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CHAPTER I

Introduction

Attempting to solve the four color problem, George Birkhoff introduced a polyno-

mial associated to a graph G which coherently encodes the answers to the analogous

q color problem for all natural numbers q [Bir12]. This polynomial χG(q), called the

chromatic polynomial, is determined by the property that

χG(q) = (number of proper colorings of G using q colors), q ≥ 1.

Any other numerical invariant of a simple graph which can be recursively computed

by deletion and contraction of edges is a specialization of the chromatic polynomial.

A sequence of real numbers a0, a1, . . . , ar is said to be log-concave if

a2
i ≥ ai−1ai+1 for all i.

In previous work, we proved that the coefficients of the chromatic polynomial form

a log-concave sequence for any graph, thus resolving a conjecture of Ronald Read

[Huh12]. An important step in the proof was to construct a complex algebraic variety

associated to a graph and ask a more general question on the characteristic class of

the algebraic variety. It turned out that the property of the characteristic class

responsible for log-concavity is that it is realizable, meaning that the homology class
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is the class of a subvariety (an irreducible algebraic subset).

Theorem 1. If ξ is an element in the homology group

ξ =
∑
j

xj
[
Pd−j × Pj

]
∈ H2d(X;Z), X = Pn−m × Pm,

then some positive integer multiple of ξ is the class of a subvariety if and only if the xj

form a nonzero log-concave sequence of nonnegative integers with no internal zeros.

In general, for any compact complex variety X, one may define the space of

realizable homology classes as a closed subset of H2d(X;R) which consists of limits of

homology classes of subvarieties up to a constant multiple (Definition 57). This subset,

showing distribution of primes in the homology of X, plays a key role in the solution

to the graph theory problem. A motivating observation for further investigation is

that, even for very simple varieties such as the product of two projective spaces, the

orderly structure of the space of realizable homology classes becomes visible only after

taking positive multiples of homology classes. For example, there is no subvariety of

P5 × P5 which has the homology class

1[P5×P0]+2[P4×P1]+3[P3×P2]+4[P2×P3]+2[P1×P4]+1[P0×P5] ∈ H10(P5×P5;Z),

although (1, 2, 3, 4, 2, 1) is a log-concave sequence with no internal zeros.

Read’s conjecture was later extended by Gian-Carlo Rota and Dominic Welsh to

combinatorial geometries, also called matroids, whose defining axioms are modeled

on the relation of linear independence in a vector space (Conjecture 21). The aim

of this thesis is to show that the above mentioned algebro-geometric proof does not

work in this more general setting for one and only one very interesting reason: not

every matroid is realizable as a configuration of vectors in a vector space.

Since the discovery of a finite projective plane which is not coordinatizable over
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any field, mathematicians have been interested in this tension between the axioms

of combinatorial geometry and algebraic geometry. After numerous unsuccessful

quests for the “missing axiom” which guarantees realizability, logicians found that

one cannot add finitely many new axioms to matroid theory to resolve the tension

[MNW14, Vam78]. On the other hand, computer experiments revealed that numer-

ical invariants of small matroids behave as if they were realizable, confirming the

log-concavity conjecture in particular for all matroids within the range of our com-

putational capabilities.

We ask whether every matroid is realizable over every field in some generalized

sense (Question 60). Here a matroid on {0, 1, . . . , n} is viewed as an integral homology

class in the toric variety XAn constructed from the n-dimensional permutohedron, a

polytope which reflects the structure of the root system An. This homology class

is nef and effective for any matroid (Corollary 34), and the usual realizability of a

matroid translates to the statement that the corresponding homology class is the class

of a subvariety (Theorem 46).

The anticanonical divisor of the toric variety XAn is a sum of two nef and big

divisors. The associated linear systems define a map

π1 × π2 : XAn −→ Pn × Pn.

We show that the chromatic (characteristic) polynomials appear through the push-

forward of the matroid homology classes:

H2d(XAn ;Z) −→ H2d(Pn × Pn;Z), (matroid) 7−→ (characteristic polynomial),

see Theorem 54. Under this framework, Theorem 1 together with numerical evidence

for the log-concavity conjecture suggest an intriguing possibility that any matroid

homology class is a limit of realizable homology classes up to a constant multiple. If
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true, this will not only prove the log-concavity conjecture but also explain the subtle

discrepancy between combinatorial geometry and algebraic geometry.

In Chapter II, we introduce the permutohedral variety XAn and recall the basics

of matroid theory. The matroid homology classes are defined in Chapter III. It is

shown there that a matroid homology class is effective, and generates an extremal ray

of the nef cone of XAn . The main result of Chapter IV is that the anticanonical push-

forward of a matroid is the reduced characteristic polynomial of the matroid. This

purely combinatorial computation is used in the last section to prove the log-concavity

conjecture for matroids that are realizable over some field.
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CHAPTER II

Matroids and the permutohedron

2.1 The permutohedral variety

Let n be a nonnegative integer and let E be the set {0, 1, . . . , n}.

Definition 2. The n-dimensional permutohedron is the convex hull

Ξn = conv
{

(x0, . . . , xn) | x0, x1, . . . , xn is a permutation of 0, 1, . . . , n
}
⊆ Rn+1.

The symmetric group on E acts on the permutohedron Ξn by permuting coordinates,

and hence each one of the above (n+ 1)! points is a vertex of Ξn.

The n-dimensional permutohedron is contained in the hyperplane

x0 + x1 + · · ·+ xn =
n(n+ 1)

2
.

The permutohedron has one facet for each nonempty proper subset S of E, denoted

ΞS, is the convex hull of those vertices whose coordinates in positions in S are smaller

than any coordinate in positions not in S. For example, if S is a set with one element

i, then the corresponding facet is

Ξ{i} = conv
{

(x0, . . . , xn) | (x0, . . . , xn) is a vertex of Ξn with xi = 0
}
⊆ Rn+1.
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Similarly, if S is the entire set minus one element E \ {i}, then the corresponding

facet is

ΞE\{i} = conv
{

(x0, . . . , xn) | (x0, . . . , xn) is a vertex of Ξn with xi = n
}
⊆ Rn+1.

These facets can be identified with the permutohedron of one smaller dimension.

In general, a facet of a permutohedron can be identified with the product of two

permutohedrons of smaller dimensions:

ΞS ' Ξ|S|−1 × Ξ|E\S|−1.

More generally, the codimension d faces of the permutohedron Ξn bijectively cor-

respond to the ordered partitions of E into d+ 1 parts. Explicitly, the codimension d

face corresponding to a flag of nonempty proper subsets
(
S1 ( S2 ( · · · ( Sd

)
is the

convex hull of those vertices whose coordinates in positions in Sj \ Sj−1 are smaller

than any coordinate in positions in Sj+1 \ Sj for all j.

The normal fan of the n-dimensional permutohedron is a complete fan in an n-

dimensional quotient of the vector space Rn+1:

|∆An| := Rn+1/span(1, 1, . . . , 1).

The quotient space |∆An| is generated by the vectors u0,u1, . . . ,un, where ui is the

primitive ray generator in the normal fan corresponding to the facet Ξ{i}. In coordi-

nates,

u0 = (1, 0, . . . , 0), u1 = (0, 1, . . . , 0), . . . un = (0, 0, . . . , 1) mod (1, 1, . . . , 1).
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Notation. For a subset S of E, we define

uS :=
∑
i∈S

ui.

If S is a nonempty and proper subset of E, then uS generates a ray in the normal

fan corresponding to the facet ΞS.

Definition 3. The n-dimensional permutohedral fan is the complete fan ∆An whose

d-dimensional cones are of the form

σS = cone(uS1 ,uS2 , . . . ,uSd
), S =

(
S1 ( S2 ( · · · ( Sd

)
,

where S is a flag of nonempty proper subsets of E. We call σS the cone determined

by the flag S.

The permutohedral fan ∆An is the normal fan of the permutohedron Ξn, and can

be identified with the fan of Weyl chambers of the root system An.

The geometry of the permutohedral fan is governed by the combinatorics of the

Boolean lattice of all subsets of E. Let T =
(
T1 ( T2 ( · · · ( Td−1

)
be a flag of

nonempty proper subsets of E. We say that a subset S of E is strictly compatible with

T if S ( Tj or Tj ( S for each j. Then the d-dimensional cones in ∆An containing

the cone determined by T bijectively correspond to the nonempty proper subsets of

E that are strictly compatible with T .

The symmetric group on E acts on the Boolean lattice of subsets of E, and

hence on the permutohedral fan ∆An . In addition, the permutohedral fan has an

automorphism of order 2, sometimes called the Cremona symmetry :

Crem : |∆An| −→ |∆An|, x 7−→ −x.
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This automorphism associates to a flag the flag that consists of complements:

(
S1 ( S2 ( · · · ( Sd

)
7−→

(
Ŝd ( · · · ( Ŝ2 ( Ŝ1

)
, Ŝj = E \ Sj.

Let k be a field. The normal fan of the permutohedron defines a smooth projective

toric variety over k. This variety is the main character of the thesis.

Definition 4. The n-dimensional permutohedral variety XAn is the toric variety of

the permutohedral fan ∆An with respect to the lattice Zn+1/span(1, . . . , 1).

When the field k is relevant to a statement, we will say that XAn is the permuto-

hedral variety over k. Otherwise, we do not explicitly mention the field k. Our basic

reference for toric varieties is [Ful93].

Notation.

(i) If S is a nonempty proper subset of E, we write DS for the torus-invariant prime

divisor of XAn corresponding to the ray generated by uS.

(ii) If S is a flag of nonempty proper subsets of E, we write V (S) for the torus orbit

closure in XAn corresponding to the cone determined by S.

The codimension of V (S) in XAn is equal to the length d of the flag

S =
(
S1 ( S2 ( · · · ( Sd

)
.

The torus orbit closure V (S) is a transversal intersection of smooth hypersurfaces

V (S) = DS1 ∩DS2 ∩ · · · ∩DSd
.

A fundamental geometric fact is that XAn can be obtained by blowing up all the

torus-invariant linear subspaces of the projective space Pn. In fact, there are two

essentially different ways of identifying XAn with the blown up projective space.
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Consider the composition of blowups

Xn−1 −→ Xn−2 −→ · · · −→ X1 −→ X0 = Pn,

where Xd+1 −→ Xd is the blowup of the strict transform of the union of all the torus-

invariant d-dimensional linear subspaces of Pn. We identify the rays of the fan of Pn

with the vectors

u0,u1, . . . ,un,

and index the homogeneous coordinates of the projective space by the set E:

z0, z1, . . . , zn.

This gives one identification between XAn and Xn−1. We denote the above composi-

tion of blowups by π1 : XAn −→ Pn.

Definition 5. The map π2 : XAn −→ Pn is the composition of the Cremona symmetry

and π1 : XAn −→ Pn.

We have the commutative diagram

XAn

π1

}}

π2

""
Pn

Crem
// Pn,

where Crem is the standard Cremona transformation

Crem : Pn 99K Pn, (z0 : z1 : · · · : zn) 7−→ (z−1
0 : z−1

1 : · · · : z−1
n ).

All three maps in the diagram are torus-equivariant, and they restrict to isomorphisms

between the n-dimensional tori.
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Like π1, the induced map π2 is the blowup of all the torus-invariant linear sub-

spaces of the target projective space. The rays in the fan of the image of π2 are

generated by the vectors

u0̂,u1̂, . . . ,un̂,

where î is the complement of {i} in E. The ray generated by uî correspond to the

facet Ξî of the permutohedron. The homogeneous coordinates of this projective space

will be written

z0̂, z1̂, . . . , zn̂.

