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1. Introduction

In this paper, we demonstrate the existence of the Friendly Giant, a finite
simple group of order

2463205976 112133 .17.19.23.29.31.41.47.59.71
=808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000.

Evidence for the existence of this group was produced independently in
November, 1973, by Bernd Fischer in Bielefeld and by this author in Ann
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Arbor. Serious work on this group - mainly a study of subgroups and con-
jugacy classes - began the first weekend of that month in both locations.
Additional details of this early work are discussed in Sect. 15. For now, we add
only that such a simple group appeared likely to have a complex irreducible
character of degree 196883; in 1974, this number was established as a lower
bound for the degree of a nonprincipal irreducible character [13, 37]. While
this evidence for the existence was very persuasive, it did not constitute a
proof. Our existence proof was announced on January 14, 1980 and more
formally in [29].

Our method is to take a 196884-dimensional module B for a particular
group C of shape (2'7*%)(-1), define on B the structure of a commutative
nonassociative algebra with a symmetric nondegenerate associative bilinear
form, then define an automorphism o of this algebra. The group G=<C, o) is
the simple group of the title (the usual symbol for this group is F,). The extra
rigidity required by expecting our linear group to preserve an algebra structure
enables us to make precise definitions of the relevant linear transformations
and verify their required properties. The reason we thought of this approach is
the following. Simon Norton had computed the values of a hypothetical
character y of degree 196883 and computed that (S%y, 1)=1, (S3y, )=1,
Sy, x)=1 and y is rational-valued. It follows that if M is a module affording
¥, M has the structure of a commutative (but not necessarily associative)
algebra with a nondegenerate associative symmetric bilinear form. This finding
of Norton was the inspiration for this paper. See Sect. 15 for additional
comments on algebras associated to finite simple groups.

We comment on some over-all aspects of the construction. In some sense,
the algebra B is described using only basic linear algebra. The group theory
used is descriptive in nature. Thus, one could say that the construction of G
={C, o) is elementary. That is, starting from scratch, one may construct M,
then -0 and finally G, with each stage depending on the previous one. See two
paragraphs ahead and look at Table [.1. However, the identification of G as a
finite simple group with the right properties requires deep results from the
classification of finite groups. It is possible that this dependence can be elim-
inated, for instance, by counting configuration of vectors in B permuted by G.
An enumeration of any such configurations may be long and difficult, however.

Section 2 contains various preliminary results, mainly about group repre-
sentations, the Leech lattice, Conway groups and the classification of finite
simple groups. Sections 3 and 4 set up basic notation. In Sect. 5, we compute
the C-invariant algebra structures on the module B, and in Sect. 6 we select
the one we work with in the rest of the paper (modulo a choice of F made in
Sect 7). Sections 7, 8 and 9 discuss various technicalities needed both in the
definition of ¢ (Sect. 10} and in the proof of the “main result,” Proposition 11.2,
that ¢ is an algebra automorphism. Section 7 is concerned with a choice of
complement F which will cause the function f to behave well, while Sects. 8
and 9 develop techniques for analyzing the action of certain elements of C on
basis elements, mainly for the purpose of being able to analyze f. Nearly all of
Sect. 11 is concerned with a proof of the main result, which in turn amounts to
verifying a list of identities involving configurations of vectors in the Leech
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lattice; this is where the correctness of the plus and minus signs in the
definition of ¢ is so critical.

In Sects. 12, 13, and 14, the mathematics departs from that of preceding
sections in that we require results from the classification theory, and, in
Sect. 14, we refer to work of others on the group F,, only some of which has
appeared. In Sect. 12, we identify G={C, ¢) as a finite simple group of order
240320597611213%-17-19.23-29-31-41-47-59-71. It is not obvious that G
is finite, and if G is finite, it is not obvious that the containment C=< Cy(2),
{z)=Z(C), is equality, a necessary step in the identification of G. This prob-
lem is handled by a “reduction modulo p” procedure. In Sect. 13, we derive
existence of a number of sporadic groups (besides G). These other groups had
been constructed earlier; in some of these cases, existence proofs required com-
puter work. All we need to do is name appropriate subquotients of G (although
we use results from the classification theory to identify these subquotients),
using little more than notation already established earlier in the paper. Also in
Sect. 13, we derive existence of a number of nonsplit group extensions; hence
we get nonvanishing of certain degree 2 cohomology groups.

In Sect. 14, we determine that the simple groups LyS, J5, J,, O'S and Ru
are not involved in the Friendly Giant. The sporadic groups which are in-
volved in the Friendly Giant constitute the Happy Family and those which are
not are called the Pariahs. The membership of every sporadic group in one of
those two categories is settled, except for J,. The twenty sporadics M,,, M,,,
M,,, My, M,,, J,, Held, HiS, McL, Suz, -1, -2, -3, F,,, Fo3, F},, F, F,, Fi,
Fs are involved in the Friendly Giant in a “visible” manner. A glance at the
group orders shows that LyS and J, must be Pariahs, but it is certainly not
obvious for J,, Ru and O’'S. The group J, has order “only” 175,560 and one
might easily imagine a copy of J, floating as a tiny speck within F,. We point
which that J, is a subgroup of O'S (the fixed points of an outer automor-
phism), which is not involved in F,. In any case, suitable information is
available (using outside sources) to carry out the arguments of Sect. 14.

In Sect. 15, we conclude with some comments on background and the
proof. A list of notations and definitions and a list of tables to assist the reader
has been placed before the references.

We make it clear that our construction of G (Sect. 2 through 11) is direct,
explicit and is carried out entirely by hand. The identification of G, however,
requires hard theorems from the classification of finite simple groups. A few of
our arguments in Sect. 14 require computer calculations, but this is the only
place in the paper where we make explicit reference to computer work. Some
work in the theory of finite simple groups does involve computing machines
and a few of the references we use do have some ultimate dependence on such
work (e.g., in determining conjugacy classes and character tables). With these
exceptions, the results of this paper are free of machine calculations.

This work was carried out mainly at the Institute for Advanced Study during the academic
year 1979-80. We thank the lunstitute for Advanced Study for the privileges of membership during
this time (and during Winter term, 1981), the National Sciences Foundation for partial financial
support and the University of Michigan for partial financial support during that sabbatical year.
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Special thanks go to my wife, Pamela Schwarzmann, for her support and patience with me
during the year at the Institute for Advanced Study and to Enrico Bombieri for many words of
encouragement. We acknowledge helpful remarks from Allan Adler, George Glauberman, Melvin
Hochster, Michael O’'Nan, Steven Smith and Ronald Solomon which led to clarifications and we
acknowledge the computer work by Charles Sims and Steven Smith which settled a few points in
Sect. 14. We thank the referee for investing an enormous amount of work in reading this paper
and providing thoughtful and detailed commentary. In particular the referee caught some mistakes
in the preprint version. Most were slips or small errors, but others were not. These exceptions are
noted in the text.

Table 1.1. Construction of the happy family®

Construct... then derive existence of ...

My,————— M| . M5, My, M3, My,

/

-0 ————> -1.-2,-3, HiS, McL, Suz, HJ

F, &——— F,,F;5, F5, F;,, Fy3, F;, Held.

a

except possibly for J;

§2. Preliminary Results

We begin by reviewing properties of the Leech lattice and by establishing some
notation which will be used throughout the paper.

The Leech lattice, denoted A, is a free abelian group of rank 24 with a
certain positive definite symmetric bilinear form {, ) which makes A uni-
modular, ie. detA=1, and be even, ie. satisfy {J, u>eZ, {1, A>e2Z for all
A, peA.

All even integral unimodular lattices of rank 24 have been classified by
Niemeyer; see [11] and [55]. There are 24 such lattices. Among these, A is the
only one which contains no vector with squared length 2.

The lattice is of special interest to group theorists since Aut(A)
={gecO(R®A)| A5 = A}, the “group of units” of A, is a perfect group called .0

z

(“dot zero”) of order 2223°547211.13.23 whose central quotient is a simple
group -1=-0/{+1} (dot one). These groups and several others closely as-
sociated to them (-2 and -3) are called Conway groups because John
Conway was the first to investigate the group theoretic properties of the Leech
lattice [ 10, 49, 50]. We refer to Conway’s more detailed discussion of A and -0
found in [11]. In particular, we expect the reader to be familiar with [11],
although we shall review some of the main definitions (in condensed form) and
borrow some tables.

We let Q=IF,;u{w}, as in [11] and let {x,|ieQ} be an orthonormal basis
for Q2=Q%* Let ¥ =& (5, 8,24) be a Steiner system based on Q. That is, &
consists of a family of eight-element subsets of € such that, given five distinct
points of Q, there is a unique member of the family containing the five points.
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Members of this family are called octads. The group preserving &, ie.
{ge) o|UfcF whenever Oe¥}, is the Mathieu group M,,, a simple group of
order 219335,7.11.23.

The power set P(Q) of Q may be regarded as a vector space over IF, via
the operation of symmetric difference: 4, BeP(Q), A+B=AUB—-AnB=(A
—B)u(B—A). The subspace ¥ of P(Q) spanned by the 759 octads is, re-
markably, only 12-dimenstonal. The subspace is called the %-sets. In 4, there
are 759 octads, 759 special 16-sets (=complements of octads). 2576 special
dodecads (certain 12-sets), @ and Q; we have 759 +759+ 2576+ 1+ 1=4096. The
stabilizer of a dodecad in M,, is M,,, and the stabilizer of a pair of com-
plementary dodecads is M,,-2. We shall also use the vector space € =%/{Q),
dim% =11. Occasionally we shall blur the distinction between members of €
and 4.

We recall a useful result from [11].

Lemma 2.1. Let {a,,...,aq} be an octad. (1) The number of octads intersecting
{ay,...,a;} in {a,,...,a;} exactly is the (j+1)-th entry in the (i+1)-th line of
Table 2.1.1. (i) The number of dodecads intersecting {a,, ..., a;} in {a,,...,a;}
exactly is the (j+ 1)-th entry in the (i+ 1)-th line of Table 2.1.2.

Table 2.1.1. How many octads?

759
506 253
330 176 77
210 120 56 21
130 8 40 16 5
78 052 28 12 4 |
46 32 20 8 4 0 1
30 16 16 4 4 0 0 1
30 0 16 O 4 0 0 0 1

Table 2.1.2. How many dodecads?

2576
1288 1288
616 672 616
280 336 336 230
120 160 176 160 120
48 72 88 88 72 48
16 32 40 48 40 32 16
0 16 16 24 24 16 16 O
G 0 16 0 24 0 6 0 0

On P(Q), there is a natural bilinear form (4, B)—|4 ~nB|(mod2). On
P(€),...» the subspace of sets of even cardinality, we have a quadratic form A
1|4 (mod 2); see [18, 317 for a discussion of quadratic forms in characteristic
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2. Its associated bilinear form is the one above. The %-sets form a subspace
which is totally singular with respect to the quadratic form. Note that {Q) is
the radical of the form on P(Q),,.,- Thus, we have an induced form on
P(Q)eyen/<2>. When {i,j,...} =Q and ScQ we write i,j,... in S(mod?2) for
H{i,j, ...} " S|(mod 2). When {i,j,...} and S are even sets, we may replace either
or both by their complements when computing i,j,... in S(mod2). We shall
enclose “i,j,... in §” in brackets if clarity seems to require it.

We describe the Leech lattice, A, as follows. Let (, ) be the usual dot
product on Q% based on (x;,x)}=4,; and let { , >=¢( , ). The Leech lattice is
defined as the span of all vectors of the shape

(i) (80%%) (i.e. +8x, for all i€Q)

(i) (280*®) (i.e. the support is an octad, ¢, each coordinate over ¢ is +2
and the number of minus signs is even)

(i) (31%°) (ie. for each i€, form —3x;+ ) x;, then change signs at every
@ -set). J*i

A subgroup of -0 of special interest is a group called N,,, a maximal
subgroup of -0. It contains M,, as a group of coordinate permutations.
Furthermore, N,,=0,(N,,)-M,,, where O,(N,,)~%=2'* and where the ele-
ment g5 of O,(N,,), S€¥, sends x; to —x; if ieS and x; to x; if i¢S. The set of
generators for A described above is invariant under N,, (since the intersection
of any two %-sets has even cardinality). In [10], Conway describes an auto-
morphism of A not in N,,, thereby proving that -0>N,,.

For each integer n=0 we define A,={ieA{{4, 4> =2n}, the vectors of type
n in A. Clearly, the A, partition A, and, as mentioned before, A, is empty. A
triangle of type abc shall mean a triple of lattice vectors with sum zero whose
three members have types a, b and c, respectively.

We shall be especially interested in A,. From [11], we get A,
=130V A30 A3, where

A3 =all vectors of shape (4%0%?) (i.e. all +4i+4j i—jin Q);
A% =all vectors of shape (280'¢);

A3 =all vectors of shape (3173).

We have [43]=(3).22=1104, |A3|=759.27 =97152, |A3|=24.2'2=98304 and
|4,]=196560=1104+97152+98304.

We let L=L/{+1}, for L a subset of A closed under A — A For AeL, let £
denote the image of A in L. Sometimes, we shall blur the distinction between
elements of L and L. For instance, we may refer to the triangle of type 222
spanned by 1, ie .

Notation. For i€, A;:=—3x,+ Y x;eA. When S is a %-set, let

J¥i
x4 Y x,-Yx, i igS,
i*i iFi
A g =Ai5= ies i
’ 3x;+ ) x;— ). x; if ieS.
j*i jFi

J¢S JjeS
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For i), A;s=4x;+4x;, Ay:=4x,~4x;. For § a @-set, Ag:=) 2x,. For leA,
ieS

let supp(A)={ieQ|the i'"® coordinate of 1 is nonzero}, Pos(i)={ieQ|the i*

coordinate of A is positive}, Neg (/)= {ieQ|the i coordinate of . is negative}.

Let @, =supp (), for AeA3, i(A)=j if A=1, .

Later, in Sect. 7, an isomorphism F(2Q)=%:=%/{Q)> will be described, where
F(2) is a certain 2-group of order 2''. To xeF(2) we associate a pair {S,, S,
+Q} of %-sets. We set 4, ,:=4; 5 . This is not well defined, but does give a
well-defined equivalence class in A,=A4,/{+1}. The inverse operation assigns
to Se% or € the element x4 F(2).

Lemma 2.2. (i) Let Q be a finite set, P(Q) the Boolean algebra of subsets of Q, E
S P(Q),yen» the subspace of sets of even cardinality. The map P(Q) x P(Q)—F,,
(A, By—>|A nBj(mod 2), is bilinear. The map E—IF,, A—+{4|(mod?2) is a qua-
dratic form on E with associated bilinear form (A, B}—|4A n B|(mod 2). The radi-
cal of the form is contained in (> and is {Q) if |Q| is even.

(ii) Let E, be a subspace of E=P(Q),., such that if AeE,, then
|A|=0(mod4). If A, BeE,, Then 1|A+B|=1|4—B|+%B|+1|4](mod2). Also,
3|4 —B|=1|4 nB|(mod?2) for A, B€E,.

Proof. (i) For A,B,CeP() one must check that {(A+B)nC|=|AnC(|
+|BnCl(mod2) and, when A4,B,CeE, 3|4+ B|+1|A|+1|Bl=14nBj(mod?2).
The last statement essentially amounts to the observation that if AeE, A+0,Q
and i€ A, j¢ A, then |{i,j} nA{=1(mod 2).

(ii) The condition |A}=0(mod4) for AcE, implies that [AnBj=0(mod?2)
for A, BeE; see Lemma 2.1. In particular, all the |4 —Bj| are in 2Z. Write
=[ANB|, |A|=a+4, |B|=p+0, |A+Bl=a-+ . Our hypotheses imply that o, o
and f are all in either 4Z or 2+47Z.

We have i{a+d+a+p}=1|4A—B|+%Bl. Also, +{a+d+a+p}=%4+B|
+1|A4|(mod 2). Rearranging, we get the first statement.

The second statement needs only [4]=0(mod4) and |4 B} even, for all
A, BeE,.

The next lemma will be used repeatedly.

Lemma 2.3. Suppose that A=1,  +4; €A3. Then either

(i) i=jand S, +S8,=0 or O+, where O is an octad, i¢0; or

(i) i#j and S, +S,=0 or O+Q, where O is an octad and i,je0; also,
1§</lij, A=l +%<)tij,,/1>zij in S,+1=ij in § +1(mod2) and {ij} +S, meets O
in Pos(4) or Neg(A).

Proof. (1) Suppose i=j. Then, arranging i¢S, v S, we must have

(=3 1.1 =1...—1 1. 1 =1..=1

(=3 1.1 —1..—1 —1..—1 1.. 1)
( 00.0 0.0 2. 2-2.-2
. el —_

—_—
i SxnSy Sy—S8x Sx—Sy

/’{i,x
Aiy
A

and the statement is obvious.
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(i) Suppose i%j. We may arrange i¢S,, and j¢S,. Since the coordinates of
A at [ and j must be +2, we are forced to have either i¢S,, j¢S, and the

picture
Sx

do=(=3 1.1 1. 1Z01.°1-1.-)
A= 1 =3 1.1 —1..—=1 —1..—1 1. 1)
A =(—2-22.2 0.. 0-2..-2 0.. 0

i J Sy

or ieS,, jeS, and the picture
Sx

de=(=3 1. 121 —1T =1 —1.=11..1)
Ay=(—1 —1..—1 —1..—1 =3 1. 11.1)
) =( 2 2.2 0.. 0 2 -2.-20..0)

i i
Sy

II

In the former case, S,+S,=0+Q and in the latter case, S,+S,=0. By in-
spection, {ij} +S, meets ¢ in Pos(4) or Neg(4) in either case. Also, S.NS,
=§,n0 when ij in S, =0(mod2) and S, +(5,nS)=5.N(Q2—-5)=S, m(O when
ij in S,=1(mod?2) (m the latter case, S, =S, mQ S NS, +S) (R

)+S NS,, so that S NS =8 +(S, m(9)) Note also  that 2<JU,A>
+1=.5%<,1ij, A}Eij in Sx+lsij in Sy+ 1 (mod 2) in either case.

Definition. For an integer n, define A(n)={leA| every coordinate of 1 is in
nZ}=AnY nZx;.
icf?
Lemma 24. Let AeA3, S€¥ and &= ) 2x,(modA(4). If SOO+0,0, then
€S04
(=19 =0. (Note that & lies in A if and only if SAO =0 or §.)
supp ({) =0
led,
Proof. Suppose é= ) 2x;+n, where 7 is an integral vector, suppnn@,=9.
eSO,
Let {Sn0O,|=2a, 1=a=3. Choose some index ke, —S and normalize our

choices of {el with supp(=0, to have positive coordinate at k. Given
be{0, 1, ..., 2a}, the number of { with positive k'™ coordinate and with exactly b

. . . {2
positive coordinates over Sn@, is (ba) 26-24 For such a {,{{ & =1L[4b
—4(2a-b)}=b—a. Therefore,

2a 262
— Y68 __{\p—a 6—2a

as required.
Now for the general case: ¢= ) 2x,+p+7n, where # is an integral vector,

eSO,
supp N0, =0, ueA(4). If u has exactly c¢ coordinates in 4+8Z over 0,, then
(= 1)&@ =(—1)+<2-# The previous case may now be applied.
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Lemma 2.5. Let R be a commutative ring, G a finite group, H a subgroup and M
=R[G/H] the permutation for RG based on the right cosets of H. Then,
regarding R as a trivial module,

(i) H(G, M)~ H"(H, R) for all n=0; and

(i) if Hom (H/H', R)=0, H' (G, M)=0.
Proof. (i) Since M=RR6<1?4RG is an induced (=coinduced) module for the finite
group G, (i) is a special case of Shapiro’s lemma; see [39].

(ii) This follows from (i) since H'(H, R)~Hom (H/H', R); see [39].

Lemma 2.6. Let G be a finite group and M a vector space affording a real
orthogonal representation of G. Let {x;} be an orthonormal basis. Invariant
positive definite inner products for G on M® M, S* M and N\* M are given by

(D) (;®x;, x,, QX)) =0y 0y,
(1) (x; Xjs Xy X)) =0y 6jl+ 9y (Sjk»

(i) (x; Axjy X AX) =20 jy iy (= D2

Proof. (i) is easy to check. Write M@ M =S*M ® A*M. Then 5? M is spanned
by all x,x;=x,®x;+x;®x, gnd AZM is span.ne.d by all xi/\szici®xj
—x;®x;. Thus the direct sum is orthogonal, and it is easy to deduce (ii) and
(1i1). Since the form on M ® M is positive definite, the same is true for the
forms on S2M and A’ M.

Lemma 2.7. Let G, be «a finite group and A, B and C be self-dual QG ,-modules,
all with G,-invariant bilinear forms, written ( , ). There is an isomorphism
Homgg, (4 ® B, C)=Homgg, (4, B&® C) such that if f and g are corresponding
maps, then (f(a®b), c)=(g(a), b® c). Furthermore, if A, B and C are absolutely
irreducible, the multiplicity of C in A ® B equals that of A in B® C.

Proof. This is a variant of the adjointness property of Hom and ®. Let
SfeHomg, (A® B, C). Define  feHomg (4, B®C) by  (f(a),(b®0)
=(f(a®b),c). For geHomg; (4,B® (), define geHomgy (A®B, C) by

(g(a®b), c)=(g(a), b®c). The rest is an exercise.

Lemma 2.8. Let y be a complex character of the group G afforded by the module
M. Then S*M affords the character

g-s{x(8)° + 3187 x(®)+2x(8™)}

Proof. We may assume that G={g>. If x,,...,x, is a basis of eigenvectors for
the action of g on M, then all distinct x; x;x, form a basis for S> M. The result
follows by studying the eigenvalues which occur.

Lemma 2.9. Let R be a subring of C. If the RG-module M has an R-valued
invariant symmetric bilinear form ( , ), then a G-invariant map S*M —M satisfies
the associative law (ab, c¢)=(a, bc) for a, b, ceM, if and only if there is a G-
invariant map f: §* M — R which satisfies f(a, b, cy=(ab, c).

Proof. Exercise.
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Lemma 2.10. Let G=Suz and let 1-Z,—G~">G—1 be nonsplit. In the no-
tation of [4], (16.5), an element of ¢* ' has order 4 (e is an involution inducing a
graph-field automorphism on a standard component of type L(4) in G).

Proof. Since |e] =2, there are two possible conjugacy classes of G which might
contain e. If the Lemma is false, then Cg(e) looks like 2 *¢.U,(2). In the
notation of [4], (16.5), L=L,(4) and C,(e)=PSU(3,2)=Z3 Q. The group
C.(e) cannot be embedded in Cg(e) since the smallest faithful IF,-repre-
sentation of C,(e) has dimension 8, a contradiction. The Lemma follows.

Lemma 2.11. (i) H'(-1,IF,)=0 (ii) H'(- 1, A/24)=0; in fact any module exten-
sion of A/2A by IF , is split.

Proof. (i) is obvious since -1 is perfect. (ii) may be proved by using the
vanishing theorem of Alperin and Gorenstein [1]. Their hypotheses require a
collection of subgroups # of -1 which satisfies (a) H°(L, 4/24)=0 and
HY(L, A24)=0 for Le.#; {(b) -1 is generated by the subgroups of & (c) given
L, L,e%, there is Le¥ with LSL,nL,. We let ¥={4,x4,, C(4,)
C(A,)}, where A, =A,=Z,, H°(4;, A/24)=0 for i=1,2, and C(A4, x 4,)=3.3.
U,(3) (see [11], p.242 and 247). The groups C(A4,) are perfect central exten-
sions, 3. Suz. We get (a) for . from [14] or [58], (¢) is obvious, and (b) may
be proved in the following way. Let Y be the group generated by the elements
of #. We claim that Y and -1 both have involutions with centralizers of the
shape 21%8.D,(2). Then [56] may be quoted to get Y=-1. Let ze-1 be an
involutiod with centralizer C of shape 2.78-D,(2). Without loss, we may
arrange 4, x A, < C and C.(4)=2'*%-U,(2). An easy calculation in the group
D ,(2) shows that C={C(A4,), C(4,)), and we are done.

Lemma 2.12. (i) |A: 4(2)| =2,

(ii) |4: A(4y}=2"3,

(iii) |4: A(4)+24]=2"2,

(iv) |14: A(8)|=2°¢,

(v) |A: A@B)+24]=223,
Proof. (i) is clear. If {v,|ieQ} is a basis for A, {2v,]ieQ} is a basis for 2A4. Let
us take such a basis with {v,]ieQ i%o} in A(2). Then A(4)n24
=span {4v_, 2v,|ieQ}. It is clear that A(4) is spanned by all 4x,+4x;, i,jeQ.
Since 8x;=8x;(mod2A) for i+j and 8x,¢2A, (v) is clear. The only linear
dependence relations among the 4x;+4x; modulo 24+ A(8) have the form
Y 4x;+4x;=0(mod24+ A(8)), where ) {i,j}=Se% in P(Q). Therefore,
{i, ti, J}
dim A(4)/24+ A(8)=23—-12=11, which, with (v), proves (ii) and (iii). For
xeA(8), let I(x)={ieQ|the i™ coordinate of x is in 8+16Z}. Easily, M
={xeA(8)|I(x) is even} =2 A(4) and |A(8): M| =2, proving (iv).
Lemma 2.13. Let G=M,,, Vthe IF, G-permutation module on the right cosets of

G, <G, Go=M,,. Then H'(G,V)=0, H'(G,[V,G])=Z, and H'(G,V/C,(G))
=Z,.
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Proof. By Lemma 25  HYG,V)=HY(G,,Z,)=0. Also, from
0-[V.G]-»V—->Z,—0 and the long exact cohomology sequence, we get
0-Z,-Z,»Z,—~H'(G,[V,G])~0, whence H'(G,[V,G])=Z,. Likewise, from
0-Z,-V->V/C,(G)—0, we get an exact sequence

0=H'(G, V)—>H"(G, V/C,(G)) > H*(G, Z,) > H*(G, V).

By [7), H*(G,Z,)~7Z, and, by Lemma 2.5, H*(G, V)~H?(G,, Z,), which is 0,
by [7]. So H'(G, V/C,(G)=Z,.

Lemma 2.14 (Goldschmidt [26]). Let Hypothesis (*) consist of the following
assumptions:

(a) TeSyl,(G), G a finite group,
(b) Wis a weakly closed subgroup of T with respect to G,
(c) A is an abelian normal subgroup of No(W) and A < C (W),
(d) #={BST|B<A,B£A),
G

(e) r=max {m(B/Cz(W))|Bes}.
Assume (*). Then the following hold: (i) If BT and B=< A4, then Cy(W)
G

=Bn A and there is geG such that B8< 4 and N (BT

(i1) Either Q,(A) is a strongly closed abelian subgroup (whence the normal
closure of 2,(4) in G is a described in Theorem A of [26]) or (ii.1) there is
Be% with m(B)+r=m(A); and (11.2) if ¢t is an involution of T with t€A, then

G
m([A, t])<2r, and if B/C,(W) is elementary abelian for all Be& which satisfy
(ii.1), then m([A4,t]) <r.
Lemma 2.15 (N.J. Patterson [56]). Let TeSyl, N,, where N,,<-1 and N, is the
image of N,, in -1. Then (i) the 2-rank of T is 11; (ii) O,(N,,) is the unique
subgroup of T isomorphic to Z}'.
Lemma 2.16 (Steve Smith [63]). If G, is a finite group containing an involution z
such that 0,(Cg (2)=2,"2*, Cg(0,(Cq, (2))=(2z> and C; (2)/0, (Cel2) =1,
then either (i) there is an znvolutzon teQ (CG () such that Cg ()= F and |G|
=2%6320597611213%17-19-23-29-31- 41-47-59.71; or (ii) G, =0(G,) C 60(2)-
Lemma 2.17. Let V be any faithful ¥, M, -module of dimension 11. Then
H'(M,,, V)=0.
Proof. Imitate the proof of Lemma 9.1 from [33].

Lemma 2.18. Let H be a finite group with the following properties
() H/O,(H)= M3,
(i) Z(0,(H)=Z,,
(iii) the set of chief factors of H within O,(H) consists of one trivial module,
one factor isomorphic to € and one to €* = P(Q)even/(g
(iv) H=H".

