
LINEAR ALGEBRA AND ITS APPLICATIOXS 5. 65-108 (1972) 65 

On the Number of Solutions to the Complementarity Problem and 
Spanning Properties of Complementary Cones 

KATTA G. MURTY 

The University of Michigan 

Ann Arbor, Michigan 

Communicated by G. B. Da&zig 

ABSTRACT 

The relationship between the number of solutions to the complementarity problem, 

w = Mz + q, 

ma 0. z> 0, WTZ = 0, 

the right-hand constant vector 4 and the matrix M are explored. The main results 

proved in this work are summarized below. 

The number of solutions to the complementarity problem is finite for all 4 E Rn 

if and only if all the principal subdeterminants of M are nonzero. The necessary and 

sufficient condition for this solution to be unique for each Q E R” is that all principal 

subdeterminants of M are strictly positive. When M > 0, there is at least one 

complementary feasible solution for each q E Rn if and only if all the diagonal elements 

of A4 are strictly positive; and, in this case, the number of these solutions is an odd 

number whenever 4 is nondegenerate. If all principal subdeterminants of M are 

nonzero, then the number of complementary feasible solutions has the same parity 

(odd or even) for all 4 E Rn which are nondegenerate. Also, if the number of com- 

plementary feasible solutions is a constant for each 4 E R”, then that constant is 

equal to one and M is a P-matrix. 

In the Cartesian system of coordinates for R”, an orthant is a convex cone generated 

by a set of n-column vectors in Rn, {A.,,. ., A.,},where for eachj = 1 to n, A.j is 

either the jth column vector of the unit matrix of order n (denoted by I.j) or its 

negative - I.j. There are thus 2” orthants in Rn, and they partition the whole 

space. It is interesting to know what properties these orthants possess if we obtain 

them after replacing - I.? by some given column vector - M.j for j = 1 to n. 

Orthants obtained in this manner are called complementary cones, and their spanning 

properties are studied. 

Copyright 0 1972 by American Elsevier Publishing Company, Inc. 
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1. INTRODUCTION 

1.1. The complementary quadratic programming problem is that 

of finding column vectors w = (wJ E R” and z = (zi) E Rn satisfying 

w=Mz+qn 

w>o, z>o, wTz=O, (1) 

where M = (mij) is a given n x n square matrix, q = (qi) is a given n x 1 

column vector, and wT denotes the transpose of W. Rn is the n-dimensional 

real Euclidean space. 

1.2. Because zv, z are nonnegative, the constraint 

n 
~~2 = C, wlizi = 0 3 z8$zi = 0 for each i = 1,. . , n. 

i=l 

Thus, if one of the variables in the pair wi, zi is positive, the other should 

be zero. Hence the constraint zG”z = 0 will be referred to as the complemen- 

tarity condition, and the problem is sometimes known as the complemen- 

tarity problem of order n. 

1.3. Consider the quadratic programming problem 

minimize ~~2% 

subject to ze, - Mz = q, 

If Eq. (1) has any solution (Zen; z), then that solution also solves the 

quadratic programming problem. Conversely, if the minimum value for 

the objective function in the quadratic programming problem is zero, 

then any optimal solution to it also solves (1). 
Thus, solving (1) is equivalent to finding out whether the minimum 

objective value in the quadratic program above is zero or strictly positive. 

Hence the problem (1) is known as the complementary quadratic program- 

ming problem. 

1.4. Cottle and Dantzig [l] and Lemke [8, 91 have shown that all 

the problems in linear programming, convex quadratic programming, and 

also the problem of finding a Nash equilibrium point of a bimatrix game, can 
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be posed in the form of Eq. (1). F or other applications of (1) see Scarf 

[K]. Lemke and Howson [S, lo] have developed a simple algorithm for 

solving (1) which is based on pivot steps. 

Lemke [S] and Cottle and Dantzig [l] have shown that (1) has a 

solution if all the principal determinants of M are positive or if M is a 

nonnegative matrix with positive elements in the principal diagonal. 

Lemke [S] has also given sufficient conditions on M and 4 under which 

the number of solutions to (1) is finite. Also see [16, 11, 7, 31. 

In this paper our main interest is to examine the relationship of the 

number of solutions to (1) to the properties of the given matrices M and 

4. The motivation for this problem was provided by Gale [4] when he 

asked me to try and prove or construct counterexamples to the following 

conjectures: 

(a) M is a P-matrix if and only if the complementarity problem has 

a unique solution for each 9 E Rn. 

(b) M > 0 is a Q-matrix if and only if mii > 0 for all i = 1,. . . , n. 

(c) If M is a Q-matrix, the complementarity problem has an odd number 

of solutions whenever 4 is nondegenerate with respect to M. 

The result of the investigation is the present work. 

2. NOTATION AND PRELIMINARIES 

2.1. If A is any matrix, AT denotes its transpose. Ai. denotes the 

ith row vector of A and A.j denotes the jth column vector of A. I denotes 

the unit matrix. 

2.2. A square matrix M is called a P-matrix if all its principal sub- 

determinants are strictly positive. The square matrix M is called non- 

degenerate if every matrix A obtained by taking A.j to be either M.j or 

l.j for each j = 1,. . . , n is nonsingular. An equivalent definition is that 

M is a nondegenerate matrix if and only if all its principal subdeterminants 

are nonzero. M is said to be degenerate if it is not nondegenerate. M is 

called a Q-matrix if the problem in Eq. (1) has a solution for all 4 E Rn. 

2.3. Let A be any finite set of column vectors in R”. The convex 

cone generated by the column vectors in A is denoted by pos{A}. Thus 

x E pos(A} if and only if x can be expressed as a nonnegative linear 

combination of the column vectors in A. 

2.4. Suppose L(q) C Rzn is the linear manifold determined by the 
linear equality constraints 
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ze-MMz=q, 
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without any nonnegativity constraints. The vector 

if and only if it satisfies Eq. (2). For convenience we write down the 

vector 

75 

[ 1 E R2” 
Z 

as (7~; z). 

2.5. The convex polyhedron K(q) C L(q) is the set of all feasible 

solutions (w ; z) which satisfy 

w-MMz=q, 

w 3 0, z 3 0. (3) 

2.6. A basic feasible solution is a feasible solution (ZPI; z) E K(q) such 

that the column vectors in Eq. (3) of the variables uj and zj which are 

strictly positive are linearly independent. Every basic feasible solution 

is an extreme point of the convex polyhedron K(q) and vice versa [2, 51. 

2.7. A complementary feasible solution is a feasible solution (w; z) E K(q) 

which satisfies the complementarity condition W% = 0. A complementary 

feasible solution is a solution to Eq. (1) and vice versa. 

2.8. For each i = 1,. . . , n the variables wi, zi constitute a complemen- 

tary pair, and each of the variables in the pair is the complement of the 

other. In the system (1) the column vector I.j is associated with the 

variable wj and - M.j is associated with zj. Thus the pair (l.j, - M.j) 

are the jth complementary pair of column vectors in (1). 

2.9. A comjdemedary set of column vectors is a set of column vectors 

{A.,,j=l,..., } n such that A.j is either I.i or - M., for each i = 

1,. . , n. Thus any set of column vectors containing exactly one vector 
from each complementary pair of vectors is a complementary set of 

column vectors. The corresponding set of variables is called a complemen- 

tary set of variables. Hence there are 2n complementary sets of column 

vectors. 
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2.10. Each solution to Eq. (1) represents 4 as a nonnegative linear 

combination of some complementary set of column vectors. 

Conversely, if {A. j} is a complementary set of column vectors and if 

qEpOs{A.j,j = 1,. . .,n.}, 

i.e., q = kPjA.,, where pj > 0 for each j, 
j=l 

then a solution to (1) is obtained by setting the variables associated with 

the column A.? equal to fij for i = 1,. . . , n, respectively, and all the 

other variables in (zu; z) not in this complementary set equal to zero. 

The pos cone generated by any complementary set of column vectors 

is known as a complementary cone. Thus there are 2n complementary 

cones, and the union of all these cones is the set of all q for which (1) has 

a solution. 

All the results related to the number of distinct solutions of the com- 

plementarity problem can be interpreted in terms of the spanning and 

overlapping properties of the complementary cones and vice versa. 

2.11. Any set of variables {yr, . . . , Y~_~, Y~+~, . . , y,}, where yT is 
either w, or Z, for each r, is known as a subcomjdementary set of variables. 

The column vectors associated with a subcomplementary set of variables 

constitute a subcomplementary set of column vectors. The complementary 

pair of variables (wi, zi) is the left-out complementary pair of variables 

in the subcomplementary set {yi,. . , Y~_~, Y~+~, . . . , y,}. 

2.12. An almost complementary feasible solution is a feasible solution 

(w ; z) E K(q) such that 

w z = wizi for some i, T 

i.e., wjzj = 0 for all j fi, for some i. 

2.13. The set C,(q) is the almost complementary set defined by 

C,(q) = {(w; ii): (w; z) E K(q), wTz = w,zi, i.e., wizj = 0 for i # i}, 

where i is any integer from 1 to n. 

2.14. If x E R”, x # 0, then the yay generated by x is 

pos{x} = {y: y = iix for some L > O}. 
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2.15. If x1, x2 E Rn, x1 # 0, then the set 

{y: y = x2 + ilxl for some 13 0} 

is the half-line through x2 parallel to the ray generated by x1. 