If S is a nonempty proper subset of E with |S| ≥ 2, then DS is the exceptional divisor

of π1 corresponding to the codimension |S| linear subspace

⋂
j∈S

{
zj = 0

}
⊆ Pn.

If S is a nonempty subset of E with |E \ S| ≥ 2, then DS is the exceptional divisor

of π2 corresponding to the dimension |S| linear subspace

⋂
j /∈S

{
zĵ = 0

}
⊆ Pn.

The Cremona symmetry of the permutohedral fan

Crem : |∆An| −→ |∆An|, x 7−→ −x

changes the role of π1 and π2.

The anticanonical linear system of XAn has a simple description in terms of π1

and π2. Choose an element i of E, and consider the corresponding hyperplanes in the
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two projective spaces:

Hi :=
{
zi = 0

}
⊆ Pn, Hî :=

{
zî = 0

}
⊆ Pn.

The pullbacks of the hyperplanes in the permutohedral variety are

π−1
1 (Hi) =

∑
i∈S

DS and π−1
2 (Hî) =

∑
i/∈S

DS.

Since any subset of E either contains i or does not contain i, the sum of the two

divisors is the union of all torus-invariant prime divisors in XAn . In other words, the

sum is the torus-invariant anticanonical divisor of the permutohedral variety:

−KXAn
= π−1

1 (Hi) + π−1
2 (Hî).

The decomposition of the anticanonical linear system gives the map

π1 × π2 : XAn −→ Pn × Pn,

whose image is the closure of the graph of the Cremona transformation. This gives

another proof of the result of Batyrev and Blume that −KXAn
is nef and big [BB11].

Proposition 6. The anticanonical divisor of XAn is nef and big.

The true anticanonical map of the linear system |−KXAn
| fits into the commutative

diagram

XAn

π1×π2 //

−K

��

Pn × Pn

s

��

Pn2+n L // Pn2+2n.

Here −K is the anticanonical map, L is a linear embedding of codimension n, and s
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is the Segre embedding.

Remark 7. The permutohedral variety XAn can be viewed as the torus orbit clo-

sure of a general point in the flag variety Fl(Cn+1), see [Kly85, Kly95]. Under this

identification, π1 and π2 are projections onto the Grassmannians

XAn

π2

''

π1

ww
Pn ' Gr(1,Cn+1) Gr(n,Cn+1) ' Pn.

Recall that torus-invariant divisors on XAn may be viewed as piecewise linear

functions on ∆An . For later use, we give names to the piecewise linear functions of

the divisors π−1
1 (Hi) and π−1

2 (Hî).

Definition 8. Let i be an element of E. We define α = α(i) to be the piecewise

linear function on ∆An determined by the values

α(uS) =


−1 if i ∈ S,

0 if i /∈ S,

and define β = β(i) to be the piecewise linear function on ∆An determined by the

values

β(uS) =


0 if i ∈ S,

−1 if i /∈ S.

The dependence of α and β on i will often be invisible from their notation. Differ-

ent choices of i will give rationally equivalent divisors, and piecewise linear functions

which are equal to each other modulo linear functions. The functions α and β pull-

back to each other under the Cremona symmetry of ∆An .
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2.2 The Bergman fan of a matroid

A matroid is a combinatorial structure that captures the notion of linear inde-

pendence in vector spaces. We will show in Section 3.2 that a matroid on E defines

an extremal nef homology class in the permutohedral variety XAn . In principle, a

question on matroids on E can be translated to a question on the geometry of the

permutohedral variety XAn . Two general references on matroid theory are [Oxl11]

and [Wel76].

As before, n is a nonnegative integer and E = {0, 1, . . . , n}.

Definition 9. A matroid M on E is a collection of subsets of E, called independent

sets, which satisfies the following properties.

(i) The empty subset of E is an independent set.

(ii) Every subset of an independent set is an independent set.

(iii) If I1 and I2 are independent sets and I1 has more elements than I2, then there

is an element in I1 which, when added to I2, gives a larger independent set than

I2.

A loop of M is a singleton subset of E which is not independent. We will often assume

that a matroid has no loops.

Example 10. Let G be a graph and E be the set of edges. Define a subset of E

to be independent if it does not contain any cycle. This defines a matroid M on E,

called the graphic matroid of G.

Example 11. Let k be a field, and let E be a finite subset of a vector space over k.

Define a subset of E to be independent if it is linearly independent. This defines a

matroid M on E which is realizable over k. The matroid M has no loops if and only

if all the vectors are nonzero.
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A matroid M assigns a nonnegative integer, called rank, to each subset S of E:

rankM(S) := (the cardinality of any maximal independent subset of S)

The rank of the entire set E is called the rank of M . It is the common cardinality of

any one of the bases of M .

Notation. A matroid has rank 0 if and only if every element of E is a loop. If the

rank of a matroid M is positive, we write

rankM(E) = r + 1.

The use of the symbols n, r, M , E will be consistent throughout the thesis.

If M is a realizable matroid given by a set of vectors E, then a flat of M is an

intersection of E with a subspace of the ambient vector space. In general, a flat of a

matroid is defined as follows.

Definition 12. A flat of M is a subset F of E with the following property:

The addition of any element not in F to F increases the rank.

In short, a flat of M is a subset of E which is maximal for its rank. The empty subset

is a flat of M if and only if M has no loops.

We say that a flat F1 covers another flat F2 if F1 properly contains F2 and there

is no other flat between F1 and F2. We will often use the following property of the

collection of flats of a matroid:

Proposition 13. If F is a flat of M , then the flats of M that cover F partition the

elements of E \ F .

In other words, each element in E \ F is contained in exactly one flat that cover

F . In fact, together with the statements that E is a flat and the intersection of any
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two flats is a flat, Proposition 13 can be used to define the term ‘matroid on E’

[Oxl11, Wel76].

Definition 14. The lattice of flats of a matroid M is the poset LM of all flats of M ,

ordered by inclusion.

The lattice of flats has a unique minimal element, the set of all loops, and a

unique maximal element, the entire set E. It is graded by the rank function, and

every maximal chain in LM \ {min LM ,max LM} has the same number of flats r.

Assumption. In the remainder of this chapter, we assume that M is a loopless

matroid on E with rank r + 1.

Definition 15. The Bergman fan of M , denoted ∆M , is the fan in |∆An| consisting

of cones corresponding to flags of nonempty proper flats of M . In other words, the

Bergman fan of M is a collection of cones of the form

σF = cone(uF1 ,uF2 , . . . ,uFd
),

where F is a flag of nonempty proper flats

F =
(
F1 ( F2 ( · · · ( Fd

)
.

When r = 0, by definition, ∆M is the 0-dimensional fan at the origin.

The Bergman fan ∆M is an r-dimensional subfan of the permutohedral fan ∆An .

Ardila and Klivans introduced this fan in [AK06] and called it the fine subdivision of

the Bergman fan of the matroid. If every subset of E is independent, then r = n and

the permutohedral fan is the Bergman fan of M . In other words, the permutohedral

fan is the Bergman fan of the uniform matroid of full rank.

We next prove a fundamental property of the Bergman fan ∆M that it satisfies

the balancing condition. Geometrically, the condition says that, for every (r − 1)-
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dimensional cone τ , the sum of the ray generators of the cones in ∆M that contain τ

is contained in τ . Combinatorially, the condition is a translation of the flat partition

property for matroids (Proposition 13).

Proposition 16. Let F1, . . . , Fm be the nonempty proper flats of M that are strictly

compatible with a flag of nonempty proper flats

G =
(
G1 ( G2 ( · · · ( Gr−1

)
.

If we set G0 = ∅ and Gr = E, then there is exactly one index l such that each Fj

covers Gl−1 and is covered by Gl, and

m∑
j=1

uFj
= uGl

+ (m− 1)uGl−1
.

When M has loops, the same formula holds if we replace G0 by the set of all loops.

For geometric and combinatorial reasons, we choose not to define the Bergman fan

for matroids with loops.

Proof. Since any maximal flag of nonempty proper flats of M has length r, there is

exactly one index l such that each Fj covers Gl−1 and is covered by Gl.

To justify the displayed equality between the two vectors, we construct a new

matroid N on Gl from the old matroid M on E by deleting all elements not in Gl.

By definition, a subset I of Gl is independent for N if and only if it is independent

for M . Using the fact that Gl is a flat of M , one can check that a subset of Gl is a

flat for N if and only if it is a flat for M . Applying Proposition 13 to the flat Gl−1

of the new matroid N , we see that every element of Gl \Gl−1 is contained in exactly

one of the Fj. In other words,

m∐
j=1

(
Fj \Gl−1

)
= Gl \Gl−1.
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This implies what we want.

2.3 The Möbius function of a matroid

The Möbius function of the lattice of flats will play a fundamental role in the

intersection theory of matroids in the permutohedral variety. We continue to assume

that M is a matroid which has no loops.

Definition 17. Let L be a finite poset. The Möbius function of L is the function

µL : L ×L −→ Z

determined by the following properties:

(i) If x � y, then µL (x, y) = 0.

(ii) If x = y, then µL (x, y) = 1.

(iii) If x < y, then

µL (x, y) = −
∑
x≤z<y

µL (x, z).

When L is the lattice of flats of M , we write µM for the Möbius function µL . The

Möbius function of the lattice of flats of a matroid has several special properties that

the Möbius function of posets in general do not have. For example, Rota’s theorem

says that, if F1 is a flat contained in a flat F2, then

(−1)rankM (F2)−rankM (F1)µM(F1, F2) > 0.

Another basic result on matroids is the following theorem of Weisner. For proofs, see

[Rot64, Zas87].
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Theorem 18. Let F be a flat of M , and let i be an element of F . If F1, F2, . . . , Fm

are the flats of M covered by F which do not contain i, then

µM(∅, F ) = −
m∑
j=1

µM(∅, Fj).

When M has loops, one should replace ∅ by the set of loops and choose i among

elements of F which is not a loop. We will frequently use Weisner’s theorem later

in intersection theoretic computations in XAn . In a sense, Weisner’s theorem plays a

role which is Cremona symmetric to the role played by the flat partition property for

matroids (Proposition 13).

Definition 19. The characteristic polynomial of M is the polynomial

χM(q) =
∑
F∈LM

µM(∅, F ) qrankM (E)−rankM (F ).

By definition of the Möbius function,

χM(1) =
∑
F∈LM

µM(∅, F ) = 0.

We define the reduced characteristic polynomial of M by

χM(q) := χM(q)/(q − 1).

By Rota’s theorem, the coefficients of the characteristic polynomial of a matroid

alternate in sign. The same is true for the coefficients of the reduced characteristic

polynomial.

Proposition 20. Let i be an element of E and let l be a nonnegative integer. If

F1, F2, . . . , Fm are the flats of rank l which do not contain i, then the coefficient of

18



qr−l in the reduced characteristic polynomial is

m∑
j=1

µM(∅, Fj).

Proof. Let G1, G2, . . . , Gs be the flats of rank l + 1 which contain i. By the flat

partition property (Proposition 13), each Fj is covered by exactly one Gk, the “span”

of Fj and the element i. Applying Weisner’s theorem to each Gk and the element i,

we have
s∑

k=1

µM(∅, Gk) = −
m∑
j=1

µM(∅, Fj).