Then H has trivial multiplier.
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Proof. Since M ,, has trivial multiplier [7], the only prime to examine here is 2.
Let H be a covering group of H. By Lemma 2.17 and H*(M,,, Q/Z)=0, the
only trivial chief factors within O,(H) occur within O,(HY. Since € and €* are
absolutely irreducible and not selfdual, |0,(HY nZ(0,(H))|<2. This proves the
Lemma.

Lemma 2.19. Suppose that F is a field and that G=NL is a finite group,
N<G,LEG and NNnL=ZZ(L). Suppose that M is a finite dimensional FG-
module, faithful for G, such that the restriction to FL is absolutely irreducible.
Suppose that n=dim, M, N<aG and that L has no proper subgroup of index <n.
Assume that L, =L/Z(L) is simple, min{dim M, | M, is a finite dimensional E-
vector space and L, is involved in Autg(M,)}=n for all algebraically closed
fields E, and, whenever P is a p-subgroup of N with L, involved in Aut PM,)}=n
for all algebraically closed fields E, and, whenever P is a p-subgroup of N with
L, involved in Aut P, P is abelian.

Then N is scalar on M.

Proof. We may assume N is not scalar on M and that F is algebraically closed.
Let pen(N), SeSyl,(N), S£Z(G). Then N;(S) covers G/N. If S is nonabelian,
C.(S) is nonsolvable and involves L;. One of our hypotheses on L, forces
Cs(S) to act irreducibly on M, whence S is scalar, a contradiction. If S is
abelian but not scalar on M, the above argument shows that the action of
N;(S) on S involves L,. Then Clifford Theory applied to 14 S<aN;(S) plus the
fact that L, has no proper subgroup of index n or less gives us the required
contradiction.

Lemma 2.20. (i) A proper subgroup of D,(2) has index at least 28.

(if) Let G=-0 and let H be a proper subgroup. Then |G:H|=832.

(ii)) In the notation of Lemma 2.19. minymindim {M,|...} is 8 for D,(2) and
24 for -1. Also, (L., n)==(D,(2), 8), (-1, 24) whenever a P arises with P'+1 and L,
involved in Aut(P).

Proof. (1) Since D,(2) is simple, any proper subgroup of D,(2) fails to contain
some U, (2)-subgroup. Since the minimal index of a proper subgroup of U,(2) is
27 ([45], [17], p. 307), we get that if H<G=D,(2), then |G:H|=27. If |G:H] is
odd, H lies in a maximal parabolic, each of which has index 135. Thus |G:H|
=28, as required.

(i1) If L is any subgroup of G such that [L: LnH|=832, we are done. We
may suppose that |G: H|<832. Without loss, Z(G) < H. Let bars denote images
modulo Z(G).

Take L,<L<G, L,=U;4), L~2G,(4). Suppose L,f£H. Since |L,|
=26.3.52.13 and |L,}/832=75, HNnL, can not have odd order (an easy exer-
cise). So, whether L, lies in H or not, H contains an elementary abelian 2-group
F#1 of L,. Note that F lies in a root group in L=G,(4), for a long root.

We now set H,:=({F¢|F¢<H,geL}>. If O,(HnL)=1, HnL, lies in a
maximal parabolic of L, whence |L:LnH|=1365, a contradiction. So,
0,(HnL)=1. Since (U F®)* is a class of {4, odd}*-transpositions, of a theo-

geL
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rem of Timmesfeld [72] identifies H,<H AL, as SL(2,4), SL(3,4), U,(4) or
G,(4). Since |G,(4))/2|U;(4)|=2016>832 and |G,(4)|/2|1SL(3, 4)|=2080>832, it is
easy to deduce L=< H from this.

This argument shows that H must contain every conjugate of L, whence H
=G 18 not proper. This contradiction proves the result.

(i) Define m,(p)=min {dim M, | M, is a finite dimensional IFp-vector space
and L, is involved in Auty (M)}, and let M, be such a module with dimg. M,
=m, (p). Then M, is irreducible.

Say L,=D,(2), m;=m,(p)<7 for some p>0. Then there is ASGL(m,IF ),
and B<A with A/Bx~L,. Let A be of least order. Then, by a Frattini argu-
ment, B is a nilpotent p’-group. If BEZ(A4), (i) and the fact that 11_31, is
algebraically closed imply that every characteristic abelian subgroup of B is
cyclic, whence B is as described by P. Hall's theorem {[27], p. 198). The bound
m,; =7 implies that the only nonsolvable composition factors of Aut(B) are
various PSL(2,r). Thus, C,(B) involves L, 1e, B<Z(A), whence A=D,(2) or
2D,(2). If p#2, a restriction of the representation to a 2.2°. 4, subgroup gives
a contradiction to m,; £7. So, p=2, and consideration of a (3 x U,(2))2 sub-
group of D, (2) shows that U,(2)2 or 2U,(2)2 must act faithfully in dimension
5, or U,(2) must act faithfully in dimension 3. These situations are eliminated
by looking at the subgroups 3'*2,GL(2,3) and a Frobenius group of order 20
in 2,<U,(2).

Say L,=-1, m;=m,(p)<23. As above, we get A quasisimple with 4/Z(A4)
~L, in GL(ml,ll_:p). If p+2, we see that neither N,, or N,,/Z(N,,) may be
embedded in GL(m,,IF,) since the noncentral abelian normal subgroup of
either group does not have an N,,-conjugacy class of fewer than m, hyper-
planes. So, p=2, and we get a similar contradiction by considering the sub-
group (3°.2M ) x{—1> in .0.

Suppose that a nonabelian p-group P arises as in Lemma 2.15. By (i) and
P. Hall’'s theorem ([27], p. 198), P=Q,(P) may be assumed extraspecial or of
shape 21 7% Z,. Since L is absolutely irreducible on M, p divides n=dim M
and p#char F (M is our F-vector space). If (L,,n)=(D,(2), 8), then p=2. The
structure of Aut P [31] forces k=4, whence p*=16 divides n, contradiction. If
(L,m=(-1,24), p=2 or 3. If p=3, P=3'*? and AutP is solvable, a con-
tradiction. If p=2, P=2*% or 2! *?*-Z,, then k=<4, a contradiction to an
earlier part of (iii).

Proposition 2.21. Let p be a prime, p=5, and let 1:-0—0(24,2) be the homomor-
phism associated with the natural action of -0 on A2A. Then X
={XZ20(24,2)| X contains (-0) and X has a projective representation on IF;4
which is nontrivial on (-0)yr} is just {(-O)y}.

Proof. Let H:=(-0)" <G £Q(24,2), GeZ and G a central extension of G with
the relevant faithful representation on IF7*. Let H be the subgroup of G
isomorphic to -0 and mapping onto H and let M be the relevant IF ,G-module.
Let zeH be an involution with eigenvalues {— 1'%, 18} and set Q,:=0,(Cy(2))
218 % 2; (2> =Q,.

Let us set C,:=Cg(Q,). Let C; be the group of linear transformations
induced by C, on the ¢ eigenspace M, for z, =+, —; we have dimM _ =16,
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dim M , =8. Then C[ must induce scalars since Q, is absolutely irreducible on
M _. By applying Clifford theory to C;, normalized by the image C,(z)" of
Cy(z) in GL(M ), we get that C} is scalar on M, {(see Lemmas 2.19 and 2.20)
or else C; NCh(z)*2(Cx(z)*Y. Thus, C, is abelian of rank 2 and induces
scalars on M, and M , or else C[ contains a linear group 2D,(2) on M _.
We eliminate the second alternative by looking at the action of G on V, a 24-
dimensional IF,-space on which H and G act as subgroups of the orthogonal
group. Each term of the series V>[V,Q,]1>[V,Q,,Q,]1>0 has codimension 8
in the previous one [36]. Since [Q,, C,]=1, the PxQ lemma ([27], p. 179)
implies that O*(C,) are nontrivially on C,(Q), which must be absolutely
irreducible for 0*(C,), by Lemma 2.20(iii). Similarly, 0%(C,) is nontrivial on
each factor of the above series since [Q,, C,]=1. However, by absolute irreduc-
ibility, the subgroup of Q, commutating trivially, one factor to the one k steps
lower must have index at most 2* in Q,. Consequently, a subgroup of index 23
in Q, acts trivially on V¥, which is absurd.

We conclude that C, is abelian of rank 2 and induces scalars on M, and
M_.

Let Q:=Cy (M), R:=0,(QC,); QC,=0(QC,)xR. We set H,:=Ng(R).
Possibly, Q<1H, < N;(Q) although Q< H and R~Q-Z,, among other things,
might be the case. We want to prove that Q<1 H,. Suppose @<t H,. Since R’
=Q'={z), H, acts on both M, and M_ and so Q<R _:=Cy (M )<H,. The
normal closure of Q in H, is Rpz=QR,, R;:=Z(R,) is cyclic, |R,|=4 and
Ro=Q,(R)=(2 +®)0Z,. Let A:=N4(Ry)/RyCs(Ry). Then A contains a na-
tural copy of D,(2) (fixing Q) and A is embedded (by ¢, say) into Out(R,)
=5p(8,2). Let % be the set of 256 maximal subgroups of R, not containing
R,. Every member of % is an extraspecial group of order 2°. Let %* be the set
of elements of # of ¢ type (¢=+ or —). The action of Out(R,)=Sp(8,2) is
transitive on each set %", %~ with point-stabilizers Gy, Xe%, natural
D,(2).2,%D,(2).2 subgroups, respectively (this follows from the definition of
Aut(R,); see [31] for more details), and a calculation ([27], p. 491) shows that
(% *|=136, |%~|=120.

Furthermore, if Xe%, the stabilizer of X has two orbits on % —{X}
(reason: the orthogonal group G, stabilizing X is transitive on the set of
nonidentity cosets of Z(X) which contain involutions and on the set of cosets
which do not, and the mapping Ye# —{X}, YZ(XNY), sets up a Gy
equivariant bijection between % — {X} and (X/Z(X))*).

So, G, has orbits of length 1,135 on %%, whence Q<pH, gives
|42 =(2'2.35.52.7)(2%.17)=21|Sp(8,2)| and so A =Sp(8,2), as Sp(8,2) is
simple.

Now let H; be the linear group induced by H, on M, ¢=+, —. At once,
H/Z(H")=Sp(8,2). Since the Schur multiplier of Sp(8,2) is trivial [64], (H,")
=S5p(8,2). But then, the perfect group 2D ,(2) cannot be embedded in (H'), a
contradiction. So, Q<1 H, =Ng(Q), as desired.

The next step in the argument is to show that H, = C;(2). Let H,:=C4(2),
Hy=Cpy,(M,). Our results prove RnH,eSyl,(H,). Since H,/Z(H,) has abe-
lian Sylow 2-subgroups, the action of H, on @ and the classification of such
groups [75] imply that H; is solvable of 2-length 1. We are done if Q< H,,
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so assume otherwise. Then [O(H,), 0] = 1. Since O(H,) N,;(Q) acts absolutely irre-
ducibly on the 16-dimensional space M _, Clifford theory implies that O ,(H ;)
=1 and O(H,) is abelian. Then Lemma 2.20(i) and the fact that Q/Z(Q) is an
irreducible module of order 28 for N;(Q) imply that O(H ) is scalar on M_, a
contradiction.

We argue that C, ={C,, z)>, where C, consists of scalar transformations on
M. Choose T<H,, T=Z}? such that N,:=Ny(T) is the group N,,, ie, N,
=TN,, Ng=M,,. Then C, < C(T), an abelian group, since T operates on M
with 24 distinct linear characters. Since H, = Cg(z), C4(T)=Cy (T)=TC,. The
action of N, on TC,, and the fact that C, has rank 2 implies that O(C,) is
scalar and that U'(0,(C,))n T is scalar on M. By [33], 9.3, 0,(C,)=TT, as a
ZN,-module, where T, is scalar. So, C,=0(C,) T, has the requisite property.

It follows from the above that H,=N;(Q)=N;(R)=Cg;(z) and H,/QC,
=D,(2) or D,(2).2. We shall prove that if H,/QC,~D,(2)2, G has a normal
subgroup of index 2. We have that H; =(2+2."®) D ,(2).

Suppose H,/QC,=D,(2).2. Let SeSyl,(H,)=Syl,(G) (because Q,(Z(S))
=Z(Qy) and set S,:=SnH|C,, a maximal subgroup of S. Define 2°
=min {[g] |geS—~S,}. An easy variation of the Thompson transfer lemma ([70],
5.38) says that if geS—S,, |g/=2" and G=07%(G), then g fuses in G to an
element of S,.

Let us suppose that G=02%(G) and produce a contradiction. Let teS—S,, be
an element which induces a transvection on Q/Z(Q) and, among all such
elements, has least possible order, say 2°>2. Choose a conjugate ¢, of ¢ in
Ng(Q) such that (t,¢,> induces a natural O~ (2,2)=X, on Q/Z(Q). Let
PeSyl;(<t,t,7), [P|=3. Then {Q, P>=[Q, P]P x Cy(P) and [Q, P]1=Q,. Recall
that p#+3. Each eigenvalue for a generator h of P on M _ occurs with
multiplicity 8 (since C,(P) effects the linear group 21."° on M_), and h is
conjugate to A=! in H); so w and w~! are these eigenvalues, where w*=1
+ weIFp. Thus ¢ has trace 0 on M_. List the eigenvalues of t: {a,, a,, ...} with
multiplicities m,, m,, ..., indexed so that a,,,, = —d,;,,, i=0,1,.... We have
My =Mmy , for i=0,1,.... On M, H, induces a linear group 2D,(2) and,
on it, ¢t centralizes an Sp(6,2) xZ, subgroup. So, on M _, ¢ has eigenvalues
{c,c,e,¢,¢c,¢,¢,¢'}, ek Let I,J be the set of i for which m; is even, odd,
respectively.

We argue that (1) ¢ has an eigenvalue with odd multiplicity, and (2) we may
assume b=a=1 or t* generates 0,(C,). If ¢ or ¢’ does not occur in {a,, a,, ...},
(1) holds, and if ¢ or ¢’ does occur, as a,, say, and iel, this is so. We may
assume that c=a;, ¢'=a,, {j,j'} =J. Then m;=m; and >''m; =2 (mod 4), whence

iel

at least one partial sum m,,, , +m,,;,, is in 2+4Z. Since m,; ., =m,, . ,, this is
a contradiction proving (1). As for (2), if we let O(C,)=K S N4(Q) be a group
of odd order commuting modulo C, with {t, P) and satisfying [Q, K]=2!*° a
Frattini argument with K <{R, K, t)> shows that we may arrange for 1> Cr(K)
=[Q, P]C, and even t?e{z, C,>. If t?€C,, (2) follows, so assume t*€zC, and
b>a. Then take xeCy({P, 1)), x?>=z and replace ¢ by tx~!. Note that this
adjustment does not affect (1).

Since (2) holds, we get that t is conjugate in G to ueS, because b=a holds
or because the image of t in G/Z(G) is an involution in case {t*>=0,(C,).
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Write u=u, u,, u;eH}; = Ny(Q), u,eC,. The above discussion of eigenvalues
for t shows that ¢ has at least two eigenvalues with odd multiplicity. However,
every 2-element of H| C; =H) C, has every eigenvalue with even multiplicity:
this is so for u, eH}, by [12], and is also true for ueH| C, as C,, consists of
scalar matrices. This contradiction proves that G£0*(G) if H,/QC,=D,(2).2.

In view of the last two paragraphs and the fact that Out(-1)=1, we may
assume that G has no normal subgroup of index 2 and that H,/QC,=D,(2)
Then [56] may be quoted to obtain G/Z(G)=-1. This contradiction proves
the Lemma.

Lemma 2.22. The 2-rank of GL(n, 2) is precisely B] (n— B])for nxz2.

Proof. This is easily checked for n=2 and 3. Set g(n):= [g] (n—— [g]) Suppose

nz2 and take ASGL(n+2,2), A=Z,, r maximal. By Sylow’s theorem, we
may assume A4 lies in a subgroup QL of GL(n+2,2), Q=21%2" L~GL(n,2)
Then |[AnQ]<2""! and, by induction, |4/4NQ|<g(n). So

e[

n n n n
= — — — = — —1= Zk
wore2= (3] e1) e {5 )= (] 1) o [5])
we get r<g(n+2). The opposite inequality is needed to finish. To prove that
g(n) is the 2-rank of GL(n,2), we exhibit an appropriate subgroup. If V is

the underlying vector space and W is a subspace of dimension [g], the

stability group of the chain 0 < W<V is elementary of order 28,
These results are contained in the Cambridge thesis of P.E. Smith in which
the p-ranks of all groups of Lie type in characteristic p are determined.

Corollary 2.23. The 2-rank of M,, is precisely 6.
Proof. M, and GL(S, 2) have isomorphic Sylow 2-subgroups [41].
Lemma 2.24. The 2-rank of -3 is at least 4 and at most 6.
Proof. We shall show that -3 contains a subgroup H of odd index where O,(H)
~73, H is 2-constrained, H/O,(H)=GL(4, 2).
Let us assume the above and deduce the Lemma. Let ESH, ExZ),, r

maximal. Then rz4. Since the 2-rank of GL(4,2) is 4, (see Lemma 2.22),
achieved by, say, all matrices of the shape

1 0 a b
1

¢ d
L o a, b, ¢, delF, ¢,
1

the fact that H/O,(H) acts faithfully on 0,(H) implies that r £6, as required.
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Now to exhibit the subgroup H.
Let
E=4x,—2x;+ Y 2x;
jeo
JFi
be our vector of type 3; here, @ is an octad containing i and avoiding k. Let 4
be the subgroup of M,,<N,, stabilizing ¢ and fixing k. Thus, A= A4, and A}:
={geA|x$=x}=A,. Clearly, Y:={geN,,|&=E(=<0,(N,,)4 and Y;:
=YNO0,(N,,)={e5|Sc¥, Sn0=0 and k¢S}=Z5. So, Y, A*<Y and Y/Y, =4,
or Ag. We prove that Y/Y, = Agy. For ged, we obtain y,eY as follows. If i#
=jel, take any ¢-set S=§, such that Sn(OuU{k})={i,j}; easily, such an §
exists, and if T is another candidate, &g,  is in Y;. We set y :=¢5geY. At once,
Y)Y, A,
Since Y, is a nontrivial module for A, the group Y serves as our H, and we
are done.

Lemma 2.25. Let E={T,, ..., T} be a sextet. The only €-sets disjoint from T,
+ T, + T, are the octads T, + T, 1, je{4,5, 6}, i+, and ¢.

Proof. Clearly, all such nonempty %-sets are octads. There are 30 octads
disjoint from the octad T, + T, and any two distinct such octads are disjoint or
meet in a 4-set; see Table 2.1.1. Let ¢ be an octad disjoint from T, +T,+ T;.
Take any index ie{4, 5, 6} such that OnT,+0. Then ONT,=0~(T,+ T)) must
be a nonempty even set since T,+T; is an octad. If there is ke{4, 5, 6} such
that T,"0O=0, O=T,+ T;, as required. If there is no such &, |T;n 0] must be 2
for je{4, 5,6}, by the basic property of sextets. This means |¢|=6, a con-
tradiction.

Lemma 2.26. (i) Let V be a linear subspace of € such that V contains no
dodecad. Then dimV 6. If V does not contain a pair of disjoint octads,
dimV<5. In any case, V lies in a subspace of one of the following shapes:
O, |0, is an octad, O, =0 or O,~O=H>, for some octad O (dimension 6); {O|C
is the sum of two tetrads in ), for some sextet E (dimension 5).

(if) Let V and O be as above, dim V=6, W the subspace of O,(N,,) corre-
sponding to V and A=A/2A. Then Ci(W)=CAyj, Aijes Acl i, JEOY +2A/2 A has
dimension 8.

Proof. (i) Without loss, QeV. If ¢, and ¢, are distinct octads in V, O, "0, is @
or a 4-set.

Suppose V contains no pair of disjoint octads. Take O eV, O, an octad. Let
X be the set of octads in V distinct from @,. For 0eX we have the 4-set T:
=0n0,. Since no pairs of disjoint octads are present, the map O+ T, is one-
to-one. Let T;:=T,, i=1, 2 be two such distinct 4-sets. Suppose that they have
odd intersection. Then |0, +0,| <15, whence ¢, +@, is an octad in V. But
then the cardinality of (O, +0,)nCO,=(0,Nn0O)+(0,Nn0O,) is 2{mod4), hence
can not be 0, 4 or 8, a contradiction. If T,nT,=0, O, +0,=0,. The remaining

possibility is that T, T, is a 2-set in T;, of which there are (2) =6. It follows
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that the map T,—~T,nT, is at most two-to-one, since |T,n Ty | is even for all
octads 0, 0eX. So, |X|<1+1+6.2=14, whence dim V<5,

We show that there exists an octad disjoint from every octad of V. To @,
and O, there is associated a sextet Z={T,,..., T;} with T,=0,—-0,, T,=0,
-0, T,=0,n0,.

Suppose that every octad in V is a union of tetrads. Since ¥V does not
contain a pair of disjoint octads, at most 4 tetrads are involved, and we can
produce our octad from 2 tetrads which remain.

We may assume that some OV is not a union of these tetrads. Then @
contains no tetrad and so meets each of T;, i=1,2,3, in a proper subset of T,.
Since @ meets each of Oy, 0, and O, +0, in a 4-set, |INT)|=2, i=1,2,3. Two
points of @ are unaccounted for. Take ke{4, 5, 6} such that @~ T, =§. Since the
intersection of any two %-sets is an even set, each |0 (T, + T)| is even,
je{l, ..., 6}. So, there is je{4, 5, 6} —{k} with |0nT;|=2. Define O*:=T,+T,,
where {i, i, j} ={4, 5, 6}. Reindex so that j=4, i=35, i'=6.

We claim that if OV, @ an octad, O +0*, then O ~O*=0. Suppose false for
OeV. Define I={i|i<4 and T.nO*0}. Since ONO* +0, O N(O*+ Q) is a 4-set.

If there is some T;, ;= 0, then O=T,+ T, or T,+T,; but then O~( is a 2-
set, contradiction. If there is iel such that |T,n 0] is odd, all |T,n0O| are odd,
hence equal 1, forcing O~ (T, +T,) to be a 2-set, another contradiction. So, if
iel, OnT, is a 2-set, whenee |I|=2. Take {,j<3, iel, j¢I. Then T,+ T,eV and
|ON(T;+T)|=2, contradiction. So, ¢* has the requisite properties.

Now to analyze the other situation. Let ¢, @, be a pair of disjoint octads
in V. Since QeV, 0;:=0,+0,+Q is an octad in V. Say 0,eX:={SeV|S is an
octad distinct from O,,O,, 0,}. There is ie{l,2,3} such that 0,<0,+Q.
Reindex so that i=1. If every octad in X is disjoint from @, dim V<6, see
Lemma 2.1. Let us suppose otherwise. Take OcX, OnO,+§. Set O5:=0,+0,
+8Q, T:=0,n0,, k=2,3,1=4,5; the four T, partition O, + 2, and are part of
a sextet Z. Let us say that @ contains none of the T,;,. For some je{2, 3},
On0;#0, whence T;nO+0, I=4,5 (see Lemma 2.25). Thus, @ meets ¢, and
05 and so |00, =4, I=4, 5, whence O =0, + 0, a contradiction to OO, 0.
Thus, ¢ contains some T,,, hence must be one of the 15 octads associated to
E(0,, 0, and O, are counted among these}. We conclude that dim V5.

(i) Let egeW® If leAd—A(2), then A(l—eg)=A5 (mod A(4)+24), whence
CAW)=A(2).

Suppose Ue% and Ai=/iy(mod(A(4)+24)). Then i(l—eg= ) 4x,

ieSnU

(mod Z8x,+2A1). So, 1 is fixed by Wonly if SmUe®¥ for all ¢ in W. Easily,
U=0 or 0+ Q. On the other hand, 4, is fixed by W
It remains to determine Cym;(W). If A=) +4x,, for some UeP,

even
ielU

get / fixed by W if and only if |UNS| is even, for all g in W, This is equivalent
to saying to saying that there is an even set ES( such that ¥+ U=%+E
(reason: the set of such U correspond to the 6-dimensional annihilator in
P(Q),,.n/€ of V/<{Q)<F, and the image of P(0),,,, in P, (Q)/% is a 6-dimen-

sional subspace of the annihilator). Thus, C /(W) is as described in (ii).

(Q), we
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Definition 2.27. Let V be as in Lemma 2.26. If there exists a unique octad, O,
such that V<<, |0, is an octad, O, nO =@ or O, =0, call V a space of octad
type, based on the octad 0. Suppose that there is more than one such octad, say
O and O';if ONO'=0. V{Q, 0,0 and if OO is a 4-set, Lemmas 2.25 and
2.26 apply. So, if V is not of octad type, there is (at least) one associated sextet,
and so we call V a space of sextet type. The sextet is unique unless V
=<0, O, 2>, with O, ¢’ disjoint octads.

Lemma 2.28. Let {Q)><V be as in Lemma 226, and W the corresponding
subgroup of O,(N,,). Then
(1) dim C g4y, 2 424(W)=13—dim V; ~
(i) the image of C,, (W) in AJA(4)+2A lies in A(2)/2A=€ and corre-
sponds to the image in € of the set of all €-sets which meet or avoid every €-set
inV;
(iil) let d=dim[C ,,, ,(W)+(A(4)+24)/(A(4)+2A4)]; we have
d=5if dim V=2,
d=2if dim V=3,
d=1if dimV =4, and V has octad type,
d=01if dimV =4, and V has sextet type.

Proof. Since V ><{2), no vector in A— A(2) with odd coordinates may be fixed
modulo 24 (or even modulo A(4)+2A4) by an element of W—{+1}. So,
CaaW)=4(2)/24 ~%. Since A(4)+24/{8x_, 2A>=P(Q).,../ and the pair-
ing of it with W/{+1} into {(8x,,24>/24 is the natural one,
dim C 44y, 5 424(W)=13—dim V. _

For 1€ A4(2), let S(4)={ieQ|i'" coordinate of A is in 2+4Z}, and let 1 be A
+424, 8x,5/<24, 8x_>. For 7 to be fixed by & in W, S(A)nS must be a &-set.
So, for 7 to be fixed by every element of W, S(4) must lie in or avoid every -
set associated to W. Conversely, if U is such a %-set, A=) 2x; is fixed modulo

ieU
24 by W.

We get d by analyzing the “solution set’, the %-sets which satisfy our
condition with respect to V, then taking the dimension of the image of this
solution set in &.

For dim V=2, d=5 by Table 2.1.2. Say dim V=3, V'={Q,0,,0,>, 0,, 0,
octads. If 0;n0,=0, the solution set is just V. f O,n0O, is a 4-set, let T}
=0,n0,, T,=0,—-0,, T,=0,—0, and E={T, ..., T,} the associated sextet.
Let U+@, Q be in the solution set. If U=, i=1 or 2, U=0,; but
0.N0,¢%. So Un0,;=0, i=1,2. Now use 2.25.

Let us say dim V>4, Suppose V has octad type, based on the octad 0,.
Then V has octads ¢, 0, in ¢+ Q which meet in a 4-set. The only possible
solutions, not ¢, Q, are 0,, 0,+Q and we have d=1. Suppose V has sextet
type. Take an octad 0,eV—<(Q, O, 0,>. Using the discussion of the last
paragraph, if 0, (0, 00,)=0, the only possible solutions, not ¢, , are ¢, or
05+ Q, and if O;n(0,00,) is a 4-set, the only possible solutions, not ¢, Q, are
0,:=Q+(0,00,00,) or 0,+8. But since, by definition, V is not of octad
type, some member of V meets @5, O,, in these respective cases, in a 4-set; so
d=0.

3
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Lemma 2.29. Let teN,, be an involution mapping to a non-2-central involution
of M,,~N,,/O,(N,,), ie, one of cycle-shape 2'2. Then every involution in
0,(N, )t is conjugate in -0 to t and every element of 0,(N,,)t with square —1
is in the class with a 2G,(4)-component in its centralizer. In any case, an
involution yeO,(N,,)t/{+ 1} < -1 satisfies dim(A/2A)(y — 1)=12.

Proof. To prove the first statement, it suffices to prove that 0,(N,,) is a free
IF, {t>-module, then refer to the class list for -0 [12]. Let h be an element of
order 11 in M,, inverted modulo O,(N,,) by t; see [74]. The %-sets fixed by &
consist of ¢, Q, 2, P+ Q, where 9 is a dodecad. Thus, ¢ stabilizes {2, 2 + Q},
and since 0,(N,,)=[0,(N,,), h]x Cy,,,(h), it suffices to show that ¢ in-
terchanges & and 2+ Q. This is clear, because the stabilizer of & in M,, is a
copy of M,,, and eclements of order 11 in M,, are not conjugate to their
inverse (because permutations in M, are even on the usual 12 points).

