b, bsnb, ) B =(by.b,) it follows that

n~-1/

C*<H. whence C"={u;.t;|1<i<j<n—-1)=Z7°2, , and
C'XC <C. Now. C” XR,S§<C/, where R/ =(u,3<i<j<
n—1y=Z%7% S, =3,;13<i<j<n—13=%,_,. Since (a) implies

(£,.1,)" M R* =@, or else such elements would be in (—z)", it follows that
S, = ST is a natural subgroup isomorphic to X, , where 7 is the quotient
map C;,— 2%, _,. Thus, (C )" is trivial or is {r) for a transposition r. Since
[C7.R,S,|=1. it follows that {C ||4. On the other hand, C~ contains
Uy -ty and u,  acts on C~ with centralizer (u, ,), as u, , acts on B~
with eigenvalues |—1, [} and H* = N ({b,)). Thus, C/C* = (C~.uy )= D,.
In any case, C < N = Ng((R, uy_,)). We finish as in the previous subcase by
verifying the conditions of Goldschmidt’s criterion [26]. This gives (a)(iv).

(b) Here we have to show that n € {6, 7} and that K = W

-
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Case 1

n is even. Then H* = Cy., has odd index in K, r=—z is —1 on b;, | on
b; for j=1,2..., n. Also there is g€ K so that t* € H* — R*. Eigenvalue
considerations allow us to assume ¢ =¢,,. Now, H*=C.(t) and
D=Cy(t,))=(t up. by, e ;]3<i<j<m=Z,XZ,XZ,X
Z%" %, .. Let n be the natural epimorphism (H*)* - S*~ X, and let S, =
E3<i<j<my=2, . If §, = §], then |, , . . has kernel E of order 4.
We have ¢, , € E. If t,,u,, € E, an eigenvalue argument forces t,,u,, =1t =
t,,. contradiction. Now, E contains an element with -eigenvalues
{—1. 1, L...., 1} because E = (1. u,,)*. The only remaining possibility is r € E.
Since E* ' < R*, we get t = %', impossible since ¢ = ¢,,. We conclude that
S, %87, whence n—2=4 or 2.

Suppose n=4. Then H*=Z, X W, = Z, X 2'**%, where an element of
order 3 acts fixed point freely on the Frattini factor of the extraspecial group.
Proceeding as before with n =4, we observe that K, has a Sylow 2-group of
type Ay. Since K, < GL(S, F), we get K, = W, [30]. But here, (a) holds,
not (b), a contradiction. So n =4 is out.

We have n=6. Then H*=Z, X W, . Thus, C (¢) is isomorphic to the
centralizer of a 2-central involution in Sp(6,2). Since O,(K,)=1, [55]
implies that K, = Sp(6. 2), whence K = W, =~ Z, X §,(6. 2).

Case 2

n is odd. Then n>5; for if not, n=23 and every involution of
H*~Z, X X, outside R* is conjugate to f,, or —f,,, in conflict with (b).
Here. we do not know that H* has odd index or that H* contains C.(z). We
use the notation Cj, etc., as in (a). Let C= Cg(u,,). As before, C* =
(Ut 1 1E<j<n=1)=Z17%, .

The element u, , = —z fuses to an element of H* — R*, which an eigen-
value argument shows is conjugate in H* to r/,¢;,. Let D = C(¢,,¢;,) and
define D*. D~ as with C. Then C~ X {t,;, U, L34U3,, R, S,) S D", where
Ri=(u;|s<i<j<n—1)=2Z5°%if n>6 and R,=1 if n=35, and
S, ={,;15<€i<j<n—1)=ZX,_,. Let 7 be the natural projection of D*
onto X, _,.

The first step in our argument is to show that C & N. An eigenvalue
argument shows that if +& ¥, D, then ¢ is a transposition. Therefore,
(ty2Uy5. ti U5y, RS )7 contains a natural copy of X, X X, 5. Since (C7)"
commutes with this, we get (C~ )" embedded in a natural copy of I, X X, or
in a natural copy of ¥, X X, x 2, and n="7. Since C~ Nker 7 < (R*)%,
which consists of elements of determinant 1 only, it follows that
C Nkerm< (u,,. Thus, C~ is a 2-group and |P(C7) 2. Since
D™ 2 (t,.t;,), C~ contains a fours group. Since C,.— (u4,,) stabilizes
(boy=1bEB [0 =b '}, Cc— () < H*. whence Ce— (itg,) = {ty,).

n
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Thus, (C~, u,,) is a group of maximal class of order at least 8 and at most
16 (since |®(C) <2). Therefore, C~ contains an involution which
conjugates uy, t Uy, Uy, = u,, and so interchanges (b,) and (b,) under its
action on B. Since C~ centralizes (b,,...,b,_,), it follows that N = Ny (R*)
satisfies N/R* =~ X, | (the eigenspaces {(b,),..., (b,)} for R* form a single
N-orbit). Take y € N so that b =b, and b} =b,. Then C,=(C~)* < H*.
In fact C, < {h€ H* | h centralizes b, for i # 1,2} (u,,,t,,), a four group.
We conclude that |C " |=4 and CZ N.

We now have CSN and NND=R,S,XR,S,, where R,=
Upp ) =Z3, Sy =ty tyys Liatyy) = Dy, Ry=uy [, jEDN=Z]7, 8, =
(tlLjeE =X, ,, where I =10, 5, 6,..., n}.

Take k € K so that (¢,,£;,)* =u,,. Then (R,S,)* < C and an eigenvalue
argument shows that its image in N/R* is a natural X,_, lying in C,,/R*.
By replacing & with an element of kC,,, we may assume that R*(R,S,)* =
R*S,. Since R,S;=(t€R*S,||t]| =2 and, ¢ has eigenvalues {—1, I,..., 1}
on R*), it follows that k normalizes R, S,.

Suppose k normalizes R;. Since R, is an irreducible F, S;-module, we may
assume that & centralizes R,. So, k € C.(u,,) = H* = N, which conflicts
with (¢,,1,,)* = u,,. This contradiction would then complete the proof if we
knew that k& normalizes R;. If this does not happen, R, # 0,(R,S,), ie.,
n=>5or 7. When n=5, R, = (uys) = Ry S, N K, is normalized by &, again,
a contradiction. Thus, n =7 and R§ # R, is the outstanding subcase.

Subcase n="71. We adopt the notation and situation described in the last
paragraph. We must show that K= W, . The first step is to show that
|K: H*| is odd.

Let z = ugsutgy, T = (R™, L1y, Lygs Lialass Loss Lers Loglsts holaslaglar) €
SyL,(N). Then T/R* =Dy Z,, a Sylow 2-group of X, |T|=2", (—1,)=
Z(T), {—1z,2)/{—13)=2Z(T/{—1,)). We show that T € Syl,(K). Define
(X = {t € T| has eigenvalues —1, 1, L,..., 1} = {t;;, t;u, | {i,j} = {1, 2}, {3, 4},
{0,5}, or {6,7}}, @ ={(b)=B|(b)=B,t] for some tE X} = {(b;b]"),
bibpy [ J} = {1,2}, {3,4}, {0,5} or {6, 7}}.

Now suppose that S is a 2-group in K containing 7 properly as a normal
subgroup. Then S leaves (7 and .# invariant.

Define Sy={s € S|s is trivial on .#} and Ty=TNS = (u,, U3y, Ups,
Ugys Lizs Lias Lsgs t15) = Z5. Then s € S, acts as a scalar on each (b) € 2,
whence §, is abelian. Since Cy(u;)< N, S, <N, whence S, =T,. Thus,
S/T, is embedded in £, and properly contains T/T, of order 2% ie., S/T,
acts on . # as a full Sylow 2-group of the symmetric group on .#. Take s€ §
to induce a transposition. Then s &€ T since T induces only even permutations
on .#. Since v = uy U,; U, Us; maps to an element of Z(S/T,)* and has
orbits of shape {(b;b;), (b;b; ')} in .#, we may choose s to interchange
(b,b,) and (b,b; ') and fix thé other elements of # (s must preserve the
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orbits of v). Let T, = N,((b,, b,)) and let y be the natural map (T,,s)—
Aut,.({b,. b,)). Then (T}, s) permutes {b,, b,), (b,b;'). Let U be the kernel
of this action. Then U is abelian. Since U® contains {(u,,,?,)* = Z, X Z,,
U is not cyclic. On the other hand, (7T,, s)* must be a group of maximal
class since {u € (T,,s) | u® commutes with u,,} stabilizes (b,), hence lies in
H* C N and so must have image Z, X Z, under y. Therefore, (T, s)* has
maximal class. We conclude that U®=~Z, x Z, and (T,,s)* = D,. Thus,
H = C,(b,) has order divisible by |U|/2 = (T,, S)|/4 =|T,|/2=|T|/8 =2",
whereas H = W, has Sylow 2-group of order 2'°, a contradiction. We
conclude that there is no such S, ie., T € Syl,(K).

Now that we have T € Syl,(K), we can show that K is an odd-
transposition group [4]. Let & =1t%, be the proposed conjugacy class.
Suppose w,v €<, d is an integer and |uv|=2d>4. We obtain a
contradiction. Let w be the involution of (uv). Then w has eigenvalues
—1,-1, 1, 1, 1, 1, 1, 1}. If w € T, an eigenvalue argument and the structure
of T imply that we may assume w = ¢,,¢,, OF W = u,,. Replacing w by a K-
conjugate, we may assume w = u,,, whence Cy(w) < N. Therefore, u and v
each have shape r;; or t;;u;. The structure of N/R* = X and d > 2 imply
that d = 2 or d = 3. The structure of N implies that if u, v commute modulo
R*, then they commute. So, d=2 is out. Since d =3, we may assume
u=\{ty, tyu,h vE€ {t,, tyu,!} for distinct indices i, j, k. Let [ € {0, 1,..., 7} —
{i.j»k}. Since (1;1,)° =1 and 1} =t u,, 3 =t,, ="t ti==t,u;,, it
follows that (uv)’ =1, a contradiction to |uv| = 2d. We conclude that for
u, v €, |ur|is 2 or an odd integer. An inspection of the possibilities shows
that K= W, .

The analysis of our subcase is completed and with it the proof of the
proposition.

(3.6) ProrosiTiON E. Let F be a field of characteristic p+ 2 and B an
F-vector space of dimension n + 1 for n € {5, 6, 7, 8}. Suppose that B has a
basis by, b ,..., b, and that H < H* c K are finite subgroups of Aut.(B) with
the following properties:

H* = N (b)) S Ni((byomens B,)), H= Cylby) = WE" Jor n>6, We, JSor
n=5 and p=3, or Z,X Wy for n=6 or p=3 and n=35. Also
H*=H X{c) and c is trivial on (b,,....b,); or n=5or 6, H=W, and c
inverts (b,...., b,).

Then one of the following holds:

(@) p>0, K=0,K)H* and O,K) is an F,H* submodule of the
stability group of B> (b,,... b,) D 1.

(b) Hx=W, and K=W, forn=60rT.
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Proof. First some reductions. As in Proposition CF we may assume that
—1,€ K and that every element of K has determinant +1. This forces
le]=2. Let K, =k €K |detk =1}.

Suppose O(K)# 1. Then C,,(H') normalizes (b,). But O(H*)=1,
whence C, 4, (H') = 1. Now let A # | be an elementary abelian subgroup of
O(K) normalized by H’. Suppose AH* is irreducible on B. Since
AH' & GL(n+ 1, F), Clifford’s theorem implies that H’ must have a
proper subgroup of index at most n + 1, a contradiction. Thus, p >0, 4 is a
p-group, and we get (a).

Suppose 0,(K) > {—1,) Then 0,(K) H* acts irreducibly on B. Clifford’s
theorem and the structure of H* imply that B is irreducible for O0,(K), i.e.,
n=17.If 0,(K) had an abelian subgroup 4 > Z(K) = (—1,), invariant under
H', the above argument could be applied to AH’ to get a contradiction.
Therefore, O,(K) is of symplectic type [27]. Since | Z(O0,(K))| = 2, 0,(K) is
extraspecial (of order 27). But Sp(6, 2) is not involved in Aut(0,(K)), a con-
tradiction.

Case 1. There is an involution z*€ Z(H). We set z=-z*€
Ci({bges b)) Since Z¥(K)={—1,), the Z*-theorem [24] implies that
XM H* # (z}. Take z, € ZX N H*, z, + z. Then, the shape of H* implies
that z, € H and the structure of H shows that *NH is the natural class of
reﬂectlons in H. Now take z, €z " H, z,E C({z.z,)) — {z,z,}. Then we
have the following table:

C(z2) C((z,2,)) C((t, 2y, 2,))
Z, X W, Z,XZ,XW,, Z,XZyXZy X W,
WP Z: X W[)ﬁ Zz X Zz X ch
WfK Zy X Wy, Z,XZyX Wm

We now prove that z¥ is a class of odd transpositions. Suppose false and
take z,,z, € z¥ so that |z,z,| is the involution of (z,, z,). Since (z,.z,) is
trivial on Cy(z,2,) 2 (by), {z3. 2,y S Cy(z,z,). By inspecting the above table
and (and keeping in mind the class z¥ M H), we see that (z;,z,) =(z,,z,) is
a fours group. Thus, z¥ is a class of odd transpositions. We quote {4] to
identify (z*), and then K (finally, we see that H =~ Z, X W, _does not occur).

Case 2. Z(H)=1, ie., H= W, _. It seems that we have to build up the
2-structure. Let L be a natural W, subgroup of H, ie., L>=Z3;%,. Let
R=0.,L), R*={(R,—1,). Q=C(R). If Q=R*, the fact that rER
cannot fuse to —r implies that K =K/(—1,) contains the simple group
K' = F*(K)having self-centralizing R =~ Z?%. Since L' = Ny, (R)-—RL RL ,
where L, ~ A, and R is a projective F,L,-module, it follows that R= J(T)
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where T € Syl,(L'). Since this Sylow 2-group leads to K’ >~ 4, 4, or U,(2),
we have a contradiction.

We have QO R*. If n=25, then QL stabilizes (b,)= C,(R), so that
QL < H*, a contradiction. Therefore, n = 6. Also, Q is a 2-group. Suppose
®(Q)2R. Then [Q,L] >R and the action of [Q,L]L on CyR) forces
[Q, L] < H, a contradiction. So, we have @(Q) "R =1 and so R is a direct
factor of Q = Cx(R). Set Q, = Cy([B, R}). The shape of H and the fact that
% can not act on X = 7} in such a way that Q,(X) is the codimension 1
submodule of the usual -, X permutation module forces Q = Q,R{(—1,). We
claim that ¢, does not contain an involution inverting C,(R).

If so. it would lie in H* and centralize L < H, contradicting the structure
of Aut H= H. Since Q, - {x€ GL(2,F)|detx=+1}, it follows that
0, = (») where is an involution with one eigenvalue —1. Since Q = Z$§, the
action of L on @ shows that Q is the only normal subgroup of its
isomorphism type in T &€ Syl,(QL). Thus, Q is characteristic in 7. Set
C=Ck(»)

Suppose that T € Syl,(K). A check of eigenvalues now shows that since
Y& Z¥K)=(—1,), y fuses to some t € C* = {x € C|x is trivial on |B, y]}.
Since QLN C*" ={(—g,L) has odd index in C*, we may assume that
t€ELLH. Since Cu(t)=Z,xXZ,, C* contains L properly. We quote
Proposition D and use Z;—» C* toget C* = W, or C* 2 W, X Z,.

We have T & Syl,(K). Since Q is characteristic in 7, Q<1S€
Syl,(Ni(T)). Notice that {y} = {x € Q|x has one eigenvalue —1}. Thus,
N =N (Q)< C(y). Since Ng(Q) is corefree and 2-constrained and n =6,
we get (by Proposition D) Ny(Q)=(y)XM, L<KM =W, =2°.Z,. By
Proposition D applied to the action of L <M on Cy(y), CK(v) Z,X Wg
The latter case is impossible, as W, does not contain a subgroup of shape

- Z¢. S0, Cr(¥)=N, (.Q)—<y>><M Also, if {t) = Z(M), Cx(t) = C(y).
Thus, |K 1 N(£2) is odd and K = K/(—1;) has an involution with centralizer
of the form W), . By [59], K = Sp(6, 2) and so K = W,., as required.

The proof of our proposition is complete.

(3.7) PropoSITION A. Let F be a field of characteristic p+ 2 and B an
F-vector space of dimension n+ 1, n> 3. Suppose that b, € B* and that
H < H* c K are finite subgroups of Aut,(B) with the following properties:

(i) H* =Ny ((by)) < Ny(H), H* = H{c), where ¢ acts as +! on
|B, H|;
i) H=X
Zoia X Zyy and
(ii1)  B/{b,) is isomorphic to FQ/F(Z . qa) or VIF(X,.,a) where  is
a set of n objects on which H operates transitively, FS2 is the permutation
module and, when H=X, ,, V={Y,.q4.a|> 1cot, =0}

or X, \XZy,;; or pln+2 and H=X, , or

nt+1e

481/80,2-11
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Then, one of the following holds:

(a) H=ZX,,, and K contains a normal subgroup K,=K X {z),
where z is +1, and K, =W, ., pln+3 and Ky=W, or n=5 and
Ko~ W, . Furthermore, K =K, "unless Ki=XiXZ,, K/Z(K) ~ Aut 4, and
K/K" = D,.

(b) Hx=Z,,,, pin+2, and n=4, p=3, K==W, or W, XZ, or
n=7p=3 K= W,

() p>0, K=0,(K)H*, O,K) is elementary abelian and stabilizes
the chain 0 c B, = B, B, a hyperplane of B with b, € B.

Proof. It suffices to do the case that K = (t{;) where t;; € H corresponds
to the transposition (ij) under the corresponds to the transposmon (i) under
the given isomorphism H = X, , where m=n + 1 or n + 2. Thus, ¢, effects a
reflection on B. Set £ = ¢,,, C = C,(¢). Then CNH* = (t) X {c) X C,, where
lel]=1 or 2 (as dete=+1) and Cy=t;|i,j€& {1,2})=Z, ,. Define

= Cy(t), C,=C|B,t]). Then dim, By=n, C,=Cyd,) for dy=1 or
dy=ctand C=C, X {).

We may assume that n > 4 for the following reasons. If n=3, H= X, or

I . If Hx= X, =W, , we may quote Proposition D. If H= X, p=15 and we
argue as follows. Let U= 0,(H), B, =[B, U], (b,) = C,(U). Then C,(U)
stabilizes (b,), hence lies in H* and so U is self-centralizing in H* N SL(B).
Thus, a Sylow 2-group of KN SL(B) has maximal class. Since
K < GL(4, F,), the classifications [1, 11, 25] give a contradiction.

Now, as n > 4, we may apply induction with C,, H*NC,, C,, By, by in
the roles of H, H*, K, B, b, to get the possibilities for C,. Suppose that (c)
holds for C,. Then, as O,(C,) consists of transvections on B, and
B=B,X |B,t], with both factors C-invariant, O,(C,) consists of
transvections on B. Thus, (CX) = ((C, N tX)*) = (¢*) contains transvections
on B. Using McLaughlin’s theorem [47], we get that (c) holds for K (the
other possibilities are eliminated by the shape of H*). We, therefore, may
assume that (a) or (b) holds for C,.

For simplicity, we first treat the case that C, is isomorphic to a Wey!
group. If C, is isomorphic to the Weyl group of some root system of type
other than 4, we may quote Proposition CF, D or E. Thus, we may assume
that C,~ X, for r=n+1 or pln+2 and r=n+ 2. Evidently, CNt* =
{1} U (C, M t*). We have that C, N X =¢5}. We argue that ¢* is a class of
odd transpositions. Namely, let s € t* so that st has even order. Let u be the
involution of (st). Then u has eigenvalues {—1, —1, 1, 1, 1,.., 1} on B. By
the structure of C,, either u =tt' for ' € C, N t*, or u=1t't" for distinct ¢’,
t" € C,N % In any case, (s, ) acts faithfully on [B,u] and trivially on
Cp(u).

If " is in Ccl(u)ﬁt"' and " does not appear in the above factorization
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for u, then, as [B, ¢"] € Cyp(u) = Cy({s, 1)), we get (s, t) < Cx(t"), which is
conjugate to C. It follows from s, # € ¢* and the structure of C that (s, ) is a
four-group. If no such ¢” exists, then, as n > 4, we must have u of the form
tt'. But then it is obvious that (s, ¢) is a four-group. Consequently, ¢* is a
class of odd transpositions. Using the list of conclusions in [4] and
C=Z,xZX, we get that K=X , or r=4, p=3 and K= W, as
required.

Now suppose that C, = C, X (z), where C, is generated by t* N C, and is
isomorphic to a Weyl group of some root system, then we may modify the
argument of the previous paragraph, provided that C M ¥ = {t} U (C, N t%).
If this is false, then ¢ fuses in K to some sz, where s € C, and s has eigen-
values {—1, —l,..,—1, 1,1}. Since [B,t] is a section of the usual
permutation module for C, = Z,, the number of eigenvalues equal to 1 for s
is at least 1 + n/2, whereas n > 4, a contradiction.

Finally, suppose that C, has neither form. Then n =4, p=13 and C, is the
central extension of Aut A4 in (a). We have t* N C < C, U {t}. It suffices to
show that every conjugate of ¢ in C, lies in C¥, the Z, X X subgroup of
index 2 in C,, for then the argument of the previous paragraph may be
repeated. So, by way of seeking a contradiction, suppose that there is
sEC,Nt* s& C¥. Then, the structure of Aut 4 implies that s must lie in
Cis, where Y= Cci(s,) = D,, (only two nontrivial cosets in Out 4, contain
involutions). On B, Y has two absolutely irreducible constituents, and on
each of these s, acts as a scalar. So, s, has eigenvalues 1, a, a, §, BE F.
Since det s = det t = —1, it follows that ¢’8*> = —1. Thus, |s,| >4 and, as s}
centralizes C?, we have s = (z). Thus, (C},s,)/C} = Z,, whence s cannot
be in (CY,s,). Since s & C}, it follows from the structure of Aut A, that s
cannot correspond to an involution in Aut A.-Inn A4, a contradiction. The
proof is now complete.

LEmMA 3.8. Let H=~A, and X the irreducible 4-dimensional I;H-
module which occurs in conclusion (b)(ii) of Proposition (3.4).

(i) If H, is any subgroup of H ismorphic to A, then X occurs in the
F, H-permutation module based on the cosets of H.

(i) If Y=Z3. as abelian groups, n >2 and Y is an H-module, then
Y/Q,(Y) % X as H-modules.

Proof. (i) By inspecting the Brauer character, one sees that the
permutation modules on the cosets of nonconjugate A4.-subgroups are
isomorphic F; H-modules. Take H, € H, H, ~ A,. Then X is irreducible for
H, and if H,c H,, H,=A,, then H, fixes the l-dimensional space
C(0,(H,)). Thus, X is the nontrivial absolutely irreducible constituent of
the F, H,-permutation module for the action of H, on the cosets of H,. Since
X|y, is unique (up to equivalence), so is X.
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(ii) This requires some matrix calculations. We suppose that
Y/ ,(Y)= X, then derive a contradiction. Without loss, n = 2.

Any subgroup (x) of order 3 in H is contained in a subgroup H, = Z,. Set
T=0,(H,). Then Y =Y, T| X C;(7) and the factors are free Z,-modules of
ranks 3 and l. respectively. and are H-invariant. Since x € H/, x centralizes
C,(T). Thus, one may choose a basis for ¥ so that x has matrix

o — O O
OO O -
SO —=Q
- OO0

Now, let {s) X {(t) € Syl,(H) where s and ¢ are conjugate in H. Let y,. y,,
¥;. ¥, be a basis for ¥ so that s has matrix as above. Let y: Y — ¥ =X be
our H-homomorphism. Since X occurs as a section of the F, H-permutation
module, we may assume that X is generated by elements e;;, 1<, j<6,
i #j. which satisfy the relations e;=—e;, e;+e;, =¢€,, i#k and
e.+e,;+e;+e,=0 We may now choose notation so that y¢=e¢e,,,
M=e,, Vi=ey, yi=esx, S, L. correspond to the permutations (123),
(456). respectively, and the element g € H acts on ¢;; by e =e, ; where g
corresponds to the permutation g’, where i* =i', j& =j'.

We now determine conditions satisfied by the matrix B representing .
Using the basis e,,, €,,. €;4. €5, for X, we compute that e, =e,.=—e,, —
€34+ €4y €5y = €ye= —€1 — €34+ €54, €34 = €35 = —€14 — €y, T ey and e
= e =€, — €, — €3 + ey, whence ¢ has matrix

0 -1 -1 1
-1 0 -1 1
P=11 1 0 1 |t
I -1 -1 1
where each ¢;; is divisible by 3.
Since st =ts and
0010
4 _ 2 _f1 0 0 O
74" o 10 0}
0 0 0 1

we have
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—1l—cy —1+cy, cy; l4cyy
p. ¢y, —l+c, —l4c¢c; l4ey,
@ fa= —1+¢y, €, —l+ec; 1+ey, ¢

1 + €y -1 + €4 -1 + €43 1 + Cyy

€ —l4ey —l4en Loy,
—l+c), ¢y —l+e, ltey,
—14+c¢; —1+0,, C., l+cyy
—1 +cy4 l+¢,, —l4cy 14cy,

which equals . Comparing coefficients and noting equalities, we have a, b,
code€l3Z,suchthata=c, =c,,=cy, b=c,=cnn=cy.c=¢3;=¢,, =
€yn.d=cy =c¢,,=¢,; and e=c,, =c,, = ¢,,. Since « and f are conjugate
comparing traces gives c¢,, = 0.

Now
—1+c a —14+b 1l+e
af = —1+b6 —1+4c a l+e
- a —1+b —1+4+c Ll+e )

l+d 1+4+d 1+d 1

which has trace —3 4+ 3¢ + 1 = —2. As noted in the second paragraph, the
trace must be 1 since aff represents the element st € H of order 3. This
contradiction completes the proof of (ii).