In other words, the sum of the values of the Möbius function over all rank l flats not

containing i and all rank l+ 1 flats containing i is zero. Since the coefficient of qr−l+1

of χM(q) is the sum of the values of the Möbius function over all rank l flats, the above

identity gives the desired expression for the coefficient of the reduced characteristic

polynomial χM(q)/(q − 1).

We now introduce a series of conjectures on the characteristic polynomial of a

matroid which motivated this work. A sequence of real numbers a0, a1, . . . , ar is said

to be log-concave if

a2
i ≥ ai−1ai+1 for all i.

If the sequence has no internal zeros, then the log-concavity implies the unimodality :

a0 ≤ a1 ≤ · · · ≤ aj ≥ · · · ≥ ar−1 ≥ ar for some j.

The log-concavity conjecture of Rota, Welsh, and Heron states that the coefficients

of the characteristic polynomial of a matroid form a log-concave sequence [Rot71,

Wel71, Her72]. A detailed treatment of the conjecture and various partial results

can be found in [Aig87]. See also [Kun95, Sta95, Sta00, Oxl11]. For a fascinating
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collection of log-concavity conjectures coming from various areas of mathematics, see

[Sta89] and [Bre94].

Conjecture 21. The coefficients of the characteristic polynomial of a matroid form

a log-concave sequence.

In Section 4.3, we prove that the coefficients of the reduced characteristic polyno-

mial form a log-concave sequence for matroids which are realizable over some field.

It follows that Conjecture 21 holds for matroids which are realizable over some field.

Since graphic matroids are realizable over every field, this confirms the following

conjecture of Read [Rea68], for unimodality, and Hoggar [Hog74], for log-concavity.

Conjecture 22. The coefficients of the chromatic polynomial of a graph form a log-

concave sequence.

A closely related is the following conjecture of Mason [Mas72].

Conjecture 23. The number of independent subsets of size i of a matroid form a

log-concave sequence in i.

In Section 4.3, we give a proof of Conjecture 23 for matroids which are realizable

over some field. Following Lenz [Len12], we deduce Conjecture 23 from Conjecture

21.
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CHAPTER III

Algebraic cycles in the permutohedral variety

3.1 Intersection theory of the permutohedral variety

Let X be an n-dimensional smooth toric variety defined from a complete fan

∆X . An element of the Chow cohomology group Al(X) gives a homomorphism of

Chow groups from Al(X) to Z. The resulting homomorphism of abelian groups is the

Kronecker duality homomorphism

Al(X) −→ Hom
(
Al(X),Z

)
.

The Kronecker duality homomorphism for X is, in fact, an isomorphism [FS97].

Since Al(X) is generated by the classes of l-dimensional torus orbit closures, the

isomorphism identifies Chow cohomology classes with certain integer valued functions

on the set of d-dimensional cones in ∆X , where d = n− l.

Notation. If σ is a d-dimensional cone containing a (d − 1)-dimensional cone τ in

the fan of X, then there is exactly one ray in σ not in τ . The primitive generator of

this ray will be denoted uσ/τ .

Definition 24. A d-dimensional Minkowski weight on ∆X is a function ∆ from the

set of d-dimensional cones to the integers which satisfies the balancing condition: For
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every (d− 1)-dimensional cone τ ,

∑
τ⊂σ

∆(σ)uσ/τ is contained in the lattice generated by τ ,

where the sum is over all d-dimensional cones σ containing τ .

One may think a d-dimensional Minkowski weight as a d-dimensional subfan of ∆X

with integer weights on its d-dimensional cones. The balancing condition imposed on

d-dimensional Minkowski weights on ∆X is a translation of the rational equivalence

relations between l-dimensional torus orbit closures in X [FS97].

Theorem 25. The Chow cohomology group Al(X) is isomorphic to the group of

d-dimensional Minkowski weights on ∆X :

Al(X) ' Hom
(
Al(X),Z

)
'
(
the group of d-dimensional Minkowski weights

)
.

These groups are also isomorphic to the d-dimensional homology group of X

through the ‘degree’ map

Ad(X) −→ Hom
(
Al(X),Z

)
, ξ 7−→

(
η 7−→ deg(ξ · η)

)
.

Its inverse is the composition of the isomorphism Hom
(
Al(X),Z

)
' Al(X) and the

Poincaré duality isomorphism

Al(X) −→ Ad(X), ∆ 7−→ ∆ ∩ [X].

We say that ∆ and ∆ ∩ [X] are Poincaré dual to each other.

Theorem 25, when applied to the permutohedral variety, says that a cohomology

class of XAn is a function from the set of flags in E which satisfies the balancing

condition. The balancing condition for a d-dimensional Minkowski weight ∆ on the
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permutohedral fan can be translated as follows: For every flag of nonempty proper

subsets S =
(
S1 ( · · · ( Sd−1

)
, if T1, . . . , Tm are the nonempty proper subsets of E

that are strictly compatible with S, then

m∑
j=1

∆(σj)uTj is contained in the lattice generated by uS1 , . . . ,uSd−1
,

where σj is the cone generated by uTj and uS1 , . . . ,uSd−1
.

Let M be a loopless matroid of rank r+1. Proposition 16 shows that the balancing

condition is satisfied by the indicator function of the Bergman fan of M . To be more

precise, we have the following.

Proposition 26. The Bergman fan ∆M defines an r-dimensional Minkowski weight

on the permutohedral fan ∆An, denoted by the same symbol ∆M , such that

∆M(σS) =


1 if S is a maximal flag of nonempty proper flats of M,

0 if otherwise.

When r = 0, by definition, ∆M = 1.

The cup product of a divisor and a cohomology class of a smooth complete toric

variety defines a product of a piecewise linear function and a Minkowski weight. If ϕ

is a piecewise linear function and ∆ is a d-dimensional Minkowski weight, then ϕ∪∆

is a (d − 1)-dimensional Minkowski weight. We will often use the following explicit

formula for the cup product [AR10].

Theorem 27. Let ϕ be a piecewise linear function and let ∆ be a d-dimensional

Minkowski weight on ∆X . If τ is a (d− 1)-dimensional cone in ∆X , then

(
ϕ ∪∆

)
(τ) = ϕ

(∑
τ⊂σ

∆(σ)uσ/τ

)
−
∑
τ⊂σ

ϕ
(

∆(σ)uσ/τ

)
,

where the sums are over all d-dimensional cones σ containing τ .
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In particular, if ∆ is nonnegative and ϕ is linear on the cone generated by the

cones containing τ , then (
ϕ ∪∆

)
(τ) = 0.

Similarly, if ∆ is nonnegative and ϕ is concave on the cone generated by the cones

containing τ , then (
ϕ ∪∆

)
(τ) ≥ 0.

Corollary 28. If ϕ is concave and ∆ is nonnegative, then ϕ ∪∆ is nonnegative.

Theorem 27 can be used to compute the cup product of the piecewise linear

function α and the Bergman fan ∆M . Proposition 30 below shows that the result of

the cup product is the Bergman fan of another matroid. Recall that α = α(i) is the

piecewise linear function on the permutohedral fan ∆An determined by its values

α(uS) =


−1 if i ∈ S,

0 if i /∈ S.

For any element i of E and any nonempty proper subset G of E, the function α is

linear when restricted to the cone

cone(uj | j ∈ G) =
⋃
F

σF ,

where the union is over all flag of nonempty proper subsets contained in G.

Definition 29. When r ≥ 1, we define the truncation of M to be the matroid M on

the same set E defined by the following condition:

A subset I is independent for M if and only if I is independent for M and |I| ≤ r.

We do not define the truncation for rank 1 matroids.
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A proper subset F of E is a flat for M if and only if F is a flat for M and

rankM(F ) < r. In other words, LM \ {E} is obtained from LM \ {E} by deleting all

flats of rank r.

Proposition 30. If r ≥ 1 and M is the truncation of M , then

α ∪∆M = ∆M .

A repeated application of Proposition 30 gives the equality between the 0-dimensional

Minkowski weights (
α ∪ · · · ∪ α︸ ︷︷ ︸

r

)
∪∆M = 1.

Proof. Let τ be an (r−1)-dimensional cone in ∆An determined by a flag of nonempty

proper subsets

G =
(
G1 ( G2 ( · · · ( Gr−1

)
.

When r = 1, write G for the empty flag and set Gr−1 for the empty subset.

We compute the value of the Minkowski weight α∪∆M at τ using the formula in

Theorem 27. If one of the Gk is not a flat of M , then all the ∆M(σ) in the formula

are zero, and hence (
α ∪∆M

)
(τ) = 0.

Suppose that all the Gk are flats of M . We need to prove the following statements.

(i) If rankM(Gr−1) = r, then
(
α ∪∆M

)
(τ) = 0.

(ii) If rankM(Gr−1) = r − 1, then
(
α ∪∆M

)
(τ) = 1.

In both cases, the r-dimensional cones σ containing τ with nonzero ∆M(σ) bijectively

correspond to the flats F1, . . . , Fm of M that are strictly compatible with G. In the

first case, all the Fj should be contained in Gr−1. Since α is linear on the cone

generated by rays corresponding to nonempty proper subsets in Gr−1, Theorem 27
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implies that (
α ∪∆M

)
(τ) = 0.

In the second case, all the Fj should cover Gr−1 and should be covered by E. By the

matroid balancing condition of Proposition 16, we have

(
α ∪∆M

)
(τ) = α

( m∑
j=1

uFj

)
−

m∑
j=1

α(uFj
) = (m− 1)α(uGr−1)−

m∑
j=1

α(uFj
).

Let i be the element defining α. If Gr−1 contains i, then all the Fj contain i. If Gr−1

does not contain i, then (by the flat partition property) exactly one of the Fj contains

i. It follows that the right-hand side of the above equation is 1.

This remark below is for readers familiar with the language of matroid theory

[Oxl11]. We will not use the result of this remark in the remainder of this thesis.

Remark 31. Let M be a modular cut of M , and let M −→ M(M ) be the corre-

sponding elementary quotient map. The argument used in the proof of Proposition

30 shows that, in fact,

(α− αM ) ∪∆M = ∆M(M ),

where αM is the piecewise linear function on ∆An defined by

αM (uS) =


−1 if S ∈M ,

0 if S /∈M .

When combined with the Higgs factorization theorem, this implies that any matroid

cohomology class is a product of divisor classes. To be more precise, let U be the uni-

form matroid of full rank on E, and consider the Higgs factorization of the canonical

quotient map U −→ M . If M1, . . . ,Mn−r is the corresponding sequence of modular
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cuts, then the above generalization of Proposition 30 implies that

∆M = (α− αM1) ∪ (α− αM2) ∪ · · · ∪ (α− αMn−r).

The classes of α− αMj
are not effective in general.

3.2 Every matroid is nef, effective, and extremal.

We have seen that the Bergman fan of a matroid on E defines a cohomology class

of the permutohedral variety XAn . The goal of this section is to show that its Poincaré

dual is an effective homology class which generates an extremal ray of the nef cone

of XAn .

Definition 32. Let X be an n-dimensional smooth complete variety over a field k,

and d = n− l.

(i) A d-dimensional Chow homology class ofX is nef if it intersects all l-dimensional

effective cycles nonnegatively.

(ii) A d-dimensional Chow homology class of X is effective if it is the class of an

d-dimensional effective cycle.

