△-Matroids and Metroids

André Bouchet

Faculté des Sciences, Département de Mathématiques et Informatique, Route de Laval, 72017 Le Mans Cedex, France

ANDREAS W. M. DRESS

Fakultät für Mathematik, Universität Bielefeld, 4800 Bielefeld 1, Germany

AND

TIMOTHY F. HAVEL

University of Michigan, Biophysic Research Division, 2200 Bonesteel Blvd., Ann Arbor, Michigan 48109

1. Introduction

At about the same time in the mid-eighties the first named author and the other two authors independently introduced certain generalizations of matroids, the Δ -matroids (see [B1/2]) which were invented to analyse certain variants of the greedy algorithm and properties of the Euler tours of 4-regular graphs, and the *metroids* (see [DH1/2]) which were invented to analyse the combinatorial relationship between the vanishing and nonvanishing of discriminants of finite subsets of "metric" vector spaces (that is, vector spaces equipped with a sesquilinear form, cf. [Bb]) in analogy to the way matroid theory analyses the combinatorial relationship between the vanishing and non-vanishing of $n \times n$ -subdeterminants of an $n \times k$ matrix $(k \ge n)$. Both generalizations are expressed in terms of certain axioms concerning a collection \mathcal{F} of subsets of a ground set E, called the free subsets. Later it was observed by the first named author (see [B2]) that the combinatorial properties of discriminants are also reflected by △-matroids. Simultaneously and still independently, the other two authors observed that for every free subset F in a metroid (E, \mathcal{F}) the set system $\{F' \Delta F := (F' \setminus F) \cup (F \setminus F') \mid F' \in \mathscr{F}\}$ also satisfies the metroid axioms (cf. the appendix to [DH2]), a fact which holds almost trivially by definition for 4-matroids.

Finally, things converged, we became aware of each other's work, and in the following note we show that the pair (E, \mathcal{F}) is a metroid if and only if it is a normal Δ -matroid (that is, a Δ -matroid in which the empty subset is a free subset). We also mention some simple applications and relate the various rank functions used in [B1/2] and [DH1/2].

It appears to be remarkable that while it is possible to prove that every normal Δ -matroid is a metroid right from the axioms without any further reference to Δ -matroid theory, this does not seem to be true for the converse. Indeed, to prove that every metroid is a Δ -matroid we shall have to use essentially all the fundamental results of metroid theory as established in [DH1]. In other words, one may consider the Δ -matroid description as a more global description of the set systems $\mathcal F$ in question which is augmented by a rather local description of essentially the same set systems, given by the metroid axioms.

2. Definitions and the Main Result

According to [B1/2] a Δ -matroid is a pair (E, \mathcal{F}) in which E is a finite set and \mathcal{F} is a family of subsets of E, called the *free* (or *feasible*) subsets, which satisfy the following "symmetric exchange axiom":

$$(\text{SEA}) \begin{array}{ll} \text{for} & F', F'' \in \mathscr{F} \quad \text{and} \quad x \in F' \varDelta F'' := (F' \backslash F'') \cup (F'' \backslash F') \quad \text{there} \\ \text{exists} & y \in F' \varDelta F'' \quad \text{such that} \quad F' \varDelta \{x, y\} \in \mathscr{F}. \end{array}$$

Similarly, a metroid is defined in [DH1] to be a pair (E, \mathcal{F}) as above, in which the free subsets satisfy the following axioms:

- (F0) $\mathscr{F} \neq \varnothing$;
- (F1) If $F, G \in \mathscr{F}$ and |G| < |F| then there exists some $u, v \in F \setminus G$ (possibly equal) with $G \cup \{u, v\} \in \mathscr{F}$;
- (F2) If $v \in F \in \mathscr{F}$ and $F \setminus v \notin \mathscr{F}$ then there exists some $u \in F \setminus v$ with $F \setminus \{u, v\} \in \mathscr{F}$;
- If $F \in \mathcal{F}$, $w, x, y, z \in E$, $w \neq x, y$, and $F \cup w$, $F \cup w \cup x$, (F3) $F \cup w \cup y \notin \mathcal{F}$, then $F \cup \{w, x, y, z\} \in \mathcal{F}$ if and only if $F \cup \{w, z\} \in \mathcal{F}$ and $F \cup \{x, y\} \in \mathcal{F}$;
- If $F \in \mathcal{F}$ and $v, w, x, y, z \in E$ with $v \neq w$, then $F \cup v, F \cup w$, (F4) $F \cup v \cup w \notin \mathcal{F}$, and $F \cup \{v, x\}, F \cup \{v, w, y, z\} \in \mathcal{F}$ implies $F \cup \{v, w, x, y\} \in \mathcal{F}$ or $F \cup \{v, w, x, z\} \in \mathcal{F}$.

