
ADVANCES IN MATHEMATICS 91, 136-142 (1992) 

A- Matroids and Metroids 

ANDRE BOUCHET 

FacultP des Sciences. Dipartement de MathPmatiques et Informatique, 
Route de Laval, 72017 Le Mans Cede-x, France 

ANDREAS W. M. DRESS 

Fakultiit fiir Mathematik, Unil;ersitiit Bielefeld. 
4800 Bielefeld I. German) 

AND 

TIMOTHY F. HAVEL 

University of Michigan, Biophysic Research Division. 
2200 Bonesteel Blvd.. Ann Arbor, Michigan 48109 

1. INTRODUCTION 

At about the same time in the mid-eighties the first named author and 
the other two authors independently introduced certain generalizations of 
matroids, the d-marroids (see [B1/2]) which were invented to analyse 
certain variants of the greedy algorithm and properties of the Euler tours 
of 4-regular graphs, and the metroids (see [DH1/2]) which were invented 
to analyse the combinatorial relationship between the vanishing and non- 
vanishing of discriminants of finite subsets of “metric” vector spaces (that 
is, vector spaces equipped with a sesquilinear form, cf. [ Bb] ) in analogy to 
the way matroid ~theory analyses the combinatorial relationship between 
the vanishing and non-vanishing of n x n-subdeterminants of an n x k- 
matrix (k 3 n). Both generalizations are expressed in terms of certain 
axioms concerning a collection 9 of subsets of a ground set E, called the 
free subsets. Later it was observed by the first named author (see [B2]) 
that the combinatorial properties of discriminants are also reflected by 
d-matroids. Simultaneously and still independently, the other two authors 
observed that for every free subset F in a metroid (E, 9) the set system 
(F’AF := (F’\F) w (F\F’) I F’ E~Z) also satisfies the metroid axioms (cf. 
the appendix to [DHZ]), a fact which holds almost trivially by definition 
for d-matroids. 
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Finally, things converged, we became aware of each other’s work, and in 
the following note we show that the pair (& 9) is a metroid if and only 
if it is a normal d-matroid (that is, a d-matroid in which the empty subset 
is a free subset). We also mention some simple applications and relate the 
various rank functions used in [B1/2] and [DH1/2]. 

It appears to be remarkable that while it is possible to prove that every 
normal d-matroid is a metroid right from the axioms without any further 
reference to d-matroid theory, this does not seem to be true for the 
converse. Indeed, to prove that every metroid is a d-matroid we shall 
have to use essentially all the fundamental results of metroid theory as 
established in [DHl]. In other words, one may consider the d-matroid 
description as a more global description of the set systems 9 in question 
which is augmented by a rather local description of essentially the same set 
systems, given by the metroid axioms. 

2. DEFINITIONS AND THE MAIN RESULT 

According to [B1/2] a d-matroid is a pair (E, 9) in which E is a finite 
set and 9 is a family of subsets of E, called the free (or feasible) subsets, 
which satisfy the following “symmetric exchange axiom”: 

for F’, F”E 9 and .Y E F’AF” := (F’\F”) v (F”\F’) there (SEA) exists y E F’AF” such that F’A(s, ,I’} E 9. 

Similarly, a metroid is defined in [DHl ] to be a pair (E, 9) as above, in 
which the free subsets satisfy the following axioms: 

(FO) 9#$3; 

F-1) If F, GE 9 and lG/ < IFI then there exists some u, u E F\G 
(possibly equal) with Gu {u, t’) E B; 

(F2) 
If v E FE 9 and F\o $9 then there exists some u E F\v with 
F\{u, u) ~9; 

If FEN;, w,.u,y,z~E, MJ#X,.V, and Fvw, Fuwux, 
(F3) Fuwu ~$9, then Fu {MY, X, ~1, 2) E 9 if and only if 

Fu {u’, z} EF and Fu (x, y} ~9: 

If Fe9 and v,w,x,y,z~E with V#VV, then Fuv, Fuw, 
(F4) FUVUW$~, and Fu{v,s], Fu{o,u~,y,z}~~ implies 

Fu {v, w,.x, y} EF or Fu {v, IV, x, 2) ~9. 
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Our main result is the following 

THEOREM 1. Given a collection 9 of subsets F of a set E, the pair 
(E, 9) is a metroid if and on1.v if 0 E 8 and (E, 9) is a A-matroid. 