LEMMA 3.9. Ler the group G be generated by involutions t, ... t,, n>2
subject to the relations

e T

0 [ £} th-1 tn

Then G is a split extension Z"~'X,, where the normal abelian subgroup A is
isomorphic to the submodule (e, — e;|i,j = 1...., n) of the permutation module
L%\ Ze, for the symmetric group L, ~ G/A (this isomorphism is given by
- Gi+ 1), 1<ign=1)

Proof. Let ¢:G— X, be the epimorphism given by ¢,— (i,i+ 1) for
1<i<n—1 and t,—- (n,1). Then a=¢*" "=t € ker g. Let A =(a%) <
ker 9. Then G/A is generated by the images of ¢,,..., £, which satisfy

I t3 tn

[e} .. o,

whence A = ker ¢. We shall show that 4 is abelian. For now, assume n > 4.
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Let H={ty,, t,)=X,, C=Cyu(t,) = tysus t,_,) X {t,). We claim that
an=a! (n
a''=a, 2€ign-2. (2)

In our calculations, we use the index / for ¢;. Thus, £;¢;¢,--- is written
iXjXk--. So, (1) is equivalent to l=aq a""=n—1Xn—2X--X3X
2XIX2X3IX - oXn=2Xn—1XnXnXn—1Xn—2x--X3X
2X1X2X3X:-Xn—1XnX n. Since the right side trivially collapses
to the identity, (1) follows. Now for (2). We have a'i=ls 'n-tly =
t’lz""i—l'i'iﬂ’i""nflt" — t’12"'ti—l[i+lti’i+l""n—lt" — (tlli+l)t2""i—ltiti+l""n—lln =a,
giving (2).

Define B = (g, a’"-'“). We claim that B is abelian. It suffices to prove that
[a,a]=11e,that l=nXn—-1Xn—-2X--XIX2X1IX2X
IXeooXn=2Xn—1Xn—1XnXn—1Xn—2X--X3X2X%X1X
2X3IX-eXn—=2Xn—1Xn—-1Xn—1Xn—2X---X3X2XI1X
2X3X-n—1XnXn—1Xn—1Xn—2X-+X3X2XI1X2X
3X-+Xn—2Xn—1Xn-—1.But an exercise with relations verifies this
requirement (e.g., start right at the middle, usingn —2Xn—IxXn—1Xn—
IXn—-2=n-2Xn—-1Xn—-2=n-1%Xn—2xXn— 1, then move
the (n — 1)’s away from center).

Finally we show A=B. We have H=CUC(t, ,CUCt,_t,C. Tt
suffices to show that a'~-» € B. In fact, we show that

aln—lll =atllnatn—l; (3)

equivalently.

1 = gitetn—1gq 1,

So. we show the trivialityof n — 1 Xn X 1 Xn—1Xn—-2X:--X3IX2X
I X2X3X-Xn=2Xn—1XnXlXnXxn—-—1Xn—1Xn-
2X e X3IX2IXTIX2X3IX s Xn—2Xn—1XnXlXnXn—1X
n—2X--X3X2X1X2X3X-+Xn—2xn-—1Xx 1. Now, cancel
n—1Xn—1 and replace both triples n X 1 X r by 1 X n X 1. Next move
the i’s closest to each 2 X 1 X 2 inward, then replace each 1 X2 X 1 X2 X 1
by 3. What remains is an expression in H. Since H =~ H®, it is routine to
show that the expression is trivial by a calculation in H® =X .

As for n< 3, the lemma is trivial for n =2 and the argument for n=3
amounts to showing that B = (a, a") is abelian and verifying (3) with a
similar calculation.

Now we show 4 =B is abelian of rank at most n — I. Namely, B is
generated by a and all a® where g runs over a right transversal T'to C.(¢,_,)
in C. Taking T={geClg°=(2,n-1), B,n—1).., (n—2,n-1),
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(2,n—1)n, 1),..., or (n—2,n-1)(n— 1)} and using the facts that (n, 1)
commutes with each (j,n— 1), 2<j < n—2, and ¢, inverts a, we get that at
most n— 1 distinct cyclic subgroups are generated by the members of
la.a®|g € T}. Thus, B has rank at most n — 1.

Finally we show that 4 has rank exactly n— 1 as follows. Let M be
the module (e;—e¢;li,j=1,.,n) for H=~X, as in the statement of the
lemma and let MH be the semidirect product. The elements
((e, —e,) t,)n-tm-2 tf g 1, satisfy the diagram defing G, and we have
a map y: G — MH. Since e, — e, € G* and ¢, — e, generates M as a module,
y is onto. The shapes of A and M show that y is an isomorphism, and we
are done.

We will require some results on generation of the known simple groups.
Consider the following more general situation.
ECHCG and if
geEG with E*NH=#1, then g€H,

which we refer to by saying that H controls strong fusion of E in G. We
specify

Hypothesis 3.10. H controls strong fusion of E in G and E = E ,, p odd.

LEmMma 3.11. Suppose H controls strong fusion of e in G and e has
prime order p.
(i) IfecRcHand R <1< X, then X< H.
(ii) IfeE€N, then pf|N: NN H]|.

(i) If eeN, V=HNN and N=N/K Jor some K <IN with
K< VNN, then V controls strong fusion of (&) in N.

Proof. The proof is straightforward.

LEMMA 3.12. Suppose (3.10) holds.

(i) If G is p-solvable, H = G.
(ii) If H is p-nilpotent, H = G.

Proof.  To prove (i) let M be a minimal normal subgroup of G. If p}|{M|,
then M = (Cy(e)| e € E*) < H, while if M is a p-group and R=EM, Rc H
by Lemma 3.11(i). Thus, M € H and since H/M controls strong fusion of
EM/M in G/M, we have H = G by induction.

For (ii) suppose H is p-nilpotent and pick P € Syl,(H) with E < P. By
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Lemma 3.11(i) again, P € Syl (G). By a result of Glauberman [25, Theorem
12.7] there exists a subgroup W < P such that

W is characteristic in P, and
if z &€ PN Z(N {W)), then z is weakly closed
in P with respect to G.

Let N= Ng(W). If N= G, we may apply the induction hypotheses to G/W,
so assume N+ G. HN N controls strong fusion of £ in N, so NS H by
induction. From the structure of H and choice of K we see that every
z € Z(P) is weakly closed in P with respect to G. If z € Z(G), then we are
done by induction, so assume z & Z(G) whence Cg(z)< H by induction.
Thus. z* € H implies g € H, and in particular Ny(D)< H for any Dc P
with C,(D) < D. It follows that two elements of P are conjugate in G if and
only if they are conjugate in P. But now G is p-nilpotent, and the action of E
on O,(G) forces 0, (G)< H and H = G.

Lemma 3.13. Suppose (3.10) holds and the p-layer of G is L,(G)=
K - K oorL,(G)=1.

(i) Every p-solvable normal subgroup of G lies in H.

(i) If RcHand [RRHNK,;| <0, ,(H), then R normalizes K;. In
particular O,. (H) normalizes each K.

(iii) If K, & H, then E normalizes K.

Proof. Lemma 3.11(i) yields (i). Next we prove (iii). Assume E does not
normalize K;. By induction on |G|, we may assume O,. ,(G)= 1. Indeed if
not, then by (i). 0, ,(G) < H and by induction E normalizes K;0,. ,(G). As
K, <1<1 G, K, is characteristic in K;0,. ,(G) and (iii) holds. We may also
assume by induction that E acts transitively on the p-components of G. Since
0, ,(G)=1, each K is simple.

Let L =L,(G) and X={(C,(e)|e € E”). It suffices to show X =L. If
N.(K,;)# 1, then choose e € E* to normalize K;. As p||K;[, 1# Cgle)<
XN K,. Choose f€ E so that (/) acts transitively on the components of L.
As C,(f)S X, X projects onto K; whence XNK,; 1K, and K, X. It
follows that L = X as desired.

If N.(K,) =1, then E acts regularly and we can choose e,/ € E* so that
the (e)-orbit containing K; and the (f)-orbit containing K, have only K, in
common. Letting X=(K/®) and Y=(K{’), we have K,=[C,le),
C,(f)] = X whence L =X.

Now we prove (ii). Just as in the proof of (iii) we may assume
0, ,(G)=1 whence K, is simple. Suppose r € R does not normalize K. If
K, H, then K(K,)" = |K;, r] € O,. ,(H), which is impossible. Thus, K; & H
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and by (iii) E acts on K,. By Lemma 3.12, H N K, is not p-nilpotent, whence
[HN K, r]| contains a section which is not p-nilpotent. But [HNK;,r|] <
0, ,(H), contradicting the existence of r.

LEMMA 3.14. Assume the hypothesis of the preceding lemma and assume
that each K, satisfies the Schreier Conjecture; then

L,(H)y=L,(HOK,) - L,(HNK,).

Further if L, is a quasisimple component of H, then L, < K, for some
quasisimple component of G.

Proof. The action of E gives 0,(G)< H. Thus, if L, is as above, then
[L,.0,.(G)] =1, whence [K;,0,.(G)] =1 and K, is quasisimple.

For the proof of the remainder of Lemma 3.14 we may assume
0,..,(G) =1 by induction whence each K; is simple. Since L, (K; N H) is
clearly a summand of L .(H), it suffices to show that each p-component of H
lies in some K.

Let L=L, (H)and X=HNL,(G). Since X <<H, L =L, L, where L, is
the product of all p-components of H lying in X, L, is the product of all
other p-components of H, and XNL,c0, (L,)=0,. ,(H). As
[L,NX,X]<L,NnX, Lemma 3.11(ii) implies that L, normalizes each K;.
It follows that L does too.

Now for any K=K;, L=L,L, where L, is the product of all p-
components of H lying in K and L, is the product of the rest. Letting
Y=HNK, we have as before L,cY and L,NY<SO, (L,). By
hypothesis, L, acts as inner automorphisms on K. Let bars denote images in
Aut(K). L,< K implies [L,,L,|< [L,,¥]<0,. (L,). As L, is perfect,
L,=1

Thus, for any p-component J of H and any K=K,,J=K or [/,K]=1.
As O, ,(G)=1, J acts nontrivially on L,.(G) and (ii) holds.

LEMMA 3.15. Assume the hypothesis of Lemma 3.13. Suppose p =3 and
P<1Q <1R <1 H with
(a) R/P=S;;
(b) P=0;(R);
) 0=0%(Q);
then R normalizes every K,. Further either Q < O,.,;(G) or there exists

K =K, such that R acts nontrivially on K/O,. (K) and if Q acts as inner
automorphisms on K/O,. (K), then Q € K.

Proof. Clearly [R,H|< Q< O, s(H) so R normalizes each K; by
Lemma 3.13(ii). If Q acts nontrivially on O, ,(G)/0,(G), then our
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hypotheses force Q < O;. ;(G). Thus, we may assume Q acts nontrivially on
K/O,. 5(K) and induces innerautomorphisms. By induction we may further
assume O, ,(G)= 1. If Q£ K, then [R, HN K| € P, and letting bars denote
images in Aut(K/0,. ,(K)), we have [R, Q] € [R, HN K| < P whence Q = 1,
not the case.

The remainder of this section is primarily devoted to determining when
certain configurations satisfying Hypothesis 3.10 can occur in the known
simple groups. These results will be used in Section 6; and roughly speaking,
H will be isomorphic to the centralizer of an element of prime order in a
group of Lie type defined over a field of characteristic 2. As a consequence
we need only consider configurations satisfying the following more restrictive
version of Hypothesis 3.10.

Hypothesis 3.16. (I) H controls strong fusion of £ in G and ExE ., p
odd.
(II) K =F*(G) is a known simple group.
(Ilf) Let Q=0,(H) and L/Q =L(H/Q). The following conditions
hold:

(a) The components of L/Q are Chevalley groups or Steinberg
variations (i.e., not twisted groups of type B, or F,) over a field of charac-
teristic 2;

(b) L is perfect or L(H/Q)=1;

(c) H/L is solvable;

(d) E acts as inner-diagonal automorphisms on each component of
L/Q:

(e) if L(H/Q)+# 1, then either L is 2-constrained, or L is
quasisimple with |Z(L)| odd;

(f) if L(H/Q) =1, then either m,(K) =1, or K has a perfect central
extension K by a cyclic p-group with m,(K) = 2.

(IV) For all x€E*, L,(Cs(x)) is quasisimple or 1 and each
component is a group of Lie type over a field of characteristic 2.

LeEmMmA 3.17. If Hypothesis (3.16) holds and K is alternating or of Lie
type, then one of the following occurs:
(i) H=G:
(i) K=A44, p=3, FX(HNK)=E, or K=A4,,, s=2,3,4, p=35,
and F*(HNK)=A%;
(iii) K is a group of Lie type over a field of characteristic 2 and p =3
or 5.
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Proof. We may assume H # G. If K < H, then H controls strong fusion
of Ein G = G/K, and as Gis always solvable, H = G by Lemma 3.12. Thus,
we may assume K & H.

Suppose K is alternating, say K =4, and e € E* has cycle structure 1"p*
Assume s > p and

e=loop)(Pp+ 1,,20) - (p—=1V)p+ Lo, p?) ---.

As e is fused in K to
f=p+La,(p—Dp+ 1) (P 2pus P?) -+,
we have (a, b) < H, where
a=(1,2,..,.p)ECse)cH
and

b= (p, 2p,..,p*) E Cx(f) S H.

But {a, b) is the alternating group of the letters moved by a or b; and it
follows easily that 4,XA4,,<H. As sp>9, conditions III(a)}-(c) of
Hypothesis 3.16 cannot both be satisfied, and we conclude s < p.

A similar argument yields r < p. It follows that E has no regular orbits,
and that we can choose e to have cycle structure 17p°. Control of strong
fusion of e forces H to contain F=A4,/ A, ,. In fact, as e EF, Ny(F) < H.
Since Ng(F) is maximal in G, H = N (F). Applying conditions III and V of
Hypothesis 3.16 we obtain conclusion (ii) above.

Next suppose K is of Lie type over a field of characteristic p. If
ENK=1, then p=3 and K=D,3). Some e€E* is a field
automorphism with H 2 Cy(e) =~ D,(3"). By (8, Theorem 1], Ci(e) is
maximal in K. By Lemma 3.11, p}|G: H|; and as pj K: C(e)|, it follows
easily that X < H. Thus, we may assume E N K # 1. Applying the operator
O,(Ng( ) repeatedly to ENK, we eventually reach O,(W) for some
parabolic subgroup W of K [9]. It follows that W < H whence HNK is a
parabolic. Condition II(e) now implies L(H/Q)=1, and in view of
Condition III(f) we need only consider the possibilities m,(K)=1 and
m (K)—2 In the first case K must have Lie-rank 1 whence HNK is a
maxnmal subgroup of K. But some e € E — K is a field automorphism, and it
follows easily from Cy(e) < H that K < H. In the second case, by [38],
p|1Z(K)| implies p=3 and

K=4,09), B3 G3) or 4,3)

Likewise the Sylow 3-subgroup of Z(K) is elementary whence by Condition
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1I(f) |Z(K)| = 3. Now m,(K)< 2 implies m,(K) < 3 by a straightforward
argument whence K =4,(9) =~ 4, and Lemma 3.17(ii) holds.

Finally suppose K is of Lie type over a field of characteristic prime to p.
Our conditions imply K # (C (e)e€ E*), and [52. Theorem 1 and
Theorem 2] yields conclusion (iv) of Lemma 3.17.

Lemma 3.18. If Hypothesis (3.16) holds and K is of Lie type over a field
of characteristic 2, then one of the following holds:

(i) p=3,K=C,2), HNhK=07(8,2);

(ii) p=3,K=C,(2, HNK=07(6,2);

(i) p=3. K=4,4), EcK, F¥YHNK)=A,=C,(2) or
HNK ='4,02);

(iv) p=5K='C,(2°HNK=2Z,Z,;

(v) p=3,K=A4,8); HNK is dihedral of order 18.

Further Ci(E) is a p-group. and. in cases (i)—(iii), E acts on K as inner-
diagonal automorphisms. In cases (i) and (ii) the standard K-module may be
decomposed into a direct sum of pairwise orthogonal hyperbolic planes in
such a way that E acts nontrivially on each plane and H acts as the
orthogonal group preserving the quadratic form which takes the value 1 on
the nonzero elements of every plane.

Progf. We sketch the proof., which consists of analyzing all the
possibilities for failure of generation presented in [52]. Suppose first that K
is classical and E acts as inner-diagonal automorphisms. Let £, be a Sylow
p-subgroup of the pre-image of E in the universal covering group K, of K (or
more precisely in K, extended by its diagonal automorphisms). Assume first
that E, is abelian. By [52, (4.1)], p=3.r? =2, and K # 4,(2). Further let V
be the standard K,-module; then

V=V, LV, L. LV,

with V, = C,(E,), dim(V,) <0, 1, 2 according to whether V" is symplectic,
unitary. or orthogonal and for i>1 V,=[V,, Ey|, dim(V;)=1 or 2
according to whether V' is unitary or not. Let D, = Cg (E,), then either
D,=E, and D, stabilizes the decomposition of V" above, or K, = Sp(2n, 2)
and D, = 0%2n, 2) preserve the quadratic form which has value 1 on each
vector in V7, i > 1. Clearly K & H implies D, # K.

If K, = SU(n. 2), then a lift of e € E* has a diagonal matrix representation

'11
e~
A’"
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with each diagonal entry corresponding to a summand of the decomposition
of V. If 4,=4;=4, for distinct i, j, k, then D, contains a subgroup
isomorphic to SU(3,2) which does not stabilize the decomposition of V.
Thus, the multiplicity of any eigenvector is at most 2, whence n < 6. If n =6,
then the trace of the matrix of e is O for each e € E*. As each 4, is a cube
root of unity, we may choose the lifts of each e to generate a subgroup
E,CE, E/ =~ E. We identify E with E,. Let y be the corresponding
character of E. y(e)=0 for e€ E* and w(1)=6 which is impossible as
|El=9. A similar contradiction obtains if n = 5.

Consider the case n=4. We have K,=K=SU(4,2)=PSp(4,3). As
H M K controls strong fusion of £, HM K contains all monomial matrices.
The subgroup of such matrices corresponds to a maximal parabolic of
PSp(4.3) whence HMK is the monomial subgroup. It follows that the
subgroup of diagonal matrices is normal in H. On the other hand there are 3
K-classes of elements of order 3 represented by

A A A
A1 A A
1 ’ A7t ) A
i A1 1
As we saw above, E contains no elements of the third class; it follows easily

that E contains elements from the other two classes. But H M K contains an
element w with matrix

OO - O
oS- OO
SO O -
-0 OO

As C,(w) has dimension 2, w is fused in K to an element of E. Thus, w is
fused in H to E, contrary to the structure of H.

The last two paragraphs show that when E is abelian (and K & H) we do
not have K =’4,(2). A similar argument disposes of the other classical
groups whenever D, stabilizes the decomposition of V.

Suppose E, is abelian but D, does not stabilize the decomposition of V.
K,=Sp(2n,2) and D,= 0%(2n,2) as discussed above. If the lift of any
e € E* centralizes two summands of ¥V, then D, contains a subgroup
isomorphic to Sp(4, 2) which does not preserve the quadratic form. Thus, the
centralizers in £ of the summands of V" are all distinct. It follows that k < 4.
As V=0, we have K = C,(2) or C,(2) and H = HN K contains a subgroup
L isomorphic to 07 (6.2) or O~ (8, 2), respectively. By [52, (2.3)], D, does
not act on a 2-subgroup of K, lest D, = K. Thus, O,(H) = 1, and it follows
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by arguments on the order of L and H that L <J H. At this point we have
obtained Lemma 3.18(j, ii).

Assume E, is nonabelian. By [52, (4.5)] we have p=3 and
K,= SL(3", 4) or SU(n, 2). In the first case if E, is reducible, then E, acts
on a 2-subgroup of K, whence D,=K, by [52, (2.3)]. Thus, E, is
irreducible. As E is extraspecial of order 27, we deduce first that k = 1 and
then that Lemma 3.18(iii) holds. In the second case suppose some e € E lifts
to e, € E with |e;| =9. Then n= 3k and with respect to some basis e, has

matrix
0 0 M
(1 0 0 ].
01 0

Further if k> 1 and f€E —{e) lifts to f,, then f, acts as a field
automorphism on L(Cy (e,)) whence 2||Cy ({e,.fy))| contrary to [52,
(2.3)]. Thus, k=1 and K is solvable, not the case. Finally if every element
of E* lifts to an element of order 3, then E, permutes the 3 eigenspaces of
any e, € £}, and an argument using [52, (2.3)] yields K = 1.

Next assume that K is an exceptional group of Lie type and E acts as
inner-diagonal automorphisms. The possibilities with C‘,’(D(EO) #+ K, are listed
in [52,(5.1)|. With one exception p=3 and r* =2 or 4. Notice that as we
have seen above |Cy (E,) must be odd. When p =3, it follows that for any
e € E*, 0*(Ci(e)) has as possible summands only 4,(g), A,(g) with
3]g — 1, and *4,(q) with 3|q + 1. Thus, for any particular exceptional group
K that there are at most a few possibilities for the conjugacy classes of
elements in E. In fact when K is of type E, or E,, there are no elements of
order 3 whose centralizers have the required structure.

Next suppose K = F,(2). There is just one possible class for e € E* Pick a
fundamental system of roots of type F,

and let {n;| 1 <i< 4} be the dual basis. Let o be the standard automorphism
of the algebraic group K with fixed points F,(2), and let ¥, be the element
of the Weyl group interchanging positive and negative roots. [17;, w,0]
describes an element in the K-class of e (where K is taken to be the
centralizer on the algebraic group of /,, ¢ as discussed in Section 2). Cy(e) =
Z,/(CA4,(2) X '4,(2))/Z,. Let E, be the group generated by e and

Si=1In 4 +n,, weo|

and check that all elements of E, are conjugate in K to e. As E,CH, H
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controls strong fusion of E, in K. E, acts on J = F*(Cj(/,, 0)) where J is
generated by the root groups corresponding to +a,, +a,, +a,, and +8, § the
lowest short root. J=~C,(2), so our previous discussion of the case
K = C,(2) yields a subgroup L of H isomorphic to D,(2). If O,(H) # 1, then
some 3-element w € K has a subgroup isomorphic to D,(2) in its centralizer,
which is impossible by inspection. If O,.(H)+ 1, then O,(C,(g))+# 1 for
some g € EY, again impossible by inspection. Thus O,. ;(H) =1 whence L
lies in E(H) and E(H) is a direct product of simple groups. Let L project
nontrivially on the summand L, of E(H). From the preceding observation
3Y|C(L,)| whence all other summands have order prime to 3. As
O,(H)y=1, L, =E(H). As 3°||L| but 3°||Ck(e)| |H|, L =L, implies that
N(L) contains a 3-element w with C,(w) 2 *D,(2) which is impossible by
inspection of the layers of centralizers of elements of order 3. Likewise
L, C,2). On the other hand the conjugates under L, of the root
involutions of K in L generate L, so the possibilities for L, are known by
Timmesfeld [58]; and |L|||L,|||K] gives a contradiction.

The other cases in {52, (5.1)] are dealt with similarly. The failures of
generation in which E does not act as inner-diagonal automorphisms are
described in [52, (6.1), (6.3), (6.4)]. In (6.1) we find p=3, K='C,(2°) or
A,(8), which leads to Lemma 3.18(iv, v). In (6.3) and (6.4) we have F acting
as inner-graph automorphisms on K = *D,(2), D,(2), or D,(4), and we wish
to show that K & H leads to a contradiction.

Suppose K = *D,(2). K has one class of 3-central elements of order 3. Let
x be such an element. From [52, Table 3.3], C(x) is an extension of
J=S8U(3,2) with |Cy(x):J|=3 and some 3-element inducing an outer-
diagonal automorphism on J. The other class of elements of order 3 in K has
centralizer Z, X 4,(8). K has a graph automorphism 1 with Cy(7) = G,(2).
As G,(2) contains a 3-central element with centralizer SU(3, 2), we may
take 7 to centralize J. Thus Ci(x){(r) contains a Sylow 3-subgroup of
K{(t)2E. We take E< Cy(x){r) and {(x,7)< S € Syl,(Cx(x){1)). As
N, ({x)) is solvable, N, ({x)) € H by Lemma 3.12. From [52, (4.3)] we have
C.(PYEN;({x)) for any pEE—K. Thus N ({(x))c HNK whence
O.(H)=1.

Pick ye SNK with Ci(y)=(y)XL, L=A4,(8); and Cg~.(y)E
Syl;(Ck(»)). Our conditions force x € L whence (as K has just two classes
of elements of order 3) y is inverted in N ({y)) M Cy(x). It follows that
veJ. Let F=0,(HNK). If F+ |, then considering the action of {x, y) on
F, we have either O,.(C.(x))# 1 or for some z=yx!, i=0,1,2, C(z)
contains a p’-subgroup invariant under Cy({x,y))=Z,X Z,. But as z is
conjugate to y in J, we see that neither possibility occurs whence F = 1.

We have O,. ;(HN K) =1 whence X = E(HN K) # 1. Each summand of
X is simple with order divisible by 3. As S K has rank 2, X has at most 2
summands. Thus the intersection of S with any summand lies in Z(S). As
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Z(8§) = (x), we have that X is simple and S acts faithfully on X. Further | X|
properly divides |K|=2"'" X 3* X 7% x 13, and surveying the orders of the
known simple groups, we see that no such X exists.

In the cases K= D,2) or D,(4) we can use E to find A € HMN K such
that H controls strong fusion of 4 in K, a possibility ruled out earlier.

LeEmMA 3.19. Ler QY be a 2-constrained finite group with Q = 0,(QY) a
special group of order g°. q > 2 a power of 2, Y = GU*(4,q) = GU(4, q) X
Z,  with Q/Q' the standard module for Y. Then the isomorphism type of
QY is unique.

Progf. Let Y, be the subgroup of Y corresponding to GU(4, q). Set
H=QY, H=H/Q' Since the Schur multiplier of Y, is trivial [38] and
Exty. (F,, Q) =0 (because Z(Y,) = Z, ., acts fixed point freely on Q), we get
that the Schur multiplier of H is isomorphic to Q’, an elementary abelian
group of order ¢ (because the invariants in Q ® Q of ¥, have dimension |
over End, (Q) F ). Therefore, H is a covering group of H. A result of
Schur [51| states that if G is a finite group in which |G/G'| is prime to the
order of the multiplier, a covering group is unique up to isomorphism. So, H
is uniquely determined. Let 7 = (g — 1) and let (1) = O_(Z(Y)). The action
of » on H lifts to a unique action on H (see [37, appendix]). Since
H M {y; =1, the isomorphism type of QY = H{y} is completely determined.