Now to prove the second statement. If yeO,(N,,) has order 4 and y*= —1,
this is obvious, since C(y) contains a copy of 2G,(4), of order divisible by 13,
and so cannot act nontrivially on an IF,-module of dimension less than 12.
Replace ¢ by a conjugate ue0,(N,,). Then u=¢,, 2 a dodecad. Clearly, A(l
—u) consists of vectors with support in 2. Say &eA and &(l~u)eA(4)+2Z.
Then £eA(2) and S:={i|i™ coordinate of ¢ is in 2+4Z}e%. We thus have a
map € AQ2)24-{A4),8x,, 24AD24=P(Q),.../€, based on E—E(1—uw),
whose kernel is {{S,S+Q}e%|SSP or SSP+Q}={{D, D+Q}, {¢, D}}; the
image therefore has dimension 10. So, A(l~u)=L:={) +4x,|E<2, E

ieE
=2nS for some Se%) and dimL+24/24=11. Now take leQ+ 2, v=-3x,
+ Y x,. Then v(l—u)=) 2x,eA(1—u)—L and it is clear, since & is the
ie {1 jed
suppor{t} of v(1-u) and & éontains no %-set except ¢ and &, that v(l —u)¢L
+24. Thus, dim [A4/2A4, u]=12.

Corollary 2.30. The group -1 has 3 classes of involutions: one 2-central class,
with centralizer of shape 2.%®.D,(2); two non 2-central classes, with centralizers
of shape 2''M,,.2 and (2x2xG,(4)2. Also, if t is an involution in -1,
dim[A/2A,¢] is 8 if t is 2-central and is 12 otherwise.

Proof. Lemmas 2.28, 2.29 and the class list [12].

Lemma 2.31. Let £ be a sextet of tetrads and let X be its stabilizer in M ,,. Set
X =0, 3(X), the kernel of the permutation representation for X on E, X,
=0,(X), (hYeSyl;{X,). Then (i) h acts fixed point freely on X ; (ii) there are 21
h-invariant fours-groups in X ., distributed into two orbits Y,, Y, for X/X =%,
of lengths 6 and 15; (iii) the involutions in Y, have cycle shape 2'* (non 2-
central) and those in Y, have cycle shape 1828(2-central); (iv) if ES TeZ, |E|=2
and X p={geX | E®=E}, then X has orbits of lengths 2,2, 4,4, 4,4, 4 on Q.

Proof. By reference to the character table of M,, [74], |C(h)|=1080<|C4(h);
so (1) follows. The first part of (ii) is immediate from (i). Since (i) implies that
X is an irreducible module for X, the orbits of X on the 21 fours-groups have
lengths d,, d,,...,d,, where each integer is at least 2. Since 7¢|X|, r=2. If
d,<10 then d,=6 or 10 (an easily checked property of Z,). Therefore, r=2 and
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{d,,d,}=1{6,15}, as claimed. Let Y,, Y, be the orbits of lengths 6, 15, re-
spectively. Since |Y,| is odd, Y,” lies in the 2-central class, ie., the involutions
of cycle shape 182% Let f be the number of fixed points for involutions in Y*
and let © be the permutation character on Q. By the orthogonality relations
and the fact that X, is transitive on each member of Z, 6.2°= ) n(g)=24

geXy
+45.84+18f, implying f=0 and (iii).
Now to prove (iv). Clearly, |X,: X;/=2 and X fixes no points of €. Since

h acts fixed point freely on X, X,:= () X% has index precisely 4 in X, (to
kelh)y
verify this, look in the dual module of X ;).

Let us say X, has a orbits of length 2 and b orbits of length 4 on Q. At
once a=2, and we must show that a=2. Suppose a=3. Then a=4 and X,
fixes at least 2a=8 points. Since |X,|=16, X, fixes 8 points, which form an
octad, O, and X ,=0,{H), where H is the global stabilizer of ¢. But then X, is
regular on Q+ 0, hence cannot stabilize the four members of = disjoint from
0, a contradiction. So, a=2 and (iv) holds.

Lemma 2.32. Let : N,,/{+1} > M,, be the natural map. Say BEN,,/{+1}, B
an elementary abelian 2-group, such that B,:=Bonkery =g {£1}), O an
octad. Assume that B¥ lies in the 2-central class of -1. Let Hy=2* Ay be the
stabilizer of Oy in M,,, B,:=0,(Hy)" 'nB. Define m =m(B,/By), m,
=m(B/B,), A=A4/24, c¢(B)=dim C(B) for B<B. Then m,<4, m,<4, m,
+m, <6 and

12 =1,

c(By)< ™
12—m, m 22,
12 m, =0, m,=1
11 m,=2,3
10 m,=4
10 m,=1, m,=

B < 1 ’ 2

“B)= 9 m,=2,3
6 m,=4
10—m; m; =2, m,=12,3
7T—m, m,=4.

If ¢,(B):=dim C 4, 1 4/24(B), then ¢ (B)=11 and

8 m; =0, m=1

7 m,=2,3

4 m,=4
c,(B)sy6 my=1,m;=12,3

3 m,=4

5 m=z2 my=1273

2 my,=4.

Proof. We have m, £m(0,(H,)) <4, m,<4 by Lemma 2.23 and m; +m, <6 by
Corollary 2.24.
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While we have a precise formula for the action of B, on A, we know the
action of elements of B— B, only up to the action of some element of 0,(N,,).
This ambiguity disappears, however, when we study the action of B on a
section in A on which 0,(N,,) operates trivially. Indeed, our upper bounds on
¢(B) are achieved by studying the action of B/B on sections within A where B
operates trivially, for an appropriate chain BSB<B.

We use bars to indicate images in A=4/24 and double bars to indicate
images in A=A/{24,8x_>.

By Lemma 2.28, we have C;(B,). The action of B,/B, on C 4(B,)/C;(Bo)
(isomorphic to the 5-dimensional subspace of ¥ spanned by ¢, and all octads
disjoint from it; see Lemma 2.28) is faithful and stabilizes the chain

C 4(Bo)/ Cxm(Bo) Z < C4(Bo)s Ao,/ Ca(Bo) 20,

hence fixes precisely a subspace of dimension 5—m,; this is so, for otherwise,
irreducibility of H,/O,(H,) on the 1 and 4 dimensional constituents would
force 0,(H,) to stabilize all these octads, hence all their intersections, con-
tradicting the fact that 0,(H,) is regular on Q+0,. Take 1cA(4), A=) +4x,

ieE
EeP,..(Q), |[E|£4. Clearly, 7 is fixed by B, if ES0,. For 1 to be fixed by B,,
|[En0,| must be even.

Let L={8x_) be the subspace of A(4) corresponding to P...(C,), given by
all A, in above notation, with Ec®,. Then dim L=7. We claim that H, acts
faithfully on A(4)/L, a reducible module with socle M/L, corresponding to
{E€P(Q)oyen||[EN Oyl =0(mod 2)}. Clearly, M is H,-irreducible of codimension 1.
Let i€, jeQ+ 0. Then, for teO,(Hy), {i,j} +{i,j} ={j,j'}, a 2-element set in
0,+Q. Thus, /1_1-}- is not fixed by ¢t modulo M, whence the claim. In particular,
0,(H,) and M/L are isomorphic modules for H,/O,(H,)=As. A similar
argument shows that O,(H,) is nontrivial on M/{8x_>: take {i,jlcQ+0,
i) such_that i and j are in different orbits for some t€0,(H,); then A—ijeM
and Aj;#4;;. Since H, operates on L/{8x_ > as it acts on P(0),../<C,» (the
kernel of the action is O,(H)) we see that there is a morphism of H,/0,(H)-
modules 0,(H,)®M/L—L/{8x_ >, which may be identified with the natural
map M/L®M/L —>A*(M/L); see [30], p.274. This latter depiction has the
advantage that we can see the following: given x, ye M/L, x, y indepen-
dent, the annihilator of x, ie, {ueM/L|x®u goes to 0 in AZ(M/L)}, is
I-dimensional (namely, {x}), and the annihilator of {x, y> is 0.

The preceding paragraphs imply the upper bounds on ¢(B,).

To prove the bounds on c(B), we must investigate how elements of B act
on Cz(B,). We need to establish two points. Let M, M, be irreducible 4, 6-
dimensional modules, respectively, for IF, Ag. If ¢ is a 2-central involution of
Ay, it operates as a transvection on M, and satisfies dim C,, (1)=4. If ¢ is an
involution of Ag, not 2-central, dim C, (t)=2 and dim C,, (t)=4. In addition,
we claim that if E, denotes a subgroup of A, E, ~7Z%, then

(1) dim C,,(E,)£3 for n=2,3 or E, contains non 2-central involutions;

(2) dim Cy, (E,)=2 and dim C,,(E))=1.

Suppose n=2 and that dim C,;,(E,)=4. Let P be the 8-dimensional IF, 4,-
permutation module and Fy the submodule of codimension 1; P has M, as a
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composition factor. If E, has two orbits, P is a free IF,E,-module, and
dim C,,(E,;)<3. So, E, has at least 3 orbits. Since E, does not act semireg-
ularly on the 8 points, E, has non-2-central involutions, proving (1). Since E,
is uniquely determined up to conjugacy in Ag, it is easy to check dim C,, (E})
=2 directly. We may write E,=T, x T, where T, is regular on {1,2, 3,4} and
trivial on {5,6,7,8} and T, is trivial on {1, 2, 3,4} and regular on {5, 6,7, 8}.
Let ey, ..., ¢4 be the standard basis for P and let I={l, ..., 8} such that ¢;:

8

=Y ¢ is a fixed point modulo IF, <Z ei>, but I+, {1,2,...,8}. Set I,

iel i=1

={1,2,3,4}nl, I,=1-1,, ¢;,=) e, j=1,2. Say I,%0 for je{l,2}. Using the
iel;

action of T} on e;,, we see that |I;]=4, proving (2).

We now complete the proof of the Lemma, using the preceeding discussion,
by analyzing cases. The bounds on ¢(B) are discussed and those for c¢,(B) are
obtained from a similar discussion which is omitted.

Suppose m, =0. If all involutions in the image of B—»H,/0,(H,) are 2-
12 m,=1,
11 my,=2,3.
we have ¢(B) =10, for all m, > 1. In particular, ¢(B) =10 when m, =4.

Suppose m,=1. If all involutions in the image of B—H,/0,(H,) are 2-

central, we have c(B)§{ If some non-2-central involutions occur,

10 =1 . .
central, we have c(B)g{ 9 ::2_2’ 3 If some non-2-central involutions occur,
27T 4
9 f >1
we have c(By<{ . OF 2=
6 if m,=4

Suppose m,=2. If all involutions in the image of B—H,/O,(H,) are 2-
10—m,, m,=1,

If some non-2-central involutions
9—m,, my,=2,3.

central, we have c(B)§{
are present, we have

10—-m, mz2, m,=21,

T—m, mz2, m,=4

dmg{

Some remarks of Allan Adler and Melvin Hochster led to a shortening of
the original proof of Proposition 12.6 via the following elementary lemma
(formulated by Melvin Hochster).

Lemma 2.33. Let R be a unique factorization domain and S a subset of the free
R-module M =R", m=0. Let z be an infinite set of primes in R. Suppose that
there is an integer n so that the image of S in M/pM has cardinality n, for all
pe . Then |S|=n.

Proof. Obviously, |S|=n. Suppose that y,, ..., y,,, are distinct elements of S.
Consider the set Z of z,;:=y,—y;, i=#j. Only finitely many primes divide any
member of Z, whence z*:={pe/|p divides no element of Z} is infinite, hence
nonempty. If ge 4*, the images of all the z;; in M/gM are nonzero, whence the
image of S in M/qM has cardinality at least n+ 1, a contradiction.

Lemma 2.34. In *F,(2), *F,(2), F.(2) and *E(2), a Sylow 5-groups is elementary
abelian of order 25 and all of its nonidentity elements are conjugate in the
normalizer.
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Proof. Consider G=2F,(2). By [32], page 419, PeSyl,(G) is elementary abelian
of order 25 and N(P)/C(P) contains a group of order 2°. Elementary Sylow
theory and (B, N)-type arguments for G show that C(P)=P and that 3 divides
IN(P)/C(P)|. Therefore, N(P)/P~SL(2,3).4, a Hall 5-subgroup of Aut(P)
=~GL(2,5). The statement about conjugacy in G is now evident and the
corresponding statements about the other groups in the hypothesis follow from
the natural embedding of each group in the next.

Corollary 2.35. On a 27-dimensional nontrivial module for TF,[3-2E(2)], an
element of order 5 has trace 2.

Proof. By Lemma 2.34, if P is a Sylow 5-group, the action of N(P) on P forces
M|, to be the direct sum of its regular representation and a 2-dimensional
trivial module.

The referee found a gap in the original version of Lemma 2.36 and suggest-
ed the substitute argument which appears here.

Lemma 2.36. Sz(8) is not contained in *E 4(2).

Proof. Suppose otherwise, and let M be a 27-dimensional IF,-module for
3.2E¢(2). Then G=Sz(8) acts on M. By a theorem of Steinberg [66], if V
denotes the standard 4-dimensional module for Sz(8) and V, are the Galois
conjugates, i=1, 2, 3, then every irreducible for IF, Sz(8) has shape V,®...0V,
where {i,, ..., ,} {1, 2, 3}. A primitive 13-th root of unity in IF, has degree 12
over IF, and degree 6 over IF,. Let M, be the IF, G-irreducibles which occur in
IF, ® M. When M, occurs, all Galois conjugates of M, associated to elements of
Gal(IF,/IF,) must occur too. So dim M =27 implies that dim M;=1 or 4 are the
only possibilities. Thus {M,} consists of 3 or 6 4-dimensional modules, and the
rest 1-dimensional. An element of order 5 in Sz(8) has trace —1 on the
standard 4-dimensional module [68], hence has trace 3(—1)+15=12 or 6(—1)
+3= —3 on M. This contradicts Corollary 2.35.

Lemma 2.37 (Paul Fong [23]). The principal 2-block for J, contains exactly 5
modular irreducibles, of degrees 1, 20, 56, 56, 76.

Lemma 2.38. Suppose that A is an algebra with an associative bilinear form ( ,)
and that B is a subspace of A. Let n: A— B be an “orthogonal projection™, i.e.
(ker m, B)=0. Define a product on B by x-y=mn(xy), x, yeB. Then the form on B
is associative for this product.

Proof. We have (x-y, z)=(n(xy), z)=(xy, z) for x,y,zeB since n is an ortho-
gonal projection. Similarly, (x, y- z)=(x, yz). Now the result is obvious.

George Glauberman pointed out to us that the structure of a commutative
nonassociative algebra may be given to S?¥, V a vector space with a sym-
metric bilinear form, by a simple formula (see (ii) in the lemma below). We
were able to generalize this idea to the following result. Since the argument is
elementary, it would not be surprising to find that this result has appeared
elsewhere.

Lemma 2.39. Let M be a module for FG, F a field, G a group and M*
=Hom, (M, F) the dual module. Set A=M@M* and let (,) be the natural
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pairing of M xM* into F. In case M=M*, we identify M with M* and, if
char F %2, we let A® be the span of all x®y+ey®x, for x, yeM, =+, —
(i) The following maps of A® A to A give G-invariant algebra structures on A:

(1i1) xRV ®Y)=(X, y) x®Y,

(12) (x@ Y ®Y)—=(x, y)x'®y.

The map (1.1) gives an associative algebra, making A= End (M), via the action
(x®y) X' =(x', ) x and (1.2) gives an associative algebra making A=FEnd (M¥*), via
the action (x@y)y =(x, ') .

Also, the form (,) on A given by (x®y, X' ®y)=(x, y)(x",y) is nonde-
generate and symmetric.

(ii) The product on A® given by

(x®y+ey@X)x'®y +ey ®x')
={x, ) x®y +e(y, V) xQ@x' +&(x, X) y®Y +(x, 1) y®x'
+e(X, y) Y ®x+(1, ¥) X' @x +(x, X) V' @y +e(x, V) x' @y}
makes A® a Jordan or a Lie algebra as e= +, —, respectively. The form (,) on A

remains nondegenerate when restricted to each A®. Also, the form is associative
for A and each A°.

(iii) In A*, let d= Z (x;®@y,+y;®x,), where x,, ..., x, is a basis for M and

n

Vis---» ¥y is the dual basts and let

Aozgl:{ Z a;x,®y;la,=ay foralli,j and Za —0}

=1 i=1

Let m: A™— A, be the orthogonal projection. For a,beA, define acb:=m(a.b),
where a. b denotes the product of (ii). Then A, becomes an algebra with A:=0 if
n=2 Aj=A, if n23 and G acts as algebra automorphisms. Also, the form
restricted to A, is nondegenerate and associative.

Proof (1). The first assertion is obvious. Let x, x', x"eM, y,y, y"e M*. Assume
that the product on A is given by (i.1). Then

(x@ VX' @YNX"®y")=(x, Wx®Y)X"®@ ") =", X", y) x®y"
and

xRN @YX @Y=", y)(x@N('®@Y")=(x", y)(X, y) x®)",

whence associativity. The identification of A with End (M) is given by (x® y) x':
=(x', y)x. This is an action because

(x@NEX' YN X" =((X, y) x®Y) x"=(x, ) (x", y) x
equals
x@MX'®Y)x")=(x", VI (x@y) x")=(x", y )X, y) x.

So we have a map a: 4 —End (M) of associative algebras. If x, ..., x, is a basis
for M and y,, ..., y, the dual basis, the elements {x;®@y,[i,j=1,...,n} act on
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M like elementary matrix units of End(M). Thus, « is onto and, by dimension
considerations, is an isomorphism.
Using the map (i.2), we compute

(x@YE@YNX"@Y)=(x, YY) X' @Y(x"®y")=(x, V)X, y) X" ®y

and

xRN @YNIX"®Y )=, y ) x@y)(x"®Y) =, y)x ¥) x" @,

whence associativity. An argument as in the precceding paragraph gives A
=~ End (M*) via the action (x®y) y' =(x, y) y.

Concerning the inner product on A4, if x,, ..., x, is a basis and y,, ..., y, is
the dual basis, the Gram matrix relative to {x;®y,} is the identity, whence the
form is nondegenerate.

{(if) A direct calculation will prove the first assertion. We give a more
conceptual proof. Let t: 4—A4 be given by x®y—y®x. Thinking of A as
End (M), we may view A* as the set of symmetric matrices and 4~ is the set
of skew symmetric matrices, for if we identify x,®y; with the elementary
matrix units, ¢ becomes the transpose operation. If o, fc 4 and juxtaposition
indicates the natural product in End (M), the product we have defined on A4° is
merely a® f—aff+efia, o, feA. This suffices to prove (ii), the only special
comment to make being that the usual Jordan product on A”* is a® fro3(af
+pa), and if one map A" ® A" > A" makes A* a Jordan algebra, any scalar
multiple of that map does (and gives an isomorphic algebra if both maps are
NoNnzero).

Since A%, A~ is the 1, —1 eigenspace, respectively, for t on A, the form
restricted to each 4° is nondegenerate.

To check associativity of the form on 4, we need (x®Y)(xX'® '), (x" R y")
=YY, X"@y) =0, y)(x, y)x",¥) to equal (x@y, (X' @Y)(x"®@")
=(x", y)(x, y")(x', ¥), which it does equal. Say a, b,cedA™. Write o for the
product on A". Then (aob,c)=(ab+ba,c)=(ab, c)+(ba,c)=(a, bc)+(b, ac)
=(a,bc)+(ac, b)y=(a, bc)+(a, cb)=(a, bc+cb)=(a,boc), as required. A similar
argument proves associativity for A~. Alternatively, Lemma 2.38 may be used
since each A°® is a nonsingular subspace of A4.

(iii) Note that d is left fixed by G since it corresponds to the invariant
bilinear form on M((d, x®y)=2(x, y)) and the G-invariant form on A is non-
singular. Thus, 4, and 7 are G-invariant. Without loss, n> 1. Without loss, the
field is algebraically closed and the basis {x;} of M is orthonormal. The
elements rij=xi®xj+x£®xi and s;=x,Qx;,—x;®x;, i+, span4,. We have
rij-rij:Zrizj:sij-sij:2sij=2[xi®xi+xj®xj], ST —X®X;+X,®x, 8,7
=x;@x;—x;®x; and r;;-s;;=71,;5,;+5;;7,;=0 s0 that A7=01if n=2. Let i, j, k be
distinct. Then sf—sh =s,=7n(s), 7,8, =x,®x; and r;;-5;, =X,®x;+x,;®x;
=r;=n(r;) so that A=A, if n=3. Associativity of the form on A4, follows
from Lemma 2.38.

Lemma 2.40 (Bernd Fischer [21]). Let G be a finite simple group generated by a
class D of {3,4} - transpositions such that if deD, Co(d)=2.?E(2).2. Then
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(a) |G|=2%13135%7211,13.17.19.23.31.47.
(b) G has exactly four classes of involutions with centralizers of the forms

2.2E,(2).2, (2'*2%)(.2),
Qx2xF,(2)2, (2x2%)21°.D,(2).2,

(¢) If K is the last centralizer in (b), Ng(Z(0,(K))=2%.2.2'°.Sp(8.2).

(d) G has exactly two classes of elements of order 3; they have centralizers of
shapes 3x F,,.2 and 3'+8.21%% U,(2).

(€) G has exactly 2 classes of elements of order 5; they have centralizers of
the form SxHiS.2 and 5'+*. 2% A,.

() G has exactly one class of elements of order 7; they have centralizer of
shape 7x2.L,(4).2.

(g) The centralizers of the Sylow 11- and 13-groups have shape 11x X, and
13x2,.

Lemma 241. Let G=-1, GEGL(24,2), V the natural 24-dimensional TF,-module.
Then V is absolutely irreducible and G preserves at most one nonzero quadratic
SJorm on V.

Proof. Let acEndg(V). We show that o is scalar. Take PM <G, _P;36, M
~2M,,; see [11]. By Clifford theory and the structure of PM, Vz]an@ Vip is

a direct sum of 24 distinct irreducible linear representations V, i=1, ..., 24 and
M is transitive on these. Thus PM is absolutely irreducible, whence o is scalar,
as required for showing absolute irreducibility. Now let Q:V—IF, be an
invariant quadratic form and let Q be its extension to V.

Choose a basis vector x; for V,, and let V,, ,, V;; be dual PM-modules.
Then, by applying elements of P, we see that Q(x,)=0 for all i, V,, ,+V,, is
orthogonal to V,; ,+V,; for i%j Thus Q is determined by the 6 scalars c;
=(X,;_, X,;)» where (,) is the associated symmetric bilinear form. Let {g,} be
any choice of elements of PM which carry V,+V, to V,, | +V,;. Require
X, 1 =x%, x,;=x%. We argue that the scalar ¢; then does not depend on the
choice of the g;. Suppose {g} is another choice. Since ¢;=(x,;_;, X,;)=(xy, X,)
=(x%!, x&), we have independence. In fact, this proves that the ¢, are all equal
Thus, Q depends solely on the scalar ¢,, whence the Lemma.

3. Faithful Modules for Extraspecial Groups

If pis a prime and P an extraspecial p-group of order p*>"*! (see [27]), n a
natural number, then P has precisely p?" linear characters and (p—1) faithful
irreducible characters of degree p”, one for each primitive p'™ root of unity. The
faithful ones may be obtained as follows. Suppose we are given a nontrivial
linear character { of Z(P). Take any maximal abelian subgroup A of P, so that
|4|=p"*", and take any extension  of { to A. Then the induced character o”
is 1rredu01ble and « le,) p"{. See [27] Sect. 5 5 for details. Note that if p=2
and A is elementary abelian, then {, o« and of are all rational representations
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and that a nonzero invariant bilinear form is definite, hence may be chosen to
be positive definite.

We use the notation p'*2" to denote an extraspecial p-group of order
p'*?*" In case p=2, we may add a subscript ¢= +, — to indicate the Witt
index of the quadratic form xZ(P)—x?cZ(P)on P/Z(P) (e=+ if and only if
the Witt index is maximal).

Now take p=2 and the faithful, irreducible module T for the group Q
~21%+24 Tet ESQ, ExZ!? (since Q has plus type, there exist maximal abelian
subgroups which are elementary abelian). Take any complement F to E in Q.
Then FxZ}? Let ¢, ..., ¢, be all the distinct linear characters of E not
having {z) in their kernels. Then Ti{; affords ¢,+¢@,+... +®,. Since con-
jugation by F on E transitively permutes the 2'% hyperplanes of E which
complement <{z», the given action of F on T transitively permutes the 2'2
eigenspaces for E affording the ¢,. By arbitrarily choosing one eigenspace to
be associated to the element 1€F and by choosing in it an eigenvector e(1) of
unit length (adjusting the form if necessary), the definition e(x):=e(1)*, xeF,
picks out an orthonormal basis of eigenvectors for E which form a regular
orbit under the action of F. Let ¢, denote the character of E afforded by
Qe(x). Writing g=yu, yeF, ucE for a typical element g of O, we have e(x)?
=e(x)"=e(xy)'=0, (u)e(xy). For completeness, we remark that if ¢ is a
character of F occurring in T, then ¢ has multiplicity 1 and is afforded by an

eigenvector Y ¢(x)e(x). Furthermore, every irreducible character of F does
xeF
occur this way.

We now consider tensor products. As usual, a group acts on the tensor
product of its modules by letting elements act on both variables of the tensors.
We claim that T® T affords all the linear characters, each with multiplicity 1.
First, some notation. If ¢ is such a character, then |E: ker(p|g)|=1 or 2 and
there is a unique xeF such that Cg(x)=ker(p|g); call it x, Now set A,

26 Y o(x)e(x x)®e(xx,); the factor ZL is simply to make 4, have unit length.
xeF

We argue that A5=¢(g) 4,, for ge EUF. For geF, this is clear since e(x)

=e(xg). Now, say gek, x, yeF. We have ¢.(g)=¢7(g)=9,(g") and ¢.(g) ¢,(g)

=¢,(g7g")=¢,(gg"))=¢([g, yxI")=0,([g, yx]), since [g, yx] is central in

Q. Also, ¢(g)=¢,([g, x4]), by definition of x, and the fact that ¢, is the

nontrivial linear character Since ¢,([g, x;])=¢,([g xx,X])=,(g) ?r,(8)

from above, we get A%r* Y D(X) B.(8) b.x, (8) e(x)®e(xxy) =, ([8 x,]) 4y

xeF

=¢(g) 44, as required. Easily, A5=¢(g) A, for ge EUF implies the same for
geQ=EF since ¢ is a linear character. Consequently, ¢ occurs with multi-
plicity at least 1 in T®T. Since dim T®T=2%*=|Q/Q’|, each ¢ occurs with
multiplicity exactly 1, as we require.

4. The Groups C, C_, and C and the Vector Space B

If the group F; exists, it has an involution z such that C:=C (2) satisfies
(i) Q:=0,(C)=2.+24; (ii) C is 2-constrained, ie. C(Q)<Q, which means that
Co(Q)=<z>:=Z(Q); (iii) C/Q= -1 operates faithfully on Q/Q’ =22*.



The Friendly Giant 29

It is proven in [36] that the above group-theoretic conditions on C restrict
C to exactly two isomorphism types and that only one of these may live as the
centralizer of an involution in a finite simple group; see [37]. In either case,
there is an isomorphism of - I-modules Q/Q'=~A/2A.

For later use, we shall need a set map q: A —Q which is constant on cosets
of 24, satisfies g(0)=1, and induces an isomorphism A/24=Q/Q of -1-
modules.

The main purpose of this paper is to build a simple group with C as the
centralizer of an involution. So, our first step is to construct C very carefully.
We do not make use of the first two paragraphs of this section.

We analyze some subgroups of GL(2", Q). Let @ [Q] be the rational group
algebra of Q=22*2" n=2. There is a unique, indecomposable 2-sided ideal, I
~Endg(T), where T is the module discussed in Sect. 3. Let 4= Aut(Q) act in
the natural way on Q[Q]. Since every indecomposable 2-sided ideal of Q[Q]
has dimension 1 except for I, I is stable under 4 and A acts as a group of
algebra automorphisms of /. By the Skolem-Noether theorem ([42], p. 24)
there is a function m: 4 —1 so that m(A) consists of invertible matrices and
m(a)~ ' um(a)=u® for all uel, acA.