3. PROOF OF THEOREM 1 

We first show that every A-matroid (E, 9) with 0 E B is a metroid: 
Since 0 E 9 we have 9 # 0, so (FO) is definitely satisfied. Next we show: 

(SEA)- (Fl). We use induction on k= IF\Gj. We have k >O 
becauseJGJ<JFJ.Ifk=lwehaveGcFsothat(Fl)holdswithju,v)= 
F\G. Otherwise we choose u’ E F\G, and apply (SEA) to G, F, and 
u’ E GAF. We find v’ E GAF such that G’ = GA(u’, v’} E 9. If v’ E F\G, then 
G’=Gu {u’,v’) and (Fl) holds with {u, u}= {u’, o’}. If u’~G\Fwe have 
IG’l = ICI, and lF\G’I = IF\Gl - 1, so that (Fl) holds by induction for G’ 
and F. Thus we can find {u”, v”} c F\G’ such that G” = G’ u {u”, v”) E 9. 
Applying (SEA) to G”, G, v’ E G”AG = (u’, v’, u”, v” }, we can find 
t E (u’, ?I’, u”, v” > such that H = G”A {v’, t} E 5. In any case we have G s H 
and H\G E F. Moreover we have I H\GI < 2 if t # v’, so that we may take 
{u,v}=H\G. If t= v’, then H = G u (u’, u”, VI’ ), and the union is disjoint. 
We apply (SEA) to G, H, and any u E H\G, and we find cl E H\G such that 
Gu{u,u}~F. 

(F2) is obviously equivalent with (SEA), applied for F’ := F and 
F” := 0. 

(SEA) * (F3). Let (E, 9) be a A-matroid such that for some F’E F 
and some w,x,y,z~E with w#x,y we have G,=Fu{~~}, G2= 
Fu{~‘,x),G~=Fu(w,y)4~. Wehavew$FsinceotherwiseF=G,,an 
impossible equality. We have G4 = F u {w, -Y, y } $ F since otherwise x # y 
and, hence, (G,, F, w) would not satisfy (SEA). Put X := Fu {w, x, J: z}, 
Y:=Fu {w,z}, Z:=Fu{x,y}. If we suppose that XE~, then Ye.9 is 
forced by (SEA) applied to (F, X, w), and Z E 9 is forced by (SEA ) applied 
to (X, F, z), using that G4# 9”; so we have established the left-right 
implication. If we suppose that YE 9 and Z E 9, then (SEA) applied to 
(Z, Y, w) forces XE 9, using again G, $5 ; so the reverse implication 
holds, too. 

(SEA) = (F4). Let us suppose for a contradiction that a A-matroid 
(E, 9) does not satisfy (F4). Then we can find Fc E and W= 
{v,w,x,y,z}~E such that v# w, F,=F, F,=Fu{v,x}, F2= 
Fu {v, w, y, z) E F, and G,=Fu{v}, G,=Fu{w), G,=Fu(v,wj, 
G4=Fu{v,~‘,x,y}, G5=Fu{v,w,x,z}$9. 
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Note first that G,, Gz # FE .F implies v, ul$ F, that G,, G, #F, E 9 
implies x$Fu {v, w), and that G,, G,#F,E~ implies X#I, y. 

Next observe that G, , G,, G, $9 implies F u (L:, ii’, t 3 $9 for all t E E 
since otherwise t $ Fu {u, w> and (SEA), applied to (Fu {u, IV, t), F, t), 
would contradict G, , G,, G, $ J. 