2.16. The column vector q is said to be nondegenerate with respect to 

M if and only if, for all (Zen; .z) E L(q), at most n of the 2n variables {zP,J~, ~$1 

are zero. Equivalently, q is nondegenerate with respect to M if it does 

not lie in any subspace generated by (n - 1) or less column vectors of 

(I : - M). Otherwise q is said to be degenerate. Thus the set of all q 

which are degenerate belong to a finite number of subspaces of Rn. 

2.17. Two basic feasible solutions (Al; zi) and (w2; z2) are said to be 

adjacent extreme points of K(q) if every convex combination of (WI; zl) 

and (w2; z2) has a unique representation as a convex combination of 

extreme points of K(q). The line segment joining any pair of adjacent 

extreme points of K(q) is called an edge of K(q). 

2.18. If K(q) is nonempty and unbounded, any basic feasible solution 

of 

w-M,z=O, 

is known as an extreme homogeneous solution of Eq. (3). Any half-line 

through a basic feasible solution in K(q) parallel through the ray generated 

by an extreme homogeneous solution of (3) lies in K(q). Such a half-line 

is called an unboztnded edge (or extreme half-line) of K(q) if every point 

on the half-line has a unique representation as the sum of a convex 

combination of basic feasible solutions of K(q) and a nonnegative linear 

combination of extreme homogeneous solutions of (3). 

2.19. Consider the set of equality constraints Eq. (2) again: 

w=Mz+q. (2) 

The ith constraint in this system is 

wi = Mi.z + qi. Pi) 
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A principal pivot in the position (i, i) in (2) consists of the following steps: 

(i) Solve equation (2i) for the variable zi in terms of zi, . . , z~_~, wi, 

&+1,.. .> z, and replace the ith equation in (2) by this equation, expressing 

zi in terms of zi,. . , z~_~, wi, zifl,. . ., 2,. 

(ii) Substitute the expression obtained for zi in (i) in each of the 

other equations in (2). 

Thus a principal pivot in position (i, i) in (2) can only be performed if 

rnii # 0. The result of this principal pivot is to exchange the variables 

(%I~, zi), and we get a transformed system of equations which has the same 

form as (a), but the left-hand set of variables in it differ from the left-hand 

set in (2) in one component (the ith). However, the set of the 

complementary pairs of variables remains unchanged as a result of a 

principal pivot. 

2.20. If a series of principal pivots are performed on the system 

(2), then it will be transformed into the system 

21 = lvv + q, 

where each pair (tii, vi) is a permutation of the complementary pair of 

variables (wi, zi). A complementary feasible solution to (4) is a solution 

to the system 

u>o, v>,o, UT-0 = 0. (5) 

2.21. We notice that there is a one-to-one correspondence between 

solutions to (1) and solutions to (5). For example, suppose (5) is obtained 

from (1) by making only one principal pivot in which wi, zr are exchanged, 

say. Then 

6,;: solves (l)~zi=(z^,,~,,,...,~,,); 

zl = (zi&, &, . . . ) 5,) solves (5). 

In general, since u, v in (5) are such that (tiui; vi) is a permutation of the 
variables (zeti, zi), we can construct a solution (a; 6) to (5) corresponding 

to each solution (G,; 2) to (1) by taking the same permutation, and vice 
versa. 

Thus the number of solutions to (1) is invariant under principal pivots. 
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2.22. Suppose D is a nonsingular principal submatrix of M. Let 

09 ; t1 be the variables in problem (1) corresponding to the rows and 

columns of the principal submatrix D, and let w2; E2 denote the rest of 

the variables. Then (1) can be written in the partitioned form: 

w1 = DE1 + Ct2 + ql, 

w2 = EP + F12 + q2, 

[$o, [$o, (o~)~P+(~~)~~~=O. (6) 

A block principal pivot on the principal submatrix D consists in transforming 

the problem into the equivalent form: 

51 = D-i& - DFCE2 + (- D-Iql), 

02 = ED-l& + (F - ED-Y&J2 + (q2 - ED-lql), 

[$o, [;&o, (P)Tc01+(U2)Tt2=0. (7) 

The block principal pivot can only be performed if D is nonsingular. The 

result of the block principal pivot is to transform the problem into an 

equivalent problem of the same form in which the complementary sets 

of variables (09; li) are exchanged. The set of complementary pairs of 

variables remains unchanged as a result of the block principal pivot. 

When M is nondegenerate, the block principal pivot exchanging the 

sets of variables (09; El) can be performed by a series of principal pivots 

exchanging each complementary pair of variables in (ol; El) one at a time. 

If (6?, G2; [i, [“) is a solution to (l), then (El, G2; G1, {“) is a solution 

to (7) and vice versa. Thus the number of solutions to (1) is invariant 

under block principal pivots. 

2.23. Let N be a principal submatrix of M of order s, obtained by 

striking off from M all the rows excepting the i,, . . . , i,th rows and all 

but the i,, . . , i,th columns. Let 

cO=(zQ,,...,QT, ,5 = (Zi,,. . . , ZiJT 

and 9 = (qi,, . . . , qiJT. Then 

o=Nt+ 9, 

0 > 0, E b 0, OYE = 0, (8) 

is known as a principal subproblem of (1) in the variables (w; E). 
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2.24. Suppose (6; z^) is a complementary feasible solution to (1) such 

that 

& = 0 for all i # i, or i,, . . . , or i,. 

Let I% = (l;i!, . . , 6~~~)~ and $ = (ii,, . . . , ii,). Then, from the definition 

of the principal subproblem (8), we see that (Lj; l) solves (8). 

2.25. If Y is any integer, its parity is said to be odd if I is an odd 

integer or even if r is an even integer. When considering a set of integers, 

it is said to be of constant parity if all the numbers in the set have the 

same parity. 

2.26. A set of cones in R” whose union is R” is said to form a partition 

of Rn if each cone in the set has a nonempty interior and the intersection 

of the interiors of any two cones in the set is empty. 

3. FINITENESS OF THE NUMBER OF COMPLEMENTARY FEASIBLE SOLUTIONS 

3.1. Lemke [8] has shown that the number of complementary 

feasible solutions is finite whenever q is nondegenerate with respect to M. 

Here we determine the necessary and sufficient conditions under which 

the number of solutions to (1) is finite for each q E Rn. 

3.2. THEOREM. The n$Lmber of complementary feasible solutions is 

finite for all q E Rn if and only if M is nondegenerate. 

Proof. Suppose there exists a q E R” such that (1) has an infinite 

number of distinct solutions. Each solution to (1) represents q as a non- 

negative linear combination of some complementary set of column vectors. 

There are only 2” distinct complementary sets of column vectors. Thus, 

if (1) has an infinite number of distinct solutions, there must exist a 

complementary set of column vectors {A .j, j = 1,. . . , n} such that 

yi 3 0 for each j = 1,. , , n, (9) 

has an infinite number of distinct solutions. Equation (9) is a square 

system of n equations in n nonnegative variables. If (9) has an infinite 

number of solutions, then the set of column vectors {A.j, j = 1,. . , n} 
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must be linearly dependent. Since {A .j} is a complementary set of column 

vectors, this implies by the definition in 2.2 that M is degenerate. 

To prove the converse, suppose M is degenerate. We will show that 

this implies the existence of a 4 # 0 for which (1) has an infinite number 

of solutions. 

Case 1. Suppose one of the column vectors of M, say M.,, is zero. 

Then let q = (0, 1, 1,. . , 1)r. Then (ZPJ; z) = (0, 1, 1,. . . , 1; u, 0, 0,. . . , 0) 

is a complementary feasible solution for any cc > 0. Thus there are an 

infinite number of distinct complementary feasible solutions when q = 

(0, 1, 1,. . . , 1)r in this case. 

Case 2. Suppose M., # 0. Since M is not nondegenerate, there 

exists a complementary set of columns, say {A .j, j = 1,. . , n}, which 

is linearly dependent. So there exists CC = (cr,, . . , c(,)r # 0 such that 

glA.& = 0. 

Also A., is either 1.i or - M.,, and hence in this case A., # 0. 

If foci A.j = 0, let q = A., # 0. Then every (ze); z) obtained by 

setting the variable associated with A.1 equal to 1 + CC, the variable 

associated with A.j equal to M for j # 1, and all other variables in (ZU; Z) 

equal to zero, is a complementary feasible solution for any M > 0. Hence 

there are an infinite number of distinct complementary feasible solutions 

when q = A., # 0 in this case. 

If cTs1 A.j # 0, let q = c,“=l A.j. Let 

aj<O 

= + 00 if there does not exist any tcj < 0. 

So 0 > 0. Every (ze); Z) obtained by setting the variable associated with 

A.j equal to 1 + kj for j = 1,. . ., n and all the other variables in (XV; Z) 

equal to zero is a complementary feasible solution for any ;1 such that 

0 < il 6 8. Hence there are an infinite number of distinct complementary 

feasible solutions when q = c,“=l A.j # 0 in this case. 

Hence if M is degenerate there exists a q # 0 for which (1) has an 

infinite number of distinct solutions. 
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3.3. COROLLARY. If M is degenerate, there exists a q # 0 for which 

there are an infinite number of distinct complementary feasible solutions. 