LEMMA 3.20. Let K be one of the linear groups in the conclusion of
Propositions A, CF, D or E. Then K does not contain a p-element inducing a
quadratic minimal polynomial on B*, except for p=3 and K essentially
W,

Progf. Let x be a p-element with [B* x,x|=1. Then x does not act
nontrivially on a nonidentity abelian 2-group. So, if O,(K)# 1. it is
extraspecial and K is essentially the Weyl group of F,. In this case, if
R = O,(K). then [R, x| = @y, and Cy(x) = Q.

Suppose O,(K) = 1. Then either K is essentially a Weyl group of type 4
and B* is a standard module, in which case the result is obvious, or else K is
of type E,. E, or Eg: but then special arguments may be employed. It
suffices to do the case K = W, .

If x lies in a subgroup isomorphic to some X, generated by reflections, we
are done. Since W, — W, , the only possnblllty is p =35 and x has minimal
polynomial (£ — l)/(t— l) on the root lattice, 4. Say |4, x,x]|=1 where
A=A/54=B* Such an x lies in a diagonal subgroup S< S, X S.,
S>S§,=8§,=W, . The representation theory of F;4; shows that x is not
quadratic on any irreducible module, contradiction.
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ProposiTiON 3.21. Assume Hypothesis 3.16 with K sporadic. Then
m(K) < 2.

ProrosiTiON 3.22. Assume Hypothesis 3.16 with K sporadic. Then
p=5K=F,,, H=D,(3)Z%;.

Proof of Proposition 3.22. This follows from Proposition 3.21, [33], and
Hypothesis 3.16. By |33, PartI, Section 24] (K, p) must be on the following
list when m,(K) = 2.

p=13 K=M,.,M,,
p=>5: K=HiS,M‘L,F,,,
p=1 K =Held, O0's, F},,
p=11 K=1J,.

We eliminate all but p=35, K=F,,.

Suppose L(H/Q)= 1. By Hypothesis 3.16(I1i(f)) and knowledge of Schur
multipliers [38], we eliminate all groups on the list above.

Suppose Q # 1. Then for some e € E*, 0,(C(e))# 1. By checking the
properties of the groups on the list, we find that the only possibility is M ,,
p=3, Cle)=3'*?2 or 3 X A4, for e € E*. Thus |Q|=4, since E contains
elements of both 3-classes, and so QF =~ 34,. But then, as all elements of
E — Z(P) (E < P € Syl4(K)) are fused, we have a contradiction to C(e)< H
for alle € E*. So, Q= 1.

We now have that L =L(H)~L(H/Q)+# 1. Suppose O,(H)# 1. By
checking the properties of groups on the list, L1 limits us to the
possibilities

HiS: p=3. S XA,
Helad: p=1, 7 X L,(2), twice.

But in these cases |K: H| =0 (mod p), a contradiction.

Finally, we get O,(H) = 1. Suppose for some e € E*, C(e) is nonsolvable.
We then get the possibilities of the previous paragraph. In particular, p > 5.
Since P is nonabelian of order p®, exponent p, P is the weak closure of E in
P. Therefore, L has nonabelian Sylow p-group, whence p divides the order of
the Weyl group, whence |P|>p?~'>p* > |H|,=p’, a contradiction. So,
C(e) is solvable, for e € E*. The above argument goes through unless P is
abelian or p=3. If p=3, L # 1 and (|K: H|, 3) =1 imply that K=M,, and
L=>~A,, H>~M,,. But then N(P)=3? .2 cannot be in H, a contradiction.
So, p=5 and K =F,,, as required.

481/80/2-12
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Proof of Proposition 3.21. Until further notice, we assume Hypothesis
3.16(1, IL, III). Without loss, K = F*(K). We let P denote a Sylow p-group
containing E.

We assume that the list of Known simple groups in [28, Chapter 2} is
complete.

In some of the results which follow, we give information about sporadic
groups. It is not possible to give published references in every case.
Sometimes, the information is deduced from the character table and class
list, copies of which have circulated among the group theorists. The
published references are |4, 45, 48]. See also [33].

LEmMMA 3.23. Suppose that m(K) > 3 for some odd prime r. Then the
possibilities are:

K r K, m,(K)
J, 3 3¢ 3
ML 3 3¢ >4
Suz 3 3’ >5
0-1 3,5 3%, 54 26forr=3
3forr=>5
0-2 3 3¢ 4
0-3 3 37 25
F,, 3 3° >5
F,, 3 3B >6
Fi, 3 38 >7
LyS 3,5 37,56 >5forr=3
3forr=S5
o's 3 34 4
F, 3.5 313,56 >S5forr=3
Jforr=35
F, 3,57 3%0,5% 7° >Tforr=3
»>4forr=35
>3forr=7
F, 3 31 >5
F, 3,5 36, 5° >3forr=3,5

LEmMMA 3.24. Suppose that F*(K) is sporadic, m,(K)>3 and that
r e n(K) is odd.
(a) For x € K, | x| =r, the possibilities for C(x) are listed below.

(b) In (a), when L(C(x)) # 1 and every component lies in Chev(2), we
mark with an * (an *? indicates a possibility only).
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#7 indicates a possibility only).
(@) If a Sylow 3-group of K has noncyclic center, F*(K)~J,, O'S,

Suz.

Remark 3.25.

When x € K, |x| =r and 0,(Cp.(x)) # 1, we mark with a + (an

Since |Out(K)| < 2, for all sporadic simple groups K, if

|0,(C(x))| # | and there is no # opposite K for C(x), then |0,(Cy(x))| = 2.
This occurs for K = F,, - 2. In the proof, we may assume K = F*(K)).

Sporadic Centralizer orders
Group p r for class of order r Centralizers
J, 3 3 3* 3*
23335 Ixd4d,
>5 solvable
ML 3 3 233°%5 314SL(2,9)
2% 38 solvable #?
>5 solvable
Suz 3 3 273757 3-U,(3)
23345 IX3I XA, *
2’3 solvable #?
5 233252 5x4dg *
22352 5 XA, *
2237 3IXA, #*
>11 solvable
0-1 3,5 3 213385713 3 Suz
273%5 31*4Sp(4, 3)
203°57 I XA,
283857 3-3.U0,3)-2
5 2737527 SXHJ
2735 5'*28L(2,5)
253253 SX(AgXA)2 %,#?
7 233257 TXA,
23377 TX Ly(7)
>11 solvable
02 3 3 3l+42l+-1A5
3IxU,2)2 *
5 22358 solvable
23352 5XA45-2 *
2*7 7 X Dy *
>11 solvable
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Sporadic Centralizers orders
Group r for class of order r Centralizers
0-3 3 23347 3XL,(@8)-3
25375 31448L(2,9)2
23385 3.3V.4,-2
5 23353 solvable
22352 5% A,
7 237 solvable
11 211 cyclic #*
23 23 23
F,, 3 21331452713 3xD,3), %,
21318511 3THOU(2) - 2
2631 solvable
2931357 3.3°.0°(6,3),2
2738713 IX3XG,(3)
5 2734527 SX X
7 2432572 T X2,
22373 solvable
11 27311 solvable #
=13 solvable
F,, 3 2°3'95713 3 X B4(3)
210313 solvable
24310 solvable
273105 3.-3°.8,3)2
5 243257 5% %,
7 28357 TX s *
11 2211 solvable #
>13 solvable
F;, 3 283757 3IxXU3)2
273° solvable #7?
2337 solvable #7?
2637 solvable #?
5 23357 SX &
%
7 237 solvable
i1 211 solvable +
13 13 solvable
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Sporadic Centralizer orders
Group D r for class of order r Centralizers
LyS 3.5 3 24375 32HSU*(2, 5)
27375711 3ML
5 243258 5'*1SL(2,9)
2357 (5'"*x35)-%,
1 2'372 Tx SL(2,7)
>11 solvable
o'S 3 3 23345 IX3IXA, *
>5 solvable
F, 3,57 3 2143205271113 314128,
215311537213 19 31 3XF,
2213'52791113172329 3F,
5 28335°7 5'*%2HJ
21435571119 5 X F,
7 243257¢ 71424,
219335274 17 7 X Held
11 20335112 1L xM,,
13 233133 13'*28L(2,3)
17 223717 17 X L,(7)
19 223519 19 X 4,
23 2323 #*
29 329 29%3
31 2331 JIIxZx,
41 41 41
47 247 47 x 2 #*
>59 solvable
F, 3,5 3 2193195271123 3XFy-2
213 313 5 3l+821+6U4(2)
5 213254711 SX HiS -2
27356 51+421+4A5
7 27357 TXx2-L,4)-2 =+
11l 23351t 11X X *
13 23313 13xZ, *
17 2217 2x2x17 #
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Sporadic Centralizer orders
Group p r for class for order r Centralizers
F, 3 3 24375 3-3%,2
237713 3 X G,(3)
23310 solvable
5 23 3 51 5 I+2
7 23372 T X L,(7)
>13 solvable
F, 3.5 3 203°57 IxA4,
23385 3'*4SL(2, 5)
5 2432547 5 X Uy(5)
2558 solvable
233 54 solvable
7 TXA,
11 2x 11
19 219 19 X2

Proof. Study the character tables and class lists.

We argue that none of the rows for p =3 and K = F;, or F,, deserves a #.
(They tentatively deserve #’s).

Say K =F,,,|x| =3, |C(x)| = 2°3"*. Without loss, P < C(x), P € Syl,(K).
Say O,(C(x))#1. Let 2"=}0,(C(x))/P(0,(C(x)))l, r>1  Since
max{|C(¢)|, | ¢ an involution of F,,} = 3'°, we get r =6, P/C,(0,(C(x))) =
Z,¢Z, and every element of O,(C(x))* has centralizer of the form 2F,;.
Since such an involution lies in F,, — Fi, and r > 1, we have a contradiction.

Say K=F,;,x€K, |x|=3, |C(x)|=2"3", 0,(C(x))# 1. Then
|P: Cp(0,(C(x)))| < 3% Thus, for y€O,C(x), [C(y);>3", a
contradiction. Say x € K, |x|=3, |C(x)| =2*3'°, 0,(C(x))+# 1. Then for
Y€ 0,(C(x)), |C(»)]; > 3% another contradiction. So, K # F,;.

LemMA 3.26. p}|K: H|; in fact Ny(P)< H for P € Syl (H).

Proof. If ES H,< H, then N (H,)< H.

LEMMA 3.27. Suppose m,(K) >3, P,(H)=1 and L(H)# 1. Then L(H)
is quasisimple.

Proof. Let L,,..., L, be the components. We assume s > 2.
We claim that E normalizes each component. If false, take an index i/ with
Ec N(L)). Then L, = L{ for all x € E, so that m(H) > 3 for re n(L;). By
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Lemma 3.23, (K,r)=(.1,3), (.1,5), (LyS,3), (LyS,5), (F;,3), (F;,5),
(F,,3), (F,5), (F\,7), (Fs,3) or (F,,5), for r€n(L;). In particular,
a(L)Y<= {2, 3, 5, 7). Suppose r=7. Then there are distinct, pairwise
commuting conjugates L;,L;, L, and an element yE€ L;,|y|=7 so that
C(»)2(»L;,L,). So, C(y)=Z, X Held, L; = L,(7), s=3 and p = 3. Take
x € E— Ng(L;). Then C,,(x) = L,(7). But, Cy(x)=3F},, 3'*'*2 Suz, or
3 X F,,whence Cy(x) cannot be contained in H, a contradiction. So, r <35
and n(L,)=1{2, 3, 5}. By properties of K-groups, L,/Z(L;)=L,(4),
L,(9) = Sp(4,2) or U,(2).

Since Lys does not contain a four-group whose centralizer involves a copy
of L;,L,;, (LyS,3) and (LyS, 5) are out. So, K=-1, F,, F, or F,.

Suppose K =~ -.1. The only possibility is s=3, p=3 and L(H)=
A XA X A,. Take x€E, L¥#L,. Since |x|=3, C(x)=3'"*Sp(4,3),
3% Ay, 37 U,3).2 or 3.5uz. Clearly C(x)< H is impossible, in all these
cases.

Similar arguments eliminate the cases F,, F, and F,. Say K~ F,. Then
p=3,o0relse 4, X A, X A; X A, is contained in the centralizer of an element
of order 5. So s=3 and p=3 and we get a contradiction as above (if
|x|=3. x EK, then C(x)=3Fj,,3 X F, or 3'*'22 Suz). The cases F, and
F, proceed similarly. The claim follows: that is, £ normalizes each com-
ponent.

Let E < P € Syl (H) < Syl (K). We argue that p € n(L;) for all i. Suppose
that p & n(L,). Then as L, is a Chevalley group or Steinberg variation, p # 3
so that p=35 or 7. Thus, the structure of Out(L;) (cyclic Sylow p-groups
since p & n(L,)) implies that Co(L,)# 1 and that if [L;, E]= 1, then some
element of E induces a field automorphism on L,. If [L,E]=1, we
contradict Lemma 3.24 for p>5. So, [L;,E]|=1. Thus, L; is a group
defined over some finite field whose degree over the prime field is divisible
by p> 5, a contradiction to Lemma 3.24. Therefore p € n(L,) for all i, as
claimed.

We now argue that P has one orbit on {L,,..,L}. Suppose otherwise.
Since O,(H) =1, O,(Z(L,)) =1 for all i, whence Z(P) is noncyclic, and so K
does not contain an element x of order p with C(x) p-constrained,
0,(C(x))=1 and O,(C(x)) extraspecial. By checking Lemmas 3.23 and
3.24, we eliminate every possibility except (K, p) = (J;, 3), (Suz, 3) (F,,, 3),
(LyS. 3), (0'S, 3). From above, there is x € Z(P)* with C(x) nonsolvable.
Thus, (K, p) = (Suz, 3), (LyS, 3) or (0'S, 3). In all these groups, if y is an
element of order p, C(y) does not involve a direct product of two simple
groups. By Lemma 3.26, s =2 and (|Out(L;)|, 3) =1 for i = 1, 2. Therefore,
P is decomposable as a direct product (PN L)X C,(L,;). This forces
K =0'S. However, N, (P) is transitive on P¥ against P=(PNL,)X
(PN L,) and the fact that N (P) < H permutes {L,, L,}.

So, P has one orbit on {L,...., L,}, as claimed. Therefore s > | is a power
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of p and P involves Z,¢ Z,. So, if p> 5, then p=5 and K = F, (look at the
list of sporadics in Lemma 3.23). In that case, the centralizer of an element
of order 5 in L contains L, X --- X L,, a contradiction to Lemma 3.24.
Thus, p=3. Since L, =L, =L,, m(H)>s -m,(L,)>3 for r€ n(L,) (we
get s=3 and n(L,)={2.3,5}). Thus, L, = A4, 4, or U,(2) (using properties
of K-groups). Consequently, an element y of order 5 in L, centralizes
L,xL,. Therefore K=.1 or F, and C(y)=(5XA4,XA;)2 or 5XF, or
5'*°2HJ. Since P € Syl,(K) and |P|=3° or 3*°. we get |C,(L(H))| >
|P|-377 » 3% forcing Z(P) to be noncyclic and for C(z) to contain
L, xLy,xL,, for some z€Z(P)*. This is clearly impossible since
|C(2)|s < 5%, a contradiction which proves the lemma.

LEmma 3.28. Suppose that m,(K)>3, P€E€Syl(K) and Z(P) is
noncvelic. Then (K,p)=(J,.3). (Suz,3). (LyS,3) or (0'S,3), and
conversely Z(P) is noncyclic for these groups.

Proof. We may eliminate (K, p) from the list of conclusions if K contains
an element x of order p for which C(x) is p-constrained, 0,(C(x))=1 and
0,(C(x)) is extraspecial. What remains are the four pairs above and (Fy,, 3),
which we must eliminate.

Let K = F,,, x € K with |x| =3 and C(x) = 3 X U,(3) - 2. Without loss, x
is extremal in P € Syl,(K). The structure of U,(3) implies that Z(C,(x)) =
(x) X {z), where (z)=Z(PM L(C(x))) < (PN L(C(x)))'. Since Np(Cp(x))
contains C,(x) properly, it must act nontrivially on Z(C,(x))), fixing z.
Therefore, Z(P) =(z) = Z,. as required.

LEMMA 3.29. There is no K, H satisfying our hypotheses with O,(H) =1
and L(H) # 1 quasisimple and m,(K) > 3.

Proof. Suppose that there is a pair K, H satisfying our hypotheses with
m,(K) > 3. Let L = L(H), a quasisimple group by Lemma 3.27.

We claim that p € n(L). Suppose false. The structure of Aut(L) (i.e.,
cyclic Sylow p-groups) implies that P induces a group of field
automorphisms on L. So, P/C,(L) is cyclic and E, = Cp(L)NE # 1. By
referring to Lemma 3.24 (the *’s) for the cases m/(K) > 3, r € n(L(C(x)))
and L(C(x)) € Chev(2), we find no possibilities. Since C,(E,) S H, we have
a contradiction which proves the claim.

If Cp(L)+ 1, then p € n(L) implies that Z(P) is noncyclic and there is
z € 2,(Z(P))* with L < C(z), making C(z) nonsolvable. So, by Lemma 3.28,
K = Suz, LyS or 0'S. Since N(P) acts irreducibly on Z(P) in the case of
LrS and O'S, we get a contradiction, since N(P)c H< N(L) and
LNZ(P)# 1. So. K= Suz, |P|=3" and there is z € Z(P)*M C(L) with
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C(z) nonsolvable (as L < C(z)). So, by Lemma 3.24, C(z) = 3U,(3). Since
L € Chev(2), and L is embedded in U,(3), L =A4,, A4, U,(2), L;(2) or
L.(4). In any of these cases |C,(L)| > 3%, since P normalizes L. However,
3*}|C()| for an element y € K of order 5 or 7, a contradiction. Therefore,
C, (LY=L

Thus, P acts faithfully on L. Since m,(P) > 3, either the Lie rank of L is
at least 3, or it is 2, and some elements of P induce field automorphisms of
L. Note that no element of order p may induce a field-diagonal
automorphism in the latter case.

Suppose that the Lie rank of L is 2. Then L is defined over F,, where
g=2* k=0 (mod p). Either ESL or |[ENL|=3 and there is xEE — L
inducing a field automorphism on L. In the latter case, L(C(x))=4,(2*7).
This possibility does not occur with an * in Lemma 3.24, So, ES L.

Suppose L = A4,(g). Thus, (a) all elements of E are conjugate and lie in the
center of a Sylow p-group of H, (b) C(x) is solvable, for x € E¥, (c) Z(P) is
cyclic if p= 3, (d) m,(P) =3, (e) p divides 2k —1.

Say p=3. By Lemma 3.24, F¥*(K)=J,, or F;. On the other hand, if
y€ P, y=3 and y induces a field automorphism on L, then C(y) contains a
copy of A,(2%*). Neither J, nor F, satisfy this condition. So, p=5 or 7.
Since k=0 (mod p), P contains a copy of Z,, X Z,, as a proper normal
subgroup. This condition, with m,(K) > 3, quickly forces (K, p) = (LyS, 5),
(F,,5), (Fs,5) (all of which, incidentally, have isomorphic Sylow 5-
subgroups) or (F,, 7). But upon closer inspection we find that none of these
pairs has the requisite property.

Suppose that L/Z(L) = *4,(q) for g even and n< 4. If n=2, m,(L) >2
implies that p|g + 1. If p# 3, Z(p) has rank at least 3, a contradiction to
Lemma 3.24. So, p=3. Thus, m,(K)=3 whence K =J, or F, by Lemma
3.24. However, for K=J,, 2,(P) is abelian, whereas Q,(PNL) is
nonabelian, a contradiction.

Say K=F,. Then |K|,=3° Since an element of P induces a field
automorphism on L and 3|g+ 1, we get g+ 1 =0 (mod?9). Therefore,
|P|>3|L],>3". a contradiction. Consequently, n=3 or 4. If p=3,
plqg — 1 or plg + L. In either case, Z(P) is noncyclic, whence K = Suz, O’S,
LyS or J,. If 3|q — 1, Q,(P)= Z3 whence K =J,. However, for L of type
*A4q), 2,(P)LP'. So, 3|q+ 1. Thus, Z(P) is noncyclic since L contains
the normalizer of a torus of shape (Z,,,)" - Z,,, modulo a group of order
(n+1, g+ 1), n=3 or 4. In particular, m,(P)=n+ 1=4 or 5, whence
n=3 and K = 0'S, which has abelian Sylow 3-groups, a contradiction. So,
p#3. By Lemma 3.28, P is nonabelian, whence n =3 or 4 implies that
p=55lg+ 1, n=4 and |P|>(5%)'-5""'-5.5=5" So, K=F, and the
inequality is an equality. However, the structure of Aut(L) implies that P is
metabelian, which conflicts with the structure of F,.

Suppose that the Lie rank of L is 2 but L does not have type 4, or *4

ne
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Since L is a Chevalley group or a Steinberg variation, by (III), L has type
B,(q). Thus m,(L)=2 implies that p|g® — 1. Also PN L is abelian and
Z(P)YN L is noncyclic. So, K has type J;, 0'S, LyS or Suz. Since m,(P) =13
(consider Aut(L)), K =J,. In J,, P' = 2,(P), which is not the case in H, a
contradiction.

The Lie rank ! of L is, therefore at least 3. We have p=3, 5 or 7. Let /
be the rank of the largest subgroup of type 4 in L generated by root groups.
We have />/'—12>2. From Lemma 3.24 we see that no element of E
induces a field automorphism on L (C.(x)< H for all x€ E and, if x
induces a field automorphism, L(C,(x)) has Lie rank 3). The same goes for
field-graph automorphisms in case L has type D,(q). Suppose x € E induces
a graph automorphism on L = D,(q). Then |x| =3 and L(C(x))= G,(q) or
G,(2) = Uy(3). Lemma 3.24 shows that this is impossible. So, E induces
inner-diagonal automorphisms on L.

Say 31||L|. Then K=0'S, F,,F, or F,. The structure of 0’'S and F,
and the fact that 127 =27 — 1 imply that the Lie rank of L is at most 6. We
claim that p = 3. If p=17, the facts that the Lie rank of L is at most 6 and
|K|< 7% imply that a Sylow 7-group of L is abelian or has an abelian
subgroup of index 7. But then K = F, or F, and m,(K) < 2, a contradiction.
Therefore, p=5 or 3. If p=5, my(K) > 3 implies that K = F, or F,. Since
the Lie rank of L is at most 6, P’ is abelian, a contradiction. (See Lemma
3.24.) So, p=3, as claimed. Say K+ 0O'S. For K=F,,F, or F,, when
x€EK, |[x|=3 and L(C(x))# 1, L(C(x))¢ Chev(2). So, for x€E€E”
L(C(x)=1 whence C(x) is solvable (since x is a semisimple element in L).
The only possibility is K = F, with |C(x)| = 2* - 3'° for x € E*. In particular
|P|=3".If g=2/ > 2, then an element of order 31 lies in a cyclic group of
order (¢° — 1)/(g — 1) > 31, a contradiction. So, g = 2. Therefore, L has type
A,(2). ’Dg(2), D(2). B4(2). Since C,(L) =1, |P| £ 3% whereas |[K|,;=3"", a
contradiction. Thus K = O'S. As above, L has type 4,(2), *D(2), D4(2) or
B.(2). Since P is abelian, L has type A4,(2). But then C,(L)# 1, a con-
tradiction.

We have shown that 31}|L|. Thus, (¢° — 1)/(g — 1) does not divide |L|;
in particular, L does not involve PSL(5, g), whence L has lie rank at most 4.

We claim that p=3. If p> 5, the Sylow p-subgroup is abelian, unless
p=>5and L has type 24,(q) for 4 <n< 10, 5|g + 1 or E(g) for 5|g + 1. If
the Sylow 5-group is abelian, we have a conflict with Lemma 3.24. Suppose
L has type 24,(q)- Since 5|g+ 1, g=4 or ¢=2° > 64. Since n > 4, ¢'°||L|,
forcing g =4 since |K|,<2*. If n>5, ¢° +1=4097 =17 - 241 divides
|K|, a contradiction. So n=4. But since |’4,(q)| is divisible by
(g° + 1)/(g + 1), we get 1025/5=205=175 - 41 as a divisor of |K|. Therefore,
K = F, which is impossible since 31 }|K]|.

Suppose that the Lie rank of L is 4. Then Table P tells us that there is an
element x € L, |x| =3 with L(C, (x)) € Chev(2) and L(C,(x)) of Lie rank at
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least 3. According to Lemma 3.24, there is no example of an element of
order 3 in K with a such group involved in C,(x).

Suppose that L does not have type *4,(g), for n=15 or 6. We have that
the Lie rank of L is exactly 3. Then m,(P)=3 or m,(P)=4 and some
element of P induces a field automorphism on L. In the latter case, an
element x of order 3 in P has L(C,(x)) of Lie rank 3, a contradiction to
Lemma 3.24. Thus, P has rank 3 and a normal homocyclic abelian subgroup
P, of index 3 and rank 3. A look at the groups in Lemma 3.24 reveals no
such possibility.

We have that L has type 24,(q) or 24,(q). If L has type *4(q), there is
an element x of order 3 in H with L(C,(x)) of type 244(q) or ’4,(q), a
contradiction to Lemma 3.24. The same argument applies to L of type
?A(q) unless H/C,(L)=*44(q) - k, where (k,3)=1, and if P,=PNLx
Z4. Then N, (P,)/C,(P,)=Z,. So, |P|=3° Thus, K=McL, -2 or F.
Since ¢q'* =|244(q)|, but 25 }|McL| or F,, we get K=-2. However, if
K=~ -2, {(z)=Z(P), then C(z)=3'**SL(2,5) and if x € P represents the
other class of elements of order 3 then C(x)=3 x U,(2).2. Thus, g =2 and
E* < x* since Cg(e) = C(e) is the centralizer of a semisimple element in L.
Also, C(z) £ H.