Since the field @ is not algebraically closed, we are not quite able to assert
that there is a covering group A of A and a homomorphism ri: A —»I* (the
group of units of Endgy(T)) so that m(a)”  um(a)=m(d)~ ' um(d) for all uel
whenever d—a under 4> A. We may substitute the following argument. Let
A, ={m(A)><I*. Possibly A4, is infinite, but at least we know that |4,: Z(A,)
=|A| < o0. Therefore, 4] is finite, by an old result of Schur. Since the action of
Q on T is absolutely irreducible, Z(A) consists of scalar matrices, hence has
order 1 or 2, as the field is @ and A is finite. Since <m(Inn(Q))>'+1 is scalar,
Z(A)={+1}. In particular, 0,(4])=Q because there is an exact sequence
1-Z(4))-0,(4))—>Q/Q'—1, the middle term is nonabelian (since
{m(Inn(Q))>'+1), and Q/Q’ is the natural 2n-dimensional module for Out(Q).
It follows that A} is an extension of Qut(Q) by Q and A4 induces Aut(Q) on
0,(4))=0.

Let 4, be the subgroup A} <GL(2", Q) constructed above. We identify Q
with 0,(A4,), and we consider the case 2n=24. Since detA=1 the quadratic
form on A4/24 given by A+2Ar(—1)*¢** is nondegenerate. Since -0 contains
an element of order 3 which acts fixed point freely on A, the quadratic form on
A/2A4 has maximal Witt index since n=0 (mod2). Therefore, we get a
map-0—-Q* (24, 2) whose image is isomorphic to - 1. Since any subgroup of
GL(24,2) isomorphic to -1 preserves at most one nonzero quadratic form
(Lemma 2.41), all embeddings of -1 in Q*(24,2) are conjugate via elements of
Q% (24, 2). Take any subgroup C_ A, with the property that C_/Q=-1. We
have an exact sequence 1 —2'7?*—(C_—-1-1. The group C which we seek
to construct is the middle term of such a short exact sequence, but C£C,,.

Let C be the covering group for C_, Z=Z(C). We claim that |Z|<4.
Define U:=0,(C), Z,:=ker[C—»C_]. Then U/Z,=Q. We argue that
Z(U)/Z | maps onto Z(Q), for if Z, <ZT<U and Z}/Z, corresponds to Z(0Q),
we have [Z%* C, C1<[Z,, C]=1 so that Z*<Z(C) by the three subgroups
lemma and the fact that C is perfect. So, Z¥<Z(U) and we have Z(U)=Z*.
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Let L=L,@® L, be the Lie ring of U([27], 5.6) and let L=L,® L,, where bars
indicate takmg 1mages modulo Z(U)/U’, an ideal of L which lies in L,. Then,
as modules for €, L, ~Q/Q'. Since L, is elementary abelian and generates L as
aLiering, L,=L, 1s elementary abehan As modules for C, L, is a quotient of
the exterior square of L,, whose maximal trivial quotient is one-dimen-
sional because Q/Q’ supports exactly one nontrivial -1-invariant bilinear
form (sece Lemma 241). Thus, dimL,=1 and so |U'|=2. By Lem-
ma 211, Extg (424, 1F,)=Extg, . ,IF,, 424)=H'(-1, 4/24)=0, whence
0,(C)/0,(CY =A/2A®R, where R is a trivial module. Since H?(-1, Q/Z)~Z,
[33], we get |R| <2 since C is perfect. Thus, |Z|<4 as claimed. Next, we claim
that Z=Z,xZ,. Let K be the kernel of the epimorphism C—C_. Then
KnOZ(C)’: 1, whence |K|=1 or 2. We show that K =1, which suffices, since Z
=0,(C) x K. Letting C* be the pullback of the diagram

c*——C,

1

t v (@, ¥ onto)

'
00— 51
le. C*={(g, h)e-0x C_|g”=h"}, we find that C* is a perfect central extension,
and so is a homomorphic image of C. Therefore, K+ 1 since C* maps onto -0
but C_ does not. We also have €= C*.

We summarize as follows. The quotients of C by the three subgroups of
order 2 in Z are C_=2'*"2%(-1), C=2'*?*(-1) and 2**.(-0)=2%°.( 1). We
shall see shortly that C%C,.. From the last paragraph, we see that 0,(C)=0
x <z, where |z | =2,z > =K, 0<C, 0=0Q. Let (2>=Z(0).

If p is the representation of C on Tvia - C_, it is easy to sce that p®p’

runs over all the irreducible representations for C which are faithful on Q, as
p’" runs over all the irreducibles of C/Q =-0. We have

{z4> if p" 1s not faithful,

ker(p®p )={<ZAZOO> if p" is faithful.

In particular, C# C_, since C does not have a faithful character of degree 2'2.
We identify Q with the image of § in C.
We are ready to define the C-module B=U@VOW. As C-modules, 1%
=TC;Z<)A and U=S*(@ (}19/1)‘ The module V is an induced module, described as

follows. Let C,/Q be the subgroup of C/Q =1 corresponding to the image of a
natural - 2 subgroup of -0 in - 1. We claim that the lattice of normal subgroups
of C, is the following:

C3nQ=Colw)
Czouy Sz
1
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Here, ueQ corresponds to a vector of type 2 under Q/Q’' = A/2A. The validity
of the picture follows from the structure of the extraspecial group Q together
with the observations (a) C’, must centraiize the four group <{z,u); (b} C,/Q
=2 is simple; (c) Cy(u)/{u,z) is a 22-dimensional IF, irreducible module for
-2 (irreducibility is easy to prove, since a natural M,, subgroup of M,,<N,,
fixing —3x;+ Z x;, has constituents of dimensions 1, 1, 11, 11 on 4/24, and a

subgroup 3”4 of 2 has constituents of dimensions 1, 1, 1, 1, 1, 1, 18, as may
be deduced from the character table [12]). Given the above picture, we take
the unique nontrivial linear character ¢ of C,, let V(¢) be a module affording
it, then let V:=V ()¢ be the induced module. Note that ¢lo=,, where lea,
corresponds to u under our isomorphism A/24=Q/Q". Thus, V\ affords the
character z @, where A runs over representatives of the classes in /1

We may give another description of the module V. The above discussion
indicates that V is characterized by the properties: (a) V is absolutely irreduc-
ible; (b) Co(V)=<z)>; (c) dim V'=98280. From the discussion in Sect. 3, we see
that the C-module T®T restricted to Q contains each linear character with
multiplicity 1. Note that Z acts trivially on T®T, so that T® T may be
regarded as a C-module. Since -1 operates transitively on A, and |A,]=98280,
the subspace T(2) of T®T corresponding to the character ¢,, leAd,, is a C-
submodule of dimension 98280, hence is isomorphic to V.

In the notation of Sect. 3, the character ¢ is afforded by the unit eigenvec-

tor 4, -26 Y o(x)e( x)®e(xx,). In case ieAd and ¢ correspond as above,
xeF

write 4, for A4,. Then T(2) has basis {4,} where  runs over the classes of A,.
We erte v(A):=A,, Aed,.

Table 4.1. The module structure of B

Action of ... on module U V W

z 1 1 -1
24

Q 1 linear characters ®T
1

C -1 monomial group T(?A

Dimensions : 300 98280 98304

Decomposition into irreducibles: 14299 98280 98304

Irreducibility of W follows from our earlier discussion and irreducibility of
V follows from Clifford theory. Finally, taking {x;}ieQ} as an orthonormal

basis for Q@A the subspace @Q( ZX ) and its orthogonal complement in
ief2
5?@ %A) are invariant under the action of -1. The 299-dimensional comple-

ment must remain irreducible for -1, since the only irreducible degrees for -1
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less than 300 are 299 and 276 [12], and the principal character may occur only
once in U since Q (;3/1 is absolutely irreducible.

We close this section with some notation. We fix group epimorphisms

n:C-C
n,:C—C,
To: C— Cy:=2%4.(-0)
n:C—.0
7. C—-1
" 0> 1

We also choose a function 7: C—-0 which is not a group homomorphism, but
whose composite with the quotient map -0—-1 does give the group homomor-
phism 7: C—-1 onto -1. For geC, we require g*e(g™" )" and we write § for g".
We abuse notation and write g for g"=3. When S is a subgroup of C, we write
S or §* for the group (S7'y* and S for S* and S. We do not use special
notation for the quotient map C— C/{z).

This notation is depicted as follows:

Com————CJZ(CY)

e T ¢, 30 —
o . P T
e o

2
C/1Z(C,)

In Sect. 3, we considered a factorization Q=EF where ExZ}? and F=Z!?,
but no other requirements were imposed. From now on, we require ¢(A(4))
=E,, where E;:= Cg{e(1)). (See Sect. 2 for the definition of A(n) and Sect. 3 for
the definition of e(1)). Thus, E=E; x {z).

The facts that N,, (see Sect.2) operates monomially with respect to
{x;1ieQ} and is maximal in -0 imply that N,, is the stabilizer in -0 of A(4). By
Lemma 2.12, |E|=2"%. Without loss, we may alter g so that E,:=q(A(4)) is a
subgroup of E (therefore of index 2). Finally, one more piece of notation: for
xeQ, we let A e satisfy g(1,)ex{z) with {4, 1> as small as possible.

We write u,;=u(x;x)eU, d=) x}, U,=d, the orthogonal complement in

ief2
U, uy: U—>U, the orthogonal projection; we also write uy(x) for ugy(u(x)),

Q Q\ .
xeSZ(Q@A). Note that U has a basis {uiilieQ}u{uU ije (2)}, where (2) is

the set of unordered pairs of distinct elements from Q.
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5. Tensor Products of Irreducibles of C

This published version of Sect. 5 differs significantly from the preprint version
in a number of ways, due mainly to the use of Lemma 2.38. The referee found
a number of problems with the original version, but these are circumvented by
this new approach.

For two modules A, and A4, of a finite group G,, we let {(4,,4,> or
(A, Ay, be dimHomg (4,, 4,). We assume that the field has characteristic
0. When A4, is absolutely irreducible, this is just the multiplicity of 4; in 4;, for
{i,j}={1,2}.

Whenever we have such self-dual modules 4,, 4,, 4,, we have an adjoint-
ness relation Homg (4,®A4,,4;)=Homg (4,,4,8A4,) (see Lemma 2.7)
which implies that (4, ® 4,, A;>=<{4,, A, @ A3>.

We regard the faithful module T for Q as a C-module (see Sect. 4). In this
section all C-modules shall be regarded as € modules, and for course C-
modules on which (Zz_ ) acts trivially may be regarded as C-modules.

For the modules U and W, C-invariant symmetric bilinear forms may be
obtained from ones on T and A, by Lemma 2.6. The orthogonal projections
U-Qd and U—U,=d" give forms on Qd and U,. Finally, we get an
invariant symmetric bilinear form on V by viewing V as an induced module V
=V()c,I° (see Sect. 4), taking a basis element v for V(¢), and making (v, v¥)=0
whenever v8+ +v, and (%, v8)=1 for ge C. Given g, h e C, cither v® and v* are
linearly independent or v¥= +u" Later, we shall adjust these forms by scalars.

Note that all of @, T,Q® A, U,,V and W are self-dual and absolutely
irreducible.

Definition 5.1. For /ieAd,, let ¢, be the character of Q given by gq(u)—
(= 1% (it follows that zq(u)—(—1)**> since zeQ’). Write x, for the ele-
ment x, of Fand 4, for 4,,.

Lemma 5.2. Let V®V -V be a nonzero C-map. Then, up to a scalar multiple,
the map is v(3) ® v(p) —

Gsru(x)v(A+ =0, )v(A+p)  if A p Atpe,,
0 if 2,7t do not span a triangle type of 222.

Furthermore, this is a C-map and the form is associative with respect to the
associated algebra, which is commutative.

Proof. We first show that (V@V,Vy=1. Let f,g: V®V >V be C-maps. If
/,pe A, and L fi do not span a triangle on type 222, f(v(4)® v(u)) =0, since
v(4) @ v(p) affords the character ¢, , of Q.

Suppose that, for some triple A, u, A+ue4,, f(v(A)®v(w)=0. Transitivity
of -0 on the set of triangles of type 222 implies that f is O on all such
v(A)® v(u), whence f=0. Consequently, f and g are linearly dependent, for if
a,b are scalars with f(v(1) ® v(p) =av(i+ ), gD @ v(w)=bv(A+y) for 4, p, A
+ueA,, then (bf—ag)(v(A)®@v(w)=0. At once, {V®V,V><1. We need the
opposite inequality.
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Recall from Sect.4 that V may be regarded as the subspace of T®T
spanned by all 4,,A€ A4,. From Lemma 2.39, there is a product on T®T
making the relevant form associative. Since the form on T® T is positive
definite, Lemma 2.38 applies to the subspace V. It remains to show that the
product on V inherited from T ® T is nonzero and commutative. We compute,
in the notation of Sect. 4 and Lemma 2.39,

1
Ag-Ay=317 L 9V e)®e(xxy) . e(y) ®elyx,)

x,yeF

1
Si2 T BV (xx,)e(x) ®elxxyx,)

xeF

=517 V(5 T BV Belxxyxy

xeF

1 1
=517 ¥(xg) X (G e(x) ®elxx,y) =75 ¥(xg) Ay

xeF

1
For 4, ue A and ¢=¢,, Yy =¢,, this reads AA'AMZEE ¢,(x)A;, - Note that if

4 has type congruent to d(mod2), 6=0 or 1, then ¢,(x,)=(—1)° (namely, q(4)
=x,-uy u,€E and [x,,u,]=1 if and only if gq(2)*=1). So, if we restrict 1 to
vectors of type2, ¢,(x;)=¢;, ,(x;). The first statement of the Lemma follows.
As for commutativity, if 4, u, A+ued,, 1=¢,, ,(x,, )=0¢,, ,(x)¢,,,(x,) im-
plies the result.

u

Lemma 5.3. Let UxV— U be a nontrivial - 1-invariant symmetric product with
image lying in U, and d- U =0. Then, up to a scalar, the product is

(n up=—253u,; +11 ) u;;
j¥i
(2) u”ujjzll(uii—i-ujj)—k; U
i,J

3 U= —132u,;;
4 U, =12u;,;
) ul=—66(u;+u)+6 Y wy;

k=1i,j
(6) U= —12uy;
(7 uijuk,:O;

here, distinct symbols i, j, k, | mean that the indices are really distinct. Also, a -1-
invariant inner product is the following: (u;,u;)=40;, (U, uy)=0 for j+k,
(i ) =20 e,y Jor i, kL

Proof. First we investigate products invariant under N,,. Since the action of

N,, on the basis elements is so easy to understand, one can write down the
N, 4-invariant products:
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(8) uf=yu+0 Y uy;

Jj¥Fi
uiiujjzoc(uii+ujj)+ﬁk; Uy for i%j;
L]
uuuzj 1uij’ fOI' l:‘:J,
Uty =o,u,, for distinct ij,k;
u1j~C(u”+uu)+n Z u,, for i%j;
*i,j

=Au;, for dlstmct i,j, k;

11 jk
u;u, =0,  for distinct i,j,k,[;

for scalars vy, 6, o, f, o0y, o5, 1, A
We have d= ) u,;cU and we want to have d- U =0. So, u;;-d=0 gives

9 = y+23¢=0 and

(10) S+a+22p=0.

Also, u;;-d=0 for i=+] gives

1y o, +11a,=0.

Since we require U?=U,,, by looking at u,u;;, we get
(12) y+236=0 and

(13) a+118=0.

We conclude that

(14) a=0=—11f and y=253§.
Also uf,e U, for i=%j gives

(15) {+11n=0.

We use the fact that -0 is transitive on vectors of types 2 and 4. Write x~y
if x,y lie in 2 module for -0 and there is ge-0 such that x8=y.

Now, 2x, ~x, +x,+Xx;+Xx,, whence 4u,, ~ Z u;+2 Y uy. Therefore

i=1 1gi<jz4

(4uy)>=16{yu,; +0 Z u;=16{6-d+(y—0)u,,}
iF1

2
=165d+4(y~9d)(4u,,) {Zu“—i-?_ Y “f,}
15si<j=4

={(y+35+6a+6/3+4(3(+3;7)) Y ouy+@o+1284+4(6n) Y uy,

i=1 k*+1,2,3,4

+@A@dA)+4Q2a, +2ay) Y. “ij}

1<i<js4

4
:{(160/34»12({4—11))2u,-,.+(—32ﬁ+24r]) Y ug

k¥1,2,3,4

+(162+8(ay+ay) Y u”}.

1<i<js4
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It follows that

(16) 166=—328+24y, or n=—64;
and so
(17) {=—11n=0664.

We also deduce from the above ~ relation that
(18) 4(y—8)=8i+4(x, +a,), or 2643=2A+o, +a,.

What we seek is a further condition on 4, oy, o,.
We observe that f=0; if §=0, then the only structure constants which
might be nonzero are A, a, and «,, which implies that U”<span {y;li=j in

Q) < U,, a contradiction. Therefore we may assume that f= — 1, whence
(19) a=6=11, B=-1, y=-253, n=6, (=-—066;

and

(20) o, +11a,=0, 2440, +a,=—264

Let x=Xx, +x, so that 4xeA,. Then u(x*)=u,, +u,,+2u,,. Also,

u(x2)?=(—253+ 11+ 2(11) +4(— 66)) (u, , + i)
F[+11-244-6] Y uy+8a,u,,
k*1,2

= —484(u,, +uy,)+44 > uy+8auy,
k+1,2

={—528(uy; +u;,)+ 8oy uy,} +44d.

Since -2, the centralizer in -0 of Qx, has constituents of dimensions 1, 23, 275
on U, it follows that u(x?)?e@Q(u(x*)—{5d). Therefore, u(x?)?*=—528(u(x?
—+54d), and this forces 8a; = — 1056, or a; = —132. Consequently,

(21) ay =132, a,=12, A=-72,
and the Lemma is proven.

Lemma 54. Suppose that A,, A, and A, are among the Q C-modules
{Q,U,,V,W} and that {A,®A,, A3>+0. The either two of {A,,A,, A3} are
equal and the third is Q, or else one of the following cases occurs:
(i) KUV, VD>=(Uy, VRV)=(U,,S*V)=1;
(ii) CUg®@W, W) =(Uy, WRW)>=(U,,S*W)=1;
(i) <V@VV>=<(S*V,V>=1 and <S*V,Q>=1;
(V) (VW WH=(V,WRW)=(V,S*W)=2;
V) Uy ® Uy, Ug>=(S?*Uy, Up>=1 and {§*U,,Q)=1.
Proof. By considering these modules restricted to Q, it is clear that the only
candidates for (4, ® A,, 45> +0 are the ones listed.
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(i) Let us consider (V®YV, U= {V,V®U,). Using the discussion of Sect.
4, recall that V has a basis v(4), L€ 4,, where v() affords a linear character of
0. In V®V, the v()®v(f) afford all the linear characters of Q. Since Uy is a
trivial Q-module, the only basis elements in V® V which are relevant are those
with A=J.. Let V; be the @-span of all v(1))®v(4). Then clearly V, is just the
permutation module for C on the cosets of C,, and may be regarded as the
permutation module for -1 on the cosets of -2, or rather of its image under
‘0—-1. Thus, <V@V,U,>= <V1,U0> <1C2,U0>=<1C2,U0|C2>, by Frobenius
reciprocity. We argue that Uy, is a direct sum of irreducibles of dimensions 1,
23 and 275, from which the desired result follows. See [12] for the degrees of
the irreducibles for .2. This becomes clear by taking a vector A of type 2 and
considering  S*(Q®RA4)=S*( QA @QH=SHQHBDSHQIHD(QIRQIY).  Fi-
nally, we get (S?V,U,> =1 since V® V-V, factors through S*V.

(i) We have W=T®A and so W%) W;(T%)T)C;)(A%)A). We are in-
terested only in the C-constituents of W® W which are trivial for Q. This

amounts picking out the single occurrence of the principal character for Q in
T® T Thus,

Uy WOW)=(Up,Q@AQ ) =(Up, Uy ®Q>=140=1.

We exhibit a nonzero invariant map W QW - U, viz.,
(e(x) ®x;) B(e(y) ®xj)H6xy Uo ().

Since the map is clearly symmetric, we get (U,, S°W)=1.

(iii) See Lemma 5.2.

(iv) We have <WRW,V>=(TR®TRAR®A,V>. We may decompose
TQT=TO)®TQ2)®TAB)®T(4) as C-modules, where T(i) represents all the
linear characters corresponding to an orbit of ¢ on Q/Q’, represented by g(4),
where leA,. We have dimT(0)=1, dim T(2)=98,280, dim T(3)=28,386,560,
dim T(4)=8,292,375. By checking dim §? T=28,390,656 and dim A >T=8,386,560
and noting that the linear characters of Q occuring in 27T and A>T must form
orbits, we see that T(0), T(2) and T(4) occur in S*T and T(3)=A>T Since
Vip=T(2),

(WRW, VY={TQ2)@ARA,V>=(VRARA V>=(Q ®ARA, VOV >,

Since A is a trivial Q-module, the only constituents in V ®V which count are
the ones affording the principal Q-character. Using the notation in (i), V|
means the submodule of V @V spanned by all v(4) ®v(4). So

QR®ARAVRVY={Q RARA, V> ={A®A, 1§2> ={A®A ¢,,1c0c,=2,
as in (i). But now it is clear that (S?W, V> =2 once we exhibit the maps
(t; ®Ly) B(t, ®Ay) =, {Ay, Ayp plty Bty)+ ¢y Polugldy 43), p(t, ®1,)),

where ¢, and ¢, are scalars, p is the projection T®T—-T(2)=V and p, is
the pairing U, ®V — V described in (i).
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(v) This may be deduced directly from a calculation with the character
table of -1 [12], using Lemma 2.8. An alternate proof goes as follows. Lemma
2.39 (iii) shows that (U,® Uy, U,>=<S2U,,U,>=1 and <(S3*U,,Q>=>1. We
get {S?U,,Uy> <1 from Lemma 5.2, whence (S?U,,U,>=<(S*U,,Q>=1, as
required.

Definition 5.5. For e A,, write v(1) or v(J) for the element A,, regarding V as
a direct summand of T® T (V' =T(2) in the notation of Lemma 5.4(iv)).
The bilinear map p: UxQ ® A—->Q ® A is defined by

plu, x)=—69x,,

pluj;, x;)=3x, i%j,
p(uij’xi): ‘36xj i+j,

Pluy, x)=0 ijFk+i

By examining the proof of Lemma 5.4 we can get the maps explicitly.

Corollary 5.6. In the notation of Lemma 5.4 the relevant spaces of bilinear maps
are spanned, by respectively:

() 1o ®v(A) = (ug, u(21) v(A);
(D@ v() 3 o (4%);
(i1) Uy ® (e(X}® x;) > e(x) ® plug, X;);
(e(x)@x) ®(e(y) @ x;) =0, ug(u;;);
(111) U(i)@v(ﬂ)H{ﬁxi,u)U(l_Fu) ;L: #”14_“6/127

0 otherwise;

(iv) (e(x)®@x) ®(e(y)®x;) ~Z [65ij + Cl(uO(uij), u(A*)] ¢,(x) v(4),

¢, ¢ scalars; %
U(/I) ® (e(x) ® Xi) (g Z [Céij‘*" C,(uo(ui_i), u(iZ))] (bl(x) e(xxl) ® xj-
Jjef2

Remark: Here, B is assumed to have a C-invariant positive definite form ( , )
(any choice will do here, see Definitions 5.1 and 5.5 for additional notation);
also u,elU,, AeA,, xeF, ie Q. The sign (4, u)= +1 may be arranged to equal
¢, . ,(x,); see Lemma 5.1.

Proof. Whenever possible, we shall use the notation in the proof of Lemma 5.2.

(i) Since C,, the stabilizer in C of 4, has one 1-dimensional submodule in
V, namely Qu(4), and just one in U,, namely Qu,(4?), the first formula in (i)
may be assumed to hold for one particular 4. To see that it holds for arbitrary
AeA,, apply elements of C to both sides of the equation. Thus, the first
formula of (i) follows. As for the second, the image of v()®v(p) in U,, if
nonzero, affords the character ¢,¢, of Q. Since any nontrivial image must
afford the trivial character, the second formula may be assumed to hold for
particular 4. The validity for all elements of A, follows by applying elements of
C to both sides of the equation for A.
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(i) The second formula clearly exhibits a nontrivial C-map when inter-
preted as (TR N)QTRAN=(TRT)RARA)->QRU - U,. The first argu-
ment may be taken from the second by use of the adjointness relation. The
first argument may be taken from U (not just U,) as long as we require p(d, —)
to be the zero map. We use a - to denote the first pairing. We have
(- e(x) @ xy, () ®x))=ad,, (u;, uy(uy,), for some scalar a=+0 and all i, j, ke Q,
x e F. Without loss, a=1. Thus, u;; e(x)®xk—e(x)®h(u”,xk) for some bilinear
function h+0 which commutes w1th the action of C.

We now use the group N,,<.1 to get the values of h Since

h(u,;, ,)eQ@A affords the character of O,(N,,) which Qx; affords, we must

have h(u”,x) o, x;, for some «,€@Q since this character occurs with multi-
plicity one. Note that o, is independent of i, by the action of N,,. Since all the
u; and x, are eigenvectors for 0,(N,,), similar arguments give o,, 2;€@ so
thdt h(u Ujjs x)=0,x; and h(u;,x)=u;x; for i%j. Note that h(u;, x,)=0 for
distinct i, , k.

Since h(d, x;) is zero, we get o, +23a,=0. The vectors A=8x, and u=4(x,
+x,+X,+x,) have type 4, and there is ge C with A*=u We have h(u(i?), 1)
=h(64u,,,8x,)=5120,x, =040, 4. Also

l_]’

() 0= (16 (Z nt2 Y ) A x|

i=1 1gicj<4

=04(a, + 30, +603)(x; +x,+x5+x,)=16(ct; + 300, +603) fi.

Since A8=p, o +3oc2+6oc3~4o<1, or —a,+a,+20;=0. So, o, = —~23a, and a,
= —120a,, and taking o, =3 gives h=p, as desired.

(ii1) This follows from Lemma 5.1.
(iv) To get the first formula, we need to project e(x x)®e(y) into the space
T(2), in the notation of Lemma 5.3. Since the 4,, e A,, form an orthonormal
basis for T(2), one has
1
eM)®e(y)— Y (e()®e(,ADA;= 3 55

ied; Aedy 2°
Xi=Xy
Tensoring this map with the inner product (Q @ )R (Q ® A)—Q gives one
map. Using the map (Q ® A)®(Q ® A)— U, and the pairing from (i), we get a
second map, clearly independent of the first.
Adjointness and the first formula imply the second.

$a(x)A;.

Corollary 5.7. Any algebra structure on B with an associative form, satisfying
B*SU+V+W, dB=0 and having C as a group of automorphisms is described
by choices for six independent parameters.

Proof. Lemma 5.3 and the adjointness requirement.

6. The Algebra Product

From Corollary 5.7, we see that an arbitrary C-invariant commutative algebra
product B B— B satisfying B2SU,+V+W, dB=0 and the associative law
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for a nondegenerate symmetric bilinear form involves a choice of six parame-
ters. We make the choices as indicated in Table 6.1, where we also choose a C-
invariant bilinear form. The (&,#) entry gives the product £5. The commutative
law permits us to drop certain entries in the table.

As mentioned in Sect. 4, the choice of structure constants is motivated by
group-theoretic considerations, translated into linear algebra. We shall say
more about this in Sect. 10.

From Corollary 5.5, we get explicitly described maps involving the relevant
C-modules. The symmetric map (4, 1) takes the values 0 or +36. When Y
do not span a triangle of type 222, f(4,u)=0 and when they do, B(4, u)=
——36(1)“”()%)——364) (x,). Note that x,=1 for e A3, whence B(4 )= —36
whenever 4 or pu is in /14 Also, note that (4, w)=p(u, A), for all 4, ue A.