3.4. COROLLARY. If M is degenerate, the set of all q for which (1) has 

an infinite number of solutions is a subset of the union of all complementary 

comes which have empty interior. 

4. UNIQUENESS OF THE COMPLEMENTARY FEASIBLE SOLUTION 

4.1. We now examine the question of when Eq. (1) has a unique 

solution for each q E Rn, while M is fixed. 

4.2. THEOREM. The system (1) has a unique solution /or each q E Rn 

if and only if M is a P-matrix. 

Proof. A proof of this theorem based on mathematical induction is 

given in [12]. Here we give a much simpler proof due to Gale based on 

the sign reversal property of matrices discussed in [6]. Suppose M is 

not a P-matrix. Then by Theorem 2 of [6] there exists an x E R”, x # 0, 

such that y = Mx and, for each i = 1 to n, xi and yi have opposite signs 

(i.e., Xiyi < 0). 

Let 

Then 

Yi+ = Yi if yi > 0, 

=o if yi<O; 

yi- = 0 if yi >, 0, 

=-yyi if yi<O; 

x.+ zzz xi z if xi > 0, 

=o if xi<O; 

xi- = 0 if xi >, 0, 

= - xi if xi ( 0. 

yi=yg+-yyi-, yi+&yi->O; yi+yi-= 0 for i = 1 to n; (10) 
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xi zzz xi+ - x.- 
t J xi+&xi-> 0; xi+xi- = 0 for i = 1 to n. (11) 

Since xiyi < 0 for each i = 1 to n, we verify that xi+yi+ = xiyi- = 0 

for each i = 1 to n. So 

(y+)TX+ = (y-)Tx- = 0. (12) 

Since y = Mx, we have 

y+-Mx+=y--Mx-zq". (13) 

x # 0, x+ # x-. (14) 

From (lo)-(14) we conclude that, when 4 = 4, (1) has two distinct solutions, 

namely, 

(ze); z) = (y’; x’) 

and 

(20; 2) = (y-; x-). 

Thus, if M is not a P-matrix, there exists a 4 E Rn for which (1) has two 

distinct solutions. 

Now suppose M is a P-matrix. Then, by Theorem 6 of [I], Eq. (1) 

has at least one solution for each q E R”. Suppose there exists a q E Rn 

for which (1) has two distinct solutions, namely, (a; 2) and (G,; 2). Then 

(z& - 6,) = M(z - 2) (15) 

and, since these two solutions are distinct, Z - z^ # 0. From the com- 

plementarity condition 

(&?)T.z = (G)‘Y = 0, (16) 

using (15) and (16), we verify that (zB~ - Gi)(Zi - ii) < 0 for all i = 1 

to n and, since Z - z^ f 0, this implies by Theorem 2 of [B] that M is 

not a P-matrix, which is a contradiction. So the solution to (1) must be 

unique for each q E R”. 

4.3. COROLLARY. Keeping M fixed, if (1) has at most one solution for 

each q E Rn, then M is a P-matrix and (1) has exactly one solution for any 

qER”. 
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Proof. We have shown in the first part of the proof of Theorem 4.2 

that, if M is not a P-matrix, then there exists a 4 E R” such that, when 

q = 4, (1) has at least two distinct solutions. So, under the hypothesis, 

M has to be a P-matrix and the corollary follows from Theorem 4.2. 

4.4. COROLLARY. If (1) has a unique solution for each q E R”, then any 

pGxipa1 subproblem of (1) has a unique solution for each of its right-hand 

constant vectors. 

Proof. This follows from Theorem 4.2 and the fact that every 

principal submatrix of a P-matrix is also a P-matrix. 

4.5. COROLLARY. The set of complementary cones obtained as in 

Paragraphs 2.9 and 2.10 forms a partition of R” if and only if M is a 

P-matrix. 

Proof. If M is a P-matrix, then by Theorem 4.2, for each q E Rn, 

(1) has a unique solution. So the union of all the complementary cones 

in the whole space Rn. Since M is a P-matrix, it is nondegenerate and 

hence every complementary cone has a nonempty interior. Also, since 

by Paragraph 2.10 the system (1) has a unique solution for each q E Rn 

any q E R” which lies in the interior of a complementary cone does not 

lie in any other complementary cone. Hence the intersection of the 

interiors of any pair of complementary cones is empty. Therefore the 

set of complementary cones forms a partition of R”. 

Conversely, if the complementary cones form a partition of Rn, every 

complementary cone must have a nonempty interior and hence M must 

be nondegenerate. Also, every q E R” which lies in the interior of a 

complementary cone does not lie in any other complementary cone by 

the partition property and hence, by Paragraph 2.10, for all such q, (1) 

has a unique solution. Each complementary set of column vectors is 

linearly independent and, since the set of complementary cones partition 

R”, this implies that (1) has a unique solution corresponding to each 

q E R” lying on the face of any complementary cone. So (1) has a unique 

solution for each q E Rn and hence, by Theorem 4.2, M must be a P-matrix. 

4.6. Note. After Theorem 4.2 was conjectured and proved, a theorem 

by Samelson, Thrall, and Wesler [14] on the partition of Rn by convex 

cones which is equivalent to it and to Corollarv 4.5 has come to our notice. 
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Their proof was based on geometric considerations, while the proof given 

here is based on the properties of P-matrices. However, in Theorems 

7.2 and 7.10, we adopt geometric procedures much like theirs. 

4.7. As a generalization of Corollary 4.4, it is interesting to check 

whether every principal submatrix of a Q-matrix is also a Q-matrix. This 

is not necessarily true, as the following example illustrates. Let 

-1 2 

lV= i I 2 -I’ (17) 

In Fig. 1 each complementary cone is indicated by a dotted line segment 

running across its generators. In this case, we verify that the union of 

the complementary cones is the whole space, R2. 

So, by Paragraph 2.10, the matrix M in (17) is a Q-matrix. Now we 

examine the principal submatrix obtained by striking off the first row 

and column. 

N = (- 1). 
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This is not a Q-matrix, because the associated principal subproblem 

has no solution if q2 < 0. However, if M is a Q-matrix and M > 0, then 

every principal submatrix of M is also a Q-matrix. This will be proved 

under Corollary 5.3. 

The property of “uniqueness” of the solution to (1) also affects the 

nature of the solution. This is discussed below. 

4.8. THEOREM. Su$pose M has the property that (1) has a unique 

solutiolz for each q E R”. Keep q2,. , qn fixed but let q1 vary. Let zl(ql) 

be the value of z1 in the solution to (1) as a function of ql. Then z,(q,) is 

monotonic decreasing in ql, and it is strictly monotonic decreasing in the 

region in which it is fiositive. 

Proof. Proof by contradiction. Let 2 = (pe,. , qJT, which is held 

fixed. Pick any value for q1 and let /3 > 0 be arbitrary. Let (~2; 2) be the 

solution to (1) when 

(G; Z) be the solution to (1) when 

and 

q= 91$-p 
[ 1 9 . 

2, and zl(ql + 8) = 3,. Let 

6 = (z&, . . .) z&J’, i = (&, . . , z”,)‘, 

6 = (Gz,. .) zc,,)‘, l= (&I,. . ) Z”,)T, 

m., = (wLz1,. . .,m,JT. 

If 2, > 0 we wish to show that 2, < 2,. Suppose not; then 2, > 

2, > 0. By complementarity, Gr = z&r = 0. Then, if 

4= 
[ 

41 + P + m11z^, 
3 + m.,z^, I ’ 
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(1) has two solutions, namely, 

and 

contradicting the uniqueness of the solution to (1) for each CJ E R”. Hence, 

if z,(qi) > 0, then z,(q, + P) < z,(q,) for any /3 > 0. 

It remains to be shown that if z,(g,) = 0 then z,(qi + p) = 0 for 

all ,B > 0. Suppose not; then z,(qi) = f, = 0 and zi(g, + 8) = 2, > 0. 

Then, if 

q= 41+/3 
[ 1 9 ’ 

(1) has two solutions, namely, 

which is again a contradicti’on. 

4.9. We now show that, if M is a Q-matrix and (1) has a unique 

solution when q is any element of the set {I.i, I.,, . . . , I.,; - M.,, . . , 

- M.,}, then M is a P-matrix. 

4.10. THEOREM. Let 

[zj] = union of all com$demerztary cones which codain - M.j as a generator, 

[wj] = union of all co~mplementary cones which contain I.j as a generator. 

If I.j 6 [zj] and - M., $ [wj] for each i = 1 to n and M is a Q-matrix, then 

M is a P-matrix. 

Proof. 

4.11. Let N be the principal submatrix of M of order (n -- l), 

obtained by striking off the first row and column of M. We now show 

that N is also a Q-matrix. 
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Suppose not. Let u = (‘wz,. . . , ZLZJ,)~ and 6 = (z2,. . . , z,)~. Consider 

the principal subproblem in (w; t), which is to solve 

OJ b 0, ,530, CUT&$ = 0. (18) 

If N is not a Q-matrix, there exists a i E P-l such that, when 9 = i, 

(18) has no solution. 

Let 

If (1) has a solution (W; 2) when q = q, then Zi > 0 in it, as otherwise 

(6; E) would be a solution to (18). Thus every point on the line 

{$7: S= .’ , cc real} 
( 1 9 

corresponds only to complementary feasible solutions in which zi > 0. 