We eliminate this last possibility. In the usual matrix representation of
SU(6, 2). we may assume that x € E* has shape

Let y € E — (x). By adjusting with scalars, we have

ot

£

if a=1, we may assume B=w, y=w ', d=1, ¢=1. But then
C,(xy)= SL(2,2) X SL(2,2) X SL(2,2), whence Cy(xy)< H. Suppose
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a # 1; without loss, a = w. We may assume that f=w !, y=6=¢=1.
Then xy? is congruent to

1

modulo scalars. Since C,(xy?)=(SU(3.2) - SU3.2).2, xy*&x’. a
contradiction. So, we have eliminated the possibility.
This completes the proof of Lemma 3.29.

Lemma 3.30. Let G € Chev(2), g€ G, g odd, C=C,(g), C° the inter-
section of C with the connected component of the identity of CH g), where G
is the ambient algebraic group over T, containing G. Then C/C° is abelian of
odd order and C° is generated by conjugates of root elements of G.

Proof. See Burgoyne and Williamson {10].
In the next series of results, we assume (I), (II), (III), (IV) and O,(H) # 1.

Lemma 3.31. p#T.

Proof. Ifso, K=F and C(x)~7X Heldor 7'"*. 2. 4,. Since L(C(x))
must be semisimple and have components in Chev(2) for x € E*, we have a
contradiction.

LEmMMmA 3.32. p+#5.

Proof. Suppose so. Then K =.1, LyS, F,, F, or F,. By looking for *’s in
Lemma 3.24, we find that K =.1 or F, are the only possibilities.

Say K =.1. Then for x € E*, C(x) = 5 X (45 X A).2. Since C(x) operates
on O(H), we get (x) = O4(H) for all x € E*, which is absurd.

Say K=F;. Let Z=Z(P). Then N (Z)=5'**2"**.54. Since |E|=35",
ENO(N(Z))# 1. Therefore, N (Z)< H. Since 1# O,(H)YNN(Z) <
N (Z). we get H= N, (Z). If there is x € E — O,(H), the fact that O,(H)/Z
is an indecomposable {x)-module means that |C,(x)| <5°, a contradiction.
Therefore, E < Oi(H). Since n(N,(Z))=1{2,5}, #(Ci(x))<={2,5} for
x € E*. The only possibility E*  x*, where |C(x)| = 2% - 5*. We eliminate
this possibility by showing that there does not exist E € P, E =~ Z, X Z, with
| =

Suppose such an E exists. In the notation of [41], x lies in the class 5B.
Let x be an irreducible character of K of degree 133 [41]. Then y(x) = 3[41].
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We have ) .., x(g)= 133 +24(3)=210. However, this sum should be
congruent to 0 mod 25 = | E|, a contradiction.

CoroLLARY 3.33. p=13and O,(H)+ 1.

LemMmA 3.34. If K=J,, H=N,(Z(P)) = N(P).

Proof. Suppose K = J;. Since EC Q (P)=Z3}, ENZ(P)+ 1. We claim
that E=Z(P). If not, |[ENZ(P)|=3. and if x € E — Z(P), C(x) =3 X 4.
Thus. H 2 (N(P), N({x))), a group of order divisible by 2*3°5 and
containing a copy of A,. Since a Sylow 3-normalizer in 4, acts irreducibly
on its Sylow 3-group, L(C(x))NP=Z(P). 1t follows that O,(H)=1, a
contradiction to our temporary hypothesis. So, £ = Z(P) as claimed. Thus,
N(P)= N(Z(P)) < H.

Since O,(H) # 1, by hypothesis, the facts that Z(P) is weakly closed in P
with respect to K and N(P) operates irreducibly on Z(P) imply that
H < N(Z(P)). So, H= N(Z(P)) as required.

LEmma 3.35. K+ LyS.

Proof. Say K=LyS. If x€K, |x|=3, C(x)=3>**.SL(2,5) or 3.McL.
So. Hypothesis 3.16(IV) is not satisfied.

LEmMMA 3.36. K+#O'S.

Proof. Since N(P) acts on P = Z; irreducibly, O,(H)# | implies that
P=0,H), whence H=3*.2'"".D,. However, if x€&P?
C(x)= 3 X 3 X 4¢, so that C(x) & H, a contradiction.

LEmMmA 3.37. K # Suz.

Proof. In Suz, there are three classes of elements of order 3, called 3U,
3V, 3W, with centralizers of shape 3.U,(3), 3 X 3 X 4, 3.3'**SL(2, 3).

Since at least one of these classes is represented by an element of E¥
Hypothesis 3.16(IV) forces E* to be disjoint from the first class. We claim
that E* meets class 3V. If false, E* lies in class 3W and, given e € E* there
is 3 € 3U such that Cle)c C(y)=3 - U,(3). In C(y), EN{y)=1 and
(New(e))e, € E*) = C(y) (property of U,(3), since N, (e,) maps to a
maximal parabolic in U,(3)). Therefore, C(y)< H. Since O;(H)# 1,
0.(H) = (), contradicting L € Chev(2). So, E* M 3V contains e, say, and
L(C(e))c L. Take z€O0,(H)NZP)*. Then C(z)=3-U,(3) and
L € Chev(2) implies that L =L(C(e)) = A4s. Then, |P|=3" implies that
|C(L)|;=3° and P is decomposable, a contradiction to the shape of
C(z)=3-U,(3).
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LEMMA 3.38. Without loss (i) |Z(P)|=3; (ii) L,(H)=1 and H is 3-
constrained; (iii) if x € E*, C(x) is solvable.

Proof. If |Z(P)| > 3, then K has type J,, Suz, LyS or O'S. These
possibilities have been treated. Since O,(H)+# 1, we get (ii) from (i) unless
O, .(L,{H)) > O,.(L;.(H)). Suppose that this happens. Let (z) = Q,(Z(P)).
Then (z) maps onto Z(L,, (H)/0,.(H)) and N({z)) covers H/O,.(H). Since
O.H)+ 1, z € O,(H), whence O, .(H)< C(z). Therefore, H < N,({z)) and
so H = N ({z)). By consulting Lemmas 3.24 and 3.25 we see that there are
no such possibilities for m,(K) > 3.

Suppose x € E* and C(x) is nonsolvable. By Lemma 3.30 and Hypothesis
3.14(1V), L(C(x))# . An application of the P X Q Lemma (see 5.3.4 of
[27]) and the definition of L(C(x)) implies that [O,(H), L(C(x))] = 1.
Therefore, L(C(x)) is a 3’-group, since Z(P) is cyclic. By inspecting the *’s
in Lemma 3.25, we find no such possibility. So, (iii) follows.

LEMMA 3.39. K does not exist.

Proof. We have p=3, O,(H)# 1 and L,.(H)=1. Then Hypothesis
3.16(1V) gives a contradiction, as m,(K) > 3 and L(H/O,(H))= 1.
This completes the proof of the fusion controlling result, Proposition 3.21.

4. THE FIELD AUTOMORPHISM CASE

We begin the proof of the Main Theorem by establishing some notation
which will be used throughout the rest of this paper. Take G to be of
standard type with respect to (B, x, L) in #*(p) and fix a standard subcom-
ponent (D,J) of (B,x,L). Let x=12z, and let {z,)--- {(z,) be the distinct
subgroups of order p in D for which those exist neighbors, (B, z,, K,),...,
(B, z,.K,) of (B, x, L) with respect to (D,J). Let (B,x,L)=(B,z,,K,).

By Table B, B lies in an elementary abelian p-group B* such that B*
contains every element of order p in its centralizer and |B*: B{ < p. We
define N = N,(B*). In this section we prove

ProposITION 4.1. O, (45(B*))=1.

COROLLARY 4.2. No element of B* involves a field automorphism on
any K,;.

Proof of Corollary 4.2. Suppose false; then by the structure of Aut(K),
Ag(B*) contains an element a of order p with |B*: Cg.(a)|=p. Let
F={a%®"). As 0,(A4(B*)) = 1, McLaughlin’s theorem [47] together with
the structure of 4, (B*) forces F = SL(B*) or Sp(B*). Indeed the only other
possibility is (x)=Cy.(F) <A Ng(B*); but (x) 4 N(B*). Now all
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subgroups of order p in B* are conjugate in N;(B*), and in particular {x) is
conjugate to (z,). We have a contradiction as no element of B* acts as a
field automorphism on L (by definition of standard type) while such an
action does occur on K.

Now we begin the proof of Proposition 4.1. We assume
P=0,AyB*))# 1, and we define B, = C,.(P), M= N4(B,), C=C4B,)
Pick U € Syl,(C). We will show that U normalizes one of the K’s, inducing
field automorphisms. Letting U, be the subgroup of U which induces inner-
diagonal automorphisms on K;, we show that U, is abelian and weakly
closed in a Sylow p-group of G, and that N (U,) has a quotient of order p.
By a theorem of Wielandt on transfer [39,43] G is not simple, a
contradiction. We conclude P = 1.

By the structure of B* as a module for 4,(B*) (see Table B), we may
define B, by |B*: B,| < p, x € B,, B,/{x) is an absolutely irreducible module
for W=A4,(B*) and B*/(x) an indecomposable one.

LEMMA 4.3. B* =B X {x).

Proof. Let P,=C,({x)), and pick R < C4(x) projecting onto P,. R
projects into O,(4, ,(B*)) whence [R,R]=1 by Table B. Thus
[R, B] < C4.(L)=<{x). Since R centralizes (B* N L, x), we have P, =1 or
|B*: (B¥*NL,x)|=p, (x)=|[B* P,], and |P,|=p. In particular as
{x) AAN;(B*), we have P, # P and x € B,.

Since B,N{x)=1, B, projects nontrivially into B/{x) whence
B, N B, # 1. B, is W-invariant where W =4, (B*), so B, = (B, N B,) X {(x),
by Dedekind’s law. If B* = (B, x), we are done; so assume B, = B, X (x)
has index p in B*. In particular B, is an absolutely irreducible W-module.

As W=0P(W) and B*/B, is a trivial W-module, we see that
|B*,B|<B,. Let P,=Cp(B*/B,). We have that [P, W|< P, since
|B*, W,P|=1 and [P,B* W|[B* W]|<B,. Also, we have that
|P, W] # 1 lest P normalize (x) = C,.(W) and P = P,. Thus P, # 1. For any
b€ B*, f,(p)=[p, b] defines a map from P, to B,. Our conditions imply
7(p0) = [ pa, b] = [ p, 61714, b] =f,(p) f3(@), and further for any wE W,
Su(p)" =[p" b"]=[p", blb, w|] =f,(p") as [b,w]€EB,. Thus, f, is a
homomorphism of groups and Py/ker(f,) is elementary abelian, i.e.,
Py/Cp(b) is elementary abelian for every b€ B* whence P, is also
elementary abelian since we have an embedding Py — [ [,cs- Py/Cp (b).
Further f, is a homomorphism of W-modules. Since B, is absolutely
irreducible, f, is either trivial or an isomorphism. As |B*: B,|=p’, P, is
isomorphic to B, or B, XB, as a W-module. In the latter case
Cp,(x)=ker f, = B, as a group, contradicting [P,| < p. Thus P, = B, and we
have Cp(x)=1. Further by absolute irreducibility of P,, we have
| B*: C,.(Py)| = p=|C,.(P,): B,|.
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Now for d& Cy.(Py) — B,,f,(p)=[p,d] defines a map from P to B,
because [d, P| < B,. We see exactly as before that P/C,(d) and [P, d] < B,
are isomorphic W-modules. Since B, is irreducible, |B,|>p® and
||P,d]| < p, we get [P,d] =1 whence P= C,(d) and we are done.

LeEmMmA 4.4. The following hold:

(i) Cu(x)=1,|B* P,P|=1, and P is elementary abelian;

(i) Either |P,x|=B, and P is isomorphic to B, as an A,(B*)
module, or B, < B*, |P,x| =B, B, and P is isomorphic to B, B, as an
A, (B*)-module:

(iii) DNB,={(z;) for some i>1, B, acts as inner-diagonal
automorphism on K, and {x) induces a field automorphism on K.

Proof. Parts (i) and (ii) follow from Lemma 4.3. Note that
|B, N B,| > p’ in all cases. Now for (iii). Let D B, = {(d), and choose a p-
group R < C4a(d)M Ngy(B*) projecting onto P. By definition of standard
type, J lies in a p-component K of C.;(d). Suppose R does not normalize K.
Since (D, J) is a subcomponent and m,(B) > 4, B* N J acts nontrivially on J
and so projects nontrivially into (K*)/0,.,((K*)). This latter group is
semisimple with at least 3 direct factors, whence [B*, R, R]|# 1, a contra-
diction by (i). Thus R must normalize K. As [R,D| > |R, (x)| > B, N B,, R
does not normalize D= Cy.(J)= Cs.(JO,.(K)/P,(K)). Tt follows that
K #J0,(K), {d) = (z;) for some i, and K =K.

It remains to prove the last two assertions of (iii). Suppose B* acts as
inner-diagonal automorphisms on K, and let R, be the subgroup of R which
is inner-diagonal on K. In particular, the possibilities for K are given by
Table P. By Table B, R, centralizes K unless perhaps K = A4,(g) or G,(q),
not the case by Table P. We have [R,, B*| < C,.(K)={d). It follows that
P, the projection of R, on P, has order at most p. If G # D,(q), then R/R,
is cyclic whence |P| < p°. As m,(B*) >4, we must have B, B, < B,. In
particular B, c B whence L = A4,(q) or 24,(q) with p|n + 1, or L = E¢(q) or
*E((q) with p=3. As n>3 in the first case, we have m,(B*) >S5 in all
cases. But now Lemma 4.4(ii) implies m,(P)>3, a contradiction. If
G = D,(q), then a similar argument yields |P| < p’ against m,(B) =35 and
P=B NB,=B,x~E,.

Reasoning as in Remark 5.1, we see that no element of B* acts on K as a
graph or graph-field automorphism. Thus B* =4 X (a) with A4 inner
diagonal on K and b acting as a (standard) field automorphism. If 4 = B,,
we are done, so we may assume a € B, —A4. As BN B, < [P,B*]| < 4,
B, =(B,NB,) X (@) _

Let Y=A,B*) and Y =Y/C,(B,). Since |B*: B,|=p and B, = C;.(P),
it follows that 0" (C,(B,)) =P, C,(B,)/P is cyclic of order dividing p— 1,
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and 0p(17)= 1. Repeating the argument of the proof of Corollary 4.2, we
apply McLaughlin’s theorem and obtain that (@") acts irreducibly on B,.
We conclude B, = |P, B¥*] £ 4, and Lemma 4.4 is proved.

Recall that M = N(B,), C=C4(B,) and B* L U € Syl (C). Note that
N (B*)< M. Further U, is the subgroup of ¥ which acts as inner-diagonai
automorphisms on K. Let V=Cy(K) Clearly ¥V U,; also
Q,(C,(x)) < C,(B*), whence 2,(C,(x)) < B*.

LEMMA 4.5. The following conditions hold:

(i) VAN, (U):
(it) forany re Ny J(U)—NV), VNV =1;
(iii) V is cpclic;
(iv) (y™cu,;
(v) U, aN,(U).

Proof. To prove (i) pick (€N, (B*) with (d)#{d'). As
Ng(B*¥*)= M =CN,(U), these exists r€N,(U) with d"=d' Since
d)=Cy(K)y=VNB*, r& Ng(V) and (i) holds.

For any r as in (ii) let W=V N V" If {r) normalizes (d), then (r) acts on
K and normalizes V= Cy(U). Thus {(d)# (d") whence WNB*=1. If
W+ 1,thenas W< U, 1 +2,(C,(x))cB*. Thus W=1 and (ii) is valid.

Suppose n € N, (U) — Ng(V); we claim V* N U, is cyclic. Since x acts as
a field automorphism on K, x centralizes Q,(U/V). VN F"=1 implies
1, 2,(V)|=1 and Q(V")c<B* Thus Q,V"'NU,)=V"NB, =
(VN B,)"={d"), and our claim is proved.

To prove (iii) it suffices to prove (iv), so assume n € N,,(U) and V" £ U,.
Some element of V" induces a field automorphism on K. It follows that
{U,.V"| V/V is abelian of rank at least 2 except perhaps when J =4,(g) or
A,(g). In these cases we find by checking the possibilities for L (cf.
Table P) that J = SL(3.q) or SU(3, g) whence m([U,, V"] V/V)>2 in all
cases. However [U,, V"| S V"N U, yields a contradiction by the preceding
paragraph.

It remains to prove (v); suppose U, # Ujfor n€ N, (U), and let
E=UU},A=UnNU]. Weknow VN V" =1 and VV" < 4. Since U,/V is
abelian of exponent p° for some s> 2, so is 4. Pick we U — U, with
w? € U, and if possible we& U, (Uj). We have [E, w]j< (w’, V") and
[E.w]e V" if weU,(U}). On the other hand w acts as a field
automorphism on K, and the considerations of the preceding paragraph yield
that [E,w| V/V is abelian of rank at least 2. We conclude first that
|[E,w] & V"  whence |E:U|=|U,:4|=p and secondly that
m(Q2(U,/V))=2, whence from Table P, m(B*)=4 and, consequently,

481/80/2-13
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B, = B*. Since U/U, is cyclic, E is independent of the choice of n, which
implies E <1 N, (U).

Our conditions imply £2,(E/V)=B*V/V. Thus 2,(E)< B*V; and as V is
cyclic, B*=0Q,(E)<1Y=N,(U). Thus YCSN,(B*)SM, and since
M =YC, B, is an irreducible Y-module. Further let D = N.(B*). D acts on
B* and centralizes B, whence O”'(D) projects to P=0,(4;(B¥*)). As
U< D, U also projects to P, and we have by Lemma 4.4 that U/C,(B*) is
an irreducible Y-module with U/C,(B*)~ B, x E,..

Let F=Cg(B*); as E<1Y and UJ/E is cyclicc we must have
U=EC,(B*) and F/E is isomorphic to U/C,(B*) as a Y-module. The
structure of E/V implies [E, E| V/V < Q,(Z(E/V)), and likewise for E/V".
As VN V" =1, it follows that [E, E]| € 2,(Z(E)); and as p is odd, taking
pth powers is an endomorphism of E. By the same argument, U (E) € Z(E).
As E/Q (E)=E/B*~U,(E), |E: U,(E)| =p*. Thus {(x, U,(E))cF forces
F={(x) X U,(E) and U,(E)}= Z(FE). Since taking pth powers commutes with
the action of Y on E, U,(E)/U,(E) is isomorphic to E/F as a Y-module, and
we see that U (E) is homocyclic of rank 3. As E/V has exponent p°, so does
E whence U (E)=(Z,_). In particular |E|=p**' and |U,|=p". It
follows that U /V = (Z,,)" and V' = Z,. However (iv) above implies V' < U,
where U, is the largest subgroup of U, normal in Y. Thus U, £ F and we
must have E = U, F. But then |U,| =|U,| implies U, <71 Y. This contradicts
U, # U] and completes the proof of Lemma 4.5.

LEMMA 4.6. We have

(i) U, is abelian of exponent p’ and after perhaps replacing x by
another generator of (x), u* =u'*""' forallu€ U,;
(ii) U, contains a homocyclic subgroup of rank m(U,) or m(U,) — 1
and exponent p’;
(iii) U, =J(U), the Thompson subgroup of U,
(iv) B,=0/(U,) and B* =2,(U);
(v) O,M/C)=1.

Proof. By Lemma 4.5, pick r EN,(U)<S N, (U,) with VN V"= 1; the
structure of U/V implies (i). 2,(U/V)=B*V/V forces 2, (U)S B*V. As V
is cyclic, (iv) holds.

To prove (ii) we repeat an argument from the proof of Lemma 4.5. By
(iv), Ny(U)S Ny B*)=M; so M=CN,(U) and Lemma 4.4 imply that
U\(Cy (B*) is isomorphic to B, or B,NB, as an A (B*)module. As
0,(U,) has rank at least 2, it projects nontrivially on U,/Cy, (B*) whence
m(2,(u,)) > m(B, " B,)>m(B,)— 1 and (ii) holds.

Assertion (iii) follows easily from (i) and (ii). To prove (v) suppose first
that O,(M/C)# 1. Let Y =N (B*) and Z = C4(B*). By (iv), M=YC so
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O,(Y/Cy(B,))# 1. On the other hand Cy(B,)/Z is an extension of
0,(Y/Z)= P by a group which is cyclic of order dividing p — 1. It follows
that O,(Y/Z) covers O,(Y/C,(B,)) whence O,(Y/C,(B,))= 1.

LeEmMA 4.7. (i) N = N (B*) covers M/C; (ii) B, is weakly closed in B*
with respect to G, (iii) U, is weakly closed in R with respect to G, where
U< R € Syl (M), (iv) R € Syl,(G).

Proof. (i) and (ii) A Frattini argument implies that N covers M/C. From
this it follows easily that B, is weakly closed in B* with respect to G: for if
gE G, B B* then B, (B*)¢™', whence there is ¢ € C such that
(B*)* ' L U, implying g~ 'c € N and g~' € Ne™' € M, as required.

To prove (iii) and (iv) it suffices to show U, =J(R). Assume not and pick
A abelian of maximum order in R with 4+ U,. By the Thompson
Replacement Theorem [27, Theorem 8.2.5], we may assume [U,,4,4]|= 1.
As U, <1 R, we have [U,,4]=C(4)=ANVU,. Thus [u",a']|=[u,a]”
for u€ U, and a€A. Let 4,=U, ,(A4/ANU,); we have [4,,0°"'(U,)]=1.

We claim [4,,B,]=1. If not, then by, Lemma 4.6 (ii),
|B,:B,N0U* '(U)|=P and A, induces transvections on B,. Let
F={A"""). We know that N,,(U) S Ng(B*)< M and M = CN,,(U). As B,
is an indecomposable A,(B*)module, Lemma 4.6(v) and McLaughlin’s
theorem imply that N,,(U) acts irreducibly on B, forcing B, < U°~'(U,) and
establishing our claim.

Now A, < Ci(B,)=U. As U/U, is cyclic of order dividing s, so is
A, JANU,. It is easy to see that p>3 and s >2 imply p°~' > s whence
[A,:ANU,| <p°~". It follows that A = 4, < U, and we are done by Lemma
4.6(iii).

LEmMMA 4.8. Proposition 4.1 holds.

Proof. Let Ny=N4zU,), Co=Cs(U,). By Lemma 4.7, U, is weakly
closed in R € Syl,(G), so by the Hall-Wielandt theorem [43, Theorem
14.4.2], G has a quotient of order p if N, does. As G is simple, it suffices to
show x & |N,, N,] to complete the proof by contradiction of Proposition 4.1.

Let H=Cg4(x), Y=CyL), and U,=Cy (x)=02; (U,). From the
structure of Aut(L), F=HNC covers H/LY (recall C=Cy(B,)). By
definition of standard type Y has cyclic Sylow p-subgroups. If (w) € Syl (Y),
Q,(w))={(x)<= Z(Y) implies Y=(w)O0,(Y). Pick (w) so (w,U,)<
P € Syl (H); then U, normalizes (w). It follows that Q,(B*(w))=B*
whence (w)ZS N4(B*)< N4(B,). Thus [w,B|]c(w)yNB, =1 and weE
HNC. Consequently F covers H/LO,.(Y). Since LO,.(Y)< [H,H]|O*(H) U,
and U,cF, x¢& |F,F|O°(F)U, implies x¢& [H,H|O?(H)U,. But F
acts on K with x acting as a field automorphism and U, € U, inducing inner-
diagonal automorphisms, so x &€ [H, H] O°P(H)U,.
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Let Hy=HMNN, and X = [H,, H,| O?(H,) U,. As U, is abelian and is a
Sylow  p-subgroup of Cy,Co=U,XO0,(Cy). Thus H,NC,=
U, X 0,(H,NCy)S X, and if Ny=H,C,, N, has the desired quotient of
order p by the preceding paragraph.

Assume H,C,+ N,. By the action of x on U, (x) Co/Cy S Z(N,/C,),
and it follows that B* <1 N, =N,/0,(Cy). If n€E N, and %" =xb with
b€ u°~!(U)), then for some u € U,, [x, it] = b whence 7€ U, Cy (X). As H,
covers Cy,(x), we have n € H,C,. Thus, the assumption H,C, # N 1mp11es
that U, is not homocyclic. Lemma 4.6 yields |B,: US“(U1)|=p. As we
have seen before, we must have B, "B, = U*"'(U,) < B,.

Consider the action of N, on B*/B,NB, NB,=E,. Let N,=
C, (B */B,NB, ») and No=Ny/N,. As {x) covers B*/B,, [N,,B*| < B,. If
nEN normalizes B,, then the analysis of the precedmg paragraph gives
n€H,Cy. As [B*U,\]=[(x),U]c0(U)), Co=1 and we have
ne 1-7 In other words Ny (BZ)CH Picking elements in B, and B, as a
basis for B*/B, M B,, we see that N, is represented by matrices of the form

(o 1)

and Ny~Z, or Z,- Z, with r|[p— 1. In the latter case Ny (Bz) =Z, is
maximal in N whence H =~ Z,. Thus in either case p}|H,|.

Since HoNC, € X, H,C /XC is an abelian p-group, and x & XC,. As
p)(IHOCO:N,l, H,Cy/XCy=N,/(XCyNN,), and N,/X, is an abelian p-
group, where X, is the largest subgroup of X,C, M N, normal in N,. Further
X, 2C,. so |Ny,x]=X,. Thus, Ny/N, acts on N,/X, and centralizes
(X)X,/X,. If Ny/N, is a p’ group, then Ny/X, has a quotient of order p as
desired, so assume N, = Z, - z,.

It suffices to show X, =XC,MN,. Suppose X, =X,C,NN, and pick
h € H, with (hy~ Z,. We may take & to be ofp order whence # € X and
(A, N ]CXC AN,=X,. Thus 4 and O,(N,)= [k, N,| centralize N,/X,.
Lettmg W/N, = O,,(NO)__Z we see that W/X, is an abelian p-group (as

N./X, < Z(W/X,) and W/N, is cyclic). Now as before N,/W acts on W/X,
with fixed points and Ny/X, has a quotient of order p.