Table 6.1. The algebra product

uelU v(d), led, e(xX)®x;, xeF iel
uel (*) — 3 ug(2H) v(d) e(x)® p(u, x;) (++)
v(d) - —Fug(4%) 2 [~ 38, 4 35 (ug (), u(A)] @,(%) - e(xx ) @ x,
oy ¥k = BApultp (ew) 0
e(y) ®x; - - — 189, u4(n,))
+ 3 [=35,+ 35 (uolu,) u(22)]- ¢,(x)u(2)
AeAz

(%) The product on U:

ui=-—253u,+11 Y u, Uty = —132u;,
jEi
U= 11, +u;)— Z iy Uy =12u,
*1,
Uy =—12u, -=—66(u +u)+6 ¥ oy,

u; =0 for i,j, k, [ distinct kend

(*%)  plu,,x)=—069x, plu,x)=—36x; i¥j
pluy;,x)=3x,, i%j Pl x)=0 i%jEk=+i

(xxx)  B(A, W)= —36¢,,,(x,) or 0 according to whether 7, [t do or
do not span a triangle of type 222; in the former case, if A or u
is in A%, B(A, w)=—36.

The inner product: (u,;,u;)=43,;, (u,,u,)=0 for j+k.

1 jj

(Ui ) =20, jy oy for i), k1L 0=(U, V)=(V, W)=(U,W).
(0(2), () =63 i (e(x) ®x,, e(y) ®x)=3,, 5,

7. The Groups F and J

In this section we describe a particular complement F to E in Q (up to now,
the complement has been arbitrary).
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Write E={z)xE,, E;=Cge(l)); see Sects. 3 and 4. We define E(2)
={q(4x;—4x))|i,je Q). By Lemma 213, |E,: E(2)|=2 and E,=Z}. The sub-
group X =(N(Eg)nN(E(2))) satisfies X =X', 0,(X)=E(2) and X/E2Q)=M,,.
Then E,=E(2)x<{z,> as X-modules, where z, =¢(8x_). (We may see that the
extension 1-2'""—>X—>M,,—1 is nonsplit because X may be embedded in
F,, as the stabilizer of a maximal commuting set of 3-transpositions [in the
notation of Sects. 7 and 13, we may take x,.=0, an clement described below];
however, we do not need to know the extension type of X).

Since E,=q(A(4)), if F is any complement to E in Q, we may define F(2)
=Fn<{q(A(2))). Since |A:A(2)|=2 and [A(8)+2A4:2A4|=2 (see Lemma 2.12),
{(q(A(2))>=2x2' %22 and |F:F(2){=2. From the definition of A in [11] one
sees that if A€ A(2), then S,:={ieQ]the i coordinate of 1 is in 2+4Z} is a %-
set. This is an invariant of the coset 1+ A(4) but not of A+2A. Consider pue i
+2A, with Su*Sz- Then u—A=2v, ve A— A(2). Since every coordinate of v is
odd, 2v=(2,2,...,2)(mod 4). Thus, S,+S5,=Q and we see that the element
{S,,S,+Q}e? is an invariant of )+2/1 So we get an isomorphism F(2)~%
(referred to in Sect. 2). We write this xS, (where S, means a %-set or its
image in %) and S - xg (where S means an element of % or %).

Choose he C, [h|=11 so that h=h" is arranged to satisfy

(1) A=(0)(1,2,4,8,16,9,18,13,3,6, 12)(c0)(15,7, 14,5,10,20, 17, 11,22, 21, 19)
M24§N24’

Recall that

(2) 2={0,1,2,4,8,16,9,18,13,3,6,12}, the squares in IF,,, is a dodecad in
and that

N=24Q  2°=2-1{0), N =N —{c)
We have E(2)*=E(2) and

3) E,:=[E().,h]1={q(4x,—4x)|i,je 2 >=Z}°;
E| has a basis {q(4x,—4x)|je 2* —{1}}.

We claim that

(4) Ny(E)"={(—1,>xM,,.2, where the second direct factor is a subgroup of
M,, stabilizing the complementary pair of dodecads, {2,.4/}; furthermore
Np(E)F=({~ 1, x ep) x My ,) 2, where P:=Ni(Ey).

Namely, E(2)2P(Q)..../¢ as Nyx(E,)-modules, and the stabilizer of E; in X
corresponds to the stabilizer of a certain nonzero vector A+<{)> in the dual
module %. Since A+<{Q) is stable under h, order 11, A must be a dodecad.
Since dim Cg(h)=1, A=2 or A" as required. The second assertion follows from
the first.

From [12], we get that the centralizer of an element of order 11 in -0 looks
like Z,xZ,,xZ,, and the elements of order 3 in the centralizer act fixed
point freely on A. Without loss, heN24 Let 8e C.(h), 16l=3 and let se C(h)
satisfy =0-"' and §eN,,. Then s*eC o(0)=<z>. We define J by (z)=J=C
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and J/<z)=C,,({0,s)). From [4] and [12], we get that J/{(z)= AutM,,.
Then Lemma 2.10 and [36], give J'=J"=2M,,=M,,. Since se0,(N,,) and
§ has eigenvalues {—1'%1'?}, J*<N,, [12]. From [36], we get that [s|=2,
We intend to let F be EY or E) . One of the nice properties we will have is
that E, and F are J-invariant. First, however, we must develop further proper-
ties of J, 0 and s.
Next, we claim that

(5) NE,)/{z>=PGL(2,11); moreover, NE)'=Lx{—1,), where L<M,,,
L=1,(11) is the stabilizer of 2 and {0, c0}; also N (E,Y=L.

A look at the basis {q(4x,—4x,)lke 2"} for E(2) makes it clear that E(2) is
the IF, L-permutation module on the cosets of an As-subgroup of L (we may
regard E, as a module for N,,). By Lemma 2.5 H'(L,E,)=H'(L,E(2))=0.
Note that E(2) is a self-dual L-module. Now let ¥ be the subgroup of J which
maps isomorphically onto LO,(N,,)/0,(N,,) under N,,— N,,/0,(N,,). {(Any
intransitive L,(11) subgroup of M, splits over the center of M,,=2M,)
Since HY(L,EQ2))=H"(L,Z,)=0, L and ((I¥)") are conjugate. Complete re-
ducibility of L on E, implies that the unique conjugate I** of L in N,,
stabilizes [E,,h**] and Cp (h**) where h** is an element of order 11 in L[**,
This and the way E, was defined imply that L=((L¥)". Clearly, N,(I¥) is in
N{E)), and since N,([¥) is maximal in J, (5} follows.

We define  Q,:=Co(h)=2."% Q:=[Q, h]=2"2°  K:=C(Q,/Q0)
<N(Q,). Since K centralizes z,{z)/{z)>, K*<N,,, whence K normalizes
Q,NE={z, E;» and so K"<N,(E,)", which is given by (4). Since K fixes
q(1) and q(4,) modulo <z}, K*<M,,x{—1,> and from the preceeding
sentence, we get K*<L x{—1,> where L is the group discussed above. Since
Q0=<q({ A, Ags 20 0,8X,})>, we easily get K*=Lx{—1,). Since LZJ
[K,0]=KnQ and so Cy(0)/<{z)=L and N,(Cg(0))/{zy=PGL(2,11), the group
of (5).

We describe the involutions of Q. There are nine non-trivial cosets of {(z>
in Q, consisting of involutions. They are represented by

(6) q8x,),  q2 ) x;—2x5—4x,),
ies
g2 Y x;—2x,+4x_), allin g(A,);
ie2*

q(dx—4x,), q(4x,+4x,),

q(he)  qldy),

Q(im,e), Q()LOO,_@+4XQO +4x0):‘1(io,g)a all in g(A,).
Let us examine the action of 6 more carefully. We may alter g so that
g(A)NE¥=EY for j=0,1,2 (the only special requirement on the set function

q: A—Q made before this one was g(A4(4))=E,; see Sect. 4). By replacing 0
with 6~ if necessary, we may assume that @ satisfies

(7) q(8x,)+5q(y,) ¥ag(y,)
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where
V=2 ) x;—2x,—4x, and y,:=y +8x_.

ied™

Since 0 preserves commutativity, (6} and (7) give

8 {qdx_, —4x,), g(4x,, +4xo)}'—+{q oh 4(Ao 2)}
{q(ﬂo),q(ﬂw,g)}-

Since, for any involution xeQ, (x> =~Z,xZ,, we get
9 q(4x,,—4x,) o q(i,) g (o),

and
qdx , +4x5) 5 q(de ) g(d, H)

We note that E/{z) is a uniserial J-module with composition factors of
dimensions 1, 10 and 1 in that order; the radical is <E,,z,,z>/<{z) and the
socle is {z,,z»/{z). Finally, note that 1, ,+4x, +4x,=/, ,(mod2A).

We define F=E}=E{=E, where 5,=s0=0s0"". We have Neyo.55(Eo)
={J,s> and N<Jes>( )= <J fs0-1>.

We conclude this section with a few lemmas.

Lemma 7.1. (i) In E, there are 2(3}) =552 members of q(A,). (ii) Under {J,s>
the orbits are I ={q(4x;14x)|ij in 2=k(mod2)} for k=1,2. We have ||
=24.12=288, |I}|=24-11=264, and the stabilizers are J, and J, where
Ji /{2y =PGL(2,11) and J,/{z)=Z, x X, respectively.

(i) Under J, the orbits are the same, and JnJ /{z)=PSL(2,11),
I Kzy=Z.

Proof. (i) is clear. If ij in 2=1(mod2), then (4x;,—4x ) =(4x;+4x;)(mod 21).
Thus, it is clear that I} is an orbit for {J,s). Since (J,s>= J><<5> |J,/{z>]
=|PGL(2,11)|, and the discussion of (5) shows that J,/{z>=PGL(2,11). Now
say ij in 2=0(mod 2). Then s fixes both 4x, —4x; and 4x;+4x;(mod24). It is
not clear that I, is an orbit (it is possibly 2 OI'bltS) We have |J |=4.6! or 8.6!
To settle this point and to determine J,, we look at I} =g(A ) Let a=+1 and
say J, is the stabilizer of q(u), where u=4x,+adx;. Then J? is the stabilizer of
x= q(u) Since xeg(A42%), O=supp(l,) is an octad. Since Jnd, fixes {i,j},
[0n2|=2 or 6 and so JnJ, fixes both 2 and A7 Let @16{,@, A7 satisfy
[0nD,|=6. Then JnJ, acts on OnP,, and so we have a homomorphism
JnJ,—Z,. Since JmJ2/<z>C—>Aut( o) We get JnJ,/(z) = 26, proving (ii).
Since s fixes 4x;—4x; when ij in 2=0(mod 2), clearly J is transitive on I,
and JmJ2/<z> Z. Let us consider I;. If we arrange for JnJ, to fix A, it
also fixes 1, =(1 OOO) hence fixes both oo and 0. Therefore, JnJ,/{z> has
index 2 in J,/{z), as required to complete the proof of (iii).

Lemma 7.2. In the notation of Lemma 7.1, J, operates with orbits of length 2 and
6 on O, where J, stabilizes q(4x;+adx), ij=0(mod2), a= 1, O=suppq((4x,
+a4x)’) and where J, acts via the action of N,, on Q. Furthermore, the two
orbits are 02 and O~ N.
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Proof. In the natural action of M ,-2 on Q, J, permutes {O ~n2, O ~.A"}. Since
the cardinalities of these sets are {2,6} (see the proof of Lemma 7.1) J, fixes
both and so fixes 2 and .47 Easily, J, acts as 2, on the one of size 6. Since the
kernel of the action of J, on the one of size 2 must be embeddable in M, J,
acts nontrivially there.

Lemma 7.3. Let 4(2,2), A(2,3) be the set of triangles in A, of type 222 whose
vertices all lie in A3 for A(2,2) and two of whose vertices lie in A3 and one of
whose vertices lie in A3 for A(2,3). Let H_Z<N,, satisfy H_20,(N,,),
H_/O,(N,,)=M,,, the subgroup fixing co € Q. Then the orbits of H_ on A(2,2)
and A(2,3) are as follows:

A(2,2): two orbits, according to whether oo lies in the support of one of the
vectors or not.

A4(2,3): six orbits according to whether

i=j owo¢0, oo=i,
i=j oo¢l0, ooxi, i¢l.

i=j wel,

i*j ow¢d

i+j owel®—{ij}, i,jed.
i+j ooe{ij}

Remark. We extend the notation 4(2,3), 4(2,2) to triples of elements in A, in
the obvious way. We may refer to a triple of elements of Q as a triangle in
4(2,2) or 4(2,3) if, modulo {z), it is the image of a triangle in 4(2,2) or
A(2, 3) under g.

Proof. Consider 4(2,2). Let A, u,A+u be a triangle in 4(2,2), O, =supp 4, O,
=suppp, Oy +0,=0,=supp A+ u. The action of O,(H ) enables us to assume
A has all positive coordinates and u has all negative coordinates. If suffices to
consider two cases.

If we®,v0,u0,, we may assume at the outset that co e ¥, n0,. Given ¢,
and the four-element subset ¢, N0, of (), there are exactly four octads meet-
ing @, in this subset. These octads give a sextet of tetrads, and it is pretty easy
to see that the subgroup of the sextet stabilizer in M, stabilizing ¢, 0, and
0, is transitive on the above four octads.

If 0o¢0, u0,u0, a similar argument works. All one needs is that a sextet
stabilizer induces X, on the set of six tetrads and the kernel of the action
induces 4, on each tetrad.

Consider 4(2,3). We may assume A=4, 5, u=4; ;. Clearly, there are two
cases: oo €{i,j} and co ¢ {i,j}. By using the action of O,(H), we may assume S
={. Then, we may arrange that either i=j and T is an octad avoiding i or i%j
and T is a 16-set avoiding i and j (see Lemma 2.3). Assume i=j. Then A+u
looks like (280'%) {all coordinates positive) and we have the required transitivity
in all cases i=o0, iFo0, and cweT, ¢ T Assume i=+j. If coec@=Q+ T the
stabilizer of ¢ in M,,, is 2*. A, doubly transitive on ¢ —{co}. If coe T, the
stabilizer of @ in M,; is A4, doubly transitive on ¢. The lemma follows.
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Lemma 74. |q(4(2,3)"F|=27.32.11=24.12.22.2 and |q(A(2, 2))"F]
=2(1%)2.10.2.1=2%5.11.

Proof. Since E%=F, we need to compute only |q(4(2,3)° )nE| and
(42,2 )N E|.

The number of ways to complete 4x —4x, to a triangle with sides in
A,nA(4) is 22-2=44. Since I] is an orbit under {J,s)>, we get |4(2,3)n E]
=1.24.12.2-44=273%.11. A similar calculation verifies the second statement.

Lemma 7.5. Let {2,,92,}={2,/}, ie2,, S€€ so that q(A;5)eF. Let J(i,S)
~C,(i s)- Then, there exists a unique j:=1v(i,S)e &, such that {ke QJ(i,S) fixes
k}={i, ]} Also, given i, (i, S) ranges over the 12 values of 2 ,.

Proof. Let u=q(4;5)°" "=q(n ), for ne As. Then J(i,s) leaves invariant supp ()
={k,1}, say. Without loss, /ILS—)OO, =1, o. Then J(i,S)*=Lx {+1}, which
fixes precisely {00,0} in Q. The first statement follows. Since an M ,-subgroup
of J containing L and fixing o has {1, 5|S€%, q(4, s5)eF} as an orbit of
length 12 (see Lemma 7. I(iii)) the second statement follows since this M, ;-
subgroup is transitive on &, [11].

Lemma 7.6. Every member, x, of q(A2)NF lies in a triple of elements of F
forming a triangle in A2,3). In fact, it lies in 24 such triples. Also,
C(X)N N, 6,(F) acts with two orbits on this set of triples. There are two J-
orbits on q(4(2,3)) F.

Proof. Using 6, the first statement is equivalent to the following: given distinct
,jeQ and a=+1 with ij in 2=0(mod2), there is ke with ik in
2=1(mod?2) (for then {4x;,+adx;, —4x;+4x,, F4x,—adx;} is a triangle with
two generators and one nongenerator for the J-module A(4)+2A4/2A4). The
latter statement is clearly true. The second statement is easily deduced from
this discussion: for each ordered triple (i, j, a), there are 12 choices of k and two
choices of coefficient +1. Lemma 7.1 and its proof imply that C; . :(4x;
+a4x;) has two orbits on this set of triangles, corresponding to its two orbits
on 4. The third and fourth statements follow.

Lemma 7.7. (i) The triples in q(A,)NF represent every H_ orbit in A(2,3) and
A(2, 2) except for those orbits in A(2, 3) with i=j (in the notation of Lemma 7.3).

(i) If A=A, 5, q(A)€F, then the triangles in A(2,3)nF" " which contain
are spanned by A and p, where ie 9, e{2, N}, =14, r, j*i and one of the
following cases holds (O=supp(A+u), A+ue A3, Z,e{2, N} ~{D,}):

(iLa)y jeg,, {i,j}=0n9,, v(, )eOnD,;

(iLb) j=yG8e2,, |0nD,|=2;

(iil.c)y j=7(1,8)eD,, |0nD,|=6,

(iv.d) je2,—{y(i, 5)}, OnD,={j,7(i, S)}.

Furthermore, each case arises and characterizes an orbit of J(i, S) on the set of
triangles in A(2, 3) which contain A.

(itiy In (ii), the pointwise stabilizer in J of {A, u, A+u} is, modulo <z,
isomorphic to Ag, and it fixes three points and has an orbit of length S on the
octad ©.
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Proof. (i) We consider 4(2,2). There are such triangles in g(A,)nF, for in-
stance, {4x,—4x,, 4x,—4x,, 4x,—4x,}%. I{ 0, 0", 0" =0+ (0" are the octads
which support the three vectors, its easy to arrange w0e(OU @) or (O UO')?
for appropriate geJ. The statement about H_-orbits on 4(2,2) now follows
easily from Lemma 7.3.

We now consider 4(2,3). There are triangles in A4(2,3)nF4"" (see Lem-
ma 7.4). We prove that, if {4 #,/“'/1} is such a triangle, A,ueA3, then
i(A)£i(w). Given /100 o> the set of 1, 1 . which, with A o> SPan a triangle of
type 222 is the union of eight sets E(r, 2, &) where r=0, 0, 2=9, /, ¢= +, —
and E(r, 2, +) {i Js€2*} and E(r, 92, —)={1 |seZ*}. Also, each of
these eight sets is an L-orbit of length 11, where L C,2(d, 0= L,(11). This
action leaves invariant an equivalence relation ~, where E(oo,@, &) ~EQ0,Q
+9,¢), for all 2, ¢ (we explain the relation as follows: given a triangle of type
222 as above, the two legs distinct from 1, , correspond to elements of the
two sets in a ~-class). Similarly, on F, E(A):={fje A3|q(n)e F and A, # span a
triangle of type 222} is a union of four L-orbits. Since |{fje E()|i(n)=i(1)}| is
at most 11 (see Lemma 7.1 (ii)), E*(A):={fje E()]i(n)*i(1)} consists of three or
four of these orbits, whence |E*(4)|/|E(4)|=2 or 1. By Lemma 7.1(ii), this ratio
is independent of 243N F?~". For neA} with g(n)eF, we let 4, be the set of
triangles in A(2, 3)qu ' whlch contain #. By Lemma 76 |A |—24 and ()
=i(p) for 0, 12 or 24 of the {#,{, p}eA Write i(4,)=0, lori for these three
cases, respectively. By Lemma 7.1 (ii), i (A o) I8 lndependent of neA2nF*"', So,
li(4,)|=|E*(A)|/|E(A)| = § implies that i(4,)=1 and E*(1)=E(J), as required.

To prove that one of the four cases in (ii) applies, we may assume that A
=1, (because of Lemma 7.1(iii) and the fact that J preserves {2, #'}). Since
E(4) decomposes into four orbits, we must show that each orbit corresponds to
exactly one case in (ii). Since A= A‘f,o o» the four orbits are the images of E,_
under 0, where E_ ranges over a set of representatives for the four ~ classes
described above, and where we always choose E, to contain 1, or A, with rs
in 2=1(mod 2).

Say pu= +4, s€E%. We may assume that S is an octad. Then oo, ke S (see
Lemma 2.3). Let L,= C,(w). By transforming {4, u, A+ u} with 6!, we see that
L, fixes three pomts of Q, whence L,~A, (one obtains nonconjugate L,,
accordmg to whether the fixed point dlstmct from oo and O lies in 2 or in /V )
The action of L, on 2 and on A4~ decomposes, in some order, into orbits 1+ 1
+10 and 1+5+6. Note that k and S are stable under L,. In particular, the
three fixed points are {c0, 0, k}.

We list possibilities. If k=0, there are two possibilities for S. Each possi-
bility corresponds to orbits 1+1 and 145, and the two possibilities are
distinguished by whether |Sn2|=2 or 6. Suppose k+0. If ke 2, the evenness
of |Sn 2| forces SN 2={0, k} and |S~.A"|=6; in particular, S .4 decomposes
as 1+5 into orbits because coeSn A If ke ] clearly Sn A= {0, k}. Howev-
er, there are two possibilities for the 6-set SN2, corresponding to 1+5 and 6.
We claim that SN2 can not correspond to 6. Suppose this happens. In all
other cases, when |[SN2,|=6 for 2, {2, /'}, SN, breaks up as 1+5 into
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L,-orbits. We observe that the action of s(s*=¢,) fuses the four L-orbits in
pairs, each pair containing one E(r, 9, ¢) for e= —. A corresponding phenome-
non occurs for the action of an involution in Z(N¢y 9.5 (F))—<z) say s, =s% on
the four EY’s. Even though s does not fix 7 ., the fact that 15 —/lf o
implies that {sy permutes the set of four E_’s. Therefore as [{s, 5,7, L] =1, s,
permutes the four L-orbits on E(A), (the Eak s) hence permutes the four sets of
octads associated to the orbits. It follows that L, has orbits 1+1+1+5 on
each of the two octads from this set of 44 fixed by L,, since they come from
different L-orbits (which are fused by the action of {s,}). Therefore, Sn2
corresponds to 1+ 5, as claimed, and we have accounted for all the Ei’s. The
occurrence of the four cases listed in (i) may be deduced from the above
discussion. The discussion easily implies {iii).

Example. In Lemma 7.7(ii), take A=4,,. The relevant values for p are +7; q,
where one of the following cases holds:

(il.a) {o0,j}=0nN 4,
(iLb) |OnA|=2, j=y(c0, $)=0€e2;
(il.c) |[OnAN|=6, j=y(c0, p)=0e2;
Gid) |0nN|=6, j€2, j+7(o0, $)=0.
The associated A+ pe A3 look like +(—2x,—2x;+ Y 2x)) in every case.

l+o0,j
le@

Definition. When A= £/, ¢ define i(4):=1i, S(1):=S(mod (Q)).
For a triangle {4, y, v} € A(2, 3) containing 4, g and 4; ;+ 4, 5, define 5(4, w):

=(_1)ooiinS+oojinT.

Lemma 7.8. Let {4, p,vieAQ2,2) and let {A, 2, X}, {w ', 0"}, {v, v, V'} be in
42, 3). Write V=2, 5, A'=4;, 1, W=4, 5, W=4;, 1., V=4 vVi=4,
Assume i, *j, for k=1,2,3. Then

() (2, 27)=(— 1 Ginin D eivinea
(i) (2, 27) S, 1) SV, V)= (— 1)1+ E Hia i 4 iy oo 4 Gty .,
Proof. We have

i3, 837 J3,T3"

5(/1/’ /1//):(_ 1)[ooi1inS‘]+[ooj1inT1] =(_ 1)[ooi1in(Sl+T1)]+[i1j1inTx]

:(_ 1)[ooi1inC”A]+[i1j1inT1]:( — l)wilin(01+%<li1’ji.i>
see Lemma 2.3(ii). This proves (i). We have

[ooiyin O]+ [cci, in O]+ [0i;in 0]
=[0in(0,+0,+0)]+[i; in O,]+[i,in 0]+[i;in O]
=[cwing]+1+1+1=1 (mod2).

This, with (i), implies (ii).
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8. The Action of Elements of P on the v(4) and the ¢(x) ® x,

For later use, we require a careful discussion of plus and minus signs. We shall
use the notation of Sect. 7 (and earlier sections) as well as the following
notation and definitions.

Set z,:=¢q(8x,), as in Sect.7. Set P:=N.(E;). Thus PnQ=E and
P/E=2'" 'M,,. As P-modules, E=Ex {(z).

We claim that P =P’ x (%), where £=z%, and that P'= Cple(1)). To see this,
look at the following diagram

PP

| |

N24 N24’

derived from the one in Sect. 4. Clearly, P'(kerzn|;)=P since N,, is perfect. We
have E:=kern|;~Z.% Also, [E,P1=[E,X]=EQ)~Z\' (see Sect.7), and
[E,0,(P)]={z;), so that [E,P]=<E(2),z,)=E, From Sect. 4, we have the
isomorphism 0—-Q of C- -groups. Since E<Q kernlo () We get an isomor-
phism E—E, whence |[E, P]I—Z12 At once, |P:P'|<2. Since £ acts as —1 on
Qe(l), P=(P,%>. Since e Z(P), P=P x (%, provmg the claim.

On the notation of Sect. 4, the element Zz_ acts as —1 on Qe(1) and
generates kerm,. So, we also have P=P x {fz, > It follows that P~P ~P' is
perfect.

Elements of N.(E) permute the characters of E and hence the elements of
F. For geN:(E) and xeF we write xog=yeF if ¢f=¢, on E, where ¢3(u)
=¢x(ug“) for ueE. We have xog=x8(modE) when xeF and geP. Thus e(x)*
=te(xeg) for such x, g. Also xog=x for xeF(2), gecO,(P). The unique
nontrivial linear character of P is afforded by Qe(1). In case g normalizes F
(i.e., geJ), then xog=x=%

The reader is advised to understand the preceding paragraphs thoroughly
before going on.

For ieQ, geN,,, define i® by (Q@x,))=0x,. Extend this notation to g in
N7, ' and N7, '™

Let N,;={geN,,|of=0} and define H:=(N};'™nP). Then
0,(H)=~2'*2? and H/O,(H)=M,,.

We set 1=¢q(1,)eF.

There are functions a: FxQ xP—{+1}, aT:FxIs—>{i1} and a,: QxP—
{+1} which satisfy e(x)* =a,(x, g) e(xog), x¢ =a,(i, g) x;, for xeF, ieQ, geP and
(e(x)®x),=a(x,i,g)e(xog)®x, for xeF, ieQ, geP. We have a(x,i,g)
=a,(x,8)a,(i,8), for any geg"’’, geP. There is a function b: A, x C—>{+1}
which satisfies v(1)% =b(4, g) v(15), AeA,, ge C (we identify b(4, g) with b(1, g)).

Let us calculate some values of the functions introduced in the last para-
graph. Say x, yeF, geP. Then yf=(yoglu=u(yog), where ucE. We have

e(x)fyf=ap(x,8)e(xog)(yog)u=ar(x,8)e(xog)u(yeg)
=ar(x,8) @, W) e((x° 8 (yeog)=ar(x,§) o, (1) e((xy) o).
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Also, (e(x)yff=e(xy)f =az(xy,§) e((xy)o§). So az(xy,8)=ar(x,8) ¢,,,(u). Taking
x=1, we note that Qe(l) affords the nontrivial linear character of P and
obtain

N~ e if geP,
&b w0 d={_510 it ber

for yeF, geP, u=y*(yog); in particular

ar(y. A):{ ¢:([v.) if 2eP’
—o([y,g)) if g¢P,
for yeF(2), ge0,(P).

Next, we consider a(x,i,g)=ar(x,8)a,(i,§). For ge0,(P) we write g=g if
g '"=gg Or g, (g5 Is not well-defined, though the coset Egg is). From (8.2)
-1 ieS
1 ¢S
=gg. To use (8.2), we arrange for geP’ by the following device. We take
ge0,(H). Then there is a unique choice ge(H™'Y since H has trivial Schur

multiplier (see Lemma 2.18). For this choice, §"=¢;, where co¢S. Therefore
a,(i,§)=(—1)*""5 and so

(8.2) a(x,i,g)=o,([x,g])(— Y= for xeF(2), g=g5€0,(P).

we get the possibilities for a,(x,§) and we have a (i, §)={ where ¢

Note that (8.2) does not require co¢S, ie. (8.2) holds for S+ Q in place of S.
For ge0Q,(P), write S, for S or S+Q, whenever ¢ or &, , equals §". For
AeA3 let S, be the support of 4 and for AeA3, let S, =0.
Now, we turn to calculate the b(4, g)’s. We use the notation and discussion
of Sect. 5. Our C-map WX WV is based on

(e(x)®@x) ®((N®x)— 2 [ =33+ 350 (1), u(A*)] ¢,(x) v(A).