In particular, F, E 9 implies y # ; as well as ~1, L 4 F u (u, ~‘1. Hence 
Fn IV= @ and 1 IV = 5, so (SEA), applied to (F, , F?, LC), leads to the final 
contradiction G, E 3 or Fu (u, IV, x> E 9 or G, E 9 or G, E 9. 

To prove the converse, assume that (E, 9) is a metroid, i.e., a non- 
empty set system satisfying (Fl ) through (F4). Obviously, (F2) implies 
0 E 9. To prove that (SEA) holds, too, assume F’, F” E .Y and SE F’AF”. 
We shall consider separately the cases .Y E F’\F” and .Y E F”\F’. 

Assuming x E F’\F”, we consider the set Z := (z E F’ 1 F’\{.u, z> E 9 1, 
which is non-empty by (F2). If there is some r E Z with c 4 F”, we may take 
y := 2 in (SEA) above to obtain the desired result. Otherwise, we have 
Zc F” and, in particular, x $ Z that is, Z c F’\{x}. Now Z c F” E F 
means that Z is a subset of F’\{.u} which is virtually free with respect to 
F” (F”-free in the language of [DHI 1). Since the virtually free subsets of 
a metroid form a matroid [ DHl ] we can augment Z to a subset Z’ E F’\x 
which is of maximum cardinality among all F”-free subsets in F’\.u. Then 
by the definition of the term F”-free, we have Z’ = (F’\x) n G for some free 
subset Gz (F’\.x)u F”. Moreover, by Theorem 1.7(iv) of [DHl] the 
metroidal rank satisfies p(Z’) = p(F’\.u), so there exists some HE 9 such 
that H G Z’ with IHI = p( F’\.u) := max( IFI 1 FE 9 and Fs F’\x). But 
since F’\u$Y by assumption, we have p(F’\.u) = IF’1 - 2 by (F2). 
Together with x $ ZE Z’ this implies either H= Z’ = F’\{x, y ) E 9 for 
some y E F’\x in contradiction to y E Z := (2 E F’ I F’\{x, :} E 9) L Z’, or 
else Z’ = F’\s in which case Z’ has defect index one with respect to F”. It 
follows from Theorem 2.6 of [DHl] that there exists some y E F” with 
Z’ u y E 9, and this y is necessarily in F”\F’s F’AF” and satisfies 

F’A{x, y} = (F’\.K) u y = Z’ uy E 9. 

In the case that XE F”\F’ one argues as follows. First, if F’u x E B one 
just puts y :=x in (SEA) above. Otherwise one consider the set 

Z:= +F’ I (F’u.x)\~E~}. 

If there exists z E Z with z 4 F”, one puts y := z. Otherwise Z u x c F” and 
Zu x c F’u x, and hence, again by Theorem 1.7(iv), there exists 
Z’EF’UX and G, He9 with ZuxcHcZ’=(F’ux)nG, GsF’uF” 
and IHI =p(F’ux)= IF’I. Hence (F’J = IHI d IZ’I < IF’uxl= IF’1 + 1 
and therefore either H= Z’ = (F’ u x)ly E 9 for some y E F’\Z in 
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contradiction to the definition of 2, or else 2’ = F’ v x E G L F’ u F”, in 
which case it follows as above from Theorem 2.6 of [DHl] that there 
exists some y E F”\(F’ u-u) with F’ u {x, y } E 8. 

4. SOME CONSEQUENCES 

Next, we wish to point out that our result has some interesting conse- 
quences concerning arbitrary A-matroids. To state these consequences, we 
introduce the following notations: For a A-matroid (E, 9) and some fixed 
FE 8 we define 

p.:2E+No:X~max(IFAG) ( GEP and FAGEX); 

cOfi-: 2E x 2E + N,: (X, Y) H QF(X I Y) 

:= max( IXn (FAG)\ 1 GE 9 and FAG E Xv Y); 

and 

6,12~~2~+N 0: (X, Y) H 6,(X 1 Y) := QF(X 1 Y) - PF(X). 