It remains to show X,=XC,NN,. Let X,=X,NH, As
XCo/(XCoMN)=2H,C/N, =2, |X:X,|=sp° for some s|r. Further
X, <1 H,. Suppose N,(B*)= H,C,(B*). Examination of the possibilities
for L yields 4,(B*) = O”(44(B*)) whence H, = Cy, (B*) X. Further X/X, is
an extension of an abelian p-group by Z_, and the structure of 4 (B *) yields
|Hy: Cy (B*) X, |s.

Let F=Cy (u,)=CoMN H,. We claim XN C, (B¥)=X,NC,(B*)=F
whence | X: X,|=|XCy (B*): X,C, (B*)||s, and it follows that
X, =X,C,N, as desired. Cy(B*)=HNCNN,=NNN(U,) has a
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Sylow P-subgroup Q which is an extension of U, by a cyclic group with
x€Q—U,. As Cy(B*) acts on U, as a p-group, and (as we saw above)
F=U,XO0,(F), we see that Cy(B*)/F is a cyclic p-group with
x€ Cy (B*)—F. Now Coc X, implies F=C,NH, =X, X, and x & X
implies X N C,, (B*) < F as desired.

5. CONSTRUCTION OF G, £ G, G, € Chev(2)

We let z,.....z,,.K|,... K, r > 2, B, B*, etc., have the same meaning as in
Section 4. Set G, = (K ,,..., K,). The object of this section is to show that
G, € Chev(2); see Proposition 5.20. In Section 6, the problem of showing
G, = G will be handled.

Before discussing our plan, we establish some further notation. Set
C;=C4lz;), N;= NG(<Z,->), A4, :AK,-(B*)’ Ai* =AN,-(B*)s i=Ll.,rr>2
For any distinct pair i,j € {1,...,r}, Ly = L(K; N K}). Set 4, =4, (B¥).

The main step in identifying G, is to identify G, = (K,, K, ), where G is of
standard type with respect to (B, z,, K,) € $*(p). We know that p half-splits
K, but we do not know whether G is of standard type with respect to
(B.z,,K,). Thus, the roles of K, and K, in our argument are not usually
symmetric.

Our method is to first identify 4 = (4,,4,) as a prelude to identifying G, .
Recall that B* contains B with index 1 or p. Eventually one needs to
produce a “Weyl group” for G, and the most sensible method appears to be
to work in A.(B*) rather than in A4.(B). The results of Section 3, plus
further special arguments, enable us to determine the possibilities for 4. We
have O0,(4)=1 as a consequence of Section 4. From there we proceed to
identify G, by analyzing various cases for 4, 4,,4,. Tables B and P are
used heavily to study how subgroups fit together. Finally Proposition 2.30 is
used in the various cases we consider to identify G,. The identification of G,
is then a relatively easy consequence of the preceding work.

Before embarking on the proof of our main result (Proposition 5.11) we
recall that 4 <m(B) < m(B*)< m(B)+ . Table B and Lemma 2.35(iv)
imply that m, ,(K,) > 3 and m,(K,) > 3, whence the Lie rank of each X; is
at least 2 and is at least 3 if K is not of type 24 ,(q). Familiarity with the
“splitting prime” and “half-splitting prime” situation is assumed; see
Section 1.

Remark 5.1. In Section 4, we showed that x does not induce a field
automorphism on any K;. We argue that B* induces a group of inner-
diagonal automorphisms on each K;. If false, choose j so that x induces a
graph or a graph-field automorphism on K;. Then p=3 and K; has type
D,(g). By [10]. Cy (x) = Gy(q), SL(3,q) if 3|g—1, or SU(3,q) if 3{g + .
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Since (z;) N K; = 1 and m,(Cy (x)) = 2, we get m(B) =4.1If 3|g — L. the fact
that m, ,(D,(q)) = 4 implies m(B) =5, a contradiction. So, 3|g + 1. whence
m(B*)=15, m(B*)=4. However, the shape of Ck (x), which must contain
B*, forces m(B*) = 4, a contradiction.

A reflection shall mean a linear transformation on a finite dimensional
vector space of characteristic not 2 such that the eigenvalues are
-1, LL..L

Remark 5.2. In every case, Ny (B) < Ny (B*), a great convenience. The
groups K € Chev(2) which appears in the following arguments usually have
|Z(K)lodd. If some |Z(K,)| is even, there may be a complication in a
generator and relations argument. We comment when a relevant |Z(K,)|
might be even and otherwise say nothing.

We now begin the identification of G, and G,. Since p splits K, 4, is
isomorphic to a Weyl group (though not necessarily the Weyl group on a
{B. N)-pair for K,). Thus we consider what happens when the 4, are various
Weyl groups.

LeEmMMA 5.3. Let bars denote images under N (B*)— A;(B*). Suppose
that K < G, K € Chev(2), that B* N K lies in the “B*” column of Table B
and B* = C,.(KXB*MK). Let t,, t, € N (B*) be involutions so that f, and
I, are distinct reflections on B*. If k € Z and |I,1,| = k, then (t,1,)* € 0,(K).
If m, ,(K) > 3, then such involutions t,, t, always exist and may be arranged
to satisfy (t,t,)* = L.

Proof. We first assume O,(K) = 1. A look at Table B* and properties of
K imply that 4,(B*)=A(Cyx(B*)) and that if s,,s, € N (B*) induce
distinct reflections on B*, then [C (B*),s,]M[C(B*), s,f=1. Set
u=(t,t,)". Then =1, whence u € C,(B*) and u is inverted by ¢, and ¢,.,
whence u = 1, as required.

Now, drop the assumption that 0,(K) = 1. Then | Z(K)| even and the fact
that m, ,(K)> 3 implies that K has type 24,(2) or 2E(2). It suffices to
prove the statements for p|g + 1 because of the embedding of the natural
subgroup isomorphic to A,(B*) for plg— 1 into that for p|q+ 1; see
Lemma 2.50. When K has type *4,(q), the elements 7, are images of unitary
transvections under SU(6,q) —~ K (to see this, regard the f; as images of
transpositions from the standard group of permutation matrices and Cy(B*)
as a subgroup of the full diagonal group). The facts that we may arrange
|t;/=2 and (f,1,)* or (f,,)" is 1 may be read off from the generators and
relations for the covering group of 4(2) [36]; in fact, we define (t;) as a
conjugate of |Y,, Y;|, where Y, is the preimage under K — *A4(2) of a root
group for a short root and @ + =17 is a long root. The argument for the
case K of type 2E,(2) is reduced to that of 4(2) because 4 (B*)= W,
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and all pairs #;,f; are conjugate in A,(B*) to a pair in the image of
A, (B*)— A, (B*), where L is a natural 24,(2) subgroup of K.

DeFINITION.  The involutions ¢; € N (B*) representing the fundamental
reflections are called special involutions if |Z(K)| is odd or if | Z(K)| is even
and K has Lie rank at least 3 and the ¢, are chosen as in the proof of (5.2).

Note that each K, has Lie rank at least 3 or |Z(K,)| odd; see Section 1

and use the facts about Schur multipliers in [36, 38].
The next result verifies the extra hypothesis (iv) of Lemma 2.30.

Lemma 5.4. Let G*={G* W), K, and B* as above, W the Weyl
group of root system X of rank at least 2. Assume hypotheses (i), (ii), and
(iii) of Lemma 2.30. Set A, = Cp.({Z(X,), Z(X_ ) {b,)=B*MN{Z(X,),
Z(X _,)) a € Z,. Suppose that W normalizes B* and satisfies N, ({+a})=
Nu({b,))=N,(4,) and N, (a)=Cyb,). Then (iv) holds, i.e.,
W,:={we& Wl|a" = a} normalizes X, for a € X, and X is the root group

of K associated to a.

Proof. Note that 4 =4, is a hyperplane of B* and B* = Ax(b_).

We consider the possibility that there is a standard subcomponent (D, K)
of (B, x, K ) with the properties (1) b, € D, (2) D= (b, b;) where b, and
b, are conjugate by an element of W, and (3) b; € 4.

Since m(B*) >4, a study of Tables B and P shows that such a (D, K)
may be obtained whenever W does not have type 4, when p|/+ 1.

Suppose that (1), (2), (3) are achieved. We have C;(4) < C;(bs) Co(b,),
the structure of which implies that

L(CoA) =(Z(X,), Z(X ) if |Z(X,)| > 2;
0" (Co(A) =(Z(X,). Z(X_,))  if [Z(X,)|=2.

In any case, S:=(Z(X,), Z(X_,))= SL(2,q) for ¢g=|Z(X,)| and W, acts
on S, centralizing {b,). Thus, [S, W,]| =1, as required.

Suppose W has type A,, when p|/+ 1;]>4 since m(B*)>4. Then
plg — 1. Choose f so that a,f span a root system of type A4,. Set W, ;=
W, W,. Since /> 4, we may take a root a orthogonal to a and f. Since
b,~b,~ by via W, we may look in C;(b,) to get the structure of Cg;(4,)
where A, = Cpu((X,, X_o, X5, X_5)). We get J=L,(Ci(4,)) =J,0,.),
where J, = (X, ., X ;) is of type 4,(q), g=|X,| Since W, ; centralizes
B*NL(C;(Ay))=<(b,,b;) and W, ; is generated by involutions, W, 5
centralizes L(Cg(4,))J,. Since W, is generated by the W, ,, for all possible
choices of f, we are done in this case. The lemma is proven.
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LEMMA 5.5. Fori=1,2, let W, be a subgroup of K, normalizing B* and
as described in Lemma 2. 50(v)(c) Let bars denote images under

Ng(B*)—> Aq(B*). Suppose W, xW,=A, for i=1,2 and that
WiNW,=A4,MA, and that A is generated by reflections r,ry,....r,,,
which satisfy the  relations of a Dynkin diagram and
Ay = F Ay =1y Py 1y, ). Then (W, W)= A,

Proof. Let t, €W .t tyit, EW NW,,t,,, €W, be the special
involutions for which r;=r;,i= l,..n+ L. If |r,r, | =k, then we can get
(t)s1,, )" =1 by the argument of Lemma 5.3 provided we know that
distinct ¢; in 4 have commutators on C,(B*) meeting tr1v1ally Since this is
true with 4, or 4,. it suffices to check the statement for t,,¢,, . Since the
Dynkin diagram has no loops, ¢, and ¢,,, commute. We assume that
[B*.t,)=[B*,1,,,]. Since n >3, we may choose an index j, j# 1, n+ I,
such that |r;ryl > 2 and r;r, ., = 2. By conjugating with 1, we get [B*, 1y| =
[B*,1,,,]. whence [B*.1,1,] = L. But since 4, acts falthfully on B*, this is a
contradiction.

LEMMA 5.6. Suppose A, A, are Weyl groups of type A. Then one of the
following occurs: (a) A, =4, = W, and A is a Weyl group of type A,,,, or

D,... (b)p=3, one ofA or A, is isomorphic to W, and A=W, , (c)

=3, 0neof A, A, is isomorphic to W, and A=W, .

Also. in (a), A, is the usual 1-point stabilizer for the symmetric groups
A, = A, and in (b) and (c), 4, is a 2-point stabilizer.

Proof. See Proposition A.

LEMMA 5.7. Assume the hypotheses of Lemma 5.6 and that A is a Weyl
group of type A. If K| (equivalently, K,) has type A,(q). *A,(q), respectively,
then G, has type A, (q) or ‘4, , ,(q).

Proof. Suppose K, and K, have type 4,(q). Then G, = (K,, W) is iden-
tified as a group of type 4,, ,(g) by Proposition 2.30.

Suppose K, and K, have type ’4,(g). Then plg+1, n>4 and
G, =Ly, W). Let ¢: W— X, _, be an isomorphism so that the involutions of
Lemma 5.3 inducing reflections on B* go to transpositions. Let 1€ W so
that = (12)(34) - (21— 1, 21), where = [(n + 1/2]. We may alter ¢ so
that Cy. (r) = W,  and C,, (7) is a standard copy of the Weyl group of L,;
see Lemma 2. 50(v)(c) By Proposmon 2.30, we can identify G, as a group of
type ’A,, (q) if />4, i.e.. n> 7. So we may assume 4 <n< 7.

Let us look a bit more carefully at Proposition 2.30. We can use W to
define root elements for any r>4. The problem is verifying relations
between elements of the shape x,(f), xz(u), (or x,(t, "), xz(u, u')) where
a, € Z, our root system, and a, § are both short and form an angle of 7/3
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or 2n/3 or n =6 and they are orthogonal, or a, § are of unequal length and
orthogonal and n < 5.

Choosing epimorphisms SU(n + 1,9)—» K,,i=1,2, which agree on a
subgroup isomorphic to SU(n,q) mapping onto L,, we assume that
SU(n+ 1,q) is a matrix group relative to an orthonormal basis
{e;]1<j<n+ 1} and that B* MK, is the image of a diagonal group. We
then define §; to be the subgroup of K, or K, corresponding to the
SU(2, q) = SL(2, q) subgroup associated with the ith and jth basis vectors.

Using the action of W on the S, we see that [S;;, S, ;| =1 whenever
iy, i’V =@. Thus, if n=6, £, and X, are orthogonal sets of roots in
X2 such that both have type C,, then [x,¥] =1 whenever x,y are root
elements associated to roots in X,,X,, respectively. Therefore, [x_(t),
x4(u)] =1 whenever a, § are short roots, orthogonal, and a + f & Z. If we
take X', = {r, —r} for r long and X, = {s € X|s is orthogonal to ri, then we
get that root elements associated with orthogonal roots of unequal length
commute.

Suppose n =5 and a. 8 are short roots generating a subsystem of type 4,.
We may arrange for VW, V=W, so that V<K, and VML, is a
standard copy of the Weyl group of L, (see (2. 50(1v))) Then each x,(¢),
Xg(u) is a natural root element in K|, we can define the commutator relations
between these elements and complete the verification of Steinberg relations
for G,.

We are now left with the case n =4, a, § short generating a subsystem of
type 4,. We observe that p # 3; for p = 3, then 4 = X has a nontrivial fixed
point on B¥*, rank 5, and C,.(4) = C,.(4,), a contradiction. So p# 3 and
q>2.

We have B* = (B* N K,)(B* N K,) and we replace the hyperplane B by a
conjugate in N;(B*) so that BM L, has index p in B¥*ML,. We have
C, (B)=(S,H) where § induces SU(2,q) in a natural way on a two-
dimensional summand U, of the standard module U for L, = SU(4, q), and
H=Z, XZ, \XZ,.,. Let Z be a Sylow 2-group of §. Define
M; =Ny (Z), Q;=0,(M)), i=1, 2, My=N,(Z), Qy = 0,(M,). We have
QN Q,=0,. Also, J= (N, (B), N, (B)) N N(Z) (the W, are as in (5.4))
induces X, on B and permutes X ,X,,X,, X, is a natural way under
conjugation, where Q,=ZX X, X,,0,=ZX,X,,Q,=2ZX,X,X,, and the
X; are K-conjugates of nonabelian root groups for a long root in a root
system for K,, i =1 or 2. (Think of X as follows: let {e,} be our orthogonal
basis, U,=spanie,,e,}, X; € Syl,(S,,)), where S, induces the special
unitary group on spanie,,e,,e;}, is trivial on span{e/Jk# 1,2,j} and
X; > Z.) It follows that 0 = Q,Q, is a special 2-group. A Levi factor in M,
contains a unitary transvection acting nontrivially on X, and trivially on the
other X; in @,. Now, using the action of J, we get that
[M,.X,]=[M,,X;]=1. Take h, €EH, |h,|=¢g+ 1, so that A, acts as a
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scalar on the above-mentioned two-dimensional space U, and h, acts
trivially on the orthogonal complement to U, in U. Take h, € Ny(Z),
|h,|=¢qg—1 and set #=h,h,. Then the actions of 4 and (M,,M,) on Q
commute (this follows from the structures of X, and K,). Considering the
(h,)-action, we see that commutation gives a [, bilinear form on Q/Z,
whence (M,, M,) gives a subgroup of Sp(8. ¢). Now, considering the {(h,)-
action, we see that (M,, M,) induces a subgroup of GU*(4, q) (the subgroup
of GL(4, q) fixing a nondegenerate Hermetian form up to a scalar) on Q/Z.
Since this subgroup contains two distinct copies of SU(3,gq), it is not
difficult to see that it must be isomorphic to GU*(4, q) (for example, one can
show that the nonsingular [-dimensional subspaces form a system of
imprimitivity for the action of PGU(4, q)). By Lemma 3.19, the isomorphism
type of (M,,M,)=QY, where Y=C, , ,(h)=GU*(4,q)=GU(4,q)X
Z,_,, is uniquely determined, hence is necessarily isomorphic to the
parabolic subgroup of *A4,(q) corresponding to the subset o=—=o of the
Dynkin diagram o—o===0 for 244(q).

We now verify the required commutator relations. We have M, < QY and,
as L,=’4,(q), M, contains representatives of each L, -conjugacy class of
root groups (these are the root groups for the system of type 4;). Let
V.<K;,V, a standard copy of the Weyl group of K, derivable from the
system of root groups already chosen, i =1, 2.Then V;, = X, V=(V,, V)&
and VNQOYLY, VNQY>ZX,. Let H be a Cartan subgroup in Y
associated with the given root groups and let H* = HZ(Y) (recall that Z(Y)
acts as the multiplicative group of F% on Q/Z). We claim that H* has
exactly four irreducible subspaces in its action on Q/Z, i.e., H has exactly
four irreducible ¥ -subspaces in its action on Q/Z. This follows from
viewing H~Z,,_, X Z,._, as a group of matrices preserving the Hermitian
form with matrix

01

10
01

10

and letting generators for direct factors of H act via

and s
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where F 5= (1). Let Q;/Z be these four subspaces, j = 1,2, 3, 4. Then, as the
one-dimensional spaces above are singular under the bilinear form, each Q;
is abelian. By their uniqueness and the isomorphism of QY with the
parabolic subgroup of ’4(g), [Q;, H] corresponds to a root group for a
short root. It follows that QY contains a pair of root groups X,, X; in our
system with a, 8 both short and forming an angle of 7/3 and a pair of root
groups for the angle 27/3. Using the isomorphism of QY with the parabolic
subgroup, we get the desired commutator relations.

This completes the argument for the case n = 5 and with it the proof of the
lemma.

LEMMA 5.8. Assume the hypotheses of Lemma 5.6 and that
(A,.A4,) =W, or Wy Then there is some z; and a q so that K; has type
D,(q) in the first case and type E,(q) in the second case.

Proof. Suppose (4,,A4,)=W¢,A;=W,, p=3, m(B*)=35. We have
A, = W, and L, has type 4,(q) or 2A,(q) for some ¢, 3|g— 1 or 3|g+ 1,
respectively. In fact there is a reflection r € 4; with C, (r) = (r) X 4,. Thus,
we may choose reflections r,...., r¢ in (A,,A2> so that

is satisfied and A,={r,,r;,r,). Then (z,,z,)=Cz.(4,) and clearly,
Cy.({rys 735 74, 1)) = (z) has order 3. Since (r,, ry, ry, rs) = W), z is in fact
one of the z;s. By Tables B and P, L(C;(z)) must have type D,(g).

Suppose (4,,4,) =W, ,A; =W, ,p=3, m(B*)=8. We have 4, = W,
and there is a reflection r € 4; with C, (r) = (r) X 4,. Thus we may choose
reflections r, ..., ry to satisfy

ry r ry ry rs re ry r
o o .

e}
rs

Thus, Cg.(4,)={z,,z,) and Cy.(r;,7;,.., 1)) =(z) has order p. Since
(rysFyas ry) acts irreducibly as W, on B*/(z), Table B tells us that
L(C4(2)) has type E,.

LEMMA 5.9.  Suppose that A;= W _for some n€ {6,7,8} or A;= W,
Thenn=06or 7 and A= (Al,A2>_ £, 0t Ai=W; and A = W Also,
(K,,K,) has type E.(q) or type E (q)for some q with plq — 1 and the case
A;= W, does not occur.
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Proof. Suppose A, has type W, . By Proposition E, A=W, forn=6
or 7 and m(B*)=n + 1. Since K, € Chev(2), Table B lmplles that K, has
type *E¢(q) for p|g+ 1 and n= 6 or E (q) for some n=6, 7 and ¢ such that
plg’ — 1.

If K, has type E ,(q), Proposition 2.30 then enables us to identify (K, K,
as a group of type E,, (g). (Note that, in E,(q), the standard copy of
Ag(B*) for p|g+ 1 is also one for plg— 1, if m=7 or 8).

Now suppose K; has type *E (q), plg + 1, n=6. We have to be alert to
any possible “exceptional” coverings of groups in Chev(2) when ¢ = 2. We
have W, =W, and W= W, . Let K<K; be a natural subgroup of type

D,(q). i.e., K is generated by all the root groups for long roots in the root
system for K. Then WM K is a natural W, subgroup of K; see Lemma 2.50.
We note that K is simple (see the description of the exceptional covering of
*E.(2) in [36]). Thus we may use W and the Steinberg relations to construct
a group Y= (K, W) of type E,(q). Then Y > B* since W acts irreducibly on
B* and KM B* +# 1. Also, since 4,(B*) contains a copy of W, Table B
implies that YN K, =K. Since L, <Y, a similar argument with Table B
implies that K; < Y, as Table P tells us that the possibilities are that L, has
type *A(q) or *D(q). whence. by Table P, K,, has types *4.(q), C,(q).
Di(q), ‘Eqq) or D.q). *Eq). respectively. Therefore, G, =
K, KpLY=(K, W)y=(K.W,, W,)< G,, whence G, has type E,(q), as
required.

Suppose A;=W, . By Proposition CF, m(B*)=35, =3 and

={A,,4,)= W, XZ,. There are three orbits of 4 on (B*)# with
stabllnzers Wi, Z_ X 2, and a 3-local subgroup of index 40 in A. Let
{/.J"} = {1 2}. Since p half splits K;, 4; is therefore W, or W, . Suppose
AJ: W, so that K; has type A(q) or *A,(q). Then L, has type 4,(q) or
A(q). By Table P. K;, cannot have type F,(q") or ’Es(q’) for any gq’,
contradiction. Therefore, A, = W, . Consequently, 4,= W,. and L, has type
C.(q), *D,(q) or A(q) for some q. Set 0=0,(4,)=A43. Then R = [Q.4,]
is a four group in 0,(4,), j= 1, 2. Also (t) = Z(A,), where ¢ has eigenvalues
{1, 1,—1.—1,—1}. By inspecting the maximal 2-locals of W, X Z, and
noting that no involution of 4, can have more than three eigenvalues —1,
hence cannot be conjugate to any ¢;, we see that C,(R), hence N, (R), must
lie in the 2-local A; X (—1,.) for both j=1 and 2. Thus, C,(R)=0Q X
yx(=1zy, j=12, and |C,(R)|=2°. But then Z(N,R))=
{t,.t; — 1.5 = Z3, which is incompatible with the structure of 4, and 4,.
This contradiction completes the proof of Lemma 5.9.

LEMMA 5.10. Suppose that K, has type A,(q),plg+ 1.n>1. Then G,
has type A, ,(q).

Progf. We have k=[(n+1)/2]=m(B*)— 1. By Proposition CF,
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=(A,,Ay)=W,, or W.. In this case, 4 {m(B)=m(B*)—1, by
2 35(iv), whence 4 = W for k > 4. Note that Kl ~ K, >4,(q); by Table
P, K, = E,(q) may be p0551ble, but is out by Proposition CF.

Choose standard copies W} in K, of Ag(B*) as in Lemma 5.5. Thus
(W, W5~ A by extensions of the natural 1somorphlsms Wk ~A, Now,
choose standard copies W, of the Weyl groups of each K, such that
W, >Wpk i=1,2and W, N W, is a standard copy of the Wey! group for

L,=L(K, ﬂKz), see Lemma 2.50(iii)). We want to show that
(W W, =W, .. Choose fundamental reflections w,,w,,.. so that

= (w,. wz, W), Wo={wy, wye, w,,,)> and w,w,,. satisfy the
relations

are satisfied. We wish to show that [(w,, w,), (W,,,, W,,20] =1

The embedding W < W, can be described by regarding W} as the
centralizer in W;x=ZX ., of an element corresponding to
(12)(34) -+- (k— 1, k). Even though (w,,w,) does not normalize B*, we
know that B,=C,.({w,,w,)) has index p* in B* Also, if B,=
Cy-({Wyr1sWny2)s |B*:B,|=p*. Furthermore, B,,B, and B,=B,NB,
are direct products of the A-transforms of {z,) (or (z,)) which they contain
and |B*: B,|=p*. It follows that J, = L(C;(B,)) has type A,(g) or A4(q).
Also, it contams J,* L(C4(B,)), which has type A3(q) or A,(q), i=1,2.
The action of B* on J,, and the fact that B, and B, fuse in N ,(B,) imply that
J¥ = J¥. Let J; be the natural A3(q)—subgroup of J,-* which contains B* N J¥,
i = 1.2. The structure of Jo =B, NJ¥=Z, X Z,, where {i,i'} = {1, 2} and
the action of (B,NJ,) X (B,MJ,) force [J,,J,] =1, which gives us the
desired relation.

Set W= (W, W,)=W,,
Proposition 2.30.

Then G, = (K,, W) = 4,,,(q), by

+2°

LEmMa S.11. Suppose that A;=W. . Then A=(A,,A,)=W.  or
n=3 A=W, orn=p=23and A” >~ Aﬁ. the alternating group. Also, there
is a g so that G, has type C,,..(q) or plg— 1 and G, has type A4,.(2),
[(n" + 1)/2)=n+1, ’D,,,(q). *4:(q), *E(q) or F,(q). Moreover, the case
A" = A does not occur.

Proof. Proposition CF gives the possibilities for 4. The possibilities for
K,. since p half-splits K, are groups of type C,(g), D,, (q) with p|g + 1.
D, . (q) with p|g— 1, *A(q) with n=3, pl|g— 1 or 4,, ,(2), 4,,(2) with
p=3. n>=3 or A(4) with p=5, n=3. We deal with these cases
individually.
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Suppose K, has type D, , (q). Then m(B¥*)=n if nis even, n+ 1 if n is
odd. By Table B, L, has type ’D,(g), whence K, has type D,, ,(q),
'E((q). E(q) or E4(q). But p does not split D, (q), Ec(q) or Eg(q) since
plg+ 1. whence K, has type ‘E(q). Thus, m(B*¥)=7 or p=3 and
m(B*)=6; moreover, A=W, . But then we have a contradiction to
Proposition CF with regard to the containment 4, < 4.