Fix 1eA,. We get, for geP and for any pair x, ye F with xy=x;,

(8.3) b(A,g)=al(x,i,g)a(y,j, g)[ —30;;+35(uo (u;), u(A*)]
'[_35i2j8+%(u (u ;zjx) u((A*N]1~ " h(x) pelxog
=a(x,i,g) a(y,j,8) a,(i, ) a,(,8) ¢(X) §(x°2)
=ar(x,8) ar(y,8) ¢,(x) Ps(x°g)
=ap(l,§)ar(x,,§) (taking x=1),
whenever the bracketed coefficients are nonzero.
We remark that there was an error in the above calculation noted by the

referee. Consequently, it was necessary to make some changes in the calcu-
lations of this section.

{(8.4) The bracketed coefficients in (8.3) vanish precisely when i=jesupp(4), an
octad, or else i=j, {i,j} & supp(4); otherwise, the formulas of (8.3) hold.
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Let us check the statement. Say i=j. We have

%(uo(uii)’ u(A)) =35 25(23u;— Z Uy, 16(uy, +uy))

r¥i

_o 1164422 ikl B etk
o 8 ig{kl} =6 i¢{kD)’

whence the bracketed coefficients is nonzero. If suppA=0 is an octad,

?9—(”0(” ) u(ll)):%% 23u - Zurr’4zull

k+i le®
_ 3 )le ie®
-8 g’

giving precisely the exception noted in (8.5). If ke A3, =4, g, say. Then

33 (o (1), u(A) =55 - 57 (23u;, Z“w Y+ Z u,,)

I+i r¥k
. 23-9-23=23-8, i=k_{ @, i=k
23—-9-22=—8, i+k |—

56

giving (8.4) in this case. When i=j, (8.4) is pretty obvious.

(8.5) The formula b(4, g)far(l,gA)aT(xl, 8) holds for all AeA,, geP; in particu-
lar, b(4, g)=ar(x,,8) if geP".

To verify this, given 4, we need to find a pair of indices i, j for which the
bracketed coefficients of (8.3) are nonzero. This is easy if we examine the cases
seAk, k=234

(8.6) For AeAZu A3 and geO0,(P), b(4,g)=o,([x,,g]) (take i*j in supp A and
use (8.2) and (8.4)).

(87) U A+u+v=0, A, u, vediu A}, ge0,(P), then x,=x, x, and
b(/’{’ g)b(/»l, g)b(v’ g):qol([xb g] [x‘n g] [XV, g])
zq)l([xlx;u g] [x/b g, Xu] [X‘,, g]):qpl([x}.’ g, xu]):(— 1)|S;J‘\Sumsg|;

consequently, B(4%, u#) = B(4, p)(— 1)!S+7 3" Sel,
Using (8.5) we get

(8.8) P permutes the v(1), AieAs.

9, The Betas

We have a function f(4, u) which takes the value —36¢,, ,(x;,) when Y

ME/L and which satisfies v(4) v(u)= (4, ) v(4+ ). For our work in Sect. 11,
we need some precise results on the signs of certain S(4, p)
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The function f has been rather troublesome. In the first version of this
paper, the formulas of Lemmas 2.39 and 5.1 were not known to us. We had to
deal with a function which took on the values 0, + 36, but was not given by an
explicit formula. The exact signs are very important and it took a considerable
amount of work to evaluate them on particular triangles of type 222 and to
measure the change in sign as the triangles change. At this point, it is
comforting to have an explicit formula, but the work referred to has not
diminished substantially. Perhaps we should not expect a great deal because of
the following remarks. Our notations for 4 and Q=EF are “independent”, in
some sense. This independence holds throughout the formulas of Table 6.1,
except in the expressions ¢, (x;), where both the element x,; of F as well as the
character ¢, depend on lattice elements. To appreciate the significance of
this, one must become involved with the calculations of Sect. 11. Roughly
speaking, in verifying certain equations, expressions like ¢,(x) can be handled
formally, but an expression like ¢, (x,) resists because one needs to know “how
much” 4 differs from the elements of F? ' which map to x, under q. A direct
measurement of these differences might be one way to solve our problems.
Since A, and the set of triangles of type 222 are finite sets, a very large but
finite number of measurements would have to be taken and coded in a sensible
way to cope with the situation of Sect. 11. We did not see how to make this
idea work. Instead, we chose less direct but shorter and more selective at-
tempts to obtain values of beta.

Now to compute selected values of beta. We consider cases, according to
how 4, p, A+ p are distributed among A3, A3 and A3:

(A) A, p, A+pueAs;

(B) one of 4, p, A+ u in A%, the others in A3;

(C) one of A, u, 1+ u in A%, the others in A3;

(D) all of A, p, A+p in A%;

(E) one of A, u, A+ in A2, the others in A3.

Associativity of the form ( , ) implies that these cases are exhaustive.

First, some notation. For xeQ, geG, write x®=u(x,g)v(x,g), where
u(x,g)eE and v(x, g)eF. Observe that u(x, g) and v(x, g) commute when x is an
involution.

Lemma 9.1. Suppose that AeA, and that q(A)=x,-u, x,€F, ueE. Then @,(x,)
=1.

Proof. Since g(4) is an involution and x, and u have order 1 or 2, they generate
an abelian group. Therefore, ¢,(x;)=1.

Lemma 9.2. Suppose that geC and e(1)¥= ) a,e(x), for scalars a,. Let AeA,.

xeF

(1) b(/’{, g) = z au(x,g) av(xx;_,g)xlg (pxxg(u(xxl’ g)) (p}.(x)'
xeF

(ii) If xEcE, e(x)!=Y a,@,(x*)e(y) and the coefficient of e(1) ®e(x,,) in
(e(X) ®E(eX,))F iS @y Gyurrogys, 4 P, o (80X X3 8

(iii) If x2eE and x%eE, the coefficient of e(l) ®e(x,s) in (e(x) @e(xx,))* is
aya, ¢, (xx)9)=a,a, ¢,((xx))=a,a, ,¢,(xx)=a,a, ¢,



52 R.L. Griess, Jr.

1
(iv) If FE=E, and g*=1, e( :i‘zz ) s0 thata—216 for all x or a,
1 xeF
=5 for all x.
(v) Finally, if FE=E,, and g*=1, the coefficient of e(1) ®e(x,,) in A% is

1
2‘11 A P (xx;)@,(x)=a, s 26 Y ox)=a, . 20= .

6
xeF xeF 2

In this case, b(A,g)=1 and B8, u8)=L(4, ), for all u such that A, pu span a
triangle of type 222.
i) If geP, then e(f=e(l) and b(he)=0, (u(x,8)=0(u(x; g)
=¢, ,(x5). In particular, if geP’ and x4eF, then b(J, g)—l

Proof. We have

e(x)f=e(1y¢=(e(1)¥y* ZFa e(y))” Za @, (u(x, g))e(yv(x, g)).
Therefore ’
(e(x) ®e(xx,))
Y 4,4, 0, (u(x,2) e, (u(xx,, ) ey, v(x, ) ®e(y,v(xx,,8)).
yi,y26F

The coefficient of e(1) ®e(x, ) in this expression is

By x,0) D nyx, 5 Poien) UK B i gy, (U(X X5, 8)),

which equals a,. o0, (x, 5,0 Px, (U(XX;, 8)), because, for any xeF and any
geC, u(x,g) and ov(x,g) are commuting elements of order 1 or 2, whence

qu(x,g)(u(x’ g)) - 1

Since Al—26 Y @,(x)e(x) ®e(xx,), the coefficient of e(1) ®e(x,,) in A% is
xeF

1
F Z av(x,g) av(xxg,g)x,xg (pxag(u(xx/l’ g)) (p/l(x)'
xeF

Since the coefficient in 4,, of e(1)®e(x,,) is i@, (i) follows (see Sect. S for
the relationship between 4, and v(4)). 2

The remaining statements are more-or-less obvious from the above dis-
cussion. To get (iv), we refer to Sect.4. To get ¢,{x,)=1 for AeA,, use
Lemma 9.1. We get (vi) from (i) by studying the definitions. Namely, the only
nonzero summands occur when (among other things) v(x, g)=1, or x*€E. Since
geP, this means x=1. Consequently, v(xx,,g)=uv(x,,2)=x,,. Thus, b(4,g)
=@, (u(x,,8)), and the rest of (vi) is easy.

Lemma 9.3. f(4, )= — 36 in cases (A), (B) and (C).

Proof. Let ieA5. Then x,=1 so that, from Table 6.1, f(4, p)=—36¢,, ,(x;)=
—36.
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Lemma 94. Let {4, u, A+pu} be any triangle of type 222 and suppose q(A)eF.
Then B(4, W)= —36.

Proof. Since q(A)eF, q(A*°)eE,, whence (4%, py*°)=—36 by Lemma 9.3. By
Lemma 9.2(v), —36=(4%, ui*)= ({4, w).

Lemma 9.5. Let {4, pu,vie (2,2) and suppose that g=g.c0,(H) satisfies q(A8)eF.
Then B(A, p)=(—1)1 *1505anSul 36,

Proof. Lemma 9.4 and (8.7).

Remark. For the hypothesis to be satisfied, we need |0, 2|=2 or 6; see
Lemmas 7.6 and 7.7.

10. The Definition of ¢

We shall define a linear transformation ¢ of order 2 which commutes with a
group H (defined below), fixes z,, and interchanges z and zz, under con-

Table 10.1. The groups N and C

F,=(C,Ny={C,o)

(21+24)'(. 1)=C

22N X2 B XM,

MMM Z XM,

212X M,
21+24:Q
2142252 =0 AN,
213= E 222.211

2= {z,2;) =22




54 R.L. Griess, Jr.

jugation. One should keep in mind that the definition of ¢ is motivated by the
principle that if H, and H, are subgroups of GL(B) and H]=H,, then the set
of irreducible constituents for H, are transformed by ¢ to the set of irreducible
constituents for H,.

We should comment that the algebra structure constants and the definition
of o were determined by a common strategy. Imagine that F, exists, is in G(B)
and contains C as the centralizer of an involution. In Fj, the four-group <z,z,)>
has normalizer N of the shape 2%.2''. (2" x2'1) . (M, x Z,). If we let Ny=N",
then N=N, <{z,0) (semi-direct product), where t=¢(4_) as before and ¢ is an
involution which satisfies {r,o)>=%,. Some of the interaction of N and C is
diagrammed in Table 10.1. The point is that most of N lies in C (|C:Nn C|
=3) and (o) must permute the subgroups of the group N, That is, N, is
described already in our notation since N,=C, and N, is big enough to yield
information about B and C.

We concentrated mainly on the cases H, =H,=<{z,z,>, 0,(N,), 0,(N,) and
where H, and H, are normal subgroups of N, or order 2**. Eventually, this
line of analysis shows that there are particular bases e, e,,... and €}, ¢, ... of
B so that ¢ must behave like ef = +e;, for all i. Squaring gives exact relations.
All this implies enough linear relations among the six independent parameters
of Corollary 5.8 to make all six linearly dependent on one of them. Thus, B is
forced to be essentially unique. As far as we can tell, an exact description of ¢
is not forced. Unfortunately, the signs required to describe ¢ took some
guesswork to find. The results are summarized in Table 10.2.

We need a refinement of B=U @V @W. Define

B,,=span of u,;, ieQ, dimension 24;
B,,¢=span of u;;, i, jeQ, i+], dimension 276,
B} * =span of v;;+v,;, i, jeQ, i+, dimension 276,
B}~ =span of v;;—v,;, i, jeQ, i £}, dimension 276;

BZ=span of v(%), ieA3, dimension 2°.759;
B3 =span of v(%), 143, dimension 2'!.24;

B.,..=span of e(x)®x;, xeF(2), ieQ, dimension 2''.24;

even

B, =span of e(tx)®x;, xeF(2), ieQ, dimension 2''.24;

where v;;=v(4;)) and v;; =v(4;;).

There is no problem giving our explicit description of ¢ on basis vectors in
B,,, B,,¢ and B>t and B} ~. See the beginning of Table 10.2. Defining ¢ on
the remaining summands requires some discussion. We will start by consider-
ing the summands B3, B,,., and B, ;.

Let Ry=<q(A(2))). Then Ny:={R,, P> =R, P satisfies O,(N,)=R,R, where
R:=0,(P), and, as a module for N,/O,(Ny))=M,,, O,(N,)/P(0O,(N,)) is com-
pletely reducible and is isomorphic to a direct sum € @ %. Therefore, there is a
unique subgroup R, of index 2'! in 0,(N,), normal in N, and distinct from R,
and R.
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We want ¢ to satisfy R°=R, R§=R,, z°=zz, and [z,,6]=1, and for Cg(o)
to be a group of index 2 in R, meeting {z,z,> in {z,>. We have the eigen-
values

Bg B Bodd

even

z: 1 -1 -1
z0 —1 1 -1
zzyo —1 -1 1,

and this implies that ¢ must switch B3 with B_,, and leave B,,,, invariant.

The eigenspaces for R, on Bj are the Qu(4,,), ieQ, xeF(2), and the
characters afforded are all distinct. Also Cp (B3)=<z) and z; is —1 on Bj3.

On B,,.,, z; is 1 and zz, is —1. Note that R°=R,. The eigenspaces for R
on B, are the e(x)®x;, xeF(2), ieQ (this is because [E,, R]<{z,>; see
Sect. 8). We define o on B_,__ by

(e(x) ®x)" =(— D=0 e(x) ®x;.

On B,,,, the kernel of the action of R is {zz,> and R/{zz,»>=21*"?2 So, R
does not have cigenspaces here. The ecigenspaces for R, =R" on B, are the
e(tx) ®x,, the transforms of the e(x) ®x; under 7. Since we want ¢ to switch
R, and R;, we make o switch Qe(rx)®x; and Quv(4;,). Thus, we must
describe a function d(4;,)e{x1} which gives v(4, )" =d(/, )e(tx) ®x; and
(e(rx) ®x)" =d(4; ) v(4; ,).

Although we will not get [X,o]=1([X, 0]=0,(X), actually), the actions of
o and X on ) Qu(4)and ) Qe(r) ®x; will turn out to commute. Here, X acts

ief2 icf2
as M,, >~ X/0,(X). If ¢ is defined here and the actions do commute, then d{4,)
will be constant for ieQ. Replacing ¢ by oz, if necessary, we may then arrange
for d(4,)=1, all ieQ. Therefore, we define d(4)=1, for all i. Thus, ¢ is now
defined on these two spaces.

For a €-set S, we let d(4; 5)=(—1)""""% (see Sect. 2). This is really a function
on Qx%. For S=0 or @, it agrees with the above definition of d(4,).

Let H <X, H_=0,(X), H_/O,(X) be the M, subgroup fixing coel, and
set H:=(RH )y ~2'*?>. M, (see Sect. 8 and Lemma 2.18).

We now verify that the actions of ¢ and H commute on B3®B,,,. Let g
=gs€0,(H) (recall that gq is really a choice of element in a coset of E;). Then

v(4)f=h(4;8) U(/li,s) and (e(1) ®x)f=af(t,i, g) e(txg) Dx;.
We have
b(, g) v(4)27 =v(d, 5)" =d(4; 5) e(T xy) ®x;
and

b(%;, @) v(2)"8 =b(4;, g) d(A)(e(r) ®x)* =b(4;,8) - 1 - a(z, 1, g) et x5) @x;.

These are equal since a(z, i, g) b(4;, g) =(— 1)*""5=d(4, ¢), by (8.1), (8.2) and (8.5).
Thus, the actions of ¢ and 0,(H) commute. Now let geH so that g lies in the
standard M,, in N,, fixing oo, ie. geH_. Then each a,(i,g)=1 so that
a(tx,i,g)=ar(tx,g). Write x=xg for Se%. Then
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U('li,s)ag = d(}‘i,s)(e(T x) ®x,)f= d(/li,S) ap(tx,g)e(t(xog)) ®x,
and, by (8.4),
U(/li,s)ga =a;(tx,g) U(/lig,sg)d =ar(rx,g) d(iig,sg) e(t(xog)) ®x,;.

Since g fixes oo, d(4; s)=d(As s as required. Thus, the actions H and ¢ do
commute on B3 @ B .

Commutativity of the actions on B,,,,
definitions and use the fact that H fixes co.

The definition of ¢ on B2 requires the notion of an F-triple. Given Ac A2,
we call {4, u,v}ed(2,3) an F-triple if there is ge H with q({4, u,v}¥)cF and if u
and v have the shape u=1, ¢ and v=4, ;, with co¢{i,j}. By Lemma 7.7(ii), i% .
By Lemma 7.7(i), every ieA2 is part of an F-triple, even of one whose image
under ¢ lies in F when g(1)eF.

To define v(4)?, we enlarge 4 to an F-triple {4,u,v}, u=4,5, v=4; r, then

set
(D)7 = Bp,v) " v(p) v (v)?
=Bu, )~ (= DPIrEIT (e(x) ®@x)(e(x,) ®x)
=B )~ (= )P RIT F S ( u(C) dy (T x) v(0)

Xy=X2

=fpv) " (— STy B (— )RR B (tx) 0(0).

Xg=Xa

is verified as above - just check

We must show that this is well defined. Note that there are 64 summands.

Suppose that {4, 4, v} and {4, u,,v,} are two F-triples containing A. Write u
=i V=A; 1 by =4y, 5., vV, =4;, r,- By Lemmas 7.3, 7.7 and the definition of
F-triple, there is geH, P’ so that A*=/A, =, ¥=7V,. Let A, 4, be the
formula given for u(4)” using the first and second F-triples respectively. We
want to show that A =A4,. We have

(101) A:B(,u,v)_l(—1)°°iins+°°ji“T(-92—) z (_1)%(/111",C>¢C(xu)v(07

Xp=X2

Ay =Py, vy~ (= yEiimSieeiin TGy B (~ 3R ¢ (x,, ) o(0).

Write g=pg,, where p*eM,,, Ue¥. We have i,=i!=i®, j =jf=j?, §, =S¢

+ U, T, =T%+ U (modulo {€}). Therefore, as geH,

(10.2) [ooi®in S;]+[o0j, in T;]
=[o0igin §$]+[ooi; in U]+ [o0j, in T8]+[o0j, in U]
=[ooiin S]=[o0jin T1+[i;j, in U] (mod?2).

Also, we have

(10.3) By, vi) =B, v) b(w, g) b(v, 8) b(4, g);

(10.4) (i O =LA 1, Y =LA . IF)=

+ (i €8 i iy j, in U=0 (mod 2),
g il iyjy in U=1 (mod2),
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whence

(= 1F 00 =a, (i, @) a (. (= 1 Hnii s
(10.5) a,(i,8) a,(j, §)=(—1)riY;
(10.6) v({F=b((, 8) v({®) =b(4, g) v({¥).

Since every v({) in (10.1) satisfies x,=x,, we get b({,g)=>b(/,g) for all such
¢, from (8.5). Since A is a linear combination of such v({),

(10.6) At=b(4,8)4, or A=b(4,g)A%

Using (10.1), (10.2), (10.3) and (10.4) and making {* the variable of summation,
we have

(10.7) Ay =B, v) " b, 8) b(v, 8) b(4, g)(— 1)>irinSttwiiinTy,

@) 2 (= DFnit® g (x, Ju(l?)

Xg= X4

—B(1, ) bk, R)b(v, Q) b{L, )(— 1)1inS+ =inT +ivinint,
a,(,8) 2,0, T (= DFH O h(x, ) o(l)

Xr=X,

To compute b(4,g) A%, one replaces v{{) by v({¥) in the first line of (10.1); see
(10.6). So upon cancelling (making use of (10.5)), we see that equality of 4 and
A, amounts to quality of ¢ (x,) with ¢y(x, )by, g)b(v,g)b(4,g). From (8.3)
and (8.5), using geP’.

(10.8) b(A.g)=arlx,, &) ar(x,, 8 d;(x,) d,x(x,°8)
=ar(x,, 8) ar(x,, ) ¢,(x,)- ¢,(x,);

(10.9) b(w, g)=ar(x,, 8);

(10.10) b(v,g)=a,(x,, ).

Thus, we must verify the equality

(10.11) G (X )=, e(x,), for all { with x,=x,.

Note that A+{, A+{feA(4), so that xE=x, (moduloE) and ¢, (x,)
=0, 0e(x5) =0, (x,,), as required. Our proof of the well definedness of v(1)”
is now complete.

We use notation §(p, v): =(— 1)°iinS+=iinT whenever {4, u,v}€A(2,3) and the
two vectors in A3 have shape 4, ¢ and A; ;. When {4, 4, v} is an F-triple, we
have i%j and coé{i,j}.

We now show that ¢ commutes with H on B3, using the commutativity on
Bi®B,, . ®B,, Let v(d)=puv) 'o(uo(v), where {4 v} is an F-triple.
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Table 10.2. The definition of ¢

Bis ui=uy,

B, u,=—v;+v;

B}~ (vij+vij')q=vij+vij'

By~ (—v+v,) =u;

B3 VAP =5 G ¥ (= DFR Do (x,) ()
Xg= X3

B3 (4, ) = (= 1) e(1x) ®x;

Ben  (e{x) ®x) =(—1)=h0e(x) ®x,

Bua  (e(tx) ®x) =(—1)™"Sp(L, )

On B3, {4, u,v} is required, by definition, to be an F-triple, although, once
Proposition 11.2 is proved, we need require only that {4, u,v}€A4(2,3); i=i(y), j
=i(v).

Then v(4)° is, by definition B(y, v)~* v(1)° v(v)°. Thus, for geH,
v(A)78= B, )" (o(w)° v(v))®
=B, )" o) Ev(n)7E = Blu,v) " o ()T o (v)E”
=B, v) " b(u, 8) b(v, &) () v (v
=B, v) ™' blu, 8)b(v, 8) Bu, v¥) (2%
=B(u, )~ b(p, ) (v, 8) B(u%, v¥) b(A, g v(A)*° = (A7,
as required.

Since b(4;;,8)=b(4;;,g) =1 for i, jeQ, geP (see (8.7)), the actions of ¢ and H

clearly commute on the first four summands of B listed in Table 10.2.

We conclude that [H,o]=1.
Two more basic results are needed.

Proposition 10.1. g preserves the inner product on B.

Proof. It is obvious that (e, f°)=(e, f) for basis vectors e and f, except possibly
when e, feB3. Say e=f=v(1), AeA%. Then

A, 04N =550 2 @ (x)0(0), Y @ lx,) (),
Xg= X, Xp=Xx3
where {4, u,v} is an F-triple. Since there are 64 summands, we get (v(4)7, v(4)°)
=1, as required. Now say e=v(d)*f=0v(u), A, ueAdi Let {1, 4,1’} and
{u, i, 0’} be F-triples. Then

WA (W)= 1550 X o Lc)v() Y @y(x,)v(m)
Xy=X2 Xnp= Xy
which is clearly zero if x,#x,. So, let us assume x,=x,. Then the inner
product is +& Y @(x;x,). Let g=gse0,(H) satisfy A*=f Without loss,
i¢S, (VE=p anég(f")gzﬂ"‘ Then @, (x; x,)=(=1)% for all { with x,=x;,

where
suppé< 0, and £=(22...200...0) (modA(4)).

SO,

Since A+, SNO,*0 or O,. Therefore Y (—1)%9=0; see Lemma 2.6. The
proof is complete. xg=xa
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Corollary 10.2. > =1.

Proof. It suffices to show that e°°=e for each basis element e. This is clear
except possibly for e=uv(A), AeA3. The inner product (v(1)’, v({)")= (1), v({))
is nonzero if and only if {eA, and x, =x,. It suffices to show that this equals
(v(4), v(0)"), for all { with x,=x, since {v(p)’|pe,} is an orthonormal basis of
V. Take g=g,€0,(H) such that A#={. Then

(0(4), v()7)% = (v(A)%, v()"*) = (v(A)%, v()*)
=b(4,8) b({, g)(v(0), v(4)") = (v(0), v(4)")

because b(4',g)=b(1", g) whenever x, =x,.. (see (8.5)). So, we are done.

§11. A Proof that ¢ is an Algebra Automorphism

The proof that ¢ preserves the algebra structure is, in some sense, the main
result of the paper. It allows us to define a subgroup G:=<C, > of G(B) which
contains C properly. We show in Sect. 12 that G is a finite simple group of
order 2463295%7611213%17.19.23.29.31.41.47.59.71. The sign problem for
g, referred to in Sect. 10, is so important because we want oceG(B), not just
oe{geGL(B)|g preserves ( , )}.

First, we prove a technical result. The phrase “fie,” is meant to be
understood when “x,=x,” appears under a summation sign. Similar omissions
appear throughout this section. We hope that no confusion results.

Lemma 11.1. Let @ be an octad, =1, xeF(2) and i, j, k, | distinct indices in O.
Then

@) Y @ az0)=8(=1)H5=nel

Xp= X4
i) > (puvw(fx)(,.1)%</1Uuu>:8(__1)%|(an0)+“,,~)|-
Xu= X2
(i) ) (pu#wl(-[x)(_1)%<l:,'+lk1',u>:8(_1)%|(er\(9)+(i,j,k,l)|.
Xp= X3
More generally, if U is a subset of O of even cardinality, and v="Y, 4x,, we
have icU
S @, (Tx)(—= DECR VI Zg(—1)HE=nO+UL
u
Xp= X2

Proof. (i) Note that ¢, (1) is (—1)}*PP4+#l 5o the statement is clear for
IS,nO|=0. Let m(A,x)= 3 @, (1x).

Suppose |S, O] =2. We ;nake a table, the (o, f) entry of which denotes the
number of cosets A+u-+2A4, as j varies, containing a vector of shape
(4,4,...,4,0,...,0) whose support meets S, in a set of cardinality B(mod?2).
Write S(4, u) for the support of this vector. It is a well defined element of P(0)
modulo <O>.
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p=0 p=1
=0 1 0
1 1+15 12
2 15 20

So, m(4, x)=—(0+1+15+20)+(1 + 12+ 15)= — 8, as required.
Suppose |5, N O|=4. We make a similar table

B=0 p=1
a=0 1 0
1 G+G=12  4.4=16
2 14+3(H=19 16

So, m(4,x)=(1+16+19)—(0+ 12+ 16)=8, as required.
Finally, if s=|S,n0|=4, we note that the associated table must be the
same as that for the case |S,n@|=8—s, and quote a previous case to finish.
Now, let U, v be as in the Lemma. Let S be a @-set which meets ¢ in
(S.n0)+U. By (i), 8(—1)FEnO+UI= %' ¢ _ (1xg). It suffices to show that

Xp=Xj

0, (xxg)=(—=1F¥#+3U and indeed, we have that
n+A S
@0 1(xx5)=(— I)IS(A,u)r\(Sx+S)I =(— 1)|S(/1,u)m<(sx+8)w)(
M
:(___ 1)|S(l,u)n((sxm@)+(Sn@))l :(_ 1)|S(A,u)nU|

(YA (Y +3IU]
(=D (=1 ;

since A=17, and |U| is even. So, the last part of the Lemma holds.

We deduce (ii) by noting that for U={i,j}, 3{A;u> +1=5{4;, p> (mod2)
and we deduce (iii) by noting that for U=/{i,j k,I}, %(/lij+/1k,,,u>+05§</1ij,
+ A up+ 141 (mod2).

We recommend that the reader become thoroughly familiar with Tables 6.1
and 10.2 before attempting Proposition 11.2.

Proposition 11.2. o preserves the algebra product on B.

Proof. We study o on products of basis vectors. Since we are using the
decomposition B=B,, ®B,,,®BY " ®B} - ®@B3@ B3 @ B,,., ® B,4, cvidently
there are 36 cases. Some of the cases are equivalent by associativity of the form
or by the action of a. Thus, not every case needs to be treated in detail.

Here is how we make use of the property [H,o]=1 (see Sect. 10). Suppose
e and f are basis vectors and we wish to prove that (ef)°=¢°f°. We take he H
so that e, =¢é" and f,=0f" where e=+1, =41 and e, f, is a pair of basis
vectors with more pleasant properties than e, f. It suffices to prove that (e, f,)°
=e] f because

(e, [ =ed(e" fhy =ed(ef )" =ed(ef)™

and
e fi=ede fro=gdeh foh=¢5(e f).
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Case 1. (B,,, B,,). Since ¢ acts trivially, there is nothing much to check.
Case 2. (B,4,B,;6). We have, for i=j, w,u;=—132u;—> —132(—v;+v,;)
and

u""uq‘:uii(_vij—i—vij'): _%(”o(uii)a”(/lizj))(_vij"‘vij')
= — 5 32(23uy; = Yty 16+ u; ) (— v+ v;5)

k*i

=—3-22.4(—v;+v;)=—132(—v;+v;),
as required.