If X is a toric variety, then every effective cycle is rationally equivalent to a torus-

invariant effective cycle [FMSS95]. Therefore, in this case, a d-dimensional Chow

homology class ξ is nef if and only if

ξ ·
[
V (σ)

]
≥ 0

for every l-dimensional torus orbit closure V (σ) of X. In other words, ξ is nef if and

only if its Poincaré dual is a nonnegative function when viewed as a d-dimensional
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Minkowski weight. For example, the Bergman fan of a matroid M on E defines a nef

homology class ∆M ∩ [XAn ] of the permutohedral variety XAn .

If X is a toric variety, then every nef class of X is effective. This is a special case

of the result of Li on spherical varieties [Li13].

Theorem 33. If X is a toric variety, then every nef class of X is effective.

Proof. The main observation is that every effective cycle in a toric variety is ratio-

nally equivalent to a torus-invariant effective cycle. Applying this to the diagonal

embedding

ι : X −→ X ×X, x 7−→ (x, x),

we have an expression

[
ι(X)

]
=
∑
σ,τ

mσ,τ

[
V (σ)× V (τ)

]
∈ An(X ×X), mσ,τ ≥ 0,

where the sum is over all cones σ, τ in the fan of X such that dimσ + dim τ = n.

The choice of the integers mσ,τ is in general not unique, but the knowledge of such

constants characterizes both the cap product and the cup product of (co)homology

classes on X [FMSS95].

Let ξ be a d-dimensional nef class of X. We show that ξ is the class of a torus-

invariant effective cycle. If ∆ is the Poincaré dual of ξ, viewed as a d-dimensional

Minkowski weight, then

ξ = ∆ ∩ [X] =
∑
σ,τ

mσ,τ ∆(σ)
[
V (τ)

]
,

where the sum is over all d-dimensional cones σ and l-dimensional cones τ . Since ξ

is nef, for all σ, we have

∆(σ) = deg
(
ξ ·
[
V (σ)

])
≥ 0.
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Therefore ξ is the class of a torus-invariant effective cycle in X.

An application of Theorem 33 to the permutohedral variety XAn gives the follow-

ing.

Corollary 34. If M is a loopless matroid on E, then ∆M ∩ [XAn ] is effective.

We stress that the statement does not involve the field k which is used to define the

permutohedral variety XAn . The proof of Theorem 33 shows that an explicit effective

cycle with the matroid homology class ∆M ∩ [XAn ] can be found by degenerating the

diagonal of the permutohedral variety in XAn ×XAn .

Definition 35. Let Nd(X) be the real vector space of d-dimensional algebraic cycles

with real coefficients modulo numerical equivalence on a smooth complete variety X.

(i) The nef cone of X in dimension d, denoted Nefd(X), is the cone in Nd(X)

generated by d-dimensional nef classes.

(ii) The pseudoeffective cone of X in dimension d, denoted Peffd(X), is the closure

in Nd(X) of the cone generated by the d-dimensional effective classes.

The nef cone in dimension d and the pseudoeffective cone in dimension l are dual

to each other under the intersection pairing

Nd(X)×Nl(X) −→ R.

If X is the toric variety of a complete fan ∆X , then Nd(X) ' Ad(X)⊗ R can be

identified with the set of real valued functions ∆ from the set of d-dimensional cones

in ∆X which satisfy the balancing condition over R: For every (d − 1)-dimensional

cone τ , ∑
τ⊂σ

∆(σ)uσ/τ is contained in the subspace generated by τ ,

where the sum is over all d-dimensional cones σ containing τ .
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In the toric case, any integral effective cycle is rationally equivalent to an effective

torus-invariant cycle, and hence there is no need to take the closure when defining

the pseudoeffective cone. Furthermore, the pseudoeffective cone and the nef cone of

X are polyhedral cones. These polyhedral cones depend only on the fan ∆X and not

on the field k used to define X. Theorem 33 shows that one is contained in the other.

Theorem 36. If X is a toric variety, then the nef cone of X in dimension d is

contained in the pseudoeffective cone of X in dimension d, for every d.

We remark that there is a 4-dimensional complex abelian variety whose nef cone

in dimension 2 is not contained in the pseudoeffective cone in dimension 2 [DELV11].

We now show that a loopless matroid on E gives an extremal nef class of XAn . The

main combinatorial ingredient is the following theorem of Björner [Bjo92]. Recall that

the order complex of a finite poset L is a simplicial complex which has the underlying

set of L as vertices and the finite chains of L as faces.

Theorem 37. The order complex of the lattice of flats of a matroid is shellable.

The shellability of the order complex of the lattice of flats LM implies, among

many other things, that the Bergman fan ∆M is connected in codimension 1: If σ and

σ̃ are r-dimensional cones in ∆M , then there are r-dimensional cones σ0, σ1, . . . , σl

and (r − 1)-dimensional cones τ1, . . . , τl in ∆M such that

σ = σ0 ⊃ τ1 ⊂ σ1 ⊃ τ2 ⊂ · · · ⊃ τl−1 ⊂ σl−1 ⊃ τl ⊂ σl = σ̃.

Theorem 38. If M is a loopless matroid on E of rank r+1, then the class ∆M∩[XAn ]

generates an extremal ray of the nef cone of XAn in dimension r.

Proof. The claim is that ∆M cannot be written as a sum of two nonnegative real

Minkowski weights in a nontrivial way. Suppose ∆ is an r-dimensional Minkowski

weight with the following property:
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If S =
(
S1 ( S2 ( · · · ( Sr

)
is a flag of nonempty proper subsets of E

and one of the Sj is not a flat of M , then ∆(σS) = 0.

In short, we suppose that ∆ is a Minkowski weight whose support is contained in

the support of ∆M . Note that any nonnegative summand of ∆M should have this

property. We show that there is a constant c such that ∆ = c ∆M .

Let τ be an (r − 1)-dimensional cone determined by a flag of nonempty proper

flats G =
(
G1 ( G2 ( · · · ( Gr−1

)
. If F1, . . . , Fm are the flats which are strictly

compatible with G, then the balancing condition for ∆ at τ says that

m∑
j=1

∆(σj)uFj
is in the subspace generated by τ ,

where σj is the r-dimensional cone generated by uFj
and uG1 , . . . ,uGr−1 . Writing

Gl−1 for the flat in G which is covered by (any) one of the Fj, we have

m∑
j=1

∆(σj)uFj\Gl−1
= c1uG1 + c2uG2\G1 + · · ·+ cr−1uGr−1\Gr−2

for some real numbers c1, c2, . . . , cr−1. One can solve this equation explicitly using

the fact that Gl \Gl−1 is a disjoint union of the nonempty sets Fj \Gl−1:

(i) If l 6= r, then ∆(σ1) = · · · = ∆(σm) = cl and all the other ck are zero.

(ii) If l = r, then ∆(σ1) = · · · = ∆(σm) = c1 = · · · = cr−1.

In any case, we write c for the common value of ∆(σj) and repeat the above argument

for all (r− 1)-dimensional cones τ . Since ∆M is connected in codimension 1, we have

∆ = c ∆M .

Example 39. The permutohedral surface XA2 is the blowup of the three torus in-

variant points of P2. Let π1 : XA2 −→ P2 be the blowup map, D0, D1, D2 be the

exceptional curves, and H be the pull-back of a general line. The nef cone of curves
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in XA2 is a four-dimensional polyhedral cone with five rays. The rays are generated

by the classes of

H, H −D0, H −D1, H −D2, and 2H −D0 −D1 −D2.

The first four classes come from matroids on E = {0, 1, 2}. The matroid correspond-

ing to H has five flats

∅, {0}, {1}, {2}, E,

and the matroid corresponding to H −Di has four flats

∅, {i}, E \ {i}, E.

The remaining class is the class of the strict transform under π1 of a general conic

passing through the three torus-invariant points of P2. It is Cremona symmetric to

the class of H, and comes from the matroid on Ê = {0̂, 1̂, 2̂}, where î = E \ {i},

whose flats are

∅, {0̂}, {1̂}, {2̂}, Ê.

It is the class of the pull-back of a general line through the map π2 in the diagram

XA2

π1

}}

π2

""
P2

Crem
// P2.

Example 40. The fan displacement rule of [FS97] shows that the product of two

nef classes in a toric variety is a nef class. However, one should not expect that the

product of two extremal nef classes in a toric variety is an extremal nef class. For
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example, consider the diagram

XA3

π1

}}

π2

""
P3

Crem
// P3.

If H1, H2 are hyperplanes in P3, then the classes of their pullbacks π−1
1 (H1), π−1

2 (H2)

are extremal nef classes in XA3 . We note that the class of the product π−1
1 (H1) ·

π−1
1 (H2) is a sum of three different extremal nef curve classes in XA3 . One may show

this by directly computing the cup product of the piecewise linear functions α and β

using Theorem 27. Alternatively, one may see this geometrically as follows. Let H1

be the plane

z0 + z1 + z2 + z3 = 0,

and choose H2 so that π−1
2 (H2) is the strict transform under π1 of the cubic surface

z0z1z2 + z0z1z3 + z0z2z3 + z1z2z3 = 0.

Then the intersection in P3 is the union of three lines

{z0 + z1 = z2 + z3 = 0} ∪ {z0 + z2 = z1 + z3 = 0} ∪ {z0 + z3 = z1 + z2 = 0}.

The strict transform of any one of the three lines under π1 generates an extremal ray

of the nef cone of XA3 . Their classes correspond to, respectively, to rank 2 matroids

whose nonempty proper flats are

{
{0, 1}, {2, 3}

}
and

{
{0, 3}, {1, 3}

}
and

{
{0, 3}, {1, 2}

}
.

In this case, the intersection of the strict transforms is the strict transform of the

intersection. It follows that the sum of the three nef curve classes in XA3 is the
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product π−1
1 (H1) · π−1

1 (H2).

In general, finding all extremal rays of the nef cone seems to be a difficult combi-

natorial problem, even for relatively simple toric varieties. Here is a sample question:

How many extremal rays are there in the nef cone of XAn in dimension two for some

small values of n?

Let ∆ be a two-dimensional nonnegative Minkowski weight on the fan of X. It is

convenient to think the support of ∆ as a geometric graph G∆, whose vertices are the

primitive generators of the rays of the cones in the support of ∆. Two vertices of G∆

are connected by an edge if and only if they generate a cone on which ∆ is nonzero.

The main idea used in the proof of Theorem 38 gives a simple condition on G∆

which guarantees that the class ∆ ∩ [X] generates an extremal ray of the nef cone of

X. A few graphs G∆, including those of the Bergman fans of rank 3 matroids, satisfy

this condition.

Proposition 41. If G∆ is connected and the set of neighbors of any vertex is linearly

independent, then ∆∩[X] generates an extremal ray of the nef cone of X in dimension

two.

The condition on G∆ is not necessary for ∆ ∩ [X] to be extremal.

Example 42. Consider the two-dimensional Minkowski weight ∆ on ∆A4 which has

value 1 on the cones corresponding to flags of the form

{i} ( {i, j, k}, i 6= j 6= k,

and has value 0 on all other two-dimensional cones of ∆A4 . A direct computation

shows that ∆∩ [XA4 ] generates an extremal ray of the nef cone of XA4 . The graph of

∆ has 10 vertices at which the set of neighbors is linearly dependent.