Thus K; has type C,(q) or plg— 1 and K, has type *D,, (g) or *4(q).
Since we have eliminated D, , ,(g), we observe that K, can involve no *“excep-
tional” covering as n >4 or p{g — 1.

Suppose 4 = W, and suppose that K; does not have type A4,(q’), for
some / and q’. Then W,:= WM K, is a standard copy of the Weyl group of
K, (see Table B and Lemma 2.50), we use Proposition 2.30 to show that
G, =(K,,K,) has type C,,,(q), *D,,(q), *4;(g) when K, has type C,(q),
D, . (q), *A(q) respectively (note that n > 3 implies that K, has Lie rank at
least 3).

Suppose that K, has type 4,(2). Then p=3. If n2> 7, Lemma 5.10 gives
the desired conclusion. Say n < 7. Then m;(K) > 3 implies that n=15 or 6
and B=B* has rank 4. The possibilities for L, are 4, ,(2) or
SL([(n + 1)/2],4) = SL(3, 4). From Table P, we see that the possibilities for
the type of K, are

A4,2)., n=56 forLy=A, ,(2)

A,(2)orA4, (2)
A5(4)

C,(4)

D,(4)

D (4)

24.(2)

"for L, = SL(3,4).

Say L,=4, ,(2). Then m,; (K,)>3 implies that K, has type 4,(2),
A4(2) or E(2). By Lemma 59, K =A4,2) or A(2). We have
ANA, =W,

We treat the case K, = A(2) in detail and leave the 4,(2) case as an
exercise. For i = 1, 2, choose standard copies W, of the Weyl group of X; in
K; so that W,=W,NNy(B*) is a standard copy of Ay(B*). Then
W, =2, WNLy~ZX,, W,=ZX,. Let w,.., wy satisfy W, = (w, ..., wy),
Wy = (W We )y WM Wy = (Wyye, W),

[o} [«
Wy wy w3 Wy W We

and

Wy Wy Wy We wq wg
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We wish to verify relations

o o
Wi Wy w1 Wy W we Wy wg

Let ¢: K, 2 GL(7, 2) satisfy

r'l A

01

P =1 10 ) i=1..,6

L -lJ

with respect to the basis v,,..., v;. Set (z,)=DNK,; then (B, z,,K,) is a
neighbor since z, fuses to z, in Ng4(B) (each (z,) is the commutator of B with
a fundamental reflection in O,(44(B))). We may arrange for

22¢ = 01

and for (B M K,)? to have shape

with each block 2 X 2. This is compatible with preceding arrangements since
Ny (B) = Cy, (1), where
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01
10

01
10 ¢
01
10

Similarly we may arrange for an isomorphism y: K, =~ GL(7, 2) to satisfy

with respect to the basis v,,...,, v, and for (BN K,)® to have shape

Let M=M¢~', M={g€ GL(7,2)| g fixes v,,i=5, 6, 7 and leaves the
span of (v, vs, v,} invariant} = GL(3, 2).

We claim that L(C;(M)) = GL(6, 2). Since BN M = Z, fuses in N(B) to
z,.we get L(C,(M)) <> GL(7,2). If M, <M corresponds under ¢ to a
natural GL(4,2) subgroup and |M,MNB|=9, we have L(C,i{M,))=
GL(6,2). Thus, L(C4z(M))= GL(6,2), GL(7,2) or is 1 (this happens if M
centralizes a maximal parabolic of L(Cgz(B M M))). Assume L(C;(M))= 1.
In this case, taking z, € L(Ck (M))= GL(4,2) and considering the natural
action of GL(6,2) on its standard module, we find that z, centralizes a
subgroup of the shape 2% .- GL(4,2) X Z, in Cyz(M) N L(Cz(B N M)); but
this violates the shape of Cy (M) = GL(4, 2) and its embedding in C¢(z,). So
the claim holds.

We change bases slightly. Let .#={v,—v,, v, =05, U +0,+ U,
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v,, Vs, Vg, U;} and let ¢': K, — GL(7, 2) be an isomorphism differing from ¢
by this basis change. We take A < K, B, a conjugate of B, so that z € 4 and
(AN K,)® has shape

and (4 N K,)*" has shape

where C={v, +v, + 3, vy, Vs, Ug, U, Vg, Uy} and y': K, > GL(7,2) is a
representation of K, with respect to this basis. We replace M by the
conjugate M* such that (M*)®" has shape

1
1

Let S, T be the subgroup of K, K, inducing the general linear group on
span  {v, —v,, 0, — U}, span{vg,U;, 04, 0,} and fixing {v, +v, +v;,
Uygs Usy Ugy Ug}s{U3, Uy, U5}, TEspectively. Let V' be the natural module for
L(C;(M*))=GL(n,2), n=6 or 7. Since [V,T|=[V,TMNA] and
C(T)=C(TNA), [SSN(TNA(]=1 (seen in Nj(4)) implies that
[S, T] = L. Since (w,, w,> < S and (w,, wy) < T, we get the desired relations

o o
wy [ w3 wy We we wy wg

At this point, Proposition 2.30 identifies G, =(K,, W) as A4(2), as
required. Of course, when K, = A4,(2), we get G, = 4,(2).

481/80/2-14



486 GILMAN AND GRIESS

If Ly=SL(3,4), it is still the case that (B,z,,K;) is a standard
component and so the above arguments apply to give G, € Chev(2).

Suppose that K; has type 4.(4), p=>5. Then p only half-splits K,. By
Table P, for p to split K, we must have L, = SL(3. 16).

Then K, is a group defined over F, and in fact is of type 4,(16), 4.(16),
C,(16). D,(16), *D,(16) or K, has type *4,(4). If K, is defined over T, we
get G,:=(K,, W) &€ Chev(2) (W as in Lemma 5. 5) by a previous part of
this lemma and Lemmas 5.7. There is no possibility for K; = A4,(4) to be
compatible with C, (z;) since G, is defined over ¥, (one must check the
cases to see this). If K, has type 4 5(4), Lemma 5.7 implies that G, has type
A,(4); in this case L0 >~ PSL(3.16), not SL(3, 16), a contradiction.

Suppose A4 = . Then, we can proceed as in the case 4 = W, c,., to
construct F (g ) or E +(q). There is a special problem in that one ofK or K,
will not contain a W-conjugate a given pairs of roots. So, we use both K,
and K, and Proposition 2.31. Thus, an examination of Tables B and P shows
that when K, has type C.(q), “D,(q), “4(q), respectively, we construct G, of
type F,(q). E (q). "E(q), respectively.

Finally, we treat the case A" = A4, ; that is 4 contains a copy of &, X Z,
and Z(4)=<{—1, % A/Z(A)= &, or Aut(X(). p— 3 and m(B)=m(B*)=4
Also K, has type C,(q), or type 4,(g) with 3|qg— I, or type 2D,(q), or type
A,(2), n=5 or 6 and p=3. Since B =B* and 3 splits K, € Chev(2), the
possible types for K, are A.(q,) or C,(q,) for 3|g— 1 or type D,(q,) for
some q, € {g.q*} or type A,(2)forn=50r 6. p=3. Also3|g—1orq,=gq
and K, has type ‘D,(q).

For now, let us suppose that 3|g, — 1. In any case, K, contains a natural
subgroup K of type 4,(q,) = D,(q,) such that V=KNW=x=W, K6 Vis a
standard copy of the Weyl group for K, and K is generated by appropriate
root groups: see Lemma 2.50(iv). Take W W so that W>V and
W~ X . By Proposition 2.30, Y = (K, W)= A4.(q,). Also, Z(Y)= 1.

The following argument is an adaption of the argument in result (5.11)
of Finkelstein and Frohardt [17]. Define N=WN (B), P& Syl,(N),
P,=C,B,) where B, =(z,.z,) and {(z,)=BNZ(P), N*=NyB,),
C* C (B)) and L= L(C (B))) = L(Cx (24)) = SL(3.q,) with 3|g, —1
(check the possible K,). We have N,/C, = Z, X Z,.

We argue that B =/ (P) where J, denotes the Thompson subgroup
(B|B P. m(B)=m(P), B elementary abelian). Let B <P with BB,
B + B. Note that C,(B) has homocyclic abelian rank 4 Sylow 3- -subgroups.
In fact, Lemma (3.8) implies that B € Syl;(C4(B)). If |BﬁB[ =32, then B
covers P/C,(B), whence | Z(P)| = 3%, a contradiction. Thus, {BNB|=31t
follows that A contains a tranvection on B. However, every 3-element of A
normalizes but does not centralize a four-group of 4, hence cannot be a tran-
vection on B, contradiction. Therefore B =J,(P), and we have also shown
that B is the unique group of its isomorphism type in P. Consequently,
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P € Syl,(G), |P|=3° and N controls G-fusion in B, by a Burnside-type
argument.

Set R,=PNL <1PLC* R,=Cp(R,) and R =R,R,. Then |R,|=27
and R, MR, = Z(P)={z,) = Z,. We argue that R, = 3'*? First, note that
if BN R, < Z(R,), then R, contains an element inducing a transvection on
B. against Lemma 3.20. Thus, R, is nonabelian, so it suffices to show that
exp R, = 3. Suppose false. Then |R: Q,(R)|=3 and 2,(R)B is a charac-
teristic subgroup of P lying strictly between B and P. However, the structure
of A, implies that 4,(P/B) contains a cyclic group of order 4, whence
A.(P/B) is irreducible on P/B, contradiction. Thus, R,=£,(R,) and
R=0/(R)~3""". We also have that |R,,B] =R, N B, or else we would
have |R,,B|< Z(P) and so elements of P—B would have quadratic
minimal polynomial on B, against Lemma 3.20. Thus, in its action on
R/Z(P), an element of P— R has a matrix similar to

Il

01 1

01

Finally, we determine A4,(R/Z(P)). It must be a subgroup of Sp*(4,3).
From K,, we get a copy S of GL(2,3) in A4(R/Z(P)) which satisfies
[R,/Z(P), O,(S)|=1. Since R,/Z(P)=[R/Z(P), 0,(S)], we must have
0,(A;(R/Z(P))) # 04(S), or else we could contradict the action of N;(P) on
P/R as above. Thus, the structure of Sp*(4,3) and |AG(R/Z(P))|;=3
implies that Oy(44(R/Z(P)))= Q4 Z;, [0,(A6(R/Z(P))),0, 3(45(R/Z(P)))]
= 0y X Qy and AG(R/Z(P))/0,(4:(R/Z(P)) = Z;.

Define Q, to be a complement to R, in Ny (R,). Then Q, =@, and
[R,, Q,] = 1. We let Q, = Q%, where h € N;(P) and h interchanges R, and
R, under conjugation. Let (f)=Z(Q,). Then [R,.f]=1 implies that
|L, t] = 1. Since the maximal subgroups of R, form an orbit under Q,, we
may assume that ¢ normalizes Z,. Also, we may assume that ¢ inverts z, by
replacing Q, with a conjugate by an element of R,.

The possible structures of Aut K, and [L,t] =1 imply that [K,,?]=1 or
K,='D,(q,) t acts as an orthogonal tranvection on K, and L(Cy (1)) =
Cs(q,). Now, take y € R, yyiz,Z,- Then [y, t] =1 and y € L(Cy (¢)) since
B ={(z,) X (BN L(Cx (1)) We have that L(C4({z,,y))) = SL(2,q) and y is
a noncentral element of order 3 in a natural 4,(g,) subgroup of L(Cy (¢)).
Now suppose that K, does not have type 4,(2). If L(C (¢)) contains a copy
of Cy(g,), then Co((t,y)) 2> () X Cric,yn(¥)=Z, X GL(2,9,) X ¥, where
Y, = Sp(2,q,)=SL(2,q,) or Y,=D,{q,)=SL(2,q%). Since Out K, has
abelian Sylow 2-subgroups and ¢ lies in a quaternion group in C,(y), ¢ must
induce an inner antomosphism on L(C,(y))=K,. But K,=C,(q,) or
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*D,(q,) implies that ¢ centralizes L(C;(y)), a contradiction since ¢ induces a
reflection on B < (y, L(C4(y)))- The case where L(Cy (£)) does not contain
a copy of C,(q,) is the case K, =~A4,(q,). But then i=2 and we merely
reverse the roles of z; and z, in the above argument and use the fact that X,
does contain a natural C,(gq,)-subgroup.

If K, has type 4,2), n=5,6, we may argue as above to get a
contradiction. The only change occurs at the end, namely,
Co({t 1) 2 () X C (y) = Z, X GL(2,4) X GL(n — 3, 2).

Thus, the case A” =~ A, is eliminated, and the proof of the lemma is com-
plete.

LemMMA 5.12.  Suppose that A;= W, . Let A =(A,,A,). Then there is a
g so that one of the following holds.

(i) A=W,  and G, has type D, ,,(q)p|g—1 or n is even n >4,
plg+1; orG has type D,,H(q) nodd, n>5, plg + L.

(ii) A=W,  and(K;, G) have types

(Ds(q), E¢(q))  plg—1
(’Ds(q). *Es(q)) plg+1
(Da(q): Es(q)) p=33]g—1
(Ds(q). E-(q))  plg®—1
(D:(q), Eg(g))  plg—1
(CDy(q1E(q)) pla+L.
(ili) A=ZX,,and G, has type A,(q),p|q — 1. K; has type Dy(q)

Proof. The possibilities for A4 are given by Proposition D. Thus,
A=W, W, orn=56"Tandd=W, orn=4p=3andd=W,
or n=3 and 4 is a group of small index in W, (y), y a graph automorphism
(e, Wy, <AK W, (y))orn=3,p=3andAdx X, X, X Z;, A Dy, X 01
XX Z,. Let {i,i'} ={1,2}.

We can eliminate several possibilities for 4 with a few observations.
Suppose A/A’' = Z, X Z,. We claim that A4, or 4, must be associated with a
Dynkin diagram with two root lengths. If false, the fact that 4, is generated
by reflections and covers each of 4,/4{ and A4,/A; gives a contradiction.
Thus, some A4, is isomorphic to W, or W . Since the diagram for 4; has
one root length the same is true for A, (see Table P), whence 4, = W, .
Thus A;=~ W, . By Lemma 5.11, 4 = W lorW and G,_C,,H(q) or
plg—1 and "G, has type 'D,,,@), ‘A9, ‘Eq) or Fy@. As
G, € Chev(2), we look at Table B and see that A;= W), is impossible. We
conclude that A/A' = Z,, whence A=W, orn=35,6, 7and 4 =~ W . or
n=4, p=3 and A;WEﬁ or n=13 and A=Z%, or n=4 and p= 3 and
Ax=X.
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Suppose A = W, . Then n=35 or p=3 and n=4. If n =35, K, has type
Di(q), plq— 1, or type ’D.(q), p|lq + 1, and we show that G, has type E(q)
or 2E((q), respectively, using Proposition 2.30. For K, of type D4(g), this is
easy. For ’D4(q), it is almost as easy once we see that the natural
containment 2D,(q) & 2E(q) corresponds to a natural containment
W, —W,

If p=13 and n=4, K; has type D,(q) and 4 is isomorphic to W, . We
have that L, has type A 5(g@) = Ds(q). Since A4, is a Weyl group for a root
system with one root length, Table P implies that A=W, ot W, or W,.
If 4, =W, or Wy, then 4 is generated by five reflections. If 4 = W, this
is impossible (look at the usual representation in O(6, R)). Thus, 4, = W, .
The orbits of W on the 121 one-dimensional subspaces of B* have lengths
40, 36 and 45, whence 4, is a natural W,_subgroup of W, . We therefore
may use Proposition 2.30 to get G, of type E((q). Note that this forces
C,(b;) to be an extension of W, by the graph automorphism of order 3 and
N (b)) = W,..

Suppose A = X, n=3, p=3. Then 4, = W, implies K, has type D3(q)
plg—1 or ’D.(q), plg+ 1, whence AO:E Since A=~ZX,, A is not
generated by four reflections, whence 4] has type W, (rather than W,).
Since A4;, must fix a nontrivial element of B*, we have p =5, a contradiction.
So, A £X,.

If A~ A4, - Dy, we quote the last line of Lemma 5.11.

If A = X,, we quote Lemma 5.6, the case n= 3. Thus p|g — 1 and G, has
type 44(q) (G, cannot be *4,(q) as m, ,(G,) >4).

If A=W, , K, has type Dg(q), plg’— 1, and if A=W, , K, has type
D.(q), plg—1, or 2D,(q), plg+ 1. In both cases, 4; is a natural Wo,
subgroup of 4 = W, ; see Proposition D. In the first case, we let K be a
natural D(g) subgroup and show that G, = (K, W) has type E,(g). In the
second case, we let K be a natural D.(g) subgroup and prove that
G, = (K, W) has type Ey(q).

Finally suppose that 4 = W), . Then K; has type D,(q) and p|q — 1,
type D,(q) n is even and p|q + 1 or type 2D «(q) and n is odd, plg + 1. We
must show that G, has type D, ,(q), *D,. (@), D,,,[q], respectively. As
usual, we need Proposition 2.30 but we have to be slightly careful about
choosing the subgroup K of that proposition. If p|qg — 1, take K = K, and if
plg+1, let K be a natural subgroup of type D,(q), ‘D, ,(q), D,_,(q).
respectively. In the first and third cases, we want the Lie rank of K to be at
least 3. Since m(B) >4, if plg—1,n>3 and if p|q + 1, n > 4, so there’s no
problem. In the second case, there are two root lengths, so we want K to
have Lie rank at least four, i.e., n—2 >4 or n> 6. Since n is even here, it
remains to treat the case n=4. It is no problem to verify the Steinberg
relations for a pair of root elements which can be conjugated by an element
of W to a pair of elements in K.
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Let us tabulate the possible configurations up to W), -conjugacy of pairs of
linearly independent roots in the system X of type B,. Here s, s’ (r.r")
denote typical short (and long) roots respectively and (r,r, is the angle
between the roots r,, r, € Z.

(1) (s.s'=m/2,

2) {r,r'=mn/3,

(3) {r,r'=2n/3.

(4) {r.r'=mn/2, Rr+ Rr' contains a short root,

(5) {r,r"=n/2Rr+ Rr' does not contain in a short root

(think of a root system of type B, as all te,, te, + e;, @ # f, where e, ..., ;

is an orthonormal basis for R*). Pairs of root elements corresponding to

pairs (1) and (4) are W-conjugate to pairs of root elements of K or type

’D,(q). The pairs (2), (3) and (5) involve only long roots, and, as K,(type

D,(g)) contains K as a natural subgroup, root elements for long roots in K

one root elements in K, and the verification of the relations is immediate.
The proof of Lemma 5.12 is now complete.

COROLLARY 5.13. G, is described by one of the preceding five lemmas.

Proof. If A, is a Weyl group of type B=C, D, E or F, this is clear.
Otherwise, 4; has type 4. In fact, we may assume that both 4, and 4, have
type A. Then Lemmas 5.6 and 5.7 apply, and we are left with the case
A=W, . Ay=4,=W,, A c4d, =W, . Then plg—1, n>3 and
A, = A, has type 4,(q). Since n > 3, it is easy to see that Proposition 2.30
may be applied to get G, = D, ().

LEMMA 5.14. If K, LG, then A; £ A.

Proof. We may assume that A, < 4. Define L =L(Cg (z;)). We have
L,<L <K;. We claim that L, = L; assume otherwise.

Set Lyy=(Ly"»)<K,NG,. Then Ly <L, and, since W;L Ng(L,),
Ly <Ly, Consequently W,N L, <1 W, and W;NL <1 W,. Since, by
Lemma 2.50, W;,NY is a standard copy of AY(B*) for Y=L, and L,
either W,NY=W, or W,nY, W, are isomorphic to WDn, W, or
Wy, Wy, respectively. The last case is out, by Proposition CF applied to
A;<{4,,..A4,). Thus, W;NY and W; are “almost equal,” ie.,
W, W,NY[<2

If W,<L, then L # K and Tables B and P show that W, = W for some
n (we have eliminated W,= W, ). Thus, whether W; lies in L or not,
W,= W, . Therefore, (4,,...,A,)= W, or W, by Proposition CF. We
replace K, by K, in the preceding part of this section to get Gf = (K|, K;) €
Chev(2). We use Table B to get the possibilities for G¥.
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Suppose G has type F,(q). Then, by Table C, K, and K both have type
C,(q) and L, has type C,(q). It is clear that K, € G}, K, has type C,(g) and
that G, has type C,(q) or F,(q). Since K;£ G,, G, has type C,(q) and
K;G, must have Lie rank 3, hence G,MK;~A4,(q). But then
A;=We,,A; £ A, a contradiction.

Suppose that G has type C,, ,(g), we may repeat the above argument
unless K, and K, have type D,(q) or *D,(g). Then G, has type D, (q) or
'D,,H(q) Since K= ~C (q)é_k_" i=1,2, we must have L, of type 4, i)
or *4,_,(q), whence K, has type A,,(q) *4,(q), D,(q) or D,,(q) However,
viewing DL, < G¥*. we see that K;2 D,(q) or *D,(g), i=1,2. From the
usual matrix representation of C,,,(g), we see that at most one of {K,, K,}
can be 4,(q) or 4,(q), a contradiction.

Finally, if G} has type D, , (q) or “D,, (q), the preceding argument may

be modified to show that G, = G}, a contradiction.
LemMMa 5.15. If A, £ A, then (A;, A. (4, A})) is one of the following:
(WA,,’ W»{,,Hs W4,,+1)’ pln+3,
(WAJv an WEG)’ p=3,
(Wep Weps We)
Furthermore, in these cases (A, A;) contains all A, k=1,2,..,r.

Proof. Letting A, ={A,,..., 4,), we quote Propositions A, CF, D and E
and use O,(4,)=1 and the fact that 4 _ is generated by reflections.
Compare this result with the last few lines of Table C.

ProposITION 5.16. Suppose that K; £ G, for some j > 3. Then we are in
one of the following situations:

L, K; K, K, G, G, P

i

An—l(q) An(q) An(q) An(q) An+l(q) An+2(q) p|n+3’p|q_l
A, (q) ‘Afq) A9 ‘A9 ’A,.(q) *A,.q) pln+3,plg+1

Ayq)  Cig) Cia) GCig) Culg) Fug) pla—1(prg+1
since p splits

some K;)

Ai(q)  D,q) D,(q) D4(21)) Dy(q) Efq) p=33q-1
2Asq

'4,(q) D.g) D,g) D4(g)) Dy(q) ‘Eslg) p=3.3]g+1
ZAsq

A,(q9) 'DJq) 'DJq) ’D,g) ’Dyq) ‘Eqq) p=33qg—1
2Az(q) 204(‘1) 2D4(Q) 2D4(‘I) DS(Q) EG(Q) p=13
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In particular, r=3 unless (4,,.,4,)= W, in which case r>6 or
A d,)= W, and r=4.

Proof. By Lemmas 5.13 and 5.14, we have 4; € 4 and the possibilities
for d=(4,...4,)=(4,,4,,A4,). We identify the group G} = (G,, W,) by
Proposition 2.30 and Lemma 2.50, except for the case G, or type C,(q).
Once G§ is identified, we get G by checking components. If G, has type
C,(q), L, has type A,(q) or *A,(q). If we choose L, differently in this case,
ie., L, of type C,(q), the components generate a group G * of type F,(q).
But its evident that our K,,K, and K; all lie in G§* (by Table P, for
instance, and the structure of L(Cg 44(z)) for z€ B*), whence
G, < Gy=GF*, as required. The last statement in the proposition is an
exercise.

CoROLLARY 5.17. Define A*={A,..A,). A*¥*=A.(B*). Then
A*¥* =A*AF where A = {a € A**|a induces a scalar transformation on
B*}, or we are in one of the following cases:

(a) A*AF <0 A** and either

(i) A*=W . |Afl=2. A**/AFf=Au(4,), p=3 and
m(B*)=4; or
(i) A*=W, .neven, A** =AJfAf, where A = W, ;or
(iif) A*=W, A**/A*AF is a subgroup of ; or
(iv) A*=W, A**/A*AF=Z,; or
(v) A*=W, A**/A*AF=Z,.
(b) A*AF A A** and
(i) A*= W, A**=AFAT,Af = W, or W, (y) where y induces
the graph automorphism on A¥ ~ Wy , A¥ <Af;or
(i) A*=W, A**=AF XA where Af=W,
n=4 and A** is the group of (a)(i); or
(i) AX=W, A**=AFf =AFA¥ =W, .

, pln+2 or

n+l

Progf. Use Propositions A, CF, D and E.

LEMMA 5.18. Define A* =(A,...,A,), A**=A,B*). In the notation
of Lemma 5.17, AF < {1,y and A* <q A**.

Progf. The structure of Aut K, K; € Chev(2) implies that A < (—1,.).
We show that 4* <7 A** by eliminating each of the cases in conclusion (b)
of Lemma 5.17. However, the structures of A* and 4 ** gives contradictory
values for r. For example, if 4* = W, ,r<3 whereas if A** = W, then

r=4.
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COROLLARY 5.19. The A*-conjugacy class of (z,) is invariant under
A** ynless possibly

(i) A*=W, A=W, andA**=W,,

(i) A*=w,, ,A We,A**=A4*(y) where y induces a graph
automorphism on A* YL € Z(4%*).

Proof. The only opportunity for the statement to fail occurs when 4 **
induces a noninner automorphism on A4*. In this case, A*~ W, or W,,
After an examination of the cases and the using fact that A’k and A** are
both irreducible linear groups, we get (i) and (ii).

COROLLARY 5.20. (Ny4B), No(B*)) < N (Gy).

Proof. Let g€ Ngi(B) or NgiB*) If an element of the coset
Cq(B) N (B) g or C;(B*) N (B*) g leaves invariant each of the z;, then the
entire coset lies in N;(G,), as G, = (K,,..., K,). For g € N;(B*), this does
happen with the exception of Corollary 5.19. Let us consider those two
cases.

Assume A*~W, . Then G, has type D,(q), *D,(q). n>4. Since
N, (B*) preserves every N (B*)—class of subgroup (b) of order p in B*
in which L(Cg (b)) is quasnslmple. we get Ng(B*)< Ng;(G,) because
g§E Ny(B*) < CG(B*) G,.