Since there are only a finite number of complementary cones and each 

one is convex, there must exist an tcO such that the half-line 

(B: ,=(;)+B1.,, 820) 

lies entirely in a complementary cone. By the argument above, in every 

complementary feasible solution corresponding to any point on this half- 

line we must have zi > 0. This implies that this half-line lies in a com- 

plementary cone for which - M., is a generator. This implies that 

pos(1.i) also lies in the same complementary cone, i.e., I., E [zi], which 

is a contradiction. Hence N must be a Q-matrix. By a similar argument 

we conclude that all principal submatrices of M of order (PZ - 1) must 

be Q-matrices. 

4.12. Let .M be the principal submatrix of n/r of order (PZ - 2) obtained 

by striking off the first two rows and columns from M. We will now show 

that JV must be a Q-matrix also. 

Suppose not. Then there exists a Q E Rnh2 such that the subproblem 

in (~a,. . . , w,; z3,. . , z,) has no complementary feasible solution when 

its right-hand constant vector is Q. 
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Then, for any il, p real, (1) has no solutions in which both zr and ze are 

equal to zero, when q = 4 by paragraph 2.24. 

4.13. Fix il = Ai, ,u = pi, where ill > 0 and 

the line 
p1 > 0, and consider 

&: q= [:::I, u real]. 

Points on this line have complementary feasible solutions in which both 

zi and zs cannot be zero together. Since the number of complementary 

cones is finite and each is convex, there must exist an CI,, such that the 

entire half-line 

(20) 

is in a complementary cone. Suppose this half-line is in the complementary 

cone pos{I.,, - M.,, A.,,. . ., A.,}. Then 

3LJ.i + ,/_Q.,~pos{I.~, - M.,,A.,,. . ., A.,}. 

Suppose 

&I., + ,uJ.s = cri1.i + ~e(- M.,) + i ajA+ 
j=3 

where c(i, ua,. . . , CI, > 0. 

If tci > 1i, then, if we put (A, p) = (0, pi), q of (19) will have a com- 

plementary feasible solution in which both zi = ze = 0, which is a contra- 

diction to paragraph 4.12. 

If c(i < 11, then (A, - cc,)I., + pi1.e lies in the intersection of 

pas{- M.,, A.,,. . ., A.,} with pos{I.i, I.,}. We note that pos{I.i, 1,s) 

cannot entirely lie in pas{ - M.z, A .3,. . . , A .n} because then 1.i E [zi] 

and I., E [za], contradicting the hypothesis. So pos{I.,, I.,} and 
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pas{- M.,, A.,,. . .) A.,} intersect in a half-line and, when (A, ,u) >, 0, 

unless 1, ,U are such that 

we have 

AI., + ,uI.,$pos(I.,, -M.,, A.,,. . .,A.,}. 

Similarly we see that, for (A, ,u) 3 0, if AI., + $.a is contained in 

a complementary cone pas{ - M.,, I.,, B.,, . , B.,}, then 3L1.i + ,~1., 

must lie on some half-line in pos{I.,, I.,}. 

Hence, when (Ai, ,~r) 3 0, unless (&I., + ,uil.,) lies in the union of 

a finite number of half-lines in pos(1.n 1.2}r the half-line in (20) can 

only be contained in a complementary cone for which both - M., and 

- M., are generators. This implies that all the points in pos{I.i, I.,> 

excepting those lying on a finite number of half-lines belong to the union 

of all complementary cones containing both - M., and - M., as genera- 

tors. But this union is a closed cone and, if it contains all points of 

pos{I.,, 1,s) excepting those lying on a finite number of half-lines, then 

it contains all of pos{I.r, I.,}. Th’ is implies that I., lies in some com- 

plementary cone which has both - M., and - M., as generators, which 

is a contradiction to the hypothesis. 

So N must be a Q-matrix. By a similar argument we can show that 

every principal submatrix of M is a Q-matrix. Hence all the elements 

in the principal diagonal of M must be strictly positive. 

From the hypothesis of the theorem we see that every matrix A?!, 

obtained from M by performing a series of principal pivots (as in Paragraph 

2.20) has the property that all its diagonal elements are strictly positive. 

By Tucker’s theorem [17] (see also Lemma 6.1 in [13]) this implies 

that M is a P-matrix. 

4.14. Note. It may be possible to use Theorem 4.10 to develop an 

efficient algorithm for testing whether a given real square matrix M is 

a P-matrix or not. 

5. ON THE Q-NATURE OF NONNEGATIVE MATRICES 

5.1. Suppose the square matrix M is nonnegative, i.e., rnij > 0 for 

each i and j. This case is of particular interest because the problem of 
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finding a Nash equilibrium point of a bimatrix game can be formulated 

as a problem of the form (1) in which M 3 0. See [l]. It is of interest 

to know when such a matrix is a Q-matrix. The following theorem discusses 

this question. 

5.2. THEOREM. Let M > 0. M is a Q-matrix if and only if m,, > 0 

for each i = 1,. ., n. 

Proof of sufficiency. This has been proved by Cottle and Dantzig 

[l] in a corollary under their Theorem 5. 

Proof of necessity. Suppose one of the principal diagonal elements 

of M, say, m,, = 0. Then we will construct a 4 E R” such that when 

4 = 4, (1) has no solution. Let 

4^ = (- 1, 1, 1,. . ., 1)T. (21) 

If 4 = 4, (1) becomes 

w=Mz+q”> 

w 3 0, z b 0, WTZ = 0. (22) 

In any feasible solution, wi = Mi.z + ii and so wi > 0 since Mi. 3 0, 

z > 0, and gi = 1 > 0, for each i = 2 to n. Hence in any complementary 

feasible solution of (22) we must have zi = 0 for each i = 2 to n. 

However, if za = * * * = z, = 0, 

wl = M,.z + g1 

implies that wi = - 1 < 0 since m,, = 0 and ii = - 1. 

Thus (22) has no complementary feasible solution and hence, when 
4 = 4, (1) has no solution. 

The example in (21) is due to Gale. 

5.3. COROLLARY. If M 3 0 and M is a Q-matrix, then all principal 

submatrices of M are also Q-matrices. 

5.4. COROLLARY. If M > 0, the union of all the complementary cones 

is the whole space Rn if and only if m,, > 0 for all i = 1 to n. 
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6. ON THE CONSTANT PARITY OF THE NUMBER OF COMPLEMENTARY FEASIBLE 

SOLUTIONS 

6.1. We now examine how the number of solutions to (1) varies as 

q varies over R” while M is fixed. 

6.2. THEOREM. If M is nondegenerate, then the number of complementary 

feasible solutions has the same parity for all q E Rn which are nondegenerate 

with respect to M. 

Proof. In the proof of this theorem we use some of the results proved 

by Lemke in [S]. 

6.3. Resdts (Lemke). If g is nondegenerate with respect to M: 

(i) Then (1) has a finite number of solutions when q = 9. 

(ii) For each i = 1,. . , n, the almost complementary set C,(Q) 

either is empty or is the union of some edges (bounded or unbounded) of 

K(q). 
(iii) The number of unbounded edges in C,(q) differs from the number 

of solutions to (1) by an even number. 

6.4. We now prove that, if M is nondegenerate and y” E R”, then 

wwi is unbounded on every unbounded edge of C,(q). Suppose F is an 

unbounded edge of K(Q) contained in C,(q). Let 

F={(w;z): (zu,;z)=(w~+~w~;z~+~z~), 13>0}, 

where (~IzJ~; zl) is a basic feasible solution and (vJ~; 2”) is an extreme homo- 

geneous solution of K(g”). 

Along this unbounded edge F, wi = wil + Bwi2, and it remains bounded 

for all 0 > 0 only if wi2 = 0. If wi2 = 0, then, if we put q = g - w~~I.~, 

(1) has an infinite number of solutions, namely, 

ze,=wl- “ilI.i + tw; z = z1 + 8z2 for all 0 > 0, 

which is a contradiction to the hypothesis that M is nondegenerate by 

Theorem 3.2. 
Thus, on every unbounded edge of C,(p), wi is unbounded. 

6.5. We now use the result obtained in Paragraph 6.4 to show that, if 

4” E Rn is nondegenerate with respect to M and ct is any real number such 
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that i = g + cd., is also nondegenerate with respect to M, then the 

number of unbounded edges in C,(q”) and C,(g) are the same. 

Pick any unbounded edge 

By 6.4, wi2 > 0 and ‘wi is unbounded on this edge. Let 

Y = max 0, 
ze$ + a 

I 1. - z4Yi2 

Then it is easily verified that 

F1=((w;z): (w;z)=(zd+0w2+cd.i;z1+~z2), 0>v} 

is an unbounded edge in C,(i). 

Thus we have shown that there exists an unbounded edge F1 in 

C,(d) corresponding to each unbounded edge F in C,(q). Conversely, by 

treating 4” = d + (- ~r)1.~ we can establish a correspondence between 

unbounded edges in C,(g) and those of C,(q). This establishes a l-to-l 

correspondence between the unbounded edges in C,(q) and those in C,(g). 

Hence both C,(q) and C,(d) must have the same number of unbounded edges. 

6.6. Now, to continue the proof of Theorem 6.2, let 4 and q be any 

two-column vectors in Rn both of which are nondegenerate with respect 

to M. 