We note that ∆ ∩ [XA4 ] is an intersection of two extremal nef divisor classes. In

fact, there is a single irreducible family of surfaces in XA4 whose members have the
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class ∆∩ [XA4 ]. The family consists of strict transforms under π1 of the cubic surfaces

in P4 defined by the equations

c0z0 + c1z1 + c2z2 + c3z3 + c4z4 = 0,

c234z2z3z4 + cc134z1z3z4 + c124z1z2z4 + c123z1z2z3 + c034z0z3z4

+ c024z0z2z4 + c023z0z2z3 + c014z0z1z4 + c013z0z1z3 + c012z0z1z2 = 0,

where ci and cijk are parameters. Each one of the above two equations defines a

basepoint free linear system on XA4 whose class generates an extremal ray of the nef

cone of divisors.

Example 43. Consider the two-dimensional Minkowski weight ∆ on ∆An which has

value 1 on the cones corresponding to flags of the form

{i} ( E \ {j}, i 6= j,

and has value 0 on all other two-dimensional cones of ∆An . Then the graph G∆

satisfies the condition of Proposition 41, and hence ∆ ∩ [XAn ] generates an extremal

ray of the nef cone of XAn . This homology class is invariant under the Cremona

symmetry of XAn and the action of the symmetric group on E.

When n = 3, the graph is that of a three-dimensional cube. Since the codimension

of ∆ is 1, it is not difficult to describe families of surfaces in XA3 whose members

have the class ∆∩ [XA3 ]. There is a single irreducible family, and it consists of strict

transforms under π1 of the quadric surfaces in P3 defined by

c01z0z1 + c02z0z2 + c03z0z3 + c12z1z2 + c13z1z3 + c23z2z3 = 0,
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where cij are parameters. The equation defines a basepoint free linear system on

XA3 which is invariant under the Cremona symmetry of XA3 and the action of the

symmetric group on E.

When n = 4, the extremal nef class ∆ ∩ [XA4 ] has the interesting property that

(i) ∆ ∩ [XA4 ] is not a product of two nef (integral) divisor classes, and

(ii) 2∆ ∩ [XA4 ] is a product of two nef (integral) divisor classes.

To see that ∆ ∩ [XA4 ] is not an intersection of two nef divisor classes, one notes that

any surface S in XA4 which has the class ∆ ∩ [XA4 ] should map to a cubic surface

in P4 under the maps π1 and π2. The cubic surfaces π1(S) and π2(S) are obtained

by intersecting general members of torus-invariant linear systems on P4 outside their

common base locus. If the common base locus has dimension less than 2, then the

degrees of the linear systems are 1 and 3, and one can check directly that the class

of S is not invariant either under the Cremona symmetry of XA4 or under the action

of the symmetric group on E. If the common base locus has dimension 2, then, since

complete intersections are connected in codimension 1, π1(S) and π2(S) intersect

some 2-dimensional torus orbits in P4 in curves. This contradicts that the Minkowski

weight ∆ has value zero on all flags involving two element subsets of E.

On the other hand, 2∆ ∩ [XA4 ] is an intersection of two nef divisor classes. The

corresponding family comes from sextic surfaces in P4 defined by the equations

c01z0z1 + c02z0z2 + c03z0z3 + c04z0z4 + c12z1z2

+ c13z1z3 + c14z1z4 + c23z2z3 + c24z2z4 + c34z3z4 = 0,

c234z2z3z4 + c134z1z3z4 + c124z1z2z4 + c123z1z2z3 + c034z0z3z4

+ c024z0z2z4 + c023z0z2z3 + c014z0z1z4 + c013z0z1z3 + c012z0z1z2 = 0,
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where cij and cijk are parameters. The family of strict transforms under π1 is invariant

under the Cremona symmetry of XA4 and the action of the symmetric group on E.

Each of its members has the class 2∆ ∩ [XA4 ]. Each one of the above two equations

defines a basepoint free linear system on XA4 whose class generates an extremal ray

of the nef cone of divisors.

It is more difficult to describe families of surfaces in XA4 whose members have the

homology class ∆ ∩ [XA4 ]. In fact, there is a single irreducible family, and it is the

family of strict transforms of cubic surfaces in P4 defined by the 2× 2 minors of the

matrix
c110z0 + c111z1 + c112z2 + c113z3 + c114z4 c120z0 + c121z1 + c122z2 + c123z3 + c124z4

c210z0 + c211z1 + c212z2 + c213z3 + c214z4 c220z0 + c221z1 + c222z2 + c223z3 + c224z4

c310z0 + c311z1 + c312z2 + c313z3 + c314z4 c320z0 + c321z1 + c322z2 + c323z3 + c324z4


which is given by five sufficiently general rank 1 matrices


c110 c120

c210 c220

c310 c320

 ,

c111 c121

c211 c221

c311 c321

 ,

c112 c122

c212 c222

c312 c322

 ,

c113 c123

c213 c223

c313 c323

 ,

c114 c124

c214 c224

c314 c324

 .

The family of strict transforms under π1 is invariant under the Cremona symmetry

of XA4 and the action of the symmetric group on E.

In general, for n ≥ 3, there is a single irreducible family whose members have the

extremal nef class

∆ ∩ [XAn ].

The family consists of strict transforms of rational scrolls in Pn which contain all the

torus-invariant points and intersect no other torus orbits of codimension ≥ 2. The
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homology class is not an intersection of nef divisor classes. On the other hand,

(n− 1)! ·∆ ∩ [XAn ]

is an intersection of nef divisor classes. The corresponding family is the family of strict

transforms of complete intersections in Pn defined by general linear combinations of

square-free monomials in z0, z1, . . . , zn with degrees 2, 3, . . . , n− 1.

3.3 Realizing matroids in the permutohedral variety

This is the first section where the field k comes into play. The main result of this

section says that a matroid M is realizable over k if and only if the corresponding

homology class ∆M ∩ [XAn ] in the permutohedral variety is the class of a subvariety

over k. This sharply contrasts Corollary 34, which says that the class ∆M ∩ [XAn ] is

the class of an effective cycle over k for any matroid M and any field k.

Let XAn be the permutohedral variety over k, and let M be a loopless matroid

on E = {0, 1, . . . , n}. By a subvariety of XAn , we mean a geometrically reduced and

geometrically irreducible closed subscheme of finite type over k. As usual, the rank

of M is r + 1.

Definition 44. A realization R of M over k is a collection of vectors f0, f1, . . . , fn

in an (r + 1)-dimensional vector space V over k with the following property:

A subset I of E is independent for M if and only if {fi | i ∈ I} is linearly

independent in V .

Since M has no loops, all the fj are nonzero. The arrangement associated to R,

denoted AR , is the hyperplane arrangement

AR := {f0f1 · · · fn = 0} ⊆ P(V ∨),
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where P(V ∨) is the projective space of hyperplanes in V . We say that a linear subspace

of P(V ∨) is a flat of AR if it is an intersection of hyperplanes in AR . There is an

inclusion reversing bijection between the flats of M and the flats of AR :

F 7−→
⋂
j∈F

{fj = 0}.

The embedding associated to R, denoted LR , is the map from the projectivized dual

LR : P(V ∨) ' Pr −→ Pn, LR = [f0 : f1 : · · · : fn].

Since f0, f1, . . . , fn generate V , the linear map LR is well-defined and is an em-

bedding. Furthermore, since M has no loops, the generic point of P(V ∨) maps to the

open torus orbit of Pn. If k is infinite, then a general point of P(V ∨) maps to the

open torus orbit of Pn. Under the embedding LR , the union of the torus-invariant

hyperplanes in Pn pullbacks to the arrangement AR .

Definition 45. The variety of R, denoted YR , is the strict transform of the image

of LR under the composition of blowups π1 : XAn −→ Pn. By definition, there is a

commutative diagram

YR
ιR //

πR

��

XAn

π1

��
P(V ∨)

LR

// Pn,

where ιR is the inclusion and πR is the induced blowup.

Recall that π1 can be factored into

XAn = Xn−1 −→ Xn−2 −→ · · · −→ X1 −→ X0 = Pn,
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where Xd+1 −→ Xd is the blowup of the strict transform of the union of all the torus-

invariant d-dimensional linear subspaces of Pn. If S is a proper subset of E with

|S| ≥ 2, then DS is the exceptional divisor of π1 corresponding to the codimension

|S| linear subspace ⋂
i∈S

{
zi = 0

}
⊆ Pn.

If S = {i}, then DS is the strict transform of the hyperplane {zi = 0}. The union of

all the DS is a simple normal crossings divisor whose complement in XAn is the open

torus orbit.

Similarly, πR is the blowup of all the flats of the hyperplane arrangement AR . It

is the composition of maps

YR = Yr−1 −→ Yr−2 −→ · · · −→ Y1 −→ Y0 = P(V ∨),

where Yd+1 −→ Yd is the blowup of the strict transform of the union of all the d-

dimensional flats of AR . Exceptional divisors of πR : YR −→ P(V ∨) are indexed by

flats with rank at least 2.

Notation. If F is a flat of rank at least 2, then we write EF for the exceptional

divisor of πR corresponding to the codimension rankM(F ) linear subspace

⋂
j∈F

{
fj = 0

}
⊆ P(V ∨).

When F is a flat of rank 1, we define EF to be the strict transform of the hyperplane

of P(V ∨) corresponding to F .

The union of all the EF is a simple normal crossings divisor whose complement in

YR is the intersection of YR with the open torus orbit of XAn . In the language of De

Concini and Procesi [DP95], the variety YR is the wonderful compactification of the

arrangement complement P(V ∨) \ AR corresponding to the maximal building set.
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The statement below is a classical variant of the tropical statement of Katz and

Payne [KP11].

Theorem 46. Let XAn be the n-dimensional permutohedral variety over k.

(i) If R is a realization of M over k, then

[YR ] = ∆M ∩ [XAn ] ∈ Ar(XAn).

(ii) If Y is an r-dimensional subvariety of XAn such that

[Y ] = ∆M ∩ [XAn ] ∈ Ar(XAn),

then Y = YR for some realization A of M over k.

In particular, M is realizable over k if and only if ∆M ∩ [XAn ] is the class of a

subvariety over k.

Proof. For a nonempty proper subset F of E, the subvariety YR intersects the torus-

invariant divisor DF if and only if F is a flat of M . In this case,

YR ∩DF = EF .

Let F =
(
F1 ( F2 ( · · · ( Fr

)
be a flag of nonempty proper subsets of E. If one of

the Fj is not a flat of M , then

YR ∩ V (F) = YR ∩DF1 ∩ · · · ∩DFr = ∅.

If all the Fj are flats of M , then

YR ∩ V (F) = YR ∩DF1 ∩ · · · ∩DFr = EF1 ∩ · · · ∩ EFr ,
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and this intersection is a reduced point. Therefore, the class of YR in XAn is Poincaré

dual to the Bergman fan of M . In other words,

[YR ] = ∆M ∩ [XAn ] ∈ Ar(XAn).

This proves the first assertion.

Conversely, suppose that Y is an r-dimensional subvariety of XAn defined over k

such that

[Y ] = ∆M ∩ [XAn ] ∈ Ar(XAn).

As an intermediate step, we prove that Y is not contained in any torus-invariant

hypersurface of XAn .

Consider a torus-invariant prime divisor of XAn . It is of the form DS for some

nonempty proper subset S of E. We show that Y is not contained in DS. Choose a

rank 1 flat F1 which is not comparable to S. This is possible because M has no loops

and E is a disjoint union of the rank 1 flats of M . We extend F1 to a maximal flag

of proper flats

F =
(
F1 ( F2 ( · · · ( Fr

)
.

By definition of the Bergman fan ∆M , we have

DF1 ·DF2 · . . . ·DFr · [Y ] = 1.