Our main result is the following

THEOREM 1. Given a collection \mathscr{F} of subsets F of a set E, the pair (E,\mathscr{F}) is a metroid if and only if $\varnothing \in \mathscr{F}$ and (E,\mathscr{F}) is a Δ -matroid.

3. Proof of Theorem 1

We first show that every Δ -matroid (E, \mathcal{F}) with $\emptyset \in \mathcal{F}$ is a metroid: Since $\emptyset \in \mathcal{F}$ we have $\mathcal{F} \neq \emptyset$, so (F0) is definitely satisfied. Next we show:

(SEA) \Rightarrow (F1). We use induction on $k = |F \setminus G|$. We have k > 0 because |G| < |F|. If k = 1 we have $G \subseteq F$ so that (F1) holds with $\{u, v\} = F \setminus G$. Otherwise we choose $u' \in F \setminus G$, and apply (SEA) to G, F, and $u' \in G \Delta F$. We find $v' \in G \Delta F$ such that $G' = G \Delta \{u', v'\} \in \mathscr{F}$. If $v' \in F \setminus G$, then $G' = G \cup \{u', v'\}$ and (F1) holds with $\{u, v\} = \{u', v'\}$. If $v' \in G \setminus F$ we have |G'| = |G|, and $|F \setminus G'| = |F \setminus G| - 1$, so that (F1) holds by induction for G' and F. Thus we can find $\{u'', v''\} \subseteq F \setminus G'$ such that $G'' = G' \cup \{u'', v''\} \in \mathscr{F}$. Applying (SEA) to G'', G, $v' \in G'' \Delta G = \{u', v', u'', v''\}$, we can find $t \in \{u', v', u'', v''\}$ such that $H = G'' \Delta \{v', t\} \in \mathscr{F}$. In any case we have $G \subseteq H$ and $H \setminus G \subseteq F$. Moreover we have $|H \setminus G| \le 2$ if $t \ne v'$, so that we may take $\{u, v\} = H \setminus G$. If t = v', then $H = G \cup \{u', u'', v''\}$, and the union is disjoint. We apply (SEA) to G, H, and any $u \in H \setminus G$, and we find $v \in H \setminus G$ such that $G \cup \{u, v\} \in \mathscr{F}$.

(F2) is obviously equivalent with (SEA), applied for F' := F and $F'' := \emptyset$.

(SEA) \Rightarrow (F3). Let (E, \mathscr{F}) be a Δ -matroid such that for some $F \in \mathscr{F}$ and some $w, x, y, z \in E$ with $w \neq x, y$ we have $G_1 = F \cup \{w\}$, $G_2 = F \cup \{w, x\}$, $G_3 = F \cup \{w, y\} \notin \mathscr{F}$. We have $w \notin F$ since otherwise $F = G_1$, an impossible equality. We have $G_4 = F \cup \{w, x, y\} \notin \mathscr{F}$ since otherwise $x \neq y$ and, hence, (G_4, F, w) would not satisfy (SEA). Put $X := F \cup \{w, x, y, z\}$, $Y := F \cup \{w, z\}$, $Z := F \cup \{x, y\}$. If we suppose that $X \in \mathscr{F}$, then $Y \in \mathscr{F}$ is forced by (SEA) applied to (F, X, w), and $Z \in \mathscr{F}$ is forced by (SEA) applied to (X, F, z), using that $G_4 \notin \mathscr{F}$; so we have established the left-right implication. If we suppose that $Y \in \mathscr{F}$ and $Z \in \mathscr{F}$, then (SEA) applied to (Z, Y, w) forces $X \in \mathscr{F}$, using again $G_4 \notin \mathscr{F}$; so the reverse implication holds, too.