By Paragraph 6.5 and (i) and (iii) of 6.3, we conclude that the parity 

of the number of solutions to (1) does not change if we alter the vector 

4 one component at a time so that it remains nondegenerate with respect 

to M both before and after the alteration. 

It is always possible to alter y” by one component at a time, retaining 

the property of being nondegenerate with respect to M throughout, until 

it becomes equal to S. 

Hence the number of solutions to (1) has the same parity whether 

4 = @ or g. Thus the number of solutions to (1) has the same parity 

whenever q is nondegenerate with respect to M. 

6.7. Note. The assumption that M is nondegenerate cannot be 

dropped from the hypothesis of Theorem 6.2, as can be seen from the 

example below. Let 0 1 
M= 

[ 1 12’ 
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Then (1) is to solve 

Wl w2 21 22 =4 

87 

1 0 0 -1 lqr 

0 1 -1 -2 q2 

Wl> WZ,Zl, 22 > 0, WlZl + w2z2 = 0. 

Only complementary cones with nonempty interiors are indicated in 

Fig. 2. 

1 
4= [I 1 

leads to one solution to (1) and 

2= i-7 -2 

leads to two solutions to (1) even though both these are nondegenerate 

with respect to M here. 

Here M is degenerate because the matrix (I.,, - M.,) is singular. 

The argument in Paragraph 6.4 fails. 



88 KATTA G.MURTY 

6.8. Note. The assumption that q is nondegenerate with respect to 

M cannot be dropped from the hypothesis of Theorem 6.2, as can be 

seen from Fig. 3. Let 

1 2 
M= 

i 1 2 1’ 

. . . . . . 
. 
l . 

‘. 
..a**. )I, 

- M.] 

FIG. 3 

When q is nondegenerate with respect to M the number of solutions to 

(1) is an odd number but, when q = - M.,, (1) has exactly two distinct 

solutions. 

6.9. COROLLARY. If M is nodegenerate and not a Q-matrix, then the 

number of solutions to (1) is an even number for all q which are nondegenerate 

with respect to M. 

6.10. Proof. By Paragraph 2.10, the set of all q for which (1) has 

a solution is the union of the Zn complementary cones. Each complemen- 

tary cone is a closed set in Rn, and hence their union (being a union of 

a finite number of closed sets) is itself closed. The set of all q for which 

(1) has no solution is the complement of this union, and thus is an open 

set. Because M is not a Q-matrix, this open set is nonempty. Therefore 

the set of all q for which (1) has no solution is a nonempty open cone. 



ON THE COMPLEMENTARITY PROBLEM 89 

6.11. By Paragraph 2.16, the set of all q which are degenerate is 

the union of a finite number of subspaces of Rn, each of which has dimen- 

sion < (n - 1). Hence the set of all q which are degenerate with respect 

to M has no interior. 

6.12. By 6.10 and 6.11, we conclude that there must exist a 9 non- 

degenerate with respect to M, for which (1) has no solution, i.e., zero 

solutions. Now, by applying Theorem 6.2, we conclude that the number 

of solutions to (1) has the same parity as zero, i.e., even parity, whenever 

q is nondegenerate with respect to M. 

6.13. Note. Corollary 6.9 is not necessarily true if M is degenerate, 

as seen from Example 6.7. 

6.14. Note. The converse of Corollary 6.9 is not necessarily true 

unless M 3 0. This is discussed in Note 8.17. 

I. ON PROBLEMS WITH A CONSTANT NUMBER OF COMPLEMENTARY FEASIBLE 

SOLUTIONS 

7.1. Here we show that, if the number of complementary feasible 

solutions is a constant for all nonzero 2 E Rn, then that constant is equal 

to one and M is a P-matrix. We also show that, if the number of com- 

plementary feasible solutions is a constant for all q E R” nondegenerate 

with respect to M, then that constant is equal to one and in this case all 

the complementary cones which have nonempty interiors form a partition 

of R”. 

7.2. THEOREX If the number of complementary feasible solutions is 

a constant for all q E R”, q # 0, then M is a P-matrix and that constant 

is equal to one. 

Proof. 

7.3. Whatever M may be, (1) always has at least one solution for 

every q > 0 (the solution is w = q; z = 0). If M is not a Q-matrix, there 

exists a 4 # 0 for which (1) has no solution at all. Hence, if M is not a 

Q-matrix, the number of solutions to (1) cannot be a constant for all 

q # 0. Thus, under the hypothesis of Theorem 7.2, M must be a Q-matrix. 

7.4. The number of complementary feasible solutions is finite when- 

ever q is nondegenerate with respect to M. By Corollary 3.3, if M is not 
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nondegenerate, there exists a q # 0 for which (1) has an infinite number 

of solutions. 

Since the number of solutions to (1) is a constant for any q # 0, M 

must therefore be a nondegenerate matrix. Hence, all the principal 

submatrices of M are also nondegenerate. Also, every subcomplementary 

set of column vectors is linearly independent and every complementary 

cone has a nonempty interior. 

7.5. Let {A.,,. . ., A.,_l} be any subcomplementary set of column 

vectors. We now show that the hyperplane generated by this sub- 

complementary set of column vectors strictly separates the points rep- 

resenting the left-out complementary pair of column vectors I., and 

-M.,. 

Suppose not. Then the interiors of the complementary cones 

pos{Aq,. . .) A .n_l, I.,} and pos{A .i, . . , A .n_l, - M.,} have a nonempty 

intersection. Consider two hyperplanes (see Fig. 4) each of which is 

/ 

generated by a linearly independent subset of (VZ - 1) column vectors of 

(I, - M). If these two hyperplanes are distinct, then their intersection 

is a subspace of dimension (n - 2). The set (A.,, . . , A.,_,} is linearly 

independent, and there are only a finite number of subspaces generated 
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by subsets of (n - 1) or less column vectors of (I, - M). So we can 

pick a point 

n-1 

4" = C I,A.i, 
j=l 

where ill,. . , ii,..., are all > 0, such that q* is not in any subspace generated 

by (PZ - 2) or less column vectors of (I, - M) and also not in the inter- 

section of pos{A.r, . . , A.,_l} with a hyperplane which is distinct from 

the hyperplane through A.,, . . . , A.,_, and is generated by a subset of 

(n - 1) linearly independent column vectors of (I, - M). 

So, if q* is also on the hyperplane through some other subcomplemen- 

tary set of column vectors, then that hyperplane must coincide with the 

hyperplane through A.,, , , A.,_,. Since both I., and - M., are not 

on the hyperplane through A.,,. . ., A.,_,, we conclude that, if q* lies 

in the hyperplane through some other subcomplementary set of column 

vectors, then that set must be of the form {B.,,. . ., B.n_l}, where 

B.j E {I.j, - LV.~} for i = 1 to n - 1. 

The intersection of the cones pos(A.r, . . , A.n_l, I.n> and pos{A.r, . . . , 

A.,_,, - M.,} has a nonempty interior. Hence, by the choice of q*, we 

can find an CC > 0 sufficiently small that, if we pick 

4^ = q” + cd.,, 

then 4 is nondegenerate with respect to M and it is in the intersection 

of both the cones. By the nondegeneracy of (i, 4 + &I., is also non- 

degenerate for all but a finite number of values of A,. So we could pick 

an cc0 > 0 sufficiently small that 

n-1 

q = 2 &A. j + PI., 

j=l 

is nondegenerate with respect to M for all fi satisfying /I # 0, - q, < 

P < x0. Hence, if we had chosen our original M. so small that 0 < cc < cc,,, 

and 4 is in the interior of both pas{ A.,, . , -4 .+r, I.n} and pas{ A. 1,. . , 

A. n-17 - M.n}, then 

S-1 

y”= ~iljA.j-d., 
j=l 

is outside both these complementary cones and is strictly separated from 

4 by the hyperplane through A.,, . ., A.,_,. Also q* is the only point 

which is degenerate on the closed line segment joining the points 4 and q. 
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Thus, if g lies in any complementary cone in which 4 does not lie, 

then q* must lie on a face of that complementary cone. Hence by the 

choice of q* we conclude that, if Q lies in any complementary cone in 

which 4 does not lie, then that cone must be of the form pos{Ls.,, . . . , B.,}, 

where B.j is contained in {I.j, - M.j> for j = 1 to n, and the hyperplane 

through B.,, . . , B.,_, must coincide with the hyperplane through 

A.,,. . ., A.,_,. But the hyperplane through A.,,. ., A.,_, separates g 

from both I., and - M.,. So p cannot lie in any complementary cone 

in which fi does not lie. 

Hence the number of solutions to (1) when q = y” is strictly less (at 

least by two) than the number when q = 4, leading to a contradiction. 

By a similar argument, we verify that the hyperplane through any 

subcomplementary set of column vectors strictly separates the points 

representing the left-out complementary pair of column vectors. 

7.6. We now show that the principal subproblem of (1) in the variables 

(q,. ., w,-1; 21,. . . > z,-1 ) satisfies a similar separation property. The 

column vector corresponding to zwj in this subproblem is the jth column 

vector of the unit matrix of order (E - l), which we denote by 9.j, and 

the column vector corresponding to zj in this subproblem is - (mrj, msI, . . , 

mn_l,j)T which we denote by - m.j. We note that the column vectors in 

the subproblem are obtained by deleting the last component from the 

column vectors in the original problem. 