On the other hand, if Y is contained in DS, then the above intersection product can

be computed by pulling back the divisors DFj
under the inclusion ι : DS → XAn .

Since F1 is not comparable to S, the pull-back of DF1 to DS is equivalent to zero.

This leads to the contradiction that

ι∗DF1 · ι∗DF2 · . . . · ι∗DFr · [Y ] = 0.
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We now show that Y = YR for some realization R of M . Let i be an element

of E, and let Hi = {zi = 0} be the corresponding hyperplane of Pn. Proposition 30

shows that

π−1
1 (Hi) · . . . · π−1

1 (Hi)︸ ︷︷ ︸
r

· [Y ] =
(
α ∪ · · · ∪ α︸ ︷︷ ︸

r

∪ ∆M

)
∩ [XAn ] = 1.

The projection formula tells us that the image π1(Y ) is an r-dimensional subvariety of

Pn which has degree 1. In other words, the image is an r-dimensional linear subspace

π1(Y ) = Pr ⊆ Pn.

Write the equations defining the above linear embedding by

L : Pr −→ Pn, f = [f0 : f1 : · · · : fn].

Since Y is not contained in any torus-invariant hypersurface of XAn , the image π1(Y )

is not contained in any torus-invariant hyperplane of Pn. Therefore all the linear forms

fj are nonzero. Let R be the set of vectors {f0, f1, . . . , fn} in the (r+ 1)-dimensional

vector space H0
(
Pr,O(1)

)
. This defines a loopless matroid N on E which is realizable

over k.

By definition of the strict transform, Y = YR . Applying the first part of the

theorem to YR , we have

[Y ] = [YR ] = ∆N ∩ [XAn ],

Since the set of flats of a matroid determines the matroid, M = N . This proves the

second assertion.

Example 47. We work with the permutohedral variety X = XA6 over the integers.
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Consider the embedding

L : P2 −→ P6, [x0 : x1 : x2] 7−→ [x0 : x1 : x2 : x0 +x1 : x0 +x2 : x1 +x2 : x0 +x1 +x2].

The image of L is the intersection of the ten hyperplanes

H1 = {z5 = z1 + z2}, H2 = {z4 = z0 + z2}, H3 = {z3 = z0 + z1},

H4 = {z6 = z2 + z3}, H5 = {z6 = z1 + z4}, H6 = {z6 = z0 + z5},

H7 = {2z0 = z3 + z4 − z5}, H8 = {2z1 = z3 − z4 + z5}, H9 = {2z2 = −z3 + z4 + z5},

H10 = {2z6 = z3 + z4 + z5}.

Let H̃j be the strict transform of Hj under the blowup π1 : X −→ P6. For each prime

number p, we have the commutative diagram over Z/p

Yp //

��

Xp

π1,p

��
Prp

Lp // Pnp ,

where Yp is the strict transform of the image of Lp under the blowup π1,p. Write H̃j,p

for the intersection of H̃j and Xp. For any prime number p, we have

[ 9⋂
j=0

H̃j,p

]
= ∆M ∩ [Xp],

where M is the rank 3 matroid on E whose rank 2 flats are

{0, 1, 3}, {0, 2, 4}, {1, 2, 5}, {0, 5, 6}, {1, 4, 6}, {2, 3, 6}.
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If p 6= 2, then
10⋂
j=1

H̃j,p = Yp.

If p = 2, then
10⋂
j=1

H̃j,p = Yp ∪ Sp,

for some surface Sp in Xp. As a family of subschemes of X over Spec(Z), the latter

is the limit of the former. When p = 2, we have

[Yp] = ∆N ∩ [Xp],

where N is the rank 3 matroid on E whose rank 2 flats are

{0, 1, 3}, {0, 2, 4}, {1, 2, 5}, {0, 5, 6}, {1, 4, 6}, {2, 3, 6}, {3, 4, 5}.

The matroid N is realized by the Fano plane, the configuration of the seven nonzero

vectors in the three-dimensional vector space over the field with two elements. This

matroid is not realizable over fields with characteristic not equal to 2.
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CHAPTER IV

The anticanonical image of a matroid

4.1 Truncating the Bergman fan of a matroid

Let M be a loopless matroid on E, and let r1, r2, and d be integers which satisfy

1 ≤ r1 ≤ r2 ≤ r and d = (r2 − r1) + 1.

We define a d-dimensional weighted fan ∆M [r1,r2], called the truncated Bergman fan

of M . The truncated Bergman fan defines a d-dimensional nef and effective homology

class of XAn . When M is realizable, the combinatorics of the truncated Bergman fan

is governed by the geometry of certain subvarieties of XAn which are far from being

linear. Understanding the balancing condition for the truncated Bergman fan will be

important for computing the anticanonical image of a matroid in Section 4.2.

As usual, when we use the words “flat”, “cover”, or “rank”, we are referring to

the matroid M and its lattice of flats.

Definition 48. The truncated Bergman fan of type (r1, r2), denoted ∆M [r1,r2], is a

function from the set of d-dimensional cones in ∆An to the set of integers defined as

follows. Let σ be the d-dimensional cone determined by a flag of nonempty proper

subsets

F =
(
Fr1 ( Fr1+1 ( · · · ( Fr2−1 ( Fr2

)
.
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(i) If each Fj is a flat of rank j, then the value of the truncated Bergman fan at σ

is |µM(∅, Fr1)|.

(ii) Otherwise, the value of the truncated Bergman fan at σ is 0.

When r1 = 1, the truncated Bergman fan is the Bergman fan of a repeated

truncation of M . In general, the truncated Bergman fan has values other than 0, 1,

and is not the Bergman fan of any matroid.

Proposition 49. The truncated Bergman fan ∆M [r1,r2] is a d-dimensional Minkowski

weight on ∆An. In other words, the truncated Bergman fan satisfies the balancing

condition.

The homology class of the truncated Bergman fan of a matroid often, but not

always, generates an extremal ray of the nef cone of XAn .

Proof. Let τ be a (d− 1)-dimensional cone in the permutohedral fan generated by a

flag of nonempty proper subsets

G = G(τ) =
(
G1 ( G2 ( · · · ( Gd−1

)
.

We check the balancing condition for the truncated Bergman fan at τ . For this we

may assume that each Gj is a flat with rank at least r1 and at most r2, since otherwise

the truncated Bergman fan has value 0 on each d-dimensional cone containing τ . Now

there are two cases to be considered separately:

(i) rankM(G1) = r1 + 1.

In this case, the balancing condition is another way of expressing Weisner’s theorem.

To see this, note that each d-dimensional cone σ containing τ which is in the support

of ∆M [r1,r2] corresponds to a unique flag of flats of the form

F = F(σ) =
(
F ( G1 ( · · · ( Gd−1

)
.
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If F1, . . . , Fm are the flats covered by G1, then the vector to be balanced is

∑
τ⊂σ

∆M [r1,r2](σ)uσ/τ =
m∑
j=1

∣∣µM(∅, Fj)
∣∣uFj

.

We need to show that this vector lies in the lattice generated by uG1 , . . . ,uGd−1
. We

show that the vector is a multiple of uG1 by computing its coordinates before taking

the quotient by (1, . . . , 1). For any nonzero element i not in G1, the i-th coordinate

of the right-hand side is 0, and for any nonzero element i in G1, the i-th coordinate

of the right-hand side is ∑
i∈Fj

∣∣µM(∅, Fj)
∣∣,

where the sum is over all Fj which contain i. By Weisner’s theorem, this quantity is

independent of i. Explicitly, for any element i of G1,

∑
i∈Fj

∣∣µM(∅, Fj)
∣∣ =

m∑
j=1

∣∣µM(∅, Fj)
∣∣− ∣∣µM(∅, G1)

∣∣,
hence

m∑
j=1

∣∣µM(∅, Fj)
∣∣uFj

=

[
m∑
j=1

∣∣µM(∅, Fj)
∣∣− ∣∣µM(∅, G1)

∣∣]uG1 .

This shows that the balancing condition for ∆M [r1,r2] is satisfied at τ .

(ii) rankM(G1) = r1.

In this case, if we set Gd = E, then there is a unique index l ≥ 2 which satisfies

rankM(Gl) ≥ rankM(Gl−1) + 2.

Each d-dimensional cone σ containing τ which is in the support of ∆M [r1,r2] corre-

sponds to a unique flag of flats of the form

F = F(σ) =
(
G1 ( · · · ( Gl−1 ( F ( Gl ( · · · ( Gd−1

)
.
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If F1, . . . , Fm are the flats that cover Gl−1 and are covered by Gl, then the vector to

be balanced is ∑
τ⊂σ

∆M [r1,r2](σ)uσ/τ =
m∑
j=1

∣∣µM(∅, G1)
∣∣uFj

.

We need to show that this vector lies in the lattice generated by uG1 , . . . ,uGd−1
. By

Proposition 16, we have

m∑
j=1

∣∣µM(∅, G1)
∣∣uFj

=
∣∣µM(∅, G1)

∣∣(uGl
+ (m− 1)uGl−1

)
.

This shows that the balancing condition for ∆M [r1,r2] is satisfied at τ .

For later use, we record here the main formula obtained in the proof of the balanc-

ing condition for the truncated Bergman fan of M . This formula, which is a version

of Weisner’s theorem, will play a role in the proof of Theorem 55.

Proposition 50. Let F1, . . . , Fm be the flats of a loopless matroid M that are covered

by a flat G1. For any element i of G1, we have

m∑
j=1

∣∣µM(∅, Fj)
∣∣uFj

=

[∑
i∈Fj

∣∣µM(∅, Fj)
∣∣]uG1 .

Equivalently,

m∑
j=1

∣∣µM(∅, Fj)
∣∣uFj

=

[
−
∣∣µM(∅, G1)

∣∣+
m∑
j=1

∣∣µM(∅, Fj)
∣∣]uG1 .

Example 51. Consider the quartic surface S in P4 defined by

z0 + z1 + z2 + z3 + z4 = 0, z1z2z3z4 + z0z2z3z4 + z0z1z3z4 + z0z1z2z4 + z0z1z2z3 = 0.
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This quartic surface contains ten lines

zi0 + zi1 + zi2 = zi3 = zi4 = 0

and ten double points

zi0 = zi1 = zi2 = zi3 + zi4 = 0,

where (i0, i1, i2, i3, i4) is a permutation of (0, 1, 2, 3, 4). Every line contains three of

the ten points, and every point is contained in three of the ten lines. In fact, the

incidence between the lines and the points is that of the Desargues configuration in

a projective plane. We have a commutative diagram

S̃
ιS̃ //

πS

��

XA4

π1

��
S ιS

// P4,

where ιS, ιS̃ are inclusions and πS is the blowup of the ten singular points. The

smooth surface S̃ is invariant under the Cremona symmetry of XA4 and the action

of the symmetric group on E. It contains twenty smooth rational curves with self-

intersection (−2), namely the strict transforms of the ten lines and the exceptional

curves over the ten singular points. Any two of the twenty curves are either disjoint

or intersect transversely at one point.

The homology class of S̃ in XA4 is given by the truncated Bergman fan of type

(2, 3) of the rank 4 uniform matroid M :

[S̃] = ∆M [2,3] ∩ [XA4 ].

The graph of the truncated Bergman fan satisfies the condition in Proposition 41,
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hence the homology class generates an extremal ray of the nef cone of XA4 in dimen-

sion 2.