(SEA) \Rightarrow (F4). Let us suppose for a contradiction that a Δ -matroid (E, \mathcal{F}) does not satisfy (F4). Then we can find $F \subseteq E$ and $W = \{v, w, x, y, z\} \subseteq E$ such that $v \neq w$, $F_0 = F$, $F_1 = F \cup \{v, x\}$, $F_2 = F \cup \{v, w, y, z\} \in \mathcal{F}$, and $G_1 = F \cup \{v\}$, $G_2 = F \cup \{w\}$, $G_3 = F \cup \{v, w\}$, $G_4 = F \cup \{v, w, x, y\}$, $G_5 = F \cup \{v, w, x, z\} \notin \mathcal{F}$.

Note first that $G_1, G_2 \neq F \in \mathscr{F}$ implies $v, w \notin F$, that $G_1, G_3 \neq F_1 \in \mathscr{F}$ implies $x \notin F \cup \{v, w\}$, and that $G_4, G_5 \neq F_2 \in \mathscr{F}$ implies $x \neq z, y$.

Next observe that $G_1, G_2, G_3 \notin \mathcal{F}$ implies $F \cup \{v, w, t\} \notin \mathcal{F}$ for all $t \in E$ since otherwise $t \notin F \cup \{v, w\}$ and (SEA), applied to $(F \cup \{v, w, t\}, F, t)$, would contradict $G_1, G_2, G_3 \notin \mathcal{F}$.

In particular, $F_2 \in \mathscr{F}$ implies $y \neq z$ as well as $y, z \notin F \cup \{v, w\}$. Hence $F \cap W = \emptyset$ and |W| = 5, so (SEA), applied to (F_1, F_2, w) , leads to the final contradiction $G_3 \in \mathscr{F}$ or $F \cup \{v, w, x\} \in \mathscr{F}$ or $G_4 \in \mathscr{F}$ or $G_5 \in \mathscr{F}$.

To prove the converse, assume that (E, \mathscr{F}) is a metroid, i.e., a nonempty set system satisfying (F1) through (F4). Obviously, (F2) implies $\varnothing \in \mathscr{F}$. To prove that (SEA) holds, too, assume $F', F'' \in \mathscr{F}$ and $x \in F' \triangle F''$. We shall consider separately the cases $x \in F' \setminus F''$ and $x \in F'' \setminus F'$.

Assuming $x \in F' \setminus F''$, we consider the set $Z := \{z \in F' \mid F' \setminus \{x, z\} \in \mathscr{F}\},\$ which is non-empty by (F2). If there is some $z \in Z$ with $z \notin F''$, we may take v := z in (SEA) above to obtain the desired result. Otherwise, we have $Z \subseteq F''$ and, in particular, $x \notin Z$ that is, $Z \subseteq F' \setminus \{x\}$. Now $Z \subseteq F'' \in \mathscr{F}$ means that Z is a subset of $F'\setminus\{x\}$ which is virtually free with respect to F'' (F''-free in the language of [DH1]). Since the virtually free subsets of a metroid form a matroid [DH1] we can augment Z to a subset $Z' \subseteq F' \setminus X$ which is of maximum cardinality among all F"-free subsets in $F' \setminus x$. Then by the definition of the term F''-free, we have $Z' = (F' \setminus x) \cap G$ for some free subset $G \subseteq (F' \setminus x) \cup F''$. Moreover, by Theorem 1.7(iv) of [DH1] the metroidal rank satisfies $\rho(Z') = \rho(F' \setminus x)$, so there exists some $H \in \mathcal{F}$ such that $H \subseteq Z'$ with $|H| = \rho(F' \setminus x) := \max(|F| \mid F \in \mathscr{F} \text{ and } F \subseteq F' \setminus x)$. But since $F' \setminus x \notin \mathscr{F}$ by assumption, we have $\rho(F' \setminus x) = |F'| - 2$ by (F2). Together with $x \notin Z \subseteq Z'$ this implies either $H = Z' = F' \setminus \{x, y\} \in \mathcal{F}$ for some $y \in F' \setminus x$ in contradiction to $y \in Z := \{z \in F' \mid F' \setminus \{x, z\} \in \mathcal{F}\} \subseteq Z'$, or else $Z' = F' \setminus x$ in which case Z' has defect index one with respect to F". It follows from Theorem 2.6 of [DH1] that there exists some $y \in F''$ with $Z' \cup y \in \mathcal{F}$, and this y is necessarily in $F'' \setminus F' \subseteq F' \Delta F''$ and satisfies

$$F'\Delta\big\{x,\,y\big\}=(F'\backslash x)\cup y=Z'\cup y\in\mathcal{F}.$$

In the case that $x \in F'' \setminus F'$ one argues as follows. First, if $F' \cup x \in \mathscr{F}$ one just puts y := x in (SEA) above. Otherwise one consider the set