Let i, j, k be distinct indices. We have u;u;, =12u;, "> 12(—v;, +v;.) and

uiuf=u(—v;, +tv,)= — g (uyy), u(l?k))( —vutUp)

=2 55(23u,— Y uy, 16(u;;+ u (= v +v;5)
=

=1

N{u

(=2)-4(—vy+v,)=12(—v;+05),

as required.

Case 3. (B,,, B ). Since ¢ acts trivially here, there is nothing much to check.
Case 4. (B,,, B} 7). See Case 2.

Case 5. (B, 4, B3). We have

Uy 0(A) = — 3o (1), u(A%) v(A) 5> =g (uo(uy), u(A%))
-0, v) B, v) ! _Z (— 1)FA g (exg)v(0),

where {4, u, v} is an F-triple, u=41;, v==4, 1. Also

ufu(A7 =3B )~ o (Y (= DF o (txg)v(d))

Xz=2X2

= =8 Bl V)7 S Vo luyy), u(A) - Y (= DFP o (rxy),

Xg=Xx2

as required (we have used the fact that u(A?) and u({*) have the same pro-
jection into B,, if x,=x)).

Case 6. (B,,, B3). We have
U v(d; )= — Flug(uyy), u(/ljzx)) O L Fug(uyy), “()jzx))( —1)®7inSxe(1x) ®x;

=(— D)®ImSx(Z2) (N 2Buy— Yy, Yty + D thyy) e(TX) ®x;

k*i k¥j
i} 4.23.8 if i=j
— (- 1y©JinSx(=3\, o )
(-1 (53) {4-(—-8) e(tx) ®x; i it
(=69 if i=j
—(_ o jinSx . .
(-1 { 3 e(rx) ®x; if s
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Also

U5 v(;,)7 =, [(— 1)/ e(rx) ®x]
" —69 if i=j
—(_ oo jinSx .
(-1 { 3 e(tx) ®x; if s’
which agrees with the above.

Case 7. (B, 4, Beyen)- We have
i (%) ®x;=e(x) ®p(uy, X ;)= (— D)4 =27 e(x) @p(uy, X ;)
because p(u;;, x;)eQx;. Also,
ufi(e(x) ®x)" =u, [(—= D)=t e(x) @x;]=(—1)=* e(x) ®p(uy, x)).
Case 8. (B, 4, B 4q)- See Case 6.

Case 9. (B,,¢,B,,6)- By using associativity of the form, it suffices to treat the
case u;u,,, where {i,j}#{k,[}. It is easy to do the case {i,j}n{k,[}=0 (all
relevant products are zero). We calculate

U= —"12uy > = 72(—v, +vy)

and
l] ]k'—( Uij +UU)( Djk+vjk'):—72(—vik+vik’):~72u?k’

as required.
Case 10. (B,4, B3 *). We have u;(v,,+0,,) =0 if {i,j} #+{k, [} and

U (0,4 0;;) =144 (= v+ v,;) 2> 1440,
because
~§uyu(22))= 144 and  —5(u, u(if)=144.

Also u”(vk,+vk,) =(—v;+0;;) (0, +v,)=01f {i,j} +{k 1} and if {i,j}={k [} it
equals —Z(—uo(A7) +uo(47)) =144u,;, as required.

Case 11. (B,,4 B% 7). This is equivalent to Case 10 by associativity of the form.
276 2

Case 12. (B,4, B3). Here, suppA=0 is an octad. Let {4, u, v} be an F-triple, u
= A5 V=4, 7. We have

u;;0(A) = = (1, u(22) v () > — G u;;, u(4%)
O By Y (- DFRC g(x,) v(0).

Xp=Xa
Also,
uf; (A7 = (= v;+0,;,) (D) (1 v) B, v) =1 Y (= DEFHD ¢ (x ) v(0).
Xg=Xz
For a given {, just one of A+, Ay £{isin A,; call it ¢. The map " is @

permutation of order 2 of {fjeA,|suppn=0}. After computing the product
(—v;+v;;) v(0), let —367,,(0) be the coefficient of v({’). We must show that

(= PRt g (x,) = (= DD g(x,) 7;(0),
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for all . It is easy to check that {{—{,ud>=ij in S+ij in Pos({)+ 1 (mod?2).
Using Lemma 2.3(ii), ij in S=ij in Pos(4)+ij in {k,I} (mod2). Since $<{4,;,{
~{>=ij in {kl} (mod?2), %(AU,,A)EU in Pos(4) we are reduced to proving
that y,;({)=(—1)7""*®+1 But this follows from the definition of y,/(() and
Corollary 9.3.

Case 13. (B¢, B3). We have

V(A )= — 3y (A7 Doy )
= —7( ij* u(llf,x))( - I)wkinSxe(‘CX) ®xk'

Also,

ufv(Ay ) =(— v+, (= D)**Sxe(1x) @x,
—(= 1)y [~ 60,0, (tX)

le2

+ o) 0, ()U(E — @, (Tx)u(iZ)]e(ex) ®x,.

For k=1 in the latter sum, we claim that the bracketed coefficient is zero. This
is quite clear for {i,j} +{k, I} and for {i,j} ={k I} it is almost as clear (we use
@, (1x)= —@;,,.(tx)). Now take k=I. The bracketed term is

"6(Px,,('cx) + 35 (1o (ty)s P, (ex)u(4} NP, {rx)u(d 12,))
=~ 6‘*"3% 2_1"(23“kk_ Z“m32 uii+ujj))] (Pz”»(‘fx)
r¥k
22 if keli,j} 270, (tx) if ke{i,j}
Josen=4 200

AR IS T e L ~9¢, (tx) if k¢{i,]}

s

Up to a factor of —(—1)®*inSx this agrees with
(= D)=kinS=(— ) (u;;, u(A7 )

:( _ l)ockinSx+ijinSx(__%

) —12  if ke{i,j}
4 if ke¢{i,j}
because ¢, (vx)=(—1)' "%~ So, ¢ preserves the product in this case.

Case 14. (3276, B.,eo)- We have u;-e(x) ®x,=e(x) ®p(u;;,x,), which is zero
unless ke{i,j} in which case it equals —36e(x) ®x,;, where {k, I} ={i,j}. When
nonzero, its image under ¢ is —36(— 1)¢*=*x>¢(x) ®x,. In either case,

ufi(e(x) ®x,)7 = (—vy;+ v;;)(— D*=rx e(x) @x,
= — (= A=ty [ (o (uy,), u(A5) —u(i5)] @, (x) e(x) ®x,.

ref2
When the product is zero (k¢{i,j}), we observe that ulj(e( ) ®x,)° =0, as
required. Now assume ke {i, j}. For r=Kk, (uq(t,), u(A})— u(4;))=0, as required.
For r+k and {r,k} +{i,j}, the bracketed coefficient is ZEero. Ir {r,k}={i,j}, then
= and
2 (s u(AD) — u(A3)) = 5 (5, 64, = 36,

lj’
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This gives the desired equality because

T+, Ay +ijin S, =14+%[S |+ 0kin S +ijin S,
=1+4IS,[+oolin S, =1+, 4,,> (mod2).

Case 15. (B, ¢, B 44)- See Case 13.
Case 16. (B3, By ™). We have (v;;+0,;) (0, +0,,)=0 when {i, j} {k, [} =0,

(Uij+vij‘) 4(“ (/1 )‘H‘o( ))
and
(Uij + Uij’)(vjk + Ujk’) = —=T2v;, +vy.)-

Clearly, everything is fixed by g, so there is no problem.
Case 17. (B *,B% 7). This is equivalent to Case 10.

Case 18. (B5*,B3). We have (v;;+v,;)v(4)=0 if {i,j} $£O=suppA and when i,
J€0, (v;;+v;;) v(4)= —360(4) where A'=A4%4;; or A£4;;,, whichever lies in A3;
see Case 12 and Corollary 9.3. If {i,j3 €0, it 1s clear that (v;;+v,)"v(4)"=0. So,
we assume i, je® from now on.

We have —360()"=—1620(,v)f(u,v)™" X (= D@ gx,)u(),
Xp=Xa

where {4, ,v'} is an F-triple with k=i(y"), I=i(v"). Also,

Wy+0;) v(A) 0 =0+ 0, V) B, V)~ 3 (= DEXD g (x,)o(l)

Xg= X2

=(—=162)3(1,v) B, )~ Y (=D o (x,) (D),

X=X 4

where {4, p,v} is an F-triple with k=i(y), [=i(v). (This is easy to arrange; for
instance, let ge0,(N,,) satisfy A'¥=41, then take y=p'%, v=v'%) Thus, we must
prove, for all {, that

S V) B V) e () (= DFEHE
=3(u, ) B, ¥) @ (x,) (— DF Pt

We now verify two claims. The first is

8(1 V) B, v) ™ @ (e, ) (— D M8 5w, v) B, V) T @ (6, ) (— 1) e
Take geO0,(H) so that /#=]". Then

v(X) =b(X, g)v(AF=b(4, g) v(4)™*
=b(2,8) 0,V V)T B L (= DI ax,) v(0)F

Xg=X2

=3 V) )™ @) X (—DFM P ox,) o)

Xg=Xa
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because b(¢, g) depends only on x, (see (8.5)). Comparing this with the formula
for v(4)7, we get the claim. The second claim is that {(A+ A, u+u'>=0(mod 2).
Since A+A'={+{ (mod2A4+ A(8)), this claim implies that

1=(— 1)<C+Z’,u+u’> = (Pg+g'(l1 +p)= Prtr (x“ Xu/)
=@(x,) 0 (x,) 0(x,) Q. (x,),

which, together with the first claim, proves the required equality stated at the
end of the last paragraph. So, let us prove the second claim. We have u=4, g,
V=41, W=y g, V=4, . Since ({k, I} +S)n O =Pos(4)(mod (2>) and ({k, [}
+S)nO=Pos()(mod (2)) (see Lemma 2.3(ii)), we have (S+SYnO=Pos(4)
+ Pos(A)={ij} (mod {Q)). Therefore, the coordinates of u—py' over ¢ consist
of +2 at i and j and O elsewhere, whence {A+A, p+pud>=5(+8
+8)=0(mod 2). The second claim follows, and we are done.

Case 19. (By'*, B3). We have (v;;+v,;)v(4, }=0 unless ke {i,j} and if {k I}
={i.j} we have (v;;+v,;)v(4, x)——36v(/1 D (= XS 136 0(1x) ®x,. In
either case,

(U it ) U4, =(— ])mkinsx(vij"{'”ij')e(fx) ®x;
=(— [)y>kinSx Z 33 (1o (), l‘()~1'2j)“”()~i2j')) (Px,J(Tx)e(TX) ®x;.

lef2
The coefficient is zero unless {k, [} ={i,j} in which case (u;, u(lizj)—u(/lizj,))
=(u;;, 64u;;)=128. Thus, when {k, I} ={i,j}, we must prove that ool in S,
+l=wkinS +{1 ,, ”>(m0d2) Since (A, A= dipt+{is, Aip=1
+ijin S, (mod 2), the congruence is valid.

Case 20. (B4 ™, B.,.,). We have

(v +v;;) e(x) ®x,
= Z [_65k1+%(”0(“k1)s u()lzj)’*’u(i,zj))] QDAU(X)Q(X) ®x,

lef?
= =643 353wy — Y u,,, 320w+ u; ) @, () e(x) ®x;,
r+k
» ke{i,j}] o
- 3 _ 1)ijin 8x X,
6+2{_2 ki) (=1 e(x) ®x,
27 kel j}
o 1)}iJinSx ) a,(—1 iJin Sx + (Aoos A, x)
(— 1y {_9 e € @ (=)
27 kefij}
{ 9 keijy OO

Also, (v;;+v;,) (e(x) ®x ) =(v;;+0;;)(— )= %> ¢(x) @x,, which is easily
seen to equal the image of the product under ¢ by comparing the previous
sentence.

Case 21. (B% *. B y4). See Case 19.

Case 22. (B ~, B5 7). See Case 9.
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Case 23. (B% ~, B%). See Case 12.

Case 24. (B% ~, B3). See Case 15.

Case 25. (B, Beyen)- See Case 14.

Case 26. (B} ~, Bodd). See Case 13.

Case 27. (B2, B3). We first consider v(2)v(u) where {4, u, v} forms a triangle of
type 222. By quoting Cases 18 and 23, we need to treat only the case where
{4, u, v} eA(2,2). Later, we shall consider v(A)v(y) where A+p, A—pué¢Aa,, ie.
the case v(A)v(u)=0

Since [H, o1=1, we may assume q({4, u, A+ u})c F without loss; see Lem-
ma 7.3. Expand 4, u, v to F-triples {4, 2, A"}, {p o/, ¢’} and {v, v, v"} all of
whose vectors map to elements of F under ¢. Write A'=/, s, A"=4; 1, '

— 1 o _ —
_/Liz,Sz’ M —;szﬁTz’ v —/11-3’33, v ——A'jznTa'
We have

v(A)v(p) = —36v(v)—Z>
=360, v) (0, v)E) Y (—DFALP 0 (x,)v(p).

Xp=Xy

Also,
DY oy =5 B, ) B 1) SO, 230 i)
YUY (—1)FPenPriGanme(x, ) e,(x,) BE )} o(p)

Xp=Xy Xr=Xa,Xp=Xy
C+fi=p

We have —36f(v,v')"'=1 and 8 (X, 1)~ B, W) ' =4 Also,
B, my=(~1)}200unSel B(1, py= —36(— 1)Io2n0unSel,

where g=g, ,,60 (H) satisfies /¢ ={, i*=1#j and #*=p. Note that the image of g
in -1 under 7 is not uniquely determined since the annihilator of 0,0, in 6
with respect to the natural bilinear form on P(Q) is a four-group consisting of
the images of @ and three octads disjoint from ¢, U0, (expand ¢, 0, to a
sextet of tetrads to see this). So, we must prove that

5, V) (— )i g (x, )=
—50(X, Ao, 1) Y (— 1) iz, 2o O+ iz o

Xg=X,Xn=Xpu
{+n=p

(%) @ (x,) (— 1)Sse " 020l

Since there are eight summands, each +1, certainly one of the requirements is
that the summands be constant. Writing this out, we find that we must prove
that

(%) flo, Lm=(=1)erntunde - g=g
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where

S, &=, (x,) 0:(x;) @,(x,) 6, ") (A, 1) o(u, 1)

. (_ ])z<111}1sp>+3 (Aiz jor O+ 3 Ay j5m+ 1

=00, 9y0) 9, (3, (= 1)F Pinir =+ E a4 om0

using Lemma 7.8(ii) to simplify. Strictly speaking, g, , is not a well defined
element of O,(H). It suffices to check () for any choice of g, , since
0,n0,nS,, (mod<0,n0,») is all that matters here.

Define

I*={(p, {, Me A2, 2)|x,=x,, x;=x;, %, =x,, p={+1n},
S ={(p, {, Me F*|(x) holds for (p, {, m)}.

Using q({4, &, v})=F we get f(v, 4, u)=1. Since we may take g=1, we see that
(7, A, f)e £ £0.

In what follows, we shall assume that A+ u=v and {+5=p in A4, not just
modulo 24. Also, we shall drop the tilde notation for triples in .#.

Suppose (p, {, n)e #. Keeping p fixed, we make the change (', n—~n" by
changing the signs of the coordinates for { and # at indicates r and s. Let
g, €0, (H) effect this change. We show that (p, (', n')e #. We have r,5€0,n0,,.
Note that the right side of () is not changed by the priming operation since
rse0,n0,. We have {{—{,A>=1+rs in Pos({)+rs in §S,(mod2) and
=n,u>=1+rs in Pos(n)+rs in S,(mod 2). Therefore, {{—{, D +<{n—n,u>
=rsin (S, +S5,) (mod 2) and so

S0, o) f(p, )= (= LysinSe 5243 Gt G

=(__ l)rsinsl+Sz+rsin(i2jz}+{i3,j3)

=( . 1)rsinPos(l)+Pos(u) ____( _ l)rsinQ): 1’
(see Lemma 2.3(ii)). Since S, N0, N0, ={r,s}(mod O, 0O,), the right sides of
(x) for (p, ¢, ) and {p, ', n") differ by a factor of (—1)'0““# udSgil = (— )l =1,
Thus, (p, {, 1)e 5.

Next, suppose that (p, {, y)e.# and that we change p to p’ at indices r, s in
0,. We change {,n to {',# by coordinate sign changes exactly at r, s in case
ir,s}c0,~0, or 0,—0,, and otherwise we introduce a third index te 0,n 0,
and change the signs of the coordinates of { and # exactly at {r, s, t}. We show
that (p', ', n')e #. Let g'€ 0,(H) satisfy ¥ =p' and let g, €0,(H) satisfy p*=p’,
E={, nt=y.

Let us treat the case {r,s}jc0,—C, We claim that [0,n0O NS |=
10,n0,NS,|(mod2). Namely, write g,=g;, T€%. Then T is a %-set which
meets @, in {r,s} exactly. Since any two %-sets intersect in a set of even
cardinality, |Tn(0,—0,)|=0(mod2) implies that |[Tn0,~0,|=0(mod2). The
claim follows by using the natural bilinear form on P(€). Since # is unaffected
by sign changes, we concentrate on the effect of {+—{" and prp’. Given the
claim, the analysis proceeds as in the case p fixed but { and y changed.
Another way to finish off the argument is to observe that the left side of (%) is
symmetric in the pairs (p, v), ({, 4) and (n, ) so that we can invoke symmetry
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and quote the earlier case where p was fixed, using
10,n0,nS,|=|0,n0,nS,[(mod2). Either way, we obtain f(p’,(,n)
= f(p, {, n), whence (p, ', n)e £,

Let us now treat the case re 0, —0,, se0,—0,, te O;n0,. We argue as in
the above paragraph to get |S;,nS, NS, [=1+[S,nS, NS, [(mod 2). So, we must
show that the left side of () changes sign as we move from (p, {, n) to (o', ', #).

We have

=0, Ay=1+rtin Pos({)+rt in §, (mod 2),

{n—v,wy=14+stin Pos(y)+st in S, (mod2)

and
{p=—p,vy=14+rsin Pos(p)+rsin S (mod2).
Also,
3> (= > =rtin {iyj,} (mod2),
%<)“i2,j'27 n—ny=stin {i,j,}(mod2)
and

Ly, e p— P> =rs in {iy],} (mod2).

The sum of these six terms is

34rtin ({iyj,}+S)+stin ({iy),} +S5)+rsin ({i3j3}+S;)
+r in (Pos({)+ Pos(p)) +s in (Pos () + Pos(p))+1 in (Pos({)+ Pos(n))
=3+rtin Pos(A)+st in Pos(u)+rs in Pos(v)+0+0+0
=1+r in Pos(4)+ Pos(v)+t in Pos(1)+ Pos(u)+s in Pos(u)+ Pos(v)
=14+04+0-+0=1(mod2),

which is exactly what we need to show that the left side of (x) changes sign.

Since every member of #* may be obtained from (v, 4, ) by a sequence of
sign changes, two coordinates at a time, it follows that #=.%* Thus o
preserves the product in this case.

Now we turn to the situation v(4)v(u)=0, 4, ue A5. We must prove that
v(A)7 v(p)’ =0. If v(A)?v()”+0, we must have v({)uv(n)+0 for some {, ned,
with x,=x; and x,=x,. Thus, ¢, =0, or 0, + 0, is an octad. In either case, we
have

v(A) v(p)f”
=c{ ) (=¥ Yoo} Y (—DFM e, (x,)vin)}

X=X, Xp=Xyu

=c Z { Z (“ 1)%<Alj,’c>+%<lk,""> (p{(xll') (pn(xu’)ﬂ(z’ ’7)} U(p)’
pedy Xg=Xa,Xn=Xu
{+n=p

for some constant ¢ and F-triples {4, A, A"} and {p, i, @'} with i=i(4), j=i(1").
k=i(w), I=i(u").

Subcase 1. 0;=0,. Then each B({, n)= —36 since peA%; see Lemma 9.3. Fix p
=/, or 4. When x,=x, and there is an ne A, with x,=x,=x, such that {

+n=p, set ) .
SQ=10=(=1EROTED o (x, ) 0,(x,),
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for e A, with x, =x,, {(+n=p. We must show that ) f({)=0, where there are

32 summands, corresponding to those ¢ whose coeffic;ents over {r, s} look like
+4p. Since X, —l x,=x,. By taking g=g,€0,(H) with /*=[i, we see that we
may assume {) )”}"—{Z i, fi"}. Thus, x;, =x, x5 and

JQ=(=DFA s (x,) @, (x,)
=(=1D)F2 0 (x,) @ (xg)=c; @ (xy),
¢, a constant. So, we must show that Zwm:o. Let us fix one of these ’s;

call it {,. The other { which occur are obtained by changing coordinates at
AePH(O)=P(()eye/<C>, A={A, A +Q}, A, n{r,s}=0. The relevant A
which arise range over a subspace, Y, of P*((); with respect to the natural
bilinear form on P*(¢), Y is the annihilator of {r,s}+<{>. Thus, ) ¢,(xs)

@ (Xg) Y Y{A), where ¥ is the character of Y obtained by pairiﬁg with

AeY
S~ @ under the natural bilinear form. Since |S|=4, S+ {r. s} or {r,s}+¢ and
Y1 so that ) (A4)=0 by the orthogonality relations, and we are done.

AeY

Subcase 2. (¢/,:=C,+(, is an octad. Fix p. Let

S =(=1)F A0 x Gt g (x,) 0,(x,) BE 1),

for each { such that x, .=x, and there is ned, with x,=x, and {+n=p. We
must show that Zf(; =0. Note that there are elght summands Let Z(p)

denote the set of { “which occur.

Using the action of H, we may assume that one of the triangles of type 222
which occurs in the expression for c(A)v(w)? is in F? ' Let us call it
(Zov flos 0o} and let {Lq. Co. CoYe {ox tos 73} and {po. pl. ps} be F-triples, with
all vectors in F¢ ' Let r,=i(J,). s,=i({y), ry=ily), s,=i(qy), m=i(py), n
=i(py). Without loss, we may arrange i=r,, j=s,, k=r,, l=s, and {,+y,
=Po-

We  have  B(L n)=B({p. no)(— D708t = —36(— 1) where ¢
=g ,€0,(H) satisfies {8 = and 7% =ij. Then

SO =(= 1A raanm i mer g (x,) @,(x,)
. qop(x%)( — 1)|0m0‘mSgI ¢y

where ¢, is constant as a function of p. Using the identity (+), there are
constants ¢, and c; so that

SO= 05050 X) 9, Xy ) €2 = P06 X, X5 X, ) €

We claim that f({) is not constant. It suffices to show that f,({) is not
constant, where there exists some element ¢ of A(4) such that f, ()= f({) @.(<).
We take  f,(0=g,(F +1) o+l Since  otng=po.  Pos(ly)
+Pos(y)20,nC,. Since i+p and A—p are not in A,, Pos(a)
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+Pos(nNC,nC, +@ or (,nC,. Therefore, &=2+{ +p +n, looks like
(2...20...0) (mod4) over ¢,n€, where 0<k<4. It follows that if
X 47k

a,be,nC, and the coordinate of ¢ at a, b is in 2+4Z, 4Z, respectively, then
by changing the signs of the coordinates of { at {a, b}, we change the value of
J1€0). This proves our claim that f is not constant.

Take {,€Z(p) with f({,)=c;. Then Y f(O)=c32 @, (), V=X X Xy X
The latter sum is Y W(A), where ¢ and A correspond if and only if A

AeP(Cinl)cven
is the support of {—{, (replacing { by —{ if necessary). Then i is a character
of P(C; ")y Since f is not constant,  +1. By orthogonality, the sum is
zero.

This completes the arguments for Case 27.

Case 28. (B, B3). When a nonzero product v(4)v(u) occurs here, it has the
form B4, we(A+p), {Awi+pled2,3) and A+pueA3. This situation is
equivalent to one in Case 31, and we deal with it there.

When we have a zero product v(4)v(p)=0, ie A3, pe A3, we must show
that v(2)” v(u)” =0. It is clear from the definition of ¢ that

VA (Y e Y Qelx,,) ®x;,

jeq2
so, it suffices to prove that (v(4)" v(p), e(x;,,) ®x,)=0, for jeQ. Let u=4 ;.
Take je . We compute
(0(A)7 (), e(x; 1) Ox ) =(v(A)", v(p) e(x;, ) ®x))
=(=1)* (), (e(x,) @x)(e(x, ) ®x))
l)xnnS‘B(i/ r/) 15(/1/’ /l”)(%) Z (‘1)%01;(1’.0

@ (x) [ =30+ 35 (g ;) u(C ))]QD(\)
=c* ) A,
A Pe)

where ¢* is a constant, {4, 4, A"} is an F-triple, O =0C,, P*(0):=P(0),,../<(>
and y is the irreducible character of the abelian group P*(¢) defined as
follows: set

VO = (= DFHD o) gglx,) i =)
PO =(= DER R0 g () gy(x,) i i)

we shall find a {,e A% with support O satisfying ({,)=1; we then set y(A):
=y (=Y (()=v({—{,), where { is obtained from {, by coordinate sign
changes at A (more precisely, at A4, EP(C Jeven» Where A={A,, A, +0}). With—
out loss, g({4, A, A"PYcF. We let i*:=31 . +A+A, if i=j and A*:=3(4,,
+ A )+ A+ 2, if i% ). Then y()=(— 1)<’1’k Y Let { “be obtained from o by
coordinate sign changes at A, A€ P*(0). Then, for any 4, Be P*(0),

and

HA+B)=Y({y ) =(— D Er = (1))
=(— ])<l*-§A~Co+CB—Co+C*>
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where (* is a vector with nonzero coordinates +8. Since A* has coordinates in
2Z, (— 1) =1 and so y(A+B)=7(A)x(B), i.e. 7 is a character of P*(().
Finally, we shall show y= 1. The orthogonality relations for irreducible charac-
ters of finite groups then imply ) 7(4)=0, as required.

Ae P*(()

To summarize, we must (i) exhibit {; with ¥({,)=1 and (ii) prove y=*1
(equivalently, find {; with ({,)= —1). So, what we really have to do is to
show that i is not constant as a function of {feﬂzlxzle}. Without loss, the
bracketed term is not identically zero, whence. by (8.4) either (a) i=j ¢ or (b)
ik, i,je0.

We shall assume () is constant, then seek a contradiction. Since () has
the form (—1)**%_ we may replace 2* by anything in the coset 2* + A(4) since,
for £& A(4), (= 1)*“% is constant in {. In particular, we may replace 4, by u.

Recall that, if eA,, {+2ed, if and only if (& A>=~2. Since 1 +ué¢1,,
this means (4" +pu, A>=+0.

Suppose i=j. Since .+ u are not in A,, the part of the vector u over ¢
looks like (+1, + 1, ..., +1) but does not have the shape

F( ol =1 1)
R A
Pos(4) Neg (1)

By Lemma 2.3 (i), the part of 2" over ¢ is

=3 L Lo L =1L =1 or H-=31...1 —1 —1...—1).
k ! Pos () k m !
Thus the part of A +pu over ¢ may be assumed to have shape
(£2.2,ay,...,a,), with a,e{0, +£2} all i, and not all the u, are zero. So,
*=(0,0,a,, ...,a,) (mod4) over €, and it is easy to see that ¥ is not constant.
Suppose i+ j. Then i je . Proceeding as in the last paragraph, the part of
( over (" does not have shape

+(-3 L L. L =1 .., ~1) or +(=31.. 1L —-L~1..-1
T I N
whereas the part of 2’ over (¢ has shape

F(=3 000 —1...—1) or +(=31...1—1—1...—1).

—_——— N———
k ! Pos(4) k Pos(A) !

We consider the subcases. Since 2 +4i"=/(mod24) and {4, {>e2Z for {eA]
with support ¢, we may switch k and [ without loss in the following arguments.