Then the main result (Theorem 1.7) in [DHl ] implies 

THEOREM 2. (i) For fixed YsE the map QF(. I Y): 2”+ N,: 
XH aF(X 1 Y) is a matroidal rank function on E; 

(ii) for fixed XC E, the map 6,(X 1 .): 2E-+ N,: YHC?~(X I Y) is a 
matroidal rank function on E; 

(iii) for any X s E and any F, E 9, there exist F2, F3 E 9 with 

Xn(F,AF)CXn(F,AF), F,AFCXn(F,AF), and JFIAFI=p,(X). 

5. RANK FUNCTIONS 

Finally, we want to discuss briefly the relation between the function 
@(X, Y) := @,(X, Y), defined as in Section 4 in the case @ E 9, and the 
birank function p, defined in [B2] for P, Q E E with PA Q = $3 by 

p(P, Q)=max(jPnFJ +jQnFI: FE9). 

For example, if 9 is the independent-set of a matroid A4 with rank 
function r, the preceding formulas give r(P) = p(P, 0) = @(P, E). 

It is proved in [B2] that (E, F) is a A-matroid if and only if p, called 
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the birank function, satisfies the following axioms for P, Q, P’, Q’ G E, 
PnQ=P’nQ’=@: 

(i) O<P(P,Q)GIPI+IQI; 
(ii) p(P,Q)<p(P’,Q’)if P~P’and Q&Q’; 

(iii) p( P, Q) + p(P’, Q’) 3 p( P u P’, Q u Q’) + p(P n P’, Q n Q’) if 
(PuP’)n(QuQ’,=@; 

(iv) (~(P+.~,Q)-~(P,Q))+(~(P,Q+s)--I)(P,Q))~~ if XEV\ 
CPU Q). 

Similar formulas, concerning @a and 6,, have been established in 
[DHl, Theorem 1.71. 

Our last result is 

THEOREM 3. Let (E, 5) be a metroid. Then for P, Q c E with 
PnQ=@, one has 

p(P, Q, = IQ1 + @tP, Q,. 

Proqf: Using the above definitions we easily verify that 

IQI+@(P,~)=max(IPnFI+IQnFl:FE9,FnQ=12(). 

Thus IQ1 + @(P, Q) d p(P, Q). To prove the reverse inequality we consider 
some FE 9 which maximizes (lexicographically) the ordered pair 

z(P, Q, F)=(lPnFI + IQnFI, IQnFI). 

It is enough to observe that for such an FEN we have necessarily 
Fn Q= rZ, since otherwise we may apply (SEA) to (F, fa, x) for some 
.uEFnQtofindsomeyEF=FA0withF’:=FA{x,,)=F\{x-,~}Esin 
contradiction to IPnF’(>lPnFI-1 and IQnF’I>IQnF;1+1. 1 

The functions p and @ can be easily computed in the following case. Let 
A = (A,: i, Jo E) be a matrix such that for any two vectors x = (x;)~~ E and 
y = ( yi)ie E one has 

.u’~Aq=~x,A,,y,=O 
i. i 

if and only if 

y’.A..r=~y,A,.ui=O. 
1. i 

For P, Q c E we consider the submatrix A[P, Q] = (A,,: is P, Jo Q) and 
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we make the convention that A[@ ; @] IS a non-singular matrix. It has 
been shown in [BZ] and [DHl] that (E, (Fc E ( A[F, F] non-singular}) 
is a A-matroid or a metroid, respectively. Then the birank function p is 
given by the formula 

p(P, Q) = IQ1 + rank ALP, Ql, P,QzE,PnQ=@, 

while, in accordance with (3.3), the function @just coincides with the rank 
function: 

@(P, Q)=rank A[P, Q] if PcQ 

and, therefore, in general 

@(P, Q)=rankA[P, PuQ]. 
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