Let {a.r,. . ., u.,_~, a.,+l,. ., u.,_1 > be any subcomplementary set of 

column vectors in the subproblem. We want to show that the hyperplane 

in IV-l through these column vectors strictly separates Y.i and - m., 

Let A., be the column vector corresponding to n.,, r = 1,. . , i - 1, 

i+ l,..., n - 1, in the original problem. Then {A.,, . , A.i_l, A.i+l, 

. ., A.,_l,I.,} 1s a subcomplementary set in the original problem. By 

Paragraph 7.5 the hyperplane in Rn through these column vectors strictly 

separates I.i and - M.i. Suppose this hyperplane is 

DX=O, 

where D = (d,, . , , d,) and X E R”. Then 

DA., = 0, 

DA.,_1 = 0, 
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DI.i >0 and D(- AI.<) (0, 

DA.<,_, = 0, 

DA.+, = 0, 

D1.n = 0. 

Now DI., = d, = 0. Let d = (d,,. ., d,_,). Because d, = 0, the 

preceding equations imply that 

da., = 0, 

da.,_l = 0, 

d9.i > 0 and d(- WZ.J < 0, 

da.,+l = 0, 

da.,_, = 0. 

Let x = (x1,. . . , x,_~) E R”-l. Thus dx = 0 is the hyperplane in R”-l 

through the subcomplementary set {a.,, . . . , a.,_l, a.,+l,. . , a.,_,} of the 

subproblem and it strictly separates 9.i and - m.,. 

Hence the subproblem also satisfies a similar separation property. 

By a similar argument we can verify that every principal subproblem of 

(1) of order (n - 1) satisfies the separation property. 

7.7. Induction hypothesis. For any complementarity problem of 

order Y < n - 1, with column vectors (I, - N), if N is nondegenerate 

and if the hyperplane through every subcomplementary set of column 

vectors strictly separates the points representing the left-out complemen- 
tary pair of column vectors in the problem, then N is a P-matrix. 

7.8. The induction hypothesis is easily verified for the case Y = 1. 

By nondegeneracy, hr = (wznll) f 0. Since Y = 1, the subcomplementary 

set is the null set and hence the hyperplane through the subcomplementary 
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set is the singleton consisting of the origin itself. Since this separates 

the points on R1 representing 1 and - nz,,, we should have - ~zii < 0. 

So N = (?nii) > 0 and hence is a P-matrix in this case. 

7.9. Hence, by the induction hypothesis and 7.6, every principal 

submatrix of M or order n - 1 is a P-matrix. Thus all principal sub- 

determinants of M of order < n - 1 are strictly positive. 

Since M is nondegenerate by 7.4, determinant of M # 0. So M-l 

exists. Thus the constraints (1) can be written as 

z - M-lw = Q, 

where 

2 b 0, 74 3 0, zT7P.J = 0, 

Q = - Mplq. 

(23) 

If (1) has a constant number of solutions for every 4 E R”, q # 0, 

then (23) has a constant number of solutions for each Q E h’“, Q # 0. 

Hence, by the arguments used previously, all principalsubdeterminants 

of M-l or order (n - 1) or less are strictly positive. Let tc be the value 

of the principal subdeterminant of M-l obtained by striking off the first 

row and column from M-l. Then 

%l 
‘J. = -~~~;~.~~ 

determinant of M (24) 

But tc > 0, mi, > 0. Thus, by (24), the determinant of M is also strictly 

positive. So all principal subdeterminants of M are strictly positive. 

Hence M is a P-matrix. 

So the induction hypothesis 7.7 holds when Y = n also. It has been 

verified for Y = 1 in 7.8. Hence by induction it holds for all n. 

Thus, by 7.5, Theorem 7.2 is true for all n. 

7.10. THEOREM. If the number of complementary feasible solutions 

is a constant for all q E R”, which are nondegenerate with respect to M, then 

that constant is equal to one and, in this case, the set of conzplementary cones 

with nonemptv interiors forms a partition for R”. 

Proof. 

7.11. Whatever M may be, (1) has a solution if q > 0 and we can 

always find a q nondegenerate with respect to M which is nonnegative. 
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If M is not a Q-matrix by 6.12, we can find a q nondegenerate with respect 

to M, for which (1) has no solution. Hence, if the number of solutions to 

(I) is a constant for all q nondegenerate with respect to M, M must be 

a Q-matrix. 

7.12. Let {A.,,. . ., A.,_l, LI.~+~,. ., A.n} b e any subcomplementary 

set of column vectors. If the two complementary cones pos{A.i,. , 

LI.,_~, I.i, YI.~+~,. . ., A.,} and pos(A.i,. . ., A.i_l, - M.i, A.i+l,. . ., A.,) 
have nonempty interiors, then the intersection of their interiors must be 

empty. For, if their interiors have a nonempty intersection, by an argu- 

ment similar to that in 7.5 we can find two points 4, y” both nondegenerate 

with respect to M, such that (1) has two more solutions when q = @ than 

its number of solutions when q = p, leading to a contradiction of the 

hypothesis. 

Thus, through every subcomplementary set of column vectors, there 

exists a hyperplane separating the points corresponding to the left-out 

complementary pair of column vectors. However, since we only know 

that the number of complementary feasible solutions is a constant for 

every q nondegenerate with respect to M, it is not possible to claim that 

this separation will be strict. Consequently we refer to this as the zyeak 

se$aration $ro$erty. 

7.13. As in 7.6, it can be shown that every principal subproblem of 

(1) satisfies a similar weak separation property. The separation may not 

be strict in the subproblems also. 

7.14. Suppose the problem 

has been obtained by performing a series of principal pivots, or a block 

principal pivot on the system (1). Then, by 2.21 and 2.22, we see that 

problem (25) also satisfies the weak separation property and consequently 

all the principal subproblems of (25) also satisfy a similar weak separation 

property. 

7.15. Induction hypothesis. In any complementarity problem of order 

r < n - 1 satisfying the weak separation property (i.e., that through 

every subcomplementary set of column vectors there exists a hyperplane 
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which separates the left-out complementary pair of column vectors), if 

the interiors of any pair of complementary cones have a nonempty inter- 

section, then both complementary cones are equal to the nonnegative 

orthant 

7.16. The induction hypothesis is easily verified for the case Y = 1. 

In this case, M = (mii) and the weak separation property holds, if and 

only if m,, 3 0, and hence the weak separation property in this case 

implies the stronger result that the interiors of no two distinct complemen- 

tary cones have a nonempty intersection. 

7.17. We now show that, if the interiors of two complementary 

cones in the original problem, both of which have the rays generated by 

two or more column vectors of the unit matrix in common, have a nonempty 

intersection, then the two cones are equal to the nonnegative orthant 

of R”. Suppose the two cones are pos{I.,, 1.s, A .s, . . , A .%} and pos{I.,, 

I.%, B.,,. . ., B.,). Let Y.a, a.,, b., for Y = 3 to n represent the column 

vectors I.s, A.,, B., with their first components removed. Then the relative 

interiors of pos{Y.s, a.s,. . . , a.,} and pos{Y.,, b.,, . , b.,} both subsets 

of Rn-l, and complementary cones of the principal subproblem in (w,, . . , 

wn, 22,. . .) z,) have a nonempty intersection. By 7.13 and the induction 

hypothesis 7.15, this implies that both po~{Y.~, a.s, . . , a.,} and pos{S.s, 

b.,, . , b.,} are equal to the nonnegative orthant of R”-l. Hence the 

second to the nth rows of both the matrices (I., j I., A., . . . A.,) 

and (1.r I., B., ... B.,) are positive multiples of row vectors of the 

unit matrix. 

Now, considering similarly the principal subproblem in the variables 

(2% W3,. . .> 7fJ,; Zl,Z3>. .> zn), we conclude that the first rows of both 

these matrices (1.i 1.a A., *. . A.,) and (I., I., B., . . . B.,) are 

also positive multiples of the row vectors of the unit matrix. Hence the 

column vectors of both these matrices are positive multiples of the column 

vectorsof permutation matrices and both the cones pos{I.,, I.,, A .3,. . , A .,) 

and pos{I.,, I.,, B.,,. ., B.,} are equal to the nonnegative orthant of R”. 

7.18. Now suppose that the interiors of two complementary cones, 

which have the rays generated by at least two column vectors in common, 

have a nonempty intersection. Suppose these cones are pos{A.i, A.z, 

A.,,. . ., A.,} and pos{A.i, A.,, B.,,. . ., B.,}. 
Make a block principal pivot so that each of the variables associated 

with the column vectors A.,, A.s,. . . , A., become associated with the 

unit vectors in the transformed problem. The transformed problem also 
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satisfies the weak separation property by 7.14 and, by using 7.17, we 

conclude that under this block principal pivot each of the matrices 

(A., A., : ... : A.,) and (A., : A., B., .. * j B.,) is transformed into 

matrices whose column vectors are positive multiples of column vectors 

of a permutation matrix. This is possible under a block principal pivot 

only if each of these matrices themselves has the same property which 

impliesthatbothpo~{A.r,A.,,A.~,. ..,A.,}andpos{A.i,A.,,B.a,. ..,E.,} 

must be equal to the nonnegative orthant of Rn. 