$$Z := \{ z \in F' \mid (F' \cup x) \setminus z \in \mathscr{F} \}.$$

If there exists $z \in Z$ with $z \notin F''$, one puts y := z. Otherwise $Z \cup x \subseteq F''$ and $Z \cup x \subseteq F' \cup x$, and hence, again by Theorem 1.7(iv), there exists $Z' \subseteq F' \cup x$ and $G, H \in \mathscr{F}$ with $Z \cup x \subseteq H \subseteq Z' = (F' \cup x) \cap G, G \subseteq F' \cup F''$ and $|H| = \rho(F' \cup x) = |F'|$. Hence $|F'| = |H| \le |Z'| \le |F' \cup x| = |F'| + 1$ and therefore either $H = Z' = (F' \cup x) \setminus y \in \mathscr{F}$ for some $y \in F' \setminus Z$ in

contradiction to the definition of Z, or else $Z' = F' \cup x \subseteq G \subseteq F' \cup F''$, in which case it follows as above from Theorem 2.6 of [DH1] that there exists some $y \in F'' \setminus (F' \cup x)$ with $F' \cup \{x, y\} \in \mathscr{F}$.

4. Some Consequences

Next, we wish to point out that our result has some interesting consequences concerning arbitrary Δ -matroids. To state these consequences, we introduce the following notations: For a Δ -matroid (E, \mathcal{F}) and some fixed $F \in \mathcal{F}$ we define

$$\begin{split} \rho_F \colon 2^E &\to N_0 \colon X \mapsto \max(|F \triangle G| \mid G \in \mathscr{F} \text{ and } F \triangle G \subseteq X); \\ \varPhi_F \colon 2^E &\times 2^E \to N_0 \colon (X, \ Y) \mapsto \varPhi_F(X \mid Y) \\ &\coloneqq \max(|X \cap (F \triangle G)| \mid G \in \mathscr{F} \text{ and } F \triangle G \subseteq X \cup Y); \end{split}$$

and

$$\delta_F \colon 2^E \times 2^E \to N_0 \colon (X, Y) \mapsto \delta_F(X \mid Y) := \Phi_F(X \mid Y) - \rho_F(X).$$

Then the main result (Theorem 1.7) in [DH1] implies

Theorem 2. (i) For fixed $Y \subseteq E$ the map $\Phi_F(\cdot \mid Y)$: $2^E \to N_0$: $X \mapsto \Phi_F(X \mid Y)$ is a matroidal rank function on E;

- (ii) for fixed $X \subseteq E$, the map $\delta_F(X \mid \cdot)$: $2^E \to N_0$: $Y \mapsto \delta_F(X \mid Y)$ is a matroidal rank function on E;
 - (iii) for any $X \subseteq E$ and any $F_1 \in \mathcal{F}$, there exist $F_2, F_3 \in \mathcal{F}$ with

$$X \cap (F_1 \Delta F) \subseteq X \cap (F_3 \Delta F), \quad F_2 \Delta F \subseteq X \cap (F_3 \Delta F), \quad \text{and} \quad |F_2 \Delta F| = \rho_F(X).$$

5. RANK FUNCTIONS

Finally, we want to discuss briefly the relation between the function $\Phi(X, Y) := \Phi_{\varnothing}(X, Y)$, defined as in Section 4 in the case $\varnothing \in \mathscr{F}$, and the birank function ρ , defined in [B2] for $P, Q \subseteq E$ with $P \cap Q = \varnothing$ by

$$\rho(P,Q) = \max(|P \cap F| + |Q \cap \overline{F}| : F \in \mathscr{F}).$$

For example, if \mathscr{F} is the independent-set of a matroid M with rank function r, the preceding formulas give $r(P) = \rho(P, \varnothing) = \Phi(P, E)$.

It is proved in [B2] that (E, \mathcal{F}) is a Δ -matroid if and only if ρ , called

the birank function, satisfies the following axioms for $P, Q, P', Q' \subseteq E$, $P \cap Q = P' \cap Q' = \emptyset$:

- (i) $0 < \rho(P, Q) \le |P| + |Q|$;
- (ii) $\rho(P, Q) \leq \rho(P', Q')$ if $P \subseteq P'$ and $Q \subseteq Q'$;
- (iii) $\rho(P,Q) + \rho(P',Q') \ge \rho(P \cup P',Q \cup Q') + \rho(P \cap P',Q \cap Q')$ if $(P \cup P') \cap (Q \cup Q') = \emptyset$;
- (iv) $(\rho(P+x,Q)-\rho(P,Q))+(\rho(P,Q+x)-\rho(P,Q))\geqslant 1$ if $X\in V\setminus (P\cup Q)$.