Example 52. Consider the quartic surface S in P4 defined by

z1 + z2 + z3 + z4 = 0, z1z2z3z4 + z0z2z3z4 + z0z1z3z4 + z0z1z2z4 + z0z1z2z3 = 0.

This quartic surface contains four lines of the form

zi1 + zi2 + zi3 = zi4 = z0 = 0,

where (i1, i2, i3, i4) is a permutation of (1, 2, 3, 4), six lines of the form

zi1 + zi2 = zi3 = zi4 = 0,

where (i1, i2, i3, i4) is a permutation of (1, 2, 3, 4), six double points

z0 = zi1 = zi2 = zi3 + zi4 = 0,

where (i1, i2, i3, i4) is a permutation of (1, 2, 3, 4), and one triple point

z1 = z2 = z3 = z4 = 0.

The incidence between the ten lines and the seven points is that of the rank 2 flats

and rank 3 flats of the matroid M on {0, 1, 2, 3, 4} which has one minimal dependent
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set {1, 2, 3, 4}. We have a commutative diagram

S̃
ιS̃ //

πS

��

XA4

π1

��
S ιS

// P4,

where ιS, ιS̃ are inclusions and πS is the blowup of the seven singular points. The

strict transforms of the ten lines are smooth rational curves in S̃ disjoint from each

other. Four of the ten curves, those corresponding to the lines containing the triple

point, have self-intersection (−2). The remaining six have self-intersection (−1). The

six exceptional curves over the double points of S are smooth rational curves in

S̃ with self-intersection (−2), and the exceptional curve over the triple point is an

elliptic curve with self-intersection (−3). A curve corresponding to a line meets a

curve corresponding to a singular point if and only if the line contains the point. In

this case, the two curves intersect transversely at one point.

The homology class of S̃ in XA4 is given by truncated Bergman fan of type (2, 3)

of M :

[S̃] = ∆M [2,3] ∩ [XA4 ].

Although the graph of the truncated Bergman fan does not satisfy the condition in

Proposition 41, the homology class generates an extremal ray of the nef cone of XA4

in dimension 2.

The previous examples generalize as follows. Let M be a rank 4 matroid on E

which has a realization R over k. Consider the associated embedding

LR : P(V ∨) −→ Pn, LR = (f0 : f1 : · · · : fn),
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and the degree n surface S in P(V ∨) ' P3 defined by

n∑
i=0

f0 · · · f̂i · · · fn = 0.

The surface S contains the 1-dimensional flats of the arrangement AR and the 0-

dimensional flats of the arrangement AR . The incidence between the points and lines

is that of the rank 2 and rank 3 flats of M . We have a commutative diagram

S̃
ιS̃ //

πS

��

YR

πR

��

ιR // XAn

π1

��
S ιS

// P(V ∨)
LR

// Pn,

where ιS, ιS̃ are inclusions and πS is the blowup of the singular points and lines. The

surface S̃ is smooth and it contains an arrangement of (smooth but not necessarily

connected) curves indexed by the rank 3 and rank 2 flats of M . The intersections of

these curves in S̃ are controlled by the lattice of flats of M and its Möbius function:

(i) Two curves CF1 , CF2 indexed by flats F1, F2 intersect each other if and only if

F1 and F2 are compatible. If F1 ( F2, then CF1 and CF2 intersect transversely

at µM(∅, F1) points.

(ii) If F is a rank 2 flat and i is any element of F , then the self-intersection number

of CF in S̃ is

−
∑
G

µM(∅, F ),

where the sum is over all flats G that cover F and not containing i.

(iii) If F is a rank 3 flat and i is any element of F , then the self-intersection number
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of CF in S̃ is

−
∑
G

µM(∅, G),

where the sum is over all flats G that are covered by F and containing i.

The homology class of S̃ in XAn is Poincaré dual to the cohomology class defined by

the type (2, 3) truncated Bergman fan of M .

Example 53. The truncated Bergman fan of a matroid, in general, does not gen-

erate an extremal ray of the nef cone of the permutohedral variety. Here is a two-

dimensional example. Let M be the rank 4 matroid on E = {0, 1, 2, 3, 4, 5} whose

rank 3 flats are

{0, 1, 2, 3}, {2, 3, 4, 5}, {0, 1, 4, 5},

{0, 2, 4}, {0, 2, 5}, {0, 3, 4}, {0, 3, 5},

{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}.

One can check that the rank 2 flats of M are all subsets of E with two elements, and

the two-dimensional nef class ∆M [2,3]∩ [XA5 ] can be written as a sum of two extremal

nef classes in a nontrivial way. For an one-dimensional example, see Example 40.

4.2 The characteristic polynomial is the anticanonical image.

The anticanonical linear system of the permutohedral variety XAn is basepoint

free and big. The product map π1 × π2 may be viewed as the anticanonical map of

XAn , where π1, π2 are the blowups in the commutative diagram

XAn

π1

||

π2

""
Pn

Crem
// Pn.
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Write the reduced characteristic polynomial of a loopless matroid M as

χM(q) = χM(q)/(q − 1) =
r∑
l=0

(−1)lµlMq
r−l.

We show that the reduced characteristic polynomial χM(q) represents the push-

forward of the homology class of M under the anticanonical mapping. This is the

main result of [HK12], and we give a refined proof here. Conjectures 21 and 23 for

realizable matroids follow from this computation.

Theorem 54. Under the anticanonical map

π1 × π2 : XAn −→ Pn × Pn,

the homology class of M push-forwards to its reduced characteristic polynomial χM(q):

∆M ∩ [XAn ] 7−→
r∑
l=0

µlM [Pr−l × Pl].

Theorem 54 follows from a more general statement relating the Bergman fan ∆M ,

the truncated Bergman fan ∆M [r1,r2], and the piecewise linear functions α, β. Recall

that α = α(i) and β = β(i) are piecewise linear functions on the fan ∆An defined by

the values

α(uS) =


−1 if i ∈ S,

0 if i /∈ S,

and β(uS) =


0 if i ∈ S,

−1 if i /∈ S.

For any i and any nonempty proper subset G of E, the function α is linear when

restricted to the cone

cone(uj | j ∈ G) =
⋃
F

σF ,

where the union is over all flags of nonempty proper subsets contained in G. The
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function β is linear when restricted to the cone

cone(uĵ | j /∈ G) =
⋃
F

σF ,

where the union is over all flags of nonempty proper subsets which contain G.

Proposition 55. If r1, r2 are integers which satisfy 1 ≤ r1 < r2 ≤ r, then

(i) α ∪∆M [r1,r2] = ∆M [r1,r2−1],

(ii) β ∪∆M [r1,r2] = ∆M [r1+1,r2].

Proof. We prove the second equality. The proof of the first equality is similar to that

of Proposition 30, and will be omitted.

Let τ be a (d−1)-dimensional cone in ∆An generated by a flag of nonempty proper

subsets

G =
(
G1 ( G2 ( · · · ( Gd−1

)
.

The d-dimensional cones σ containing τ bijectively correspond to nonempty proper

subsets of E that are strictly compatible with G. We show that

(
β ∪∆M [r1,r2]

)
(τ) = ∆M [r1+1,r2](τ).

If one of the Gj is not a flat with rank at least r1 and at most r2, then

(
β ∪∆M [r1,r2]

)
(τ) = 0 and ∆M [r1+1,r2](τ) = 0.

Suppose that each Gj is a flat with rank at least r1 and at most r2. We need to

prove the following statements.

(i) If rankM(G1) = r1, then
(
β ∪∆M [r1,r2]

)
(τ) = 0.

(ii) If rankM(G1) = r1 + 1, then
(
β ∪∆M [r1,r2]

)
(τ) =

∣∣µM(∅, G1)
∣∣.
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In the first case, the d-dimensional cones containing τ with nonzero value of ∆M [r1,r2]

correspond to some flats containing G1. Since β is linear on the union of cones

corresponding to flags of nonempty proper subsets which contain G1, Theorem 27

implies that (
β ∪∆M [r1,r2]

)
(τ) = 0.

For the second case, let F1, . . . , Fm be the flats that are covered by G1. These flats

bijectively correspond to the d-dimensional cones containing τ with nonzero value of

∆M [r1,r2]. By Theorem 27, we have

(
β ∪∆M [r1,r2]

)
(τ) = β

(
m∑
j=1

∣∣µM(∅, Fj)
∣∣uFj

)
−

m∑
j=1

β

(∣∣µM(∅, Fj)
∣∣uFj

)
,

and, by Proposition 50, the right-hand side is equal to

[
−
∣∣µM(∅, G1)

∣∣+
m∑
j=1

∣∣µM(∅, Fj)
∣∣]β(uG1)−

m∑
j=1

∣∣µM(∅, Fj)
∣∣β(uFj

).

Let i be the element defining β. If G1 does not contain i, then all the Fj do not

contain i, and hence

β(uG1) = β(uF1) = · · · = β(uFm) = −1.

If G1 contains i, then β(uG1) = 0, and by Weisner’s theorem applied to G1 and i,

−
m∑
j=1

∣∣µM(∅, Fj)
∣∣β(uFj

) =
∣∣µM(∅, G1)

∣∣.
It follows that (

β ∪∆M [r1,r2]

)
(τ) =

∣∣µM(∅, G1)
∣∣.
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Since ∆M [1,r] is ∆M , a repeated application of Proposition 55 shows that, for

1 ≤ r1 ≤ r2 ≤ r,

(
β ∪ · · · ∪ β︸ ︷︷ ︸

r1−1

)
∪
(
α ∪ · · · ∪ α︸ ︷︷ ︸

r−r2

)
∪∆M = ∆M [r1,r2].

Corollary 56. We have the equality between 0-dimensional Minkowski weights

(
β ∪ · · · ∪ β︸ ︷︷ ︸

l

)
∪
(
α ∪ · · · ∪ α︸ ︷︷ ︸

r−l

)
∪∆M = µlM ,

where µlM is the absolute value of the coefficient of qr−l in the reduced characteristic

polynomial χM(q).

Proof. By Proposition 55,

β ∪
(
β ∪ · · · ∪ β︸ ︷︷ ︸

l−1

)
∪
(
α ∪ · · · ∪ α︸ ︷︷ ︸

r−l

)
∪∆M = β ∪∆M [l,l].

By Theorem 27 and the balancing condition for ∆M [l,l] at the origin, we have

β ∪∆M [l,l] =
m∑
j=1

∣∣µM(∅, Fj)
∣∣,

where Fj are the flats of rank l not containing the element i defining β. Proposition

20 says that this quantity is equal to µlM .

Proof of Theorem 54. One computes the Poincaré dual of the push-forward using the

projection formula and Corollary 56.

4.3 Is every matroid realizable over every field?

Let X be an n-dimensional smooth complete variety over an algebraically closed

field k. The group of numerical equivalence classes of d-dimensional cycles Nd(X) is
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a finitely generated abelian group with several additional structures. In particular, it

contains

(i) the set of prime classes, the classes of subvarieties,

(ii) the set of effective classes, the nonnegative linear combinations of prime classes,

(iii) the set of nef classes, the classes which intersect all codimension d primes non-

negatively.

The semigroups (ii) and (iii) define cones in the finite-dimensional vector space

Nd(X)R, the peusdoeffective cone and the nef cone of X. When X is a toric variety,

the group Nd(X) and its subsets (ii), (iii) are determined by the fan of X. On the

other hand, in general, the subset (i) depends on the field k, as we have seen in

Theorem 46 for permutohedral varieties.