7.19. Now consider two complementary cones generated by com- 

plementary sets of column vectors which contain only one column vector 

in common, the interiors of which have a nonempty intersection. Suppose 

the common column vector is a column vector of the unit matrix. Let 

the complementary cones be pos{T.r, A.,, . , A .n} and pos{I.i, B.,, . . , 

B.,} where, for each i = 2 to n, (A.j, B.j) is a permutation of (l.j, - M.J. 

By 7.12 the hyperplane through (I.r, B.,,. . ., B.,} separates the points 

represented by A., and B.,. If this separation is strict, then, since the 

interiors of pos{I.,, A.,, . . . , A.,} and pos(l.r, B.,, . . . , B.,) have a non- 

empty intersection, the interiors of pos{1.,, A.,, . , A.,} and pos{I.r, A.,, 

B.,, . . ., B.,} must have a nonempty intersection too. By 7.18, this 

implies that pos{I.,, A.,, A.,, . . ., A.,} = pos{I.,, A.,, B.,,. ., I?.,}, which 

contradicts the hypothesis that the interiors of pos(1.r, A.,, . . . , A.,} and 

pos{I.,, B.,,. . ., B.,} have a nonempty intersection, for the interiors of 

pos{I.r, A.,, B.,,. ., B.,} and pos{I.,, B.,, B.,,. . ., B.,} are disjoint, by 

the separation property. Thus A., must be on the hyperplane through 

{I+ B.,,. ., B.,}. By a similar argument, this implies that A., lies on 

the hyperplane through {I.i, B.,, . . . , B.,_l, B.,+l,. . . , B.,} and B., lies on 

the hyperplane through {I.i, A.,, . . ., A.,_,, A.r,_l,. ., A.,} for Y = 2 to n. 

This implies that the two complementary cones pos{I.r, A.,, . , A.,} 

and pos(I.,, B.,, . . , B.,} are equal. Also, since the pair (A.j, B.J is a 

permutation of (I.j, - M.j) for each i = 2 to n, we conclude that the 

rays generated by I.,, . , I., are all extreme rays of this cone. Hence 
both of these cones are equal to the nonnegative orthant of Rn. 

In general, if the two complementary cones whose interiors have a 

nonempty intersection are generated by complementary sets of column 
vectors containing one column vector in common, which is not one of 

the I.j, we could use an argument based on block principal pivoting as 

in 7.18 and conclude that these two complementary cones must equal the 

nonnegative orthant of Rn. 
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7.20. The only remaining case is that of two complementary cones 

like pos{A .r, . . . , A .n} and pos{B.,, . . , B.,} where, for each i = 1 to n, 

the pair (A.,, B.j) is a permutation of (l.j, - M.J. Thus these two cones 

together contain all the 2n column vectors in the problem. Suppose the 

interiors of these two complementary cones have a nonempty intersection. 

Consider the hyperplane through {A.,, . . . , A.n}, which is a face of 

one of these cones. By the weak separation property 7.12, this hyperplane 

separates A., and B.,. If the separation is strict, then, since the interiors 

of po~(A.~,. . ., A.,} and pos{B.,,. . ., B.,} have a nonempty intersection, 

the interiors of the two cones pas{ B.,, . . . , B.,} and pas{ B.,, A.,, . . . , A.,} 

also have a nonempty intersection. By 7.18, this implies that pos(B.,, . . . , 

B.,} = pos{B.,, A.,,. . ., A.,), and hence the interiors of pas{ B.,, , B.,) 

and p~s{A.~,. . ., A.,} are disjoint by the separation property, which is 

a contradiction. 

Therefore B., lies on the hyperplane through {A.,, . ., A.,}. By a 

similar argument, we conclude that B., lies on the hyperplane through 

{A.,,. . ., A.,_,, A.T+l>. . .> A.,} and A., lies on the hyperplane through 

{B.,,. . ., B.,_,, B.,+l,. . ., B.,} for each Y = 1 to n. Hence po~{A.~,. . ., 

A.,} = pos{B.,,. ., B.,} and, since the pair (A.?, B.j) is a permutation 

of (l.j, - M.j) for each j = 1 to n, the ray generated by I.j is an extreme 

ray of this cone for each j = 1 to n. Thus both of these cones are equal 

to the nonnegative orthant of R”. 

7.21. Then, if the induction hypothesis holds for all Y < n - 1, it 

also holds for 7 = n. By 7.15, we conclude that, if a complementarity 

problem satisfies the weak separation property 7.12; then, if the interiors 

of any two complementary cones have a nonempty intersection, both 

cones must be equal to the nonnegative orthant of R”. Thus, if the problem 

has two or more complementary feasible solutions for some 4, that q must 

lie in the nonnegative orthant of Rn. 

But under the hypothesis of Theorem 7.10 the number of complemen- 

tary feasible solutions is a constant for all q nondegenerate with respect 
to M. By 7.11, we therefore conclude that this constant must equal 1. 

So, whenever q is nondegenerate with respect to M, (1) has a unique 

solution. Thus the set of complementary cones which have nonempty 

interiors form a partition of R”. 

7.22. Example. A problem where the number of solutions to (1) 

is a constant (= 1) for all 4 which are nondegenerate with respect to M, 

but not for all q # 0, is obtained by taking n = 2 and 
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1 1 
M=l 1. 

[ 1 
The complementary cones corresponding to this problem which have 

. 
: 

.* 
: 

: 
: 

-- M 1, - M.2 

FIG. 5 

nonempty interiors are depicted in Fig. 5. Here (1) has a unique solution 

whenever 

for any M > 0. When 

q= 11, [ 1 
u > 0, 

(1) has an infinite number of solutions, namely, 

w = 0, z = (2x, (1 - I+), for any 0 <A < 1. 

We also notice that only the weak separation property holds, since the 

hyperplane through - M., separates I., and - M.,, but not strictly. 
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7.23. Example. A problem where the weak separation property 7.12 

is satisfied, but in which the number of complementary feasible solutions 

is not a constant for all q nondegenerate with respect to M, is obtained 

by taking n = 2 and 

0 -1 

M= -1 [ 1 0 . 

The complementary cones corresponding to this problem which have 

nonempty interiors are shown in Fig. 6. 

FIG. 6 

The interiors of the two complementary cones pos{I.,, 1.s) and 

pos(- M.,, - AI.,) have a nonempty intersection, and they are both 

equal to the nonnegative orthant of R”. M is not even a Q-matrix in this 

case. 

7.24. Example. We noticed that, if (1) has a constant number of 

solutions for any nonzero right-hand constant vector, then every principal 

subproblem of (1) satisfies a similar property. However, if we are only 

given that (1) has a constant number of solutions for any 4 nondegenerate 
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with respect to M, then principal subproblems of (1) may not satisfy a 

similar property. As an example, let n = 2, 0 1 
M= 

[ 1 -1 1’ 

In this case (1) has a unique solution whenever q is nondegenerate with 

respect to M. However, its principal subproblem in (w,; z,), 

Wl = 0% -k 41, 

WI3 0, 21 > 0, Wl.zl = 0, 

has no solution when q1 < 0 and has one solution 

7.25. COROLLARY. If (1) has a constant number 

if q1 > 0. 

of solutions for all q 

which are nondegenerate with respect to M, then every principal subproblem 

of (1) has at most one solution for any of its right-hand constant vectors 

which is nondegenerate and not nonnegative. 

Proof. This follows from the fact that in this case every principal 

subproblem of (1) also satisfies the weak separation property 7.12 and 

hence the induction hypothesis 7.15 holds for it. 

So, if the right-hand constant vector is nondegenerate, the principal 

subproblem can have two or more solutions only if the constant vector 

is nonnegative. 

8. THE ODD NUMBER THEOREM FOR NONNEGATIVE Q-MATRICES 

8.1. Here we show that, if M is a nonnegative Q-matrix, then the 

number of complementary feasible solutions is an odd number whenever 

q is nondegenerate with respect to M. This result may not hold if M is 

not nonnegative. 

8.2. THEOREM. If M > 0 and is a Q-matrix, then the number of 

complementary feasible solutions is an odd number for any q nondegenerate 

with respect to M. 

Proof. Proof is by induction on n. 

8.3. If n = 1, then M = (mll) and M is a Q-matrix if and only if 

ml1 > 0 by Theorem 5.2. Here q = (ql) and for each q E R1 there is 
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exactly one complementary feasible solution. Hence Theorem 8.2 is true 

when n = 1. 

8.4. Induction hy$othesis. Suppose Theorem 8.2 is true for all 

complementarity problems of order (PZ - 1) or less. We now show that 

this implies that Theorem 8.2 also holds for problems of order n. 

8.5. By Corollary 5.4, all principal submatrices of M are also Q- 

matrices. Consider the principal subproblem in (ZJJ~, . . . , w,; z2,. . . , z,) 

with the right-hand constants = 9. If Z? is nondegenerate in the subprob- 

lem, then it has an odd number of complementary feasible solutions when 

9 = i, by the induction hypothesis 8.4. 

Let 

where q1 > 0, be nondegenerate with respect to M. 

Since q1 > 0 and M 3 0, the variable zi must be equal to zero in 

any solution to (1) when q = Q. Thus, if (G; 2) is a solution to (1) when 

q = q, z”, = 0, and hence (Ga,. . ., G’,; T,, . ., 2,) is a complementary 

feasible solution to the subproblem when 9 = i. 