Assume A* =W, . Say g€ Ny (B*) induces a graph automorphism of
order 2, normalizing W, the standard copy of 4, (B*). If g normalizes a
standard subcomponent, we are done as above. So, we may assume that L,
has type 4,(q). But it is clear from studying components that G, is the “G,”
for L§. whence g € N;(G,), as required.

Finally, we turn to the case g € Ny(B), B < B*. The definition of G,
implies that Cg(B) < NyiG,). The structure of C,(z;) implies that if
P € Syl (C4(B)), then P, = 2,(P) contains B* and if B* < P,, then P, — B*
contains an element inducing a field automorphism on each K;. The
existence of such an element would contradict the definition of standard type.
Thus B*=P,, and so a Frattini argument implies that
Ng(B) < Co(B) Ng(B*) < N (G,). The proof is now complete.

We summarize the main result of this section.

ProposITION 5.21. G,:=(K,,K;..., K,) € Chev(2).
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6. G,=GC

We now know that the following hypotheses are valid.

I. G is a simple K-group of characteristic 2—type.
II. B~E,.n>4,and B realizes the 2-local p-rank of G.
HI. B < B* with m(B*)=m,(G).

[V. For some x € B*, G is of standard type (as defined in Section 1)
with respect to (B, x, L).

V. For some D < B and standard subcomponent (D,J) the set of
neighbors of (B, x, L) with respect to (D,J) together with L generates a
group G, of Lie type over a field of characteristic 2. The possibilities for G,
are listed as G, or G, in Table C of Section 2.

V1. B* acts as inner-diagonal automorphisms on G,.

VIL  (Ng(B). No(B*)) € No(G,).

In this section we prove

PropoSITION 6.1. G,=G

Notice that Hypotheses I-IV appear in Section 1, and Hypotheses V and
VII are Proposition 5.21 and Corollary 5.20, respectively. Hypothesis VI
follows from Corollary 4.2. Note that if G, = D,(q) and p=3, no b€ B*
can act as a graph or nonstandard field automorphism because the p-rank of
the centralizer of » would be too small.

We fix a choice of B, B*, (B,x,L), and (D,J); and we define
M = N(G,). Our initial goal (which we attain by proving Lemmas 6.9 and
6.13) is to show that M controls strong fusion of D in G.

LEMMA 6.2. C,(D)< M and J = L(C4(D)).

Proof. Since C,;(D) normalizes J, it normalizes L and every neighbor.
Hence C;(D) normalizes G,. The second assertion follows from the first
together with J = L(C; (D)).

LEMMA 6.3. The following conditions hold:

(i) Pt Co(Gy)l:
(i) 2“CG(GO)|3
(iii) No element of Ny{(B*) induces a transvection on B*.
Proof. From the definition of standard type Cg(L) has cyclic Sylow p-

subgroups. Since (x) acts nontrivially on each neighbor, {x) acts nontrivially
on G, and (i) holds.
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B* acts on C,(G,) and by (i) B* normalizes some T € Syl,(C,(G,)).
Assume T # 1. By Hypothesis I, G, acts nontrivially on Q = O,(N4(T)).
Thus for some d€ D* J acts nontrivially on Cy(d). If (B.d,K) is a
neighbor, then J < K < G, forces K to act nontrivially on C,(d) contrary to
K <0 <1 Ci(d). Similarly L <1 <q C4{x) forces d & (x). The remaining
possibility is that J covers F/O, (F) for some p-component F of C,(d). But
then [/, Cyp(d)] < O, .(F) forcing | |J, 0,(Cs(d))]| even and contradicting the

definition of standard type.

Finally suppose a € N (B*) induces a transvection on B*. By Proposition
4.1 and Hypothesis VII we have O (N,(B*)/C,(B*))=1. Let A be the
normal closure of a in N, (B*). By a result of McLaughlin [47| the image of
A in Aut(B*) is a product of linear and symplectic groups, but Table B
supplies a contradiction.

For any d € D* we define

L(CgG (d)
K= (Mo,

Of course K;=J or K,=L or (B, d, K,) is a neighbor of (B, x,L).

LEmMmA 6.4. |Z(J)| is odd, and for all d € D*,|Z(K,)| is odd.

Proof. Since |Z(G;)| is odd, Lemma 2.22 gives the desired conclusion.

Lemma 6.5. K, <1 <7 Cg(d).

Progf. If not, then by definition of standard type K, =J and lies in a p-
component 4 of C;(d) with A =J0,.(4) and [J, 0,.(4)] # L.

Choose R =Z(X,) for some.root group X, of J with a long if J is any
group whose root system has roots of two lengths. By Lemma 2.6, N,(R) is a
parabolic subgroup of J. N,(R) is a maximal parabolic except when
J/Z(J)=A4,(9).

Choose r€R* and let E=0,(4), F=Cgr), P=0,(C4r))
0 = 0y(Cy(r)).

Suppose |R| > 4. We claim R = P. It will follow that [R,F|]c FNP=1
whence Cp(s)=C.(r) for s€ER* and E = (C.(s)|s € R*)=F. But then
J = |J, r| centralizes E as desired.

Since G is of characteristic two type, R < P will follow from [R, P]=1
which in turn will follow from [R, C,(e)] =1 for all e € D*. Let 4, be the p-
component of C,(e) containing K,. As C,(e) centralizes r€ R < K,, C,(e)
acts on 4,. By Lemma 2.11(v), [R, Cp(e)] centralizes 4,/0,.(A,) whence
[R,Cp(e)]=0,.(4,). Let Y=1[4,,0,(4,)]. As A,=K,Y and A, has no
proper normal subgroups covering 4,/Y, Y= [K,, O,.(4,)] whence |Y]| is
odd by definition of standard type. By Lemma 6.4, |0,. ,(4,)/Y]| is odd, so
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10,.(4,)| is odd. But [R, C,(e)] is a 2-subgroup of P, so [R,C,(e)] =1 as
desired.

We may assume |R|=2. In particular Lemma 2.38 implies that for each
e € D*, R is the center of a root group X, of K, with £ long for all twisted
groups. We define 0, = O,(Ny (R)) and P, = C,(e).

We claim Q < P. It suffices to show that for every e € D* either Q, < P
or [Q,,P.]=R. Indeed Q = Q, by Lemma 2.23 so assume |{Q,, P, | = R for
all e € D*. It follows that [Q. P] < R whence Q < P by definition of P.

We will show that the desired condition holds. R € Q,MP,, so when
Q./R is an irreducible Ny (R)-module either 9, NP, =Q, or R2Q, NP, 2
[Q,.P,]. In the contrary case we have, by Lemma 2.13, K,/Z(K,) = 4,(2),
F,(2)or K,/Z(K,)=C,(2) with R =X, f short. A check of Table C shows
that F,(2) does not occur and p=3 in all cases. As Q,NP, <1 N (R),
Lemmas 2.14 and 2.15 determine Q,MNP,. Of course we may assume
RcQ.NMP,cQ,.

Let T,=Q,P,. When K,/Z(K,)=C,(2), we have n >3 by Table B (as
m(B) > 4) whence T, =Q,C;(4,/0,(A4,)) by Lemma 2.11(iv). By part (i)
of the same lemma (Q,, P,] € RO,.(4,). As we have seen above |0, .(4,)| is
odd: and it follows that |Q,,P,| = R. When K,/Z(K,)=A,(2) the same
argument works except possibly in the case n =3 when P, might not act as
inner automorphisms on 4,/0,.(4,). However in this case some element of
P, acts as a graph automorphism. By Lemma 2.15 there are two Ny (R)-
invariant subgroups U with R <« U < Q,, and it is easy to check that they are
interchanged by a graph automorphism normalizing @,. Thus
P.MQ,<dP,Ni(R) forces P, Q,=R or Q, contrary to the assumption
above. |

We have shown Q< P in all cases. Suppose Q contains R* for some
gEJ —Ny)R). [RE, F]S PN F=1 implies F=C.(R*). When NyR) is a
maximal parabolic, J = (N,(R), g» normalizes F, and it follows that r inverts
or centralizes any section of F on which J acts irreducibly. Consequently
J=|J.r] centralizes F. When N,R) is not a maximal parabolic,
J/Z(J)=A,(2) and it is easy to check that every involution in @ is conjugate
in J to r whence |Q. F| = 1 which forces F=E and |J. E| =1 as above.

When a root system X of J has a root y of the same length as a but not
orthogonal to a, then we may take (a,y) > 0 and R® = Z(X,). We are left
with the cases J/Z(J) = '4,(2), n > 3, and J/Z(J) = C,(2), n > 3 and « long.
In these cases all roots in X of the same length as « are orthogonal to a. Pick
a root f with (a, ) > 0 and X; < Q. Let

=(X,, X_ ., Xp. X _p)

J, has a root system Z, of type C, and Jo/Z(J,) = C,(2), *A;(2), or *4,(2).
In any case since Q < P forces |Q, F| S FN P =1, Cg(X;) 2 F. Likewise if



FINITE GROUPS WITH STANDARD COMPONENTS 497

y is the other root of X, with (a, y) > 0 and f and y of the same length, then
Cp(X,) 2 F. A reflection of the Weyl group of X corresponding to the roots
orthogonal to a moves {f,y} to {—f, —y}. By Lemma 2.6 there exists
g E N, (R) with {X§, X3} = {X_,, X_,}. Consequently

Jo= (Koo Xy Xps X 50 X))

centralizes F. By the argument above J,, centralizes E whence J centralizes E
too, and the proof of the lemma is complete.

LEMMA 6.6. Csi(J) S M.

We prove a preliminary lemma first. Choose R = Z(X,), X, a root group
of J, with a long.
Define

P=0,(NsR)),  Q@=0,(Ng(R)),  S=NyQ)
Jo=(R, Z(X_,)).

Note J, < J.

LEMMA 6.7. One of the following holds:

(i) S=(ENQ, Cs(U))
(i) J=4,2);
(i) Gy=E 2) L =A,2),J=A4,(4), p=3.

Proof. By the preceding lemma K, is a component of Cg(d). As Cy(d)
normalizes R, Cy(d) acts on K,. Apply Lemmas 2.38 and 2.11(iv), 2.40,
2.43, 2.12, to deduce that either (ii) holds or C4(d) € K (C;({K,, d))) for all
d € D*, or we are in one of the cases (*) of Lemma 2.38. In these cases
either (iii) holds or Lemma 2.39 applies. Thus we may assume
Cs(d) < K,C5({K 4, d)). The lemmas just mentioned assert that Ny (R) has
no central factors on O,(Ny (R)/R). As RS K,NS, we have Cs(d)<S
(SN K, Cy((K,y, d))). Since JS K, < G,, we have SN K, S O,(Ng(R))N
G, =0 and Cy(K,) < Cy(J); and (i) holds.

We proceed to the proof of Lemma 6.6. In Lemma 6.7(ii, iii), D is
conjugate in G, to BMNJ by Lemmas 2.7 and 2.8. Thus by Lemma 6.2 we
may assume that Lemma 6.7(i) holds, and (ii) and (iii) do not hold. From
Lemma 2.38, 2.11(iii) and 2.12(iii) or by Lemma 2.39(iii) we have
G, = (0, Jy». Thus C¢(J) acts on G,, and by Lemma 6.7(i) S acts on G,.
Now S < QC;(G,); and as | C4(G,)| is odd by Lemma 6.3, S < Q.

Since S =N,(Q), we have P< Q. If P=(Q, then [R, C;(J)]=1 implies
that Cg(J) acts on (Q,J,) = G, and Lemma 6.6 holds. In the contrary case
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Z(Q)< Cx(P) < P forces Z(Q) < P< Q. By Lemmas 2.13, 2.14, 2.15, we
have G, = F,(q) or Gy =A,(q),p|g— 1, 0or 4,(2), p=3 or 7. In the first two
cases |Q, Q] = R by Lemma 2.11(i) whence Q centralizes P/R and R which
forces Q < P. In the second case (J, P)= G, by Lemma 2.39(iii) and C(J)
acts on G,. Lemma 6.6 is proved.

LEmmA 6.8. The following conditions hold:
(i) L(Cq4(d)) < G, for d € D*:
(il) D normalizes every component of C;(d);
(iii) every D-signalizer lies in M.

Proof. Assertion (i) follows from Lemmas 6.5 and 6.6. If (ii) fails, then
looking in C(d) we find a component of C,(D) distinct from J contrary to
Lemma 6.2.

To prove (iii) let O be D-invariant of order prime to p. We may assume
that Q is an r-group for some prime r #+ p. By Lemma 6.2 we may assume
0=10.D|.

We claim Q = {|C,(d), D||d € D*). Indeed let P =([C,(d). D]|d € D*).
If P+ Q. we can find R such that P€ Rc Q, R < @D, and Q/R is an
irreducible D-module. As Q= [Q, D}, Q/R is not a trivial D module; but
then C,(Q/R) = (e) and [C,(e). D| < P covers Q/R, a contradiction.

It suffices to show Q,=[C,(d). D] lies in M. By (ii). Q,=(Q,. D]
normalizes K. It follows that Q, acts as inner automorphisms on K, whence
0,SK,CiK;) <M by Lemmas 6.5 and 6.6.

LEMMA 6.9. (i) If (JD)* S M, then g e M,
(i) NGK,) =M for d€ D%,
(i) Cg(d)= M for d € D*;
(iv) Ci(Gy)=1.

Proof. For (i) let K=J% E=D¢% It follows from Lemma 6.3 that
K < G,. Now E = E, acts on G, and centralizes a nontrivial 2-group in K.
By the result of Borel and Tits {7] or [9] £ normalizes a maximal parabolic
subgroup of G,. The proof of [52, (2.3)] shows that G, is generated by 2 E-
signalizers. By Lemma 6.8(iii), G,<=M* and it follows easily that
Gy =(Gy)* as desired.

For (ii)) we note that JDCB*K,Cy(K,;)<dNiK,;) and
B*K,C,(K,) <M by Lemmas 6.5 and 6.6. Now (i) yields (ii).

Let ¥ be the subgroup of C,(d) which normalizes all components of
C,(d). From Lemma 6.8(ii), JD < V <1 C;(d). From (i) and (ii) we get (iii).

To prove (iv) pick 7 € Syl,(J) and let N = N (T), Q = O,(N). The action
of D forces Q< M. By Lemma 6.3, X=C,(G,) has odd order. Since
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T< Gy, XS N; and since X <9 M, we have [Q,X]S QN X=1.As G is of
characteristic 2-type, we conclude X = 1.
Choose P € Syl,(M) with B* < P. We will analyze fusion in P.

LEMMA 6.10. The following conditions hold:

(i) B¥* is the unique elementary abelian subgroup of its rank of P;
(i) P e Syl (G)
(iii) any two elements of B* which are conjugate in G are conjugate in
NG(B*):
(iv) No element y € P induces a field automorphism on G, unless
p=3,Gy=D,@q). Cs(¥)="Dy(g'".

Progf. Suppose G, # D,(g). If any y € P induces a field automorphism
of order p on G, then as pt|C.(G,)|, we may assume | y|=p. By Lemma
2.45(ii) we may choose y to centralize B*. But now y € B* contrary to
Hypothesis VI at the beginning of this section. We conclude that P acts as
inner - diagonal automorphisms on G, whence by Lemma 2.35, B* is the
unique elementary abelian subgroup of its rank in P. Clearly (i) implies (ii)
and (iii).

If Go=D,(q), p=23, and some y € P induces an outer automorphism on
G,. then the argument above convinces us that we may choose y so that
| | =3, and for any such choice either y induces a graph automorphism or y
induces a field automorphism with C; (y)="’D,(r), r' =g. In any event
Cg,(¥) has 3-rank 2 by Lemma 2.45(iii) and any elementary abelian
subgroup ECSP with m(E)=m(B*)=4 acts as inner-diagonal
automorphisms on G,. Apply Lemma 2.35 again.

LemmA 6.11. If b€ B*, C4x(b)S M and y=b%E M, then one of the
Sollowing holds:
(i) geM;
(ll) GOZAp—l(q)’p|q—lsp>5;
(iii) Go="4,_.(q)hplg+1,p>5;
(iv) Gy=DJdg), p=3, plgq—1, and y acts on G, as a graph
automorphism with L(Cg (y)) = 4,(q).
Further if (i) does not hold, then y is not conjugate in M to any element of
B*,

Proof. First suppose y™ € B* for some m € M. Since N (B*)S M,
Lemma 6.10(iii) ensures that we may choose m so that y™ =5 whence
gm € Cs(b) S M and (i) holds.
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Now we assume that (i) fails and show that one of (ii}-(iv) holds. Without
loss of generality (y, bY < P. Also y is not fused in M to an element of B*.
Using Lemma 6.10(iv) we see that the possibilities for G, and y are listed in
Lemma 2.45(iii). We choose g so that (C,(1))* ' S Cy(b) = C4(b). Since
Cy(b)/L(Cy(b)) is solvable, |L(Cg (¥)): Z(L(Cg (¥))| divides | K: Z(K)| for
some component K of Cg (b). Consider the set of all components of Cg (e)
as e ranges over (B*)¥; the same divisibility condition holds if we take K to
be an element of this set which is maximal with respect to inclusion. Apply
Lemmas 2.25 and 2.26 and conclude that one of (ii)-(iv) holds. Note that
m, (M) > 4 rules out the analog of (iv)with 3|g + 1 and L(C; (y)) = 24,(q).
Likewise p must be at least 5 in (ii) and (iii).

LEMMA 6.12. Suppose conclusion (i) of Lemma 6.11 fails and (ii) or (iii)
holds; then m(B*)=p—1 and O?'(C; (b)) does not have any summands
A,(q) or *A,(q) with k > 2.

Proof. Take e=1 if G,=A4,(q), and ¢ = -1 if Gy= ?4,(q). By Lemma
6.10, P induces inner - diagonal automorphisms on G,. Assuming
y=bt€ P, we have P=(y)T where T=C,(B*) is abelian. Otherwise
YEQR(T)=B* and y"=b for some r € N;(B*)< M contrary to Lemma
6.10.

Let M, be the subgroup of M inducing inner-diagonal automorphisms on
G,. C;(G,)=1 by Lemma 6.9(iv) whence M, is isomorphic to a subgroup
of PGL(n,q) or PSU(n,q). Take the usual matrix representations (i.e.,
matrices we determined up to scalar multiplication) for these groups with the
Hermitian form represented by the identity matrix in the second case. For
any m € M, let . #(m) be the matrix representing m. Arrange things so that

#(t) is diagonal for all € T and #(y) is monomial. Suppose m € M, is
fused in M to | € M, and . #(m) has eigenvalues ;. 1< i< p. There exists a
scalar 4 and an integer v relatively prime to the order of each the eigenvalues
such that the eigenvalues of . Z(/) are u(4;)", 1 <i< p. In particular if the
eigenvalues of . #(m) are distinct, so are those of . #(/).

As y is not fused in M to b, the standard module is an irreducible (#(y))-
module. Multiplying .#( ) by a scalar if necessary so that (#(y)) is a p-
group, we have (#(y))’ =427 where .7 is the identity matrix, A is a
primitive p“root of unity, and p®|q — &. Thus the determinant of .#(y) is a
primitive p?-root of unity and y induces an outer-diagonal automorphism on
G,. Since B* = 2,(C,(B*)) by Lemma 6.10, it follows that m(B*)=p — 1
and we have proved the first part of the lemma.

Assume O”'(CGO(b)) has one of the forbidden summands; it suffices to
reach a contradiction. The fusion of y to & can be carried out in steps by
means of a conjugation family. Consider the first point at which an element
whose matrix acts irreducibly on the standard module is fused to one whose
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matrix acts reducibly. (Since P < M,, every element of P has a matrix
representation.) Replacing y by an appropriate G-conjugate if necessary, we
may assume this point occurs at the first step. Thus there exists Q@ < P with
the following properties:
regQgcph;
y is fused in N;(Q) to e;
. #(e) acts reducibly on the standard module.

It follows from the action of #(e) that e is fused in M to B*. As e is fused
in G to b, Lemma 6.11 implies that e is fused in M to b. Further .#(e) is
diagonalizable and we may choose it so that

(e =.7.

If e€ P—T, then #(e) is monomial and .#(e)’ =7 implies that the
product of the nonzero entries is 1. We see that the characteristic polynomial
of . #(e) is x" + 1 = x” — 1 whence the eigenvalues of .#(e) are the p distinct
pth roots of unity. Considering the summands of 0"'(CGo(b)) we see that
#(b) has three identical eigenvalues. Thus e cannot be fused in M to b. We
conclude e€ 7.

Now |Q:Cy(e)| <|P: T|=p implies |Q: Cy(y)| < p whence [e, y,y] = L.
#(1) is the product of a permutation matrix .%° and a diagonal matrix
whence

[ #(e), 7, .7, F| =7

We may assume that conjugation by .#> moves each diagonal entry of .#(e)
into the next and the last into the first. Picking an appropriate root of unity A
and letting the diagonal entries of . #(e) be

Al Al

we find that the commutator condition above amounts to a difference
equation of degree 3 for the A;’s. We must have

=k’ +lj+m

for some integers k, /, m. We know from the fact that e is fused in M to b
that for three values of j, i; is the same. Since i, is given by a polynomial of
degree 2, i; must be constant whence e=1. But then b=1, G=Cs(b)c= M
and Lemma 6.11(i) holds.

The required fusion cannot occur and Lemma 6.12 is valid.

LEMMA 6.13. If b€ B*, Cx(b)<= M and y= bt € M, then either gEM
or the following conditions hold:

481/80/2-15
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(l) G() =Ap—l(q) andp‘q— 1 or GO = ZAp—l(q) andplq + 15
(i) p>5:
(iii) m(B*)=p—1:
(iv) 0”(Cg (b)) has no summands A,(q) or *4,(q). k > 2.
In particular if b€ D, then g€ M.

Proof. Notice that if b € D, then C;(b) € M by Lemma 6.9. If conditions
(i)-(iii) hold, then J = 0"'(CGO(D)) =A,(q) or *A4,(q) with k > 2. Hence the
first part of Lemma 6.13 implies the last assertion. Thus Lemma 6.13
follows from the preceding two lemmas once we rule out the possibility that
Lemma 6.11(iv) holds.

Suppose Lemma 6.11(iv) holds. In particular {y) acts on G, as a graph
automorphism of order 3. If M contained elements acting as field or graph-
field automorphisms of order 3, then P would contain an element acting as a
standard field automorphism contrary to Lemma 6.10(iv). Thus
P=(y)PNGy).

Three of the five G-classes of elements of order 3 are fused in M. The
centralizers in G, of the three M-classes are

(1) A\(@)xZ,_,.
(2) A(q)xA,(q)xA4,@q)xXZ,_,,
3) GL3.,9)xZ,_,.

The last centralizer is evident inside the first one. Classes (1) and (3) are 3-
central in G, and are also the classes appearing in D*. Thus the centralizers
in G of elements in these classes lie in M. As class (1) splits into 3 G,-
classes, every element of order 3 which is 3-central in M lies in class (3).

Analyzing the fusion of y to b in G, we may assume y € Q € P with
Co(Q)=Q and N (Q)Z M. There exists an element z € QN Z(P) with
|z|=3 and C.(z)< M. Applying Lemma 6.11 to z, we see that we may
assume z is fused to y in Ngz(Q). Thus C,(y) is isomorphic to a subgroup of
Cg(z) = Cyy(2). Since C; (y) has a section isomorphic to 4,(g), we must
have L(Cg(y))=L(Cs(y))=SL(3,q). But then y"=z implies that n
conjugates Z(L(Cg () =(w) to (z)=Z(L(C;(2)))- As all elements of
order 3 in P which lie in the commutator subgroup of Sylow 3-subgroups of
their centralizers in G, lie in class (3), (w) is fused in G, to {z) whence
n € G,C,(z) € M which is impossible.

We have now reached our initial goal: M controls strong fusion of D in G.
Before beginning the final phase of the proof of Proposition 6.1 we wish to
control strong fusion of other elements of B*.
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LemMa 6.14. If bEB* and Cg;(b) has a component L with
m(Cy.(L)) < 2, then L is subnormal in C;(b).

Proof. 1If G,=A4,q), plg— 1, or Gy=24,(q), plg + 1, then b is fused by
N, (B*) to an element of D. M controls strong fusion of b in G by Lemma
6.13 whence C;(b)S M and L <0 <q C4(b).

Otherwise let N = C,4(b), T = C,,(b); if E is any M-conjugate of D lying in
T, then T controls strong fusion of E in N. By Lemma 3.14 every component
L, of T lies in a component K, of N. Let L lie in the component K of N. As
we may assume K& T, K is E-invariant by Lemma 3.13. We will find a
configuration satisfying Hypothesis 3.16 inside Aut(X).

Our conditions imply that L(T) is the central product of the groups
L(TNK,) as K, ranges over the components of N. Let H=E(KNT); we
have that L(H)=L(KNT) is a product of components of Lie type over a
field of characteristic 2. By Proposition 2.22, | Z(L)| is odd. Further from the
structure of T we know that E acts on each component of L(H) as inner-
diagonal automorphisms and H/L(H) is solvable. Similarly since
C.(e)S KN T for e € E”, we see that L(C,(e)) is a product of components
of Lie type over fields of characteristic 2.

Let V=C,(K). As V/VNK is isomorphic to a subgroup of E and
[V.VAK|<[V,K]|=1, V is nilpotent. E acts on V and V< T by Lemma
3.13. Let W =EK and W = W/V; by Lemma 3.11, H controls strong fusion
of E in W. All the conditions of the preceding paragraph carry over to W,
and to check that Hypothesis 3.16 holds (with W and H in place of G and
H) it suffices to show that O,(H) = 1.

Let P/V = 0,(W) and Q = O*'(P). Q covers P/V; and as |W: K| is odd,
Q<K Thus [Q.V]=1 whence 0 < O,(P). We  have
QcO,(KNTYy<x<«T.

We need only show R = 0,(T)= 1. By Lemma 6.9, M acts faithfully on
G,. By the structure of 7, RN G, = |; and it follows that R cannot acts as
inner - diagonal automorphisms on G,. As G,B* <<M, [B* R|<
[TNGyB*, R] <= GyB* MR = 1. Now check in 52, (8.9), (8.10), §19] that
for all choices of G, and for any involution r € R either 0,(C; (r)) =1 or
m,(Cg, B*(r)) < m(B*).