Subcase 1. ie{k, 1}, je{kl}. Then we may replace A* with 7'+ p. Without loss, i
=k, the k-entry of 2+ u is 0, all the other coordinates over ¢ are 0 or +2 and
they are not all zeroes. [t is trivial to see that i is not constant here.

Subcase 2. {i,j}~{k 1} ={i}={k}. We may cancel out the —3's. Without loss,
4* may be replaced by A'+pu+32,.. Since ¥ is assumed constant, the part of
2* over ( looks like (0...0) (mod 4). So, over ¢,

jtu=+(0...020...0 20...0) (mod 4).
i I
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Assume jl in Pos(4)=1(mod 2). We derive a contradiction. Suppose A’ has the
first of the two possible shapes. Then j! in Pos(2)=1(mod 2) forces j to be in
the interval marked Pos(i). We obtain ji from 1’ by changing coordinate signs
at a %-set, say U. Since

A +p=(0...020...0 20...0) (mod 4)
j 1

over (), we may assume U@ ={j, I}. Then A'—(4')* over ¢ looks like

+(020..020... ... 0)
Jj i
a contradiction, as {A'+u, A>+0. If 1’ has the second of the two possible
shapes, the discussion is similar. We conclude that {4* (> is not constant
(mod 2), as required. Assume j! in Pos(4)=0(mod 2). Whichever shape A’ has, a
similar analysis shows that either possibility, {j, [} <Pos(l) or {j, I} =Neg(4),
forces (A—p, A>=0 or {A+pu, ) =0, a contradiction.

Subcase 3. i¢{k, I}, jé¢{k, 1}. As in Subcase 2, we have no problem unless
A+p=(0..020...020...020...0 2 0...0) (mod 4).
i j 1

J k
We examine the possibilities to get a contradiction.
Suppose 4" has shape +(—=311...1 —1... —1) over €. If ij in Pos{4)=1,
k

!
Pos(4)

then we may arrange to have one of the following pictures:

Pos ()
A=(=31 1 I -1 ... —1) over ¢,
kol i
u=( 11 -3 -1 ... -1 =1 1.. 1) over ¢,
AV+p=(-22 -2 0.. 0-20.. 0) over ¢; or
Pos (1)
A=(-311-1.. 1 -1 .. —1) over O,
KoL i
u=( 111 —-1.. -1 31.. 1) over,
M4pu=(-222 0.. 0 20.. 0) over O

In both cases, (1" +p, 4> =0, a contradiction. If ij in Pos(4)=0, we have one of

Pos(A)
A=(-31 11 —-1.. 1 —1..—1) over 0,
k 1 i J
pu=( 11 =31 -1.. —1 l1 . 1} over 0,
A+p=(-22-22 0.. 0 0.. 0 over @ or
Pos (A)
A=(-31 1 1.. 1 -1 -1 .. —=1) over 0,
k1 i J
11 -1 -t... -1 3 —-11.. 1) over 0,

u
A4+u=(-22 0 . 0 2 -=-20.. 0) over 0.
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Again, (' +u, 4> =0 in both cases, a contradiction.
) Pos(4) .
Suppose 4 has the shape (-3 1 ..1 —1 —1 ... —=1). If ij in
k

Pos(4)=1(mod?2), then we may arrange for one of the following pictures to
hold:

P0§1;)
A=(-3 1 1. 1 -=1-1—=1..-1) over ¢,
koo [
pu=( 1 =3 —1 .., —1 —1 —1 +1 ... +1) over 0,
A4puy=(-2-2 0.. 0-2-2 0.. 0 over @; or
Pos(4)
A=(-31 1.. 1 =1 —1~1..—=1) over O,
k J ! i
u=(C 11 =1 ... -1 -1 3 —1 ... —1) over 0,
A+pu=(-22 0... 0-2 2 0.. 0 over 0.

In both cases, {2+, 4> =0, a contradiction.

Suppose that ij in Pos(2)=0(mod?2). Then one of the following pictures
must hold:

Pos (1)
A=(=3 11 I -1 —1 .. —~1) over 0,
kKo 1
u=( 1 -3 1 —-1.. -1 -1 1.. 1) over 0,
A4+pu=(-2-22 0.. 0-=2 0.. 0) over (*; or
Pos(A)
A=(-3 1 1. -1 —-1-1 .. =1
k i
u=( 1 -1 —-1.. -1 -1 3 —-11.. 1
A+pu=(-2 0 0... 0-2 2-20.. 0,

and in both cases, (1’ +u, A =0, contradiction.

Subcase 4. i¢{k, 1}, jelk l}. Say j*e{k [} —{j}. Then, there is no problem
unless possibly A’ + u has shape

©0..020..020..0) (mod4) over 0.
i i
In this event, we refer to Subcase 2.
We have completed the discussion of the zero product situation.

Case 29. (B3, B.,.,). We have

v(A)(e(x) ®x;)= ZQ[“ 3 5ij+§95(”0(“ij)a u(A2)] @, (x) e(xx,) ®x;

R agi= Y [ =304 35wy, U(APN] @, () (= = =22 e(x x,) ®x;.

jef2
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Also,

0= DAY (€00 ®x)7 = Bk, ¥) (4, ¥) () (— 1) Ferins)
T (= DED ) (D) (e(x) ®x) = Blat 1) 7' dlst 1) () = )b

Xp=X3

L L (DD gy, ) [=38+ 3 o) u()] elexy) O,
je xg=x,
where {4, y, v} is an F-triple with y=4, 5, v=4, ; for indices k and ! in ¢'=
and S, Te¥, k¢S, I1¢T.
Let a, ;, a, ; be the coefficient of e(xx,)®x; in a,, a,, respectively.
Without loss, we may assume that g({4, u, v})<=F.
For j=i we have

?95(“0(“,'1'):“(4’ ))=%'L4 (23u;— Z“rr,4zurr

r¥i rel

L 16 ifie@ [ 3 if ieC
1) 8 if ¢ | =372 if i¢0
Thus,
0 if ie¢
al,i—{—‘iw(><)(—1)““""”> if ig@
and

{ 0 if ie®
ay =

—EBUL T O v (= D) F Y (=D g (x, ) i

Xp=Xz

Without loss, i¢ . Thus a, ;=a, , if and only if

(= = G v) 0, () =3 B, v) 71 Y (= DD g (x, x).

Xp=X;

Since q({4, w,v})<=F, @,(x,)=1, f(i, v)= —36, and the condition reads

(*) (= DPetoxmhom §p )= —5 3 (= 1FPD g (x,x),

Xg=X4

We have A—4,=( 4,...,4, 0,...,0)(mod 2 1), whence
N
{k, 1 +(Sn()
i (x):(_l)Ier\({k,l}+(Sm(F))|2(_])klinSx+Ier\Sm0|
A ¢

(see Lemma 2.3). Also,
01 2gX0) = P (%,) = (= 103 ()0 ks Genker — ()i 31506
using ke . Therefore, the right side of (x) equals

{_% Z (__ 1)%<lklr,§>¢c+l@(xux)} .(_l)klinSx+|Smen(9l+1+%lSnC”|

Xp=Xa
=(-— 1)! +4[(S+8x)N O +(k, 1}] +kl in Sx+|SxnSAC+1+4]|Sn0|

Jr.

(
o,
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We have

< o 1x> </L'x,’ lXXg>
= Ao A0 F s A e,y + 00 in S+ o0i in (S +0)
= A A F LA Ay e+ 00 in O=4]S 1+ 3IS,+ O+ o0i in ¢
=S, — O+ oci in O=4S OIS AO+ i in ¢(mod2);
see Lemma 2.2. So, the left side of () is (— 1), where E, =1|S_ n |+ i in ¢
+ock in S+ocl in T(mod2). Since i¢ (), k¢S and /¢ T, Lemma 2.3(ii) implies
that ovi in O+ 0k in S+ oclin T=o00 in € +S+T=1+kl in S (mod 2). There-
fore, E; =3I1S . nOl+klin S+1 (mod 2).
Let (— 1)%2 be the right side of (x). Then,
(S+S)NC)+ (kB +kl in S, +1S,ASAC|+1SAO)
(S +S)NC|+3{k, B +IS +S) Ak Bl +kl in S, +1S,ASAO|+1SA 0]
LSACI 43S, A +ISAS,AC|+1+kl in S+kl in S,
+klin S +I1S.AnSNE|+5SN O
LS A€ +kl in S+1=E,(mod2).

it
i ol i

We conclude that (x) holds, proving a, ;=a, ;.
Next, let j#i. Then a, ;=a, ;=0 unless i, je’ in which case
Flty, u(@N=3(=DFA O gy =5 (=) DT b) g(x)

and

(lz.j:ﬁ(‘u’ v)‘l é(u, v) (‘22)(_ 1)<iw‘hx> Z (— 1)%</1w.l>+ 5<’1""¢>(pg(xux).

Xr=XA

We assume i, je (. Since q({4, 1, v}) < F, @,(x)=1 and f(u, v)= —36. Writing a, ;
=(—1)fr, r=1,2, the condition we must verify is E, = E,(mod 2), or

(%) L A+ s g g = L+ 00k in S+ ool in T+{2 . 4 > +E;(mod2),
where

(—DEr=1 ¥ (=)D i (x x),

Xp=X5

Now, Py ag(X,X)= (= DEs where E =4SN+ 1+[S,n(k [} +SnO)(mod2);
see the lines following (). It follows that (— 1)!s=(—1)***5 where

(—1) 1 Z (— <ik1'-C>+%<1u’-C> (ngrAW(XuX),

xg X
using ¢,(x,x)=0. So, (x*) is equivalent to
(%) 0=1hy, D+ (s Aj g, H 1+ 00k in S+oclin T
+ s 4150 +E4+ Es(mod 2).
We prove (x**) by analyzing subcases.

Subcase 1. {i,j} = {k, I}. Without loss, k=i and [=j. Then (x*x) becomes
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0=3< Ay, A+ P xx,p o0l in (S, +O)+ 1+ ook in S+ocl in T
+{ g Ay xy T 0k in S +E, +E;

=kl in S+4|S,+0|+%IS,/+kl in S, 4+l in O+oc0k in S+o0l in T
+14E,+E(mod 2),

after applying Lemma23(ii) to the first summand. We have %S _+(]|
+4S |=131S,n0|(mod 2), by Lemma 2.2, and we have ool in O+ ook in S+ ool
in T=14+kl in S+1404+0=k! in § (mod2), by Lemma 2.3(ii). So, the right
side of (#+x) becomes $|S, O+ kl in S + 1+ E,+Es(mod 2). Since i=k and j
=/, Lemma 11.1(i) applies to give

Es=3(S+S)n0I=3S n 0| +1IS. A O] +|SNS, N O|(mod 2).

Continuing, and substituting for E, and E,, we see that the right side of (%)
equals

Eg:=klin S +|S. n({kl} +(SnO)+ISNS N0
=klin S, +IS, n{k}+SnO)+(SnO) =kl in S _~{kl}|=0(mod?2),
as required.

Subcase 2. |{i,j} n{k,1}]=1. Suppose first that j=k and i+l Then 2<Al , O
+ 3 O =3y, £ (mod2), and  Es=3((S+S)NO)+{i, [}[(mod 2). Then

(**x) becomes
0=3 Ay, A+ Ay, Ag u,y + o0k in (S, + O)+ 1+ 0k in S+o0lin T
F s A, xp 001 IN S +ESAOL+1+IS A ({k, [} + SN O)]
+3H(S+S)n O+ {i, }|=ik in (S+ {k,})+ LS, + 0| +ik in S, + 0k in O
+ 140k in S+ ool in T+ S, |+3SNO|+1+klin S,
+IS, NSO +3(S+S )0+ 1+il in (S+S,)=ccl in §
+owokin O+l inT
+44+5S,. O +LSAN O +IS . NSO +3IS N 0|
+3S. N0 +|SAS, nO|=klin O+|S . ASAO|+]S, NSO =0(mod 2).

Since (x##) is verified, we are done.
Suppose i=k and j+ [ Then

LG ijis 20 o Aj wnyy 1+ 000 in S+ ool in T+{A, 4, >
+HS O+ 1+IS A} +S N Ol +3(S+S )N O+ {j, 1}]

=ijin (S+{i, P+ ooj in (O+8 )+ <Ay Ay xx
+1+oiin S+oolin T+ooiin S, +{A,, 2, > +31SN0)
+1+ilin S, +|S. ASNO|+3(S+S)N O+ 1+jlin (S+S,)

=1+00jin O+oolin S+oolin T+ in S +3|0+S |+LIS,|
+HSNOI+IS, SO +3SNO+S, O+ 1

=o0j in O+ ool in O+LO|+1ISAS | +3S O +|S, ASAO|+1S N 0]
+31S, 00| +|SNS, O =/l in O =0(mod 2).
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Since the roles of k and ! are symmetric here, as k and ! were introduced
via the F-triple containing 4, the above two paragraphs suffice to verify (%)
in Subcase 2.

Subcase 3. {i, j}n{k, [} =0. Using Lemma 11.1(iii), we get E.=1|(S+S,)n0)
+{ijkl}|(mod2). So, (+**) becomes

O_2<A” A+ Ay Ay ey 0] IS+ O)+ 14+ 0k in S+oolin T
F . hy S+ miin S 43S A0+ 1+IS, Ak [} +(S A 0)
FH(S+S)N O+ {ijkl}| =i in (S+{k,[})+ 1S, + O+ a0j in (S, +0)
+ 1400k in S+oclin T+4IS |+ oci in S +3SN ]
F14+klin S, +[S,ASAO+L(S+S5) N +2+(S+S,) A {ijkl}|
=ijook in S+ ool in T+ coj in O+ijklin S +3S. A O|+3ISN0)
IS, ASAO+LSAO +1IS, A O +I1SAC S,
+ijkl in S+ijkl in S =oclin (S+T)+oj in € +1j in 0 =0{mod 2).

Thus (*+x) is valid here too, completing the arguments for this subcase and
Case 29.

Case 30. (B3, B,4q)- This is equivalent to Case 28.

Case 31 (B3, B3). We have v(4; ) v(2; )=0 or —3uy(4},) when i=j, x=y, or
B4 1, 4;.,) v(4) for some AeA3.

When the product is 0, one can get v(4; )7v(4; )"=0 as follows. Say x=y.
Then i+j, and if v(4, )" v(4;,)" %0, then v(4, )" v(4; )°eBY “@B% ~ and we
may use assoclativity of the form to quote Cases 21 and 26+ Say x=#y.
Assuming that v(4, )° v(4; )" %0, we get Ae A3 with \cl—x Choosing a= +1
so that =4, +a) satlsfles & O =4+4+2al); ., 4;,» =8, the facts that x,
=X, and the type off is 2, 3 or 4 imply that ¢ has type 2. This contradlcts
o(2; ) v(4; )=0since {4, ., 4;,,¢} is a triangle of type 222.

When i=j and x=y, we may use Cases 6 and 13.

Now we turn to the third alternative.

We have Ae43 and 4, ,, 4; ;€43 such that A=/, ,—4; ,. Set (=0,. We have
ijin @=0 (mod 2) see Lemmdz% By using the actlon of H, we may assume
that g(2)eF. The (2, ., 4; )= —36, by Lemma 9.4. Let {4, p, v}€A(2, 3) satisfy
=/y. 5. v=A 7 and q({4, u, v})= F; see Lemma 7.6. Then k+1 and

0(% ) v ) = =360()d(m ) (3) Y (= DFH P o x,) o).

Also, T
(A, )7 p(4;,) = (— DSt iindy(e(rx) @x;) (e(ry) ®x;)
173

=(— pyiinssrocdiny 5[ =38, F5(uoluy), w(CN] @orx) v(0).

Xg=XA

Thus, we must show that

3, ) (— M2 g (x ) = (= NISH XTI (1) -y,
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where
=2[ ~38,;+ 5 (ulu ,»,~) ()]
B e e o L
3Ly u( N = (= 1D if i%),i,je0

Subcase 1. i=j¢0. Then S, +S§ =0 or O+ Q. We must show that

O=ook in S+ ool in T+ 5{ Ay,
+{, O +ooiin S, +ooiin S +<{{ A +A0+1
=k in S+ ool in T+ Ay,
+, O +ooiin O+ Ay +{LAD+1,

which, we argue, is congruent to f({):=3Ay, A+O+u O+ AL
+{{, 1, >(mod2). To see this, look at the proof of Lemma 2.3(ii). With those
conventions in effect, we have either

S+ T=0, keS, [eT, kl in Pos(4)=1(mod 2),
so that cok in S+ col in T+5<{ Ay, 1>
+wiin O+1=w in (S+T+O)+kinS+1in T
+iin O+3<A,, A +1=0+1+1+0+1+1
=0(mod 2);
or

S+T=0+Q, k¢S, I¢T, kl in Pos{(4)=0(mod 2),

so that ook in S+ ool in T+4{A,, A+ o0iin O +1

=0 in(S+T+0)+kin S+1in T+iin O+3{ Ay, 4> +1

=140+04+0+0+1=0(mod2),

as required. Therefore, it sufficies to prove that f({)=0(mod2). Since
q(AeF,f(A)=0(mod2). So, ¥ ={{eA,|0,=0C and f({)=0(mod2)} is nonempty.
Suppose that {€.% and that {' is obtained from { by changing the signs of the
coordinates at the two indices r,se®. Then {—-{'=4,, or 4,.(mod 2). Suppose {
~{'=4, (mod2). Then A, (= =rsin {kl}(mod2), {u, {~{>=1+rsin S
{mod2), (i,,{—{>=1(mod2) and {A,.{—{>=rs in S (mod2). So, f({)
—f({y=rs in ({k, l}+S+S )=rs in B=0(mod 2); see Lemma 2.3. Finally, sup-
pose {—{'=4,(mod2). Then 34, ,{~{>=rs in {k [}(mod2), (u,{—{D>=rs
in S(mod2), (A,,{—{>=0(mod2) and {4,,{—{>=rs in S, (mod2), and we
get f({)=0(mod?2), as above. Since every {eA} with 0,=0 may be obtained
from A by a sequence of coordinate changes, two at a time, we get &
={{ eA§|(05=(9}, thus completing the analysis of this subcase.

Subcase 2. i=j, i, je(0. We must show that 0=ook in S+ ool in T+3{ A, O
+{p, OO +ooiin S+ 00j in S+ (A, + A, O +3<A;, C)(mod2) Since i+j, Lem-
ma 7.7 tells us that we may assume that ({4, 4; ., 4; ,}) = F. Thus, we may as
well take u=4, ., v=4;, so that i=k, j=I, S, =S and S,=T Thus, the right

,X2 s
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side of our congruence becomes f({):=<y, >+ +4,(>(mod?2). Clearly,
f(A)=0(mod2) since g(4)eF. Note that f()=<{4; .+, +2,, {>(mod2). So, if {
is obtained from { by changing the signs of coordinates at r, se@, r=s, we get
FQO—FQ) =it Ay L= 0>+ s+ 2, (= U>=0+rs in (S+S,)=0(mod2), as
required.

The verification of this case is now complete.

Case 32. (B3, B.,.,)- The associativity of the form makes this a consequence of
Case 33, which we verify next.

Case 33. (B3, B,4,)- We have
(4 5) e(Ty) ®x;
=2 [ =38, +35ue(uy), u(2 N @, (1) e(xy) ®x,

ke

’i’al’: Z - 35jk+3%(uo(”jk)s “(/hzx))] (Px,,x(TY) (=)Ao tros? e(xy)®x,.

ke2

Also,
ay:=v(4; )7 (e(ty) ®x ) = (— D)™ (e(rx) ®x) (— 1)/ Svu(4; )
=(— ])iinSxt0jinSy Y [ =30+ 35(ug(uy), u(ijz,))] ?,, (1x) e(xy) ®x.

kef2

Using H-action, we may arrange for x=1. We shall make this specializa-
tion within each of the subcases which arise.
For re@, let a,, be the coefficient of e(xy) ®x, in a,, s=1, 2. For r#i,j,

ay, =35, w2 ) @, (1y) (= [)erdne

2,0 = 5l UT,) @5, (1) (e iinss
For these to be equal, we need

jr inS +<AOO7 rxy>+<j’l x? ’\>+<A’l x? ‘>
=irin § +<{4;,, 4> +<{4; ,, A, +00i in S, + o0j in S (mod 2),

gy T
or

0ijrin S, + Ay, Ay o>+ s Ai o Hhoos 45,0 + <A o A0 <45, 40

=0(mod 2),
or

A0 S, (s Ay + Chags 2>+ Chan A3y + (i o Ay <40 4> =0(mod 2),
Using H-action, we may assume that x=1. The condition then reads
0=ijin S, + <Ay, Ao > + oo 47,0 +<Ais 4y
=ijin S, + {4y, Ay, o Ly Ao,y + 0] in S, +<{4,,A)+ooiinS,
= oy Aoy F Lhogs oo,y F {Aogs A2 (m0d 2),

which is true.
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Suppose r=i. Then

a, ;=[- 351'1' +%(u0(”ji), ”(/112 B (PAI.X(TY) (— 1)<Z°°'l"xy>
o= [~ 3 Sl lug), u(i2 )] @, (2x) (— 1)¥imSst s,

First, let us treat the special case i=j. Then

[ =3+ 55(uoluy), “(112 D=-3+35- 24(23u;— Z Upgs ”(’11 X))

k+i

=3+ 4(23-8.4)=%.

So a, ;=a, ; if and only if

0=CAi o Aod <A A + Ao A2 + <Ay Ao
+<{ 4, s Ay +o0i in S, +c0i in S,(mod 2).

Using H-action, we may assume that x =1. The condition then reads

0=CAp o) + A A +<{Ag, 4 D+ {4y, Ay o0l in S|
=0+ {4y, 4,» +o0i in § + o0i in S (mod 2),

x0Tty

which is valid. Now let us treat the special case i+j. Then

3t w47 ) =35y, (= 6) (— DTy, ) = — (= 1)

and

=3+ 5o (), (A3 )= =34 35 2423, — Yy, Yuy+ Y )

k+i k*j

=344 4-(23-9-22)=—3-3=_27,

So, a,;=a,; if and only if

O=ijin S 4+ <4 o, A + Ay s 4D +<Aus Ai ) +<A 0 Aad +<25 1 4D
+ooiin S, +ooj in S (mod 2).

Using H-action, we may assume that x =1, The condition then reads

0=hy, Ag) + <A A+ A, 4 0+ s Age) + <44, 00+ 0f in S,
=0+{A, A +oiin S +<{A, 4, > +ooiins,
+ Ao, ys Aoy +00j in S, +0+ coj in S, (mod 2),

00,y? Moo

which is valid.

By calculating as above, we get [—3+35(uo(u;), u(A? J1=—%4" and 35(uy

Suppose that r=j+i. Then

ay ;=[=3+35uo ;) u(A3 )] @, (1y) (= 1)F=tne?

Gy 5= $5luyy U(22)) 0y, (2X) (= 1)iinS= s miinss

ij

(a2 )= —2(— 1)4i*5v Thus a, ;=a, ; if and only if

0=<{4;,, Oo>+</1,x, A+ s Ajyy Fi IS LA 4D
+<4; A+ 0P in S +o0j in S (mod 2).

gy Tx
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Once we note that (A, 4; >+ijinS =4, 4, >+ij in S,,+ij In
S,={Ays A, 52 +ij in S (mod2), the congruence becomes the one we verified
in the last paragraph.

The verification of this case is now complete.

Case 34. (B, .., B.,.,)- This is equivalent to earlier cases, by associativity of the
form.

Case 35. (Bgyen. Bogq)- This is equivalent to earlier cases.

Case 36. (B,44, B,qa)- This is equivalent to earlier cases.
The proof of Proposition 11.2 is now finished.

§12. The Identification of G =(C, o)

From Proposition 11.2, we know that G(B)n {geGO(B)|d*=d} is strictly larger
than C. In fact, it contains C as a nonnormal subgroup, since ¢ can not
normalize C(z°=zz,eQ—{z); see Chap.10). We define G:={C, 5>, a sub-
group of G(B). In this section, we show that G is a finite simple group of order
2463205976 11213%.17.19.23.29.31.41.47.59.71.

Since it is not clear that G is finite, we temporarily transfer our attention to
finite homomorphic images of G by reduction modulo p=5 (explained below).
Techniques from the classification theory of finite simple groups are used to
identify the centralizer of an involution in the image of G modulo p. Other
results from the classification theory are then quoted to identify the images of
G modulo the various primes, and they all turn out to be simple groups of the
same order. This implies the required statements about G.

It is possible that finiteness and simplicity of G and a calculation of the
order of G may be demonstrated without appealing to the classification theory.
For instance, if a G-stable Z-lattice in B is exhibited, positive definiteness of
the form implies that G must be finite. Then, possibly, some analysis of the
action of G on sets of vectors could be made to get simplicity and the order.
Such an argument, however, may well be difficult. The description of G does
not really require classification theorems (although we made reference to a few
papers from the classification effort to verify a few points more quickly), and it
would be desirable to maintain this independence throughout our analysis of
G.

Now we proceed to a description of the “reduction modulo p” process and
the determination of the centralizer of an involution in our quotient groups.

The definitions of C and ¢ with respect to our basis of B show that, in
matrix form, the linear transformations in G ={C, ¢) may be written over the
ring Z[1]; see Table 10.2. Furthermore, Table 6.1 shows that all structure
constants for B lie in the ring Z[£]. Thus, we get an algebra By over the
Ung Z[%] having our @-basis of B as a free Z[+]-basis. Furthermore G acts on

Z[] By reduction modulo p=5, p prime, we get algebras B(p): =B, IJ/pBZ[]
over IF, and natural homomorphisms G — G(B(p))<GO(B(p)) (the bllmear form
on B glves us some bilinear form on B(p); it is nonzero since (e(x), e(y))=4,,
and (v(2), v(p)=90; o for instance; we do not assert anything about nonde-
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generacy and so GO(B{p)) means the subgroup of G L(B(p)) preserving a possi-
bly degenerate form). We shall use the suffix (p) to indicate images in B(p) or in
G(B(p)). Generalizing slightly, we define S(p) for S<B by (SmBZ[ 1) (p), and
thereby define U(p), V(p), W(p). Note that Z[3] A and P Z[1] x, are the same

ie

subset of ) Qx;. Since C=(0,N, ,50>=<Q, P, $o»> (see Sect.4, 7 and 10 and
ieQ2
use the fact that N,, is maximal in .0 [11]), it follows that Ty =@ Z[7] e(x)
B ieQ

is stable under C: this is easy to check for elements of O P (see Sect. 8), and for
3, see Lemma9.2 (iv) (take §=3, and use e(x)°=e(l)*o=e(1)>* =(Y

yeF
+3 e(y))** € Typyy)- So, we may define A(p):=A/pA, T(p):="Ty1)/p Tyry and we
may identify W( ) with A(p)@’[‘(p)

Fix a prime p2=35. Set C, = CG(p)(z(p)) N, NG(p)(Q(p)).
Lemma 12.1. C(p)=N,.

Proof. In this proof, we use bars to indicate the application of IFp®- to a finite
dimensional IF,- module for some group. Fp

Let N, be a covering group of N, Q,:=0,(N,). Use ~to indicate preimages
under N, — N,.

As a module for Q=Q(p), W(p)= @T(p ). Define A:=Endj (W(p)) Think

of N, as a subgroup of the group of umts of A. Let 4, be the subalgebra of 4
spanned over IF by Q(p) and let 4, be the commutmg algebra of A, in 4. We
have 4,, 4, 1som0rph1c to full matrlx algebras of degrees 2'2, 24, respec-
tively, over IF,, and 4, 4, and A, have a common unit element. The double
centralizer theorem ([427, p. 25) asserts that A, is the commuting algebra of 4,
in A.

Since Q(p)<<N;, A, and A4, are stable under conjugation by N,. Therefore,
we have a”projective representations N; > PGL(d,,IF), d, =22 d,=24 and a
correspondmg homomorphism p, N ~>GL(24 IF), 1—1 2 (see [39], p. 216). Let
M, be the IF, N,-module associated to p;, i=1,2.

Define N —C (M J<aN,, N¥:=Z(N, mod N,) and Ny:=Cg (Q(p)). Then
N,, N}, N, and Q, are normal subgroups of N,. We apply Lemmas 2.19 and
2.20 several times. For the action of N;Q,<tN, on M,, we get N,Q, <N}. For

the action of Nf<aN, on Q(p)/Q(py, we get N} <N, Q/(\p)§N3Q1, whence N¥
=N;0,=N, é(;)-

Since (N, Q,)** is scalar, the image of