Similar formulas, concerning Φ_{\varnothing} and δ_{\varnothing} , have been established in [DH1, Theorem 1.7].

Our last result is

Theorem 3. Let (E, \mathcal{F}) be a metroid. Then for $P, Q \subseteq E$ with $P \cap Q = \emptyset$, one has

$$\rho(P,Q) = |Q| + \Phi(P,\bar{Q}).$$

Proof. Using the above definitions we easily verify that

$$|Q| + \Phi(P, \overline{Q}) = \max(|P \cap F| + |Q \cap \overline{F}| : F \in \mathcal{F}, F \cap Q = \emptyset).$$

Thus $|Q| + \Phi(P, \bar{Q}) \le \rho(P, Q)$. To prove the reverse inequality we consider some $F \in \mathcal{F}$ which maximizes (lexicographically) the ordered pair

$$\pi(P, Q, F) = (|P \cap F| + |Q \cap \overline{F}|, |Q \cap \overline{F}|).$$

It is enough to observe that for such an $F \in \mathscr{F}$ we have necessarily $F \cap Q = \varnothing$ since otherwise we may apply (SEA) to (F, \varnothing, x) for some $x \in F \cap Q$ to find some $y \in F = F \Delta \varnothing$ with $F' := F \Delta \{x, y\} = F \setminus \{x, y\} \in \mathscr{F}$ in contradiction to $|P \cap F'| \ge |P \cap F| - 1$ and $|Q \cap \overline{F'}| \ge |Q \cap \overline{F}| + 1$.

The functions ρ and Φ can be easily computed in the following case. Let $A = (A_{ij}: i, j \in E)$ be a matrix such that for any two vectors $x = (x_i)_{i \in E}$ and $y = (y_i)_{i \in E}$ one has

$$x^{t} \cdot A \cdot y = \sum_{i,j} x_{i} A_{ij} y_{j} = 0$$

if and only if

$$y^t \cdot A \cdot x = \sum_{i,j} y_i A_{ij} x_j = 0.$$

For $P, Q \subseteq E$ we consider the submatrix $A[P, Q] = (A_{ij}: i \in P, j \in Q)$ and

we make the convention that $A[\varnothing; \varnothing]$ is a non-singular matrix. It has been shown in [B2] and [DH1] that $(E, \{F \subseteq E \mid A[F, F] \text{ non-singular}\})$ is a Δ -matroid or a metroid, respectively. Then the birank function ρ is given by the formula

$$\rho(P,Q) = |Q| + \text{rank } A[P,\bar{Q}], \qquad P,Q \subseteq E, P \cap Q = \emptyset,$$

while, in accordance with (3.3), the function Φ just coincides with the rank function:

$$\Phi(P, Q) = \operatorname{rank} A[P, Q]$$
 if $P \subseteq Q$

and, therefore, in general

$$\Phi(P, Q) = \operatorname{rank} A[P, P \cup Q].$$

ACKNOWLEDGMENT

We wish to acknowledge that it was Neil White who, at the occasion of a lecture given by A. Bouchet in Montreal, first noticed and pointed out the analogy between metroids and 4-matroids.

REFERENCES

- [B1] A. BOUCHET, Greedy algorithm and symmetric matroids, *Math. Programming* 38 (1987), 147-159.
- [B2] A. BOUCHET, Representability of Δ-matroids, Colloq. Math. Soc. János Bolyai 52 (1987).
- [Bb] N. BOURBAKI, "Eléments de Mathématiques," Livre II, Chap. 9, "Formes sesquilinéaires et formes quadratiques," Hermann, Paris.
- [DH1] A. Dress and T. Havel, Some combinatorial properties of discriminants in metric vector spaces, Adv. Math. 62 (1986), 285-312.
- [DH2] A. Dress and T. Havel, Fundamentals of the distance geometry approach to the problems of molecular conformation, in "INRIA Workshop on Computer-Aided Geometric Reasoning, Sophia Antipolis, France 1987."