Lemmas 3.17, 3.18, and 3.22 yield the following possibilities (as
LHNK)=1).

K/Z(K) L
A, ,p=5,5=2,3,4 A,
C(2).,p=3 D,(2)
C(2),p=3 44(2)
A,(4),p=3 A

6
Fp.p=35 D,(2)
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In the first case |Cy.(L) < p* forces m(B*) < 3, not the case. In the last case
G, is defined over a field of order ¢ with p =5 dividing ¢ + 1. In particular
g > 2 and as b acts on G, as an inner - diagonal automorphism, L is defined
over a field of order a power of ¢ which contradicts L = D,(2). Likewise an
examination of the possibilities for G, reveals that L = A4, does not occur. In
the other cases by examining the possibilities for G, we find that we can
choose E so that C,(E) contains a subgroup isomorphic to 4 ,(2). However
the lemmas listed above guarantee that Ce(E) is a p-group; and this
contradiction completes the proof of the lemma.

Lemma 6.15. Suppose b€ B* and C;(b) has a component L with
m(Cpg.(L)) < 2, then M controls strong fusion of b in G.

Proof. As in the preceding proof we may assume that we do not have
Go=A4,(q),plg—1 or Gy="4,(q). p|lg+ 1. By Lemma 6.13 it suffices to
show C,;(b) S M.

Let E=C,.(L)and A =B*N L. Our conditions imply |B*: AE|  p with
equality unless some element of B* induces an outer - diagonal
automorphism of L. From the preceding lemma (b) <1 <q C;(b). Thus if
DN (b)L # 1, then C4(b)<= M as desired. In the contrary case |E|=p?,
AE + B*, and B* = AE(d) for some d € D*

Let X=Cgzb)NCq4L). By Lemma 222, pf|Z(L). Thus
m,(LX) < m,(B*) implies m,(X)< 3. In fact since some element in B*
induces an outer automorphism on L, the uniqueness of B* (Lemma 6.10(i))
implies m, (LX) < m,(B*) whence m,(X)= 2. We claim that if ¥ <1 X and
EZ Y. then m(Y)=1 and Y has a normal p-component. The second
assertion follows from the first as b € Z(Y), so assume m,(Y) > 2. Pick a
B*-invariant subgroup FC Y, FxE, with (b)) F. FNB*< C,(L)=E,
so FM B* = (b). It follows that [B*, F| < (b). As B* contains all elements
of order p in C;(B*), F acts as a transvection on B* contrary to Lemma 6.3.

Take Y to be the largest normal subgroup of X lying in M. Suppose
Ec Y. For some f€ E*{f)=C,.(L,) where L, is a component of Cg (/)
containing L. Thus M controls fusion of fin G and YL <7 <7 Cg4(b) gives
C,(b)< G. We may assume bE Y but EZ Y.

By Lemma 3.13(i) Y contains every p-solvable normal subgroup of X.
Thus L(X/Y)#1, and it follows from the structure of Y that
K=L,(X)# 1. Every p-component K, of K contains an element of order p
in K, —0,. (K,) lest K, have a normal p-complement by a theorem of
Frobenius. As m,(K(b))=2. K must be a single p-component. Further
Cy(K/Y) has prank 1 and contains b whence C,(K/Y) has a normal p-
complement. The action of D forces C (K/Y)S M, and we conclude
Cy(K/Y)=7Y.

We will find a configuration satisfying Hypothesis 3.16 inside X/Y = X.
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We proceed as we did in the proof of Lemma 6.14. Let T=C,(b); T
controls strong fusion of D in X and likewise for 7, D and X. As
I'<t < C,(b), Lemma 3.14 implies L, (T) is a p-component of L,.(C,,(b))
and (from the structure of C,(b)) T/L,(C,(b)) is solvable. In fact, if
L,(T)# 1. then as every p-component of C,(b) is a component, Lemma
3.14 implies that K is quasisimple. In this case the argument used in the
proof of Lemma 6.14 yields that Hypothesis 3.16 holds.

Suppose L,(T)=1; then T is solvable. Further condition III(f) of
Hypothesis 3.16 is satisfied because m (K(b))=2. Thus Hypothesis 3.16
holds in this case too. Applying Lemmas 3.17, 3.18, and 3.22 we obtain the
following possibilities.

K =K/0, ,(K) H=T/0,. (K)

p=3 F¥H)=D
4,(4),p=3 F¥(H)=A,0or HO K =4,(2)
'C,(2°),p=5 HNK=2, 2,
A,8),p=3 HNK=2Z, Z,

Further b € K in the first two cases but not in the last two. Also in the first
two cases D acts on K as inner automorphisms. From the decomposition
B* = A(d) E given above it follows that d acts on K as an element of E.
Thus B* =4, X E with [K,A,] = 1. We can find an element of N (E) which
induces a transvection on B*, not the case. Likewise in the last two cases d
acts nontrivially on a B*-invarient Sylow p-subgroup Q of K with Q= Z .
Further E=<(b,e) with (e)=ENQ+#1. As A(b) centralizes K, it
centralizes Q whence the action of Q on (d, e) induces a transvection on B*,
which is impossible. This contradiction establishes the lemma.

LEMMA 6.16. Suppose G,=D,(q),plgq—1, and bEB* with
L(Cg (b)) =A(q) X A,(q) X A,(q); then M controls strong fusion of b in G.

Proof. Use the method of proof of the two preceding lemmas, If L is one
of the components of C; (b), then L € K, a component of Cg(e). If L # K,
then Lemmas 3.17, 3.18 and 3.22 give g=4, L =4,(4) = A, and p= 5. But
p =13 in this case, so we have L = K and L(C; (b)) <0 <1 Cg(e).

By Lemma 6.13 it suffices to show Cg(b) S M, and to do that we need
only find e € L(Cg (e)) with M controlling strong fusion of e in G. Let e be
the product of two elements of order p lying in distinct components of C,(e).
Cg,(e) has a single component K = 4,(q) with C,.(K) = (e), so Lemma 6.15
applies.

LEmMA 6.17.  Suppose b € B* and Cg (b) has a component L with p, L
and G, not listed below. Then M controls strong fusion of b in G.
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L p Restriction on G,
74,(2), C,(2)", D4(2) 3
4,(4), D,(2) 5
4,(q) plg—1  Go=4,(q)
4,(q) pla+1l  Gy="4,(g)
A,(q") all p

In the preceding table g is the order of the field of definition of G, (which is
the fixed field if G, is twisted).

Proof.  As in the preceding three proofs L < K where K is a component
of C4(b) and D acts on K if K € M. Likewise Lemmas 3.17, 3.18, 3.22 and
the exclusions in the first two lines of the table above force L = K. Once we
show C,(b) =M Lemma 6.13 and the next two lines of the table imply that
M controls strong fusion of b in G.

We will find e € B* N L such that M controls strong fusion of e in G. As
L <9 <q C4z(B), we immediately obtain C.(b) c M.

If G,=A4,q) or ‘A,(q), use the standard matrix representations. The
restriction in the last line of the table quarantees that L contains an element
e € B* represented by a matrix of determinant 1 with fixed points of
codimention 2 on the standard module (except the codimension is 3 if
Gy, =4,,(2), p=T). Further e is conjugate in N (B*) to an element of D, so
¢ is the desired element.

If Go=Ey2), p=7, then we see by Lemma 2.21 that every b E B*
satisfies the hypotheses of Lemma 6.15. Thus we are done in this case.

In all the remaining cases p|q* — 1. Exhibit C(b) as in Section 2 so that

G, = 0% (C4(0)).

o=1I,0, or I lo,
and O* (C corresponds to a subsystem f of the root system % of G.
Further g, and o, are standard with respect to some fundamental set of
roots. /.. is an mner automorphrsm of G corresponding to w, in the Weyl
group of G. If plg— 1, w, is the identity while if p|q + 1 w, interchanges
positive and negative roots. Letting I be generated by the root groups of G
corresponding to roots in fo we have

0% (Cg, (b)) = 0*(Cr{0)).

We see that L corresponds to a subsystem £, < L. £, is either a connected
component of £, or two such components mterchanged by 0. However the
latter possibility is excluded by the last line in the table above.

Let & be the highest root in £ , and let J be generated by the root groups
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corresponding to & and —d. Since B* consists of all elements of order p in
Ci(0) where T is a maximal torus of G leaving all root groups of G
invariant, and since (¢) acts on J by choice of @& B* acts on

J=Cjlo)=4,(q).
As B* contains every element of order p in its centralizer, there exists
e€EB*MJ.

As J< L, we need only show that e and Cg (e) satisfy the hypotheses of
Lemma 6.15 or Lemma 6.16 to complete the proof. Let W be the Weyl
group of G. Since the (o )-orbits of £ correspond to roots in the root system
X of G, and C;(o) acts as the Weyl group of X, & is conjugate by an
element of C(0) to f, the highest root of its length in z.

Let J, be generated by the root groups of G corresponding to f and 4.
Our conditions imply that J, is conjugate to J by some element of

C&(6) N N&(T) which projects to an appropriate element of Cy(0). In other
words Cg (e) = Cg (e,) for some e, € B* MJ,. As we have already treated

the cases where Z has type 4,, we have that e centralizes all but one
fundamental root group of G that is all root groups corresponding to roots
orthogonal to B. It follows that C, (0¥ (C, (e1)) is cyclic. Further except
when £ has type D,, 0*(C, [e,)) is either quasmmple or a product of a
quasisimple group with a group isomorphic to 4,(g). In either case the
hypotheses of Lemma 6.15 are satisfied.

Finally if £ has type D, then m, (M) > 4 forces plqg — 1 and G, = D (q)
by Table B in Section 2. O*'(C (e)) is a product of three 4,(¢)’s and
Lemma 6.16 applies.

The proof of Lemma 6.17 is complete. We wili complete the proof of
Proposition 6.1 by showing that M controls strong fusion of {r) for some 2-
central involution r € M. Of course we are done if M =G, so we assume
M + G and consider the action of G on the cosets G/M. By a result of Holt
{42, Theorem 1] G is identified as an alternating group or a Bender group.
But one sees easily that these groups do not satisfy the hypotheses on G, so
we must have M = G after all.

We proceed to study C;(r) where r is a root involution of G, lying in a
long root group if G, is any twisted group. We know that r is 2-central in M.
Further except in the cases (*) (**) of Lemma 2.38 we may assume
[D,r}=1.

In the exceptional cases Lemma 2.38(*), (**) it is necessary to switch
from D to E where D=~ E, E < B*, and E centralizes a long root group of
G,. We define E = (d, e) for d € D* and e € B* — D. The elements d and e
are chosen as follows:

For Gy =4,,,(2)={4,(2), 4\, 1,,2/(4)). p=3, consider the standard
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module V and pick d€ D* so that C,(d) has codimension 2 and
Co(d)=A,(2) X Z;. Let e be an N, (B*)-conjugate of d chosen so that
C,(de) has codimension 4 and C,(de)=A4,(4)XA4,_,(2)X Z,. Every
SE€ E* is G,-conjugate to d or ed.

For G,=4,,(2), p=17 and G,='4,(q), plqg— 1 we proceed as above.
The results are listed below. When G, = E((2), p=3. or “E(q), plg— L.
label the fundamental system of roots

1 2 3
[ o)

C 4
n

°6

and take d = [7,.0], e= |5, + 75, 0] where G is the corresponding algebraic
group, G, = 0* (Cz(0)), and {n;|1 <i<6} is the dual basis of the root
lattice corresponding to the labelling above.

We list the possible centralizers of elements in £7.

Gy Col/ 1 SEE”
An+2(2)*p:3’n>5 An(z)le
A,(4) X4, »(2)X Z,
A (2),p=T7 A(2) X Z,

4,2)x Z, X Z,
A4,(8) X 45(2) X Z,

E(2),p=3 A.2) X Z,
D(2)x Z,
2A7(‘I)»P|Q_ 1 ZAs(Z)XZqu

/;11(‘12) X 2AJ(Q) X Zy,
_A?(q) X qufl X Zqz—l

zEﬁ(q)-P]q_ 1 iAs(‘I)Xqun
;DJ(Q) XZg,
AP X Zy:o X2,

By Lemma 6.17 M controls strong fusion of E in G. We fix

E = D if we are not in one of the cases Lemma 2.38(*)(**);
E = {e, d) as above otherwise.

In all cases M controls strong fusion of E in G and E centralizes R = Z(X)
where X is a root group of G, corresponding to a long root if G, is any
twisted group. Any r € R™ is 2-central in M. Fix such an r.
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We will show C.(r)y&M. Let N=C4(r), V=C,(r), P=0,(N), and
Q = 0,(V). The action of E on P forces P< Q. Since G is of characteristic
two type, Z(Q) < C,(P) < P.

Let ¥V, be the subgroup of ¥ which acts as inner - diagonal automorphisms
on G,. Since C;(G,)=1 by Lemma 6.9(iv), the structure of V is given by
Lemma 2.6. By Lemmas 2.11 and 6.9, Q< V. Let L be defined as in
Lemma 2.6 and let J be a summand of L. By Lemma 2.17, Q = |/, Q] Z(Q).

Define N = N/P. From the preceding two paragraphs [7.0]=0Q. As
JO <0 g V, we see that JO is a p-component of ¥ if J is quasisimple. If J is
not quasisimple, then by inspection we see that p=3 3, J=8,,and L =JJ,
where J, is quasisimple. Thus in this case Jo < V. V controls strong fusion
of E in N, Lemma 3.14 is applicable when J is quasisimple and yields that
JO lies in a p-component K of N. It is easy to check that Lemma 3.15 is
applicable when J = §,. We summarize the results so far.

Lemma 6.18. Let J be a summand of L and Y = 0*'(J). JQ normalizes
every p-component of N. Further:

(i) IfJ is quasisimple, then JQ is a p-component of V. and JQ lies in
a p-component K of N.

(i) If J is not quasisimple, then p=3,J=S,,JQ <1 V. and one of the
Jollowing holds:

(a) YQ <0, (V)

(b) YQ < K for some p-component K of N, and J acts on K;

(c) J acts on a p-component K of E and covers a section isomorphic
to S in the outer automorphism group of K/O;. (K).

Suppose we can show JQ = K or JQ € O, 4(N) in all cases. If so, then since
0,4(N)< V by Lemma 3.13(i), we have 0P (LQ)< X <1<t N and XS M
for an appropriate subgroup X. By Lemma 2.9 there exists 1l #e € ENLQ,
whence N € M by Lemma 3.11(i) and we have shown C4(r) € M as desired.

We proceed to consider the various cases. We may assume case (ii)(a)
does not hold and K & V. E acts on K by Lemma 3.13. Let F/P = O,(N) for
any prime r #p. As P= 0,(N), r# 2. F< V by the action of E. From the
structure of V, [YQ,F|< Q. Since F<aV, [YQ,FJlcQNF=P and we
have [JQ, F|= 1. Likewise if F/P=L(0,.(N)), then FS ¥ and from the
structure of V, F=1. Thus K, F*(Op,(ﬁ))] =1, which implies that K is
quasisimple. As we have done before in the proof of Lemma 6.14 we will
find a configuration satisfying Hypotheses 3.16 inside Aut(K).
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Let K be the inverse image of K in N and define W=KE, U=C,, (K)
T=VNW. Let W= W/U and denote the pI‘O_]eCthH of any H< W into W
by H. By Lemma 3.12. U< T, and, by Lemma 3.11. T controls strong fusion
of £ in W.

We claim § = O,(T). Let 4,/U=0,(T) and 4 = 0*'(4,); clearly Q < 4.
It suffices to show Q = A4. As |W: K| is odd, 4 € K whence [U, 4] =1and 4
is nilpotent. Thus 4 = 0,(4) < Q = O,(T). It follows that 4 < Q as desired.

Next let X be the product of all the quasisimple summands of L lying in
K. By Lemma 6.18 and the structure of ¥, T/X is solvable. In particular
X(0/0 = L(T/0,(T)). It is immediate that conditions I, II and III(a)—(e) of
Hypotheses 3.16 hold with w, E, T in place of G, E, H.

Check that Hypothesis 3.16 (IV) holds as follows: Let A/U = Cy(€) for
some e € E*. As W=EK, A=EANK). UNK=Z(K) implies that &
centralizes (AN K)/Z(ANK) whence 07(Ci{é)) covers OP((ANK)/
Z(4 N K)). We conclude that 0?(Cz(€)) covers 0°(Cy(€)); and as C,(e)
covers Cy(e) we have that O”(C,.(e)) covers O?(C;(€)). Now Condition IV
follows from the structure of C,(e) = C,{(e). In particular if the quasisimple
summand J of L lies in K, then L(7/0,(T)) # 1 and we may apply Lemmas
3.17, 3.18 and 3.22. We have

LEMMA 6.19. LetJ, K and T be as above; then K is quasisimple, and if J
is quasisimple either JQ = K or one of the following occurs:

K Jo
Fy.p=5 D,(2)
C,(2).p=3 D,(2)
C:(2).p=3 2A3(2)

Further in the last two cases TN K is isomorphic to O*(8,2) or O (6, 2),
respectively.

Proof. The lemma follows from the preceding remarks. By checking the
possibilities for G, and E observe that J =4, never occurs.

Suppose JO =K. We have K<JQUc V whence K<V and K=JQ
follows immediately. We will show that the possibilities listed in the table
above do not occur. Since the field of definition of J is an extension of that
of G,, and since G is defined over a field of order g with plg* — 1 (except
for some cases when p = 7), the first entry on the table does not occur.

We wish to eliminate the last two lines on the table. Assume one of these
conclusions holds. Surveying the possibilities for G, we find
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G, L J

’ D,(2) D,(2) X 4,(2) D,(2)
*Dy(2) 14,2) X 4,(2) 24,(2)

24,(2) 24,(2) 24,(2).

To obtain a contradiction it suffices to find y € V such that C({(J) £ KNV
and M controls strong fusion of y in G. The centers of the root group
containing r and its corresponding negative root group generate a group
isomorphic to 4,(2) which commutes with L. Thus we can choose y € C (L)
with | y| = 3. By Lemma 6.15, M controls strong fusion of y in G. Since V
normalizes J, 7 acts on K. But J is too large to lie in Cx{ 7) unless [I_(_, y]l=1
whence Ce(7) £ KM V as desired.

We have reached the desired conclusion JO =K whenever J is a
quasisimple summand of L. It remains to consider the possibilities listed in
Lemma 6.18(ii)(b, c). By inspection L =JJ, with J, quasisimple, and from
the preceding discussion J,Q is a component of N. In particular Q =1,
Q =P =0,(N), and J= §,. Our conditions imply that T is solvable. Also
by Lemma 2.9 we have |B*: B* NJ| < p?=9. Further as B* is the unique
elementary abelian subgroup of its rank in any Sylow p-subgroup of G, we
must have m,(K)=1. It follows that pf|Z(K)| and m,(K)=1. We have
verified condition III(f) of Hypothesis 3.16 and checking Lemmas 3.17, 3.18
and 3.22 we find that J <1 T, Jx S, is impossible. This contradiction
completes the proof that C (r) < M.

LemMMma 6.20. |M: G, is odd.

Proof. Suppose 2||M: G,|. Let G, = 0% (Cg(0)) where G is an algebraic
group and o is standard with respect to some choice of root groups and
fundamental set of roots. The roots of G, correspond to (o)-orbits of the
roots of G. Let ¢ be an involution of M — G, which induces a standard field,
graph, or graph-field automorphism of G, with respect to the root system of
G, corresponding to that of G.

We may extend the action of ¢ on G, to an action on G. If 0 = g,and ¢ is
a field or graph-field automorphism of G,, take t=g,,, or *0,,,. Otherwise
take ¢ to be the standard graph automorphism of G.

It is straightforward to calculate C; (f) = C5((t, 0)) using the methods of
[12, Chap. 13]. We see that G, = 0*(C(t)) is a simple group of Lie type
defined over a field of characteristic two. The roots of G, correspond to
{t, a)-orbits of roots of G.

Let a be the root of G of highest weight. As a is fixed by (¢, o), it follows
that a corresponds to the highest root of G, and of G,. Pick r to be an
involution in the centralizer of (¢, ¢) on the root group of G corresponding to
a; r is also in the highest root groups of G, and G,. In particular C; (r) has
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the description given in Lemma 2.6 and we can check from our knowledge of
the root system of G, that 0,(C; (r)) = 0*'(Cg (r)).

Let P,=PNM. Clearly G, normalizes P,, and P, normalizes
G,=0%(Cg,(1). Thus [P,,G,]SP,NG, =1 as 0,(G,)= 1. In particular
C,(r)< P, by Lemma 6.19 whence [C,(r), G,|= 1. Hence Cg (r) centralizes
Cp(r) and it follows that 02’(CGl(r)) centralizes P. As G has characteristic
two-type, 02'(CGl(r)) C P contrary to the conclusion of the preceding
paragraph. Thus we cannot have 2||M:G,|, and Lemma 6.20 is proved.

LEmMMA 6.21. Ifr* €M, then g€ M.

Proof. By Lemma 6.20 it suffices to show that r is fused to r* in M. We
will assume r is not fused to r=r* and obtain a contradiction either by
showing C,,(¢) is not isomorphic to a subgroup of C,,(r) or by producing x
of order p in C,,(¢) such that M controls strong fusion of x in G. In the latter
case x* ' € C;(t) < M implies g € M.

The centralizers in G, of involutions in G, are given by Aschbacher and
Seitz |3], and the rest of the proof amounts to checking that one of the two
conditions above holds for C,(t) as r runs through representatives of all G-
classes.

First suppose G, = 4,(q) or *4,(q). In terms of the usual matrix represen-
tations ¢ is represented by

I, 0 0
#,=f0 I, ©
L, 0 I

-~

and the Hermitian form is represented by

0 0 I
0 I, 0
I, 0 0

where 2/+k=n+1. Suppose plg—1 of G,=A,q) and plg+1 if
G,='A,(q). In the first case n >4, while in the second case n>5 lest
m, (M) < 4. Let e,..,e,,, be the usual basis elements of the standard
module for the matrix representation of G,. Suppose k # 0. Unless p|n + 1
and m(B*)=n — 1, we may take x to be the element whose matrix (deter-
mined up to scalars) acts as follows:

e, —e;, i=I+1,
e A, s

where A is a primitive pth root of unity. As x is fused in G, to an element of
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D, M controls strong fusion of x in G. When p|n + 1 and m(B*)=n — 1,
the same conditions hold if the matrix of x acts as

e, — ey,

~2
e 1A e
€krt AL Lt

e,—e; for all other i.
Suppose k =0. Unless p|n + 1 and m(B*)=n — 1, take the action

e, — le,,
e e .

e;—e; for all other i.

i

Again x is fused in Gy to D. Finally if k=0, p|n+ 1, and m(B*)=n — 1,
take

e, — ey,
e,— A e,,

e i—Ae .,
e A7 o

e, —e; for all other i.

Here x is not fused in G, to D, but Lemma 6.17 yields that M controls
strong fusion of x in G unless G, = 4(q), *A4(q), or ?4,(2), n=6, 7. Since
n+ 1 =21 is even and divisible by p, we actually have p =3 and G, = A4,(q)
or *A4(g). In both these cases (and only in these cases) we show that C,,(t)
is not isomorphic to a subgroup of C,(r). Since |M:G,| is odd by the
preceding lemma, it suffices to show that H = 0*'(C; (1)) is not isomorphic
to K=0%(Cg(r)). Let P=0,(H) and Q = 0,(K). Suppose G, =4,(q); a
similar argument works when G, = *4,(g). P=E_ and H/P = 4,(q). As ris
in the class represented by . # with /=1, Q is special of order ¢° and
K = K/Q > A,(q). Further, commutation induces a nondegenerate bilinear
form over F, on Q/Z(Q) whence any abelian subgroup of Q has order at
most ¢°. Assuming H=x=K, we obtain |[PNQ|<2° and
|H|, =10|14,(9)l: >q" > ¢° =|4,(9)|, =| K|, which is impossible.

The same sort of argument works for G, = 4,(¢), pfq— 1 or G, = 4,(q),
plg—1, and all the other classical groups. The conjugacy classes of
involutions are represented by the matrices .#, above, and the matrix for x is
chosen as above except that instead of being diagonal it has one or two 2 X 2



514 GILMAN AND GRIESS

(or 3 X 3 in the case G, = 4,,(2), p=T7) blocks along the diagonal. Lemmas
6.15, 6.16 and 6.17 suffice to show that M controls strong fusion of x in G.

Finally consider the exceptional groups of Lie type. Exhibit G, as
0?'(C¢z(0)) for the standard endomorphism o. The possibilities for ¢ are given
in [3], as products of elements from various root groups of G,. When
G, = 'E(q) we may express each such element as a product of at most two
such elements from root groups of G. Thus in all cases 7 is given as a
product of elements of root groups of G, and by inspection we can find for
each ¢ a root @ which is orthogonal to all roots involved in ¢ and fixed by o.

Let T be the maximal torus of G corresponding to our choice of root
groups for G, and let J be generated by the root groups corresponding to @
and —d. Clearly Cj(0) < 0*(Cs(0))=G,: and as B* consists of all
elements of order p in Cyo) or Cixo)N G, (when G,= E((q), p=3,
m(B*)=15), we can pick x € B*NJ. Clearly |J,¢] =1, and Lemma 6.15
yields that M controls strong fusion of x in G.

When p|g + 1, pick a as above so that in addition « is fixed by the
element w, of the Weyl group of G which interchanges positive and negative
roots. Taking

p=1_.0

wg 7 ?

where /,, is an inner automorphism of G corresponding to w,, and exhibiting

G, as 0% (Cz(p)), we see as above that B* M J contains an element y which
satisfies the hypotheses of Lemma 6.15. By Lemma 2.18(ii) there is an inner
automorphism of G which carries Cz(p) to Cs(c) and Cy{p) to Cj(o). Taking
x to be the image of y under this automorphism, we see that x has the
desired properties.

We must also consider G, = E4(2), p = 7. Here by Lemmas 2.21 and 6.15,
M controls strong fusion of all elements of order p in G, so it suffices to
check in [3] that [Cg (¢)| is always divisible by 7.
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