Definition 57. A homology class ξ ∈ Nd(X)R is said to be prime if some positive

multiple of ξ is the class of a subvariety of X. Define

Pd(X) :=
(

the closure of the set of prime classes in Nd(X)R

)
.

The set Pd(X) is a closed subset of the finite-dimensional vector space Nd(X)R

invariant under scaling by positive real numbers. It contains all extremal rays of the

pseudoeffective cone of X in dimension d.

The theorem of Kleiman says that a nef divisor class is a limit of ample divisor

classes [Kle66]. This shows that

Nefn−1(X) ⊆ Pn−1(X) ⊆ Peffn−1(X).
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The theorem of Boucksom-Demailly-Paun-Peternell says that a nef curve class is a

limit of movable curve classes [BDPP]. This shows that

Nef1(X) ⊆ P1(X) ⊆ Peff1(X).

In general, the set Pd(X) does not contain all the pseudoeffective nef classes of X. If

X is a product of two projective spaces, then Pd(X) is the set of log-concave sequences

of nonnegative numbers with no internal zeros [Huh12].

Theorem 58. If ξ is an element in the homology group

ξ =
∑
j

xj
[
Pd−j × Pj

]
∈ Ad(X), X = Pn−m × Pm,

then some positive integer multiple of ξ is the class of a subvariety if and only if the xj

form a nonzero log-concave sequence of nonnegative integers with no internal zeros.

Therefore, in the vector space Nd(X)R of numerical cycle classes in the product

of two projective spaces, the elements of the subset Pd(X) correspond to log-concave

sequences of nonnegative real numbers with no internal zeros, while the elements of

the cones Nefd(X) and Peffd(X) correspond to sequences of nonnegative real numbers.

We remark that it is possible to obtain sharper statements in some cases. For example,

if

ξ = x0[P2 × P0] + x1[P1 × P1] + x2[P0 × P2] ∈ A2(P2 × P2),

then ξ is the class of a subvariety if and only if x0, x1, x2 are nonnegative and one of

the following conditions is satisfied:

(x1 > 0, x2
1 ≥ x0x2) or (x0 = 1, x1 = 0, x2 = 0) or (x0 = 0, x1 = 0, x2 = 1).

We refer to [Huh13] for a proof.
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Example 59. There is no five-dimensional subvariety of P5 × P5 which has the ho-

mology class

ξ = 1[P5 × P0] + 2[P4 × P1] + 3[P3 × P2] + 4[P2 × P3] + 2[P1 × P4] + 1[P0 × P5],

although (1, 2, 3, 4, 2, 1) is a log-concave sequence with no internal zeros. This follows

from the classification of the quadro-quadric Cremona transformations of Pirio and

Russo [PR12]. On the other hand, the proof of Theorem 58 shows that there is a

five-dimensional subvariety of P5 × P5 which has the homology class 48 · ξ.

Recall that the anticanonical push-forward of the homology class of a matroid M

in XAn is the reduced characteristic polynomial χM(q):

π1 × π2 : XAn −→ Pn × Pn, ∆M ∩ [XAn ] 7−→ χM(q).

Therefore, the coefficients of the reduced characteristic polynomial χM(q) form a

log-concave sequence if and only if

(π1 × π2)∗ ∆M ∩ [XAn ] ∈ Pr(Pn × Pn).

We ask whether the same inclusion holds in the permutohedral variety XAn .

Question 60. For any matroid M and any algebraically closed field k, do we have

∆M ∩ [XAn ] ∈ Pr(XAn)?

In view of Theorem 46, the question asks whether every matroid is realizable over

every field, perhaps not as an integral homology class, but as a limit of homology class

with real coefficients. Since Pr(XAn) maps to Pr(Pn × Pn) under the anticanonical

push-forward, an affirmative answer to Question 60 implies the log-concavity con-
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jectures of Section 2.3. We point out that the inclusion in Question 60 has purely

combinatorial implications which are strictly stronger than the log-concavity. A com-

puter verification of those implications for matroids with at most nine elements will

be reported in a followup article.

Question 60 is related to movability of effective cycles in XAn . Let’s say that the

moving lemma holds for an r-dimensional effective cycle if it is equivalent to another

effective cycle which intersects properly the union of codimension r torus orbits of

XAn . Let Mr(XAn) be the closure of the cone generated by the r-dimensional effective

cycles which satisfy the moving lemma. Clearly, we have

Mr(XAn) ⊆ Nefr(XAn).

If the other inclusion also holds, then, using the fact that a matroid homology class

generates an extremal ray of the nef cone, one can show that Question 60 has an

affirmative answer.

We close with proofs of the log-concavity conjectures for matroids that are realiz-

able over some field.

Theorem 61. Let M be a matroid.

(i) If M is realizable over some field, then the coefficients of the reduced character-

istic polynomial of M form a log-concave sequence.

(ii) If M is realizable over some field, then the coefficients of the characteristic

polynomial of M form a log-concave sequence.

(iii) If M is realizable over some field, then the number of independent subsets of

size i of M form a log-concave sequence in i.

(iv) For any graph G, the coefficients of the chromatic polynomial of G form a log-

concave sequence.
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The second item proves the conjecture of Rota, Welsh, and Heron for realizable

matroids (Conjecture 21). The third item proves the conjecture of Mason for real-

izable matroids (Conjecture 23). The last item proves the conjecture of Read and

Hoggar for all graphs (Conjecture 22).

Proof. Suppose M is realizable over k. By Theorem 46, ∆M ∩ [XAn ] is the class of

a subvariety of the permutohedral variety XAn over k. Since the push-forward maps

prime classes to prime classes, Theorem 54 implies that

χM(q) ∈ Pr(Pn × Pn).

It follows that the coefficients of the reduced characteristic polynomial of M form a

log-concave sequence. Since the convolution of two log-concave sequences is a log-

concave sequence, the coefficients of the characteristic polynomial of M also form a

log-concave sequence.

To justify the third assertion, we consider the free dual extension of M . It is

defined by taking the dual of M , placing a new element p in general position (taking

the free extension), and again taking the dual. In symbols,

M × p := (M∗ + p)∗.

The free dual extension M × p has the following properties:

(i) If M is realizable over k, then M × p is realizable over a finite extension of k.

(ii) The number of independent subsets of size i of M is the coefficient of qr−i of

the reduced characteristic polynomial of M .

We refer to [Len12] and also [Bry77, Bry86] for these facts. It follows that the number

of independent subsets of size i of M form a log-concave sequence in i.
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For the last assertion, we recall that the chromatic polynomial of a graph is given

by the characteristic polynomial of the associated graphic matroid [Wel76]. More

precisely, we have

χG(q) = qnG · χMG
(q),

where nG is the number of connected components of G. Since graphic matroids are

realizable over every field, the coefficients of the chromatic polynomial of G form a

log-concave sequence.

64



Bibliography

[Aig87] Martin Aigner, Whitney numbers, Combinatorial Geometries, 139–160,

Encyclopedia of Mathematics and its Applications 29, Cambridge Uni-

versity Press, Cambridge, 1987.

[AK06] Federico Ardila and Caroline Klivans, The Bergman complex of a ma-

troid and phylogenetic trees, Journal of Combinatorial Theory Series B 96

(2006), no. 1, 38–49.

[AR10] Lars Allermann and Johannes Rau, First steps in tropical intersection the-

ory, Mathematische Zeitschrift 264 (2010), no. 3, 633–670.

[BB11] Victor Batyrev and Mark Blume The functor of toric varieties associated

with Weyl chambers and Losev-Manin moduli spaces, Tohoku Mathemati-

cal Journal 63 (2011), no. 4, 581–604.

[Bir12] George David Birkhoff, A determinantal formula for the number of ways

of coloring a map, Annals of Mathematics (2) 14 (1912), 42–46.

[Bjo92] Anders Björner, The homology and shellability of matroids and geometric

lattices, Matroid Applications, 226-283, Encyclopedia of Mathematics and

its Applications 40, Cambridge University Press, Cambridge, 1992.

[BDPP] Sebastien Boucksom, Jean-Pierre Demailly, Mihai Paun, and Thomas Pe-

ternell, The pseudo-effective cone of a compact Khler manifold and va-

65



rieties of negative Kodaira dimension Journal of Algebraic Geometry 22

(2013), no. 2, 201–248.

[Bre94] Francesco Brenti, Log-concave and unimodal sequences in algebra, combi-

natorics, and geometry: an update, Jerusalem Combinatorics ’93, 71–89,

Contemporary Mathematics 178, American Mathematical Society, Provi-

dence, RI, 1994.

[Bry77] Thomas Brylawski, The broken-circuit complex, Transactions of the Amer-

ican Mathematical Society 234 (1977), no. 2, 417–433.

[Bry86] Thomas Brylawski, Constructions, Theory of Matroids, 127–223, Ency-

clopedia of Mathematics and its Applications 26, Cambridge University

Press, Cambridge, 1986.

[DELV11] Oliver Debarre, Lawrence Ein, Robert Lazarsfeld, and Claire Voisin, Pseu-

doeffective and nef classes on abelian varieties, Compositio Mathematica

147 (2011), 1793–1818.

[DP95] Corrado De Concini and Claudio Procesi, Wonderful models of subspace

arrangements, Selecta Mathematica. New Series 1 (1995), 459–494.

[Ful93] William Fulton, Introduction to Toric Varieties, Annals of Mathematics

Studies, 131, Princeton University Press, Princeton, NJ, 1993.

[FMSS95] William Fulton, Robert MacPherson, Frank Sottile, and Bernd Sturmfels,

Intersection theory on spherical varieties, Journal of Algebraic Geometry

4 (1995), no. 1, 181–193.

[FS97] William Fulton and Bernd Sturmfels, Intersection theory on toric varieties,

Topology 36 (1997), no. 2, 335–353.

66



[Her72] A. P. Heron, Matroid polynomials, Combinatorics (Proc. Conf. Combina-

torial Math., Math. Inst., Oxford, 1972), Inst. of Math. and its Appl.,

Southend-on-Sea, 1972, pp. 164–202.

[Hog74] Stuart Hoggar, Chromatic polynomials and logarithmic concavity, Journal

of Combinatorial Theory Series B 16 (1974), 248–254.

[Huh12] June Huh, Milnor numbers of projective hypersurfaces and the chromatic

polynomial of graphs, Journal of the American Mathematical Society 25

(2012), 907–927.

[Huh13] June Huh, Correspondences between projective planes, arXiv:1303.4113.

[HK12] June Huh and Eric Katz, Log-concavity of characteristic polynomials and

the Bergman fan of matroids, Mathematische Annalen 354 (2012), 1103–

1116.

[KP11] Eric Katz and Sam Payne, Realization spaces for tropical fans, Combina-

torial Aspects of Commutative Algebra and Algebraic Geometry, 73–88,

Abel Symposium 6, Springer, Berlin, 2011.

[Kle66] Steven Kleiman, Toward a numerical theory of ampleness, Annals of Math-

ematics (2) 84 (1966), 293–344.

[Kly85] Alexander Klyachko Orbits of a maximal torus on a flag space, Functional

Anal. Appl. 19 (1985), 65–66.

[Kly95] Alexander Klyachko Toric varieties and flag varieties, Trudy Mat. Inst.

Steklov. 208 (1995), Teor. Chisel, Algebra i Algebr. Geom., 139–162.

[Kun95] Joseph Kung, The geometric approach to matroid theory, Gian-Carlo Rota

on Combinatorics, 604–622, Contemporary Mathematicians, Birkhäuser
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