Also, if (ws*, . , w,* ; z2*, . . . , z,*) is any complementary feasible 

solution to the subproblem when 9 = 9, define 

n 

wi* = 21 + 2 WZljZj* > 0; 
j=z 

and then (z~i*, ~a*,. . ., VJ,*; 0, zg*,. . ., z,*) is a complementary feasible 

solution to the original problem when q = q. 

Thus every complementary feasible solution of the original problem 

leads to a complementary feasible solution to the subproblem and vice 

versa. Hence both problems must have the same number of complementary 

feasible solutions. Hence, when q = 4, (1) has an odd number of solutions. 

By a similar argument we conclude that the original problem has an 

odd number of complementary feasible solutions whenever q is non- 

degenerate with respect to M and at least one component in the vector 

q is positive. 

It only remains to be shown that the same result holds even when 

9 < 0. 
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8.6. We now show that, on every unbounded edge of K(q) lying in 

the almost complementary set C,(q), both the variables wi and zi tend 

to + co, while za,. . , z, remain finite. 

From 2.5, K(q) is the set of all (ul; z) satisfying 

ZUi = Mi.Z + qi, i=l,...,n, 

z b 0, ze, > 0. (26) 

Since M is a Q-matrix, m,, > 0 for all i = 1,. . . , n by Theorem 5.2. 

Consider any unbounded edge of K(q). If all the variables zi,. . . , z, 

remain finite on this edge, then by (26) all the variables wi,. . . , w, also 

remain finite, and hence the edge cannot be an unbounded edge. Thus 

on every unbounded edge in K(q) at least one of the variables zi,. . . , z, 

must tend to + 00. If zi tends to + co on this edge, then from (26) and 

the facts that M > 0, nzii > 0, and qi is finite and fixed, wi must also 

tend to + 00 along this edge. Then, if any unbounded edge of K(q) lies 

in the almost complementary set C,(g), the variables za,. , z, should 

all remain bounded on that edge. Hence zi must tend to + 00 on that 

edge and consequently UJ~ also tends to + M on that edge. 

Thus on every unbounded edge in C,(q) the variable ze~i + + co. 

8.7. Suppose q is nondegenerate with respect to M. Then there 

exists an c(~ > 0 such that for all tc > c~a the point q - aI., is nondegenerate 

with respect to M. Hence the entire half-line 

(4: q=Q--cxI.l, cr.>%) (27) 

lies in the interior of a set of complementary cones. We now show that 

the number of complementary cones in which this half-line lies is precisely 

the number of unbounded edges in C,(g). Let 

F={(w;z): (w;z)=(wl+ew2;zl+ez2), e>oo) 

be an unbounded edge in C,(q). Then 

(wil + 1920,~)(z~i + 0Zi2) = 0, for all i # 1, for all 0 > 0, 

and zvi2 > 0 by 8.6. Hence 

(w,; z) = (0, wsi + &eQ,. . .) z4?Jnl + ow,2; Zll + ez,2,. . .) z,l + 82,2) 

is a complementary feasible solution for 
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4 = q - (zeil + 0z8i2)I., for all 13 > 0 

and, since wi2 > 0, as 19 varies from 0 to cx) 

(4: 4 = q - (Wil + l%Q)I.,, 8 > O} 

is eventually the same half-line as in (27). 

Also, for any E > ~a, 4 - bI., cannot lie in any complementary cone 

which has pos{I.,} as a generator. For, if it does, there exists a sub- 

complementary set of columns {I?.,,. . ., B.,) such that 

y” - El., = liI.1 + i &B., 
i=2 

for some ii,. . . , A, > 0. Then 4” - (E + iii)I., lies in the subspace through 

the subcomplementary set {I?.s, . . . , B.,}, contradicting the assumption 

that 4” - al., is nondegenerate with respect to M for all K > CQ,. 

Hence, if the half-line in (27) lies in some complementary cone, say 

pos{A.i, A.2,. . , A .n}, then A.,, . . , A., must be linearly independent 

and A., = - M.i. Now we can express this half-line as 

for some /P, B2 3 0. Thus 

q = cd.1 + ,$ BilL4.i + (@. - MO) 5 Pi2A.i 
i=l 

P3) 

for any tl. > c(~. 

Suppose (w; zT) is obtained by setting wil = CQ, ml2 = 1, and the 

variable associated with the column vector A.i equal to Dir, i = 1,. . . , PZ 
and all the other variables in (w; z) equal to zero, for r = 1, 2. Then (27) 

implies that 

is an unbounded edge in C,(q). 

Thus every unbounded edge in C,(g) gives rise to a complementary 

cone in the interior of which the half-line in (27) lies and vice versa: 

Hence the number of unbounded edges in C,(f) is equal to the number 

of complementary feasible solutions for 4” - crl.,, where t( is a sufficiently 

large number. 
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8.8. Thus, for any pi such that i = (qi, q2,. . . , g”JT is nondegenerate 

with respect to M, the number of unbounded edges in C,(d) is a constant. 

This number is equal to the number of complementary cones in which the 

half-line (27) eventually lies as tc,, is made large. 

8.9. By the nondegeneracy of 4” we know that there exists a &, such 

that, for all P > PO, (P, 4”s,. . , 4”J T is nondegenerate with respect to M. 

Hence we can always pick a qi* > 0 such that q* = (qi*, &,, . . , Q,JT is 

nondegenerate with respect to M. Since qi* > 0, the number of com- 

plementary feasible solutions when q = q* is an odd number. Therefore 

by 6.3(iii) the number of unbounded edges in C,(q*) is an odd number, and 

hence by 8.8 the number of unbounded edges in C,(q) is an odd number. 

By 6.3(iii) the number of complementary feasible solutions when 4 = q 

is therefore an odd number. 

Hence, under the induction hypothesis, Theorem 8.2 holds for the 

original problem of order n. By 8.3 and by induction, Theorem 8.2 is 

true for all 92. 

8.10. COROLLARY. If M is a Q-matrix and if there exists a complemen- 

tary set of column vectors (A.,, . . , A.,} which is linearly independent, such 

that each of the remaining vectors B.,, . ., B., among the column vectors 

of (I, - M) satisfies 

B.j~pos{- A.,,. ., -A.,) for all i=l,..., n, 

then the number of comjdementary feasible solutions is an odd number for 

all q which are nondegenerate with respect to M. 

Proof. Transform the column vectors A.,,. . ., A., into the column 

vectors of the unit matrix by making the necessary principal pivots or 

a block principal pivot. Then Corollary 8.10 follows from Theorem 8.2 

and Paragraphs 2.21 and 2.22. 

8.11. In the special case when n = 2, the restriction that M > 0 can 

be removed from the hypothesis of Theorem 8.2. This is discussed below. 

8.12. THEOREM. If n = 2 and M is a Q-matrix then the number of 

complementary feasible solutions is an odd number whenever q is non- 

degenerate with respect to M. 
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Proof. 

8.13. Case 1. If pas{- M.,, - M.,) is a subset of the nonpositive 

orthant of Rz, Theorem 8.12 follows from Theorem 8.2. 

8.14. Case 2. If pos{ - I.,, - I,} C pos{ - M.i, - M.s}, the hy~50th- 

esis that M is a Q-matrix implies that - M., and - M., are contained one 

each in pos{l.i, - 1,s) and pos(- 1.i, I.,}, respectively. (See Fig. 7.) 

We verify that in this case the number of complementary feasible solutions 

is 1 or 3 for every q nondegenerate with respect to M. 

8.15. Case 3. Since M is a Q-matrix, the only other possibility is 

that exactly one of - M., or - M., is contained in the interior of 



ON THE COMPLEMENTARITY PROBLEM 107 

pos(- I.,, - I.,}. (See Fig. 8.) Suppose it is - M.i . Then the hypothesis 

that M is a Q-matrix implies that either - M., E pos{I.,, M.,} or - M.2 E 

pos{I.,, - I.,). In either case we verify that the number of complementary 

feasible solutions is either 1 or 3 for all q nondegenerate with respect to M. 

8.16. COROLLARY. If n = 2, there exists a q nondegenerate with 

respect to M for which the number of cona@?ementary feasible solutions is at 

most one. 

8.17. Note. When n >, 3, Theorem 8.2 is not necessarily true if 

M > 0, and Corollary 8.16 may not be true. 

As an example, consider 

It can be shown that this is a Q-matrix by verifying that the union of all 

the 8 complementary cones is R3. Also, M is a nondegenerate matrix. We 

verify that 4 = (1, 1, l)T is nondegenerate with respect to M. When 

q = 4” there are four distinct complementary feasible solutions, because 

q lies in each of the complementary cones pos{I.,, I.,, 1.a}, pas{- M.,, 

1.2, I.,}, po~{I.~, - M.,, I.,}, and pos(T.r, I.,, - M.3} and in none of 

the others. 

By Theorem 6.2, the number of complementary feasible solutions is an 

even number for all q nondegenerate with respect to M and, since M is 

a Q-matrix, this number must be 3 2. 

This shows that the converse of Corollary 6.9 is not necessarily true 

unless M 2 0. 

8.18. Note. When n > 3, the number of complementary feasible 

solutions can be > 2 for all q E Rn. The example in 8.17 shows this. Thus, 

when n > 3, the complementary cones can span the whole space more 

than twice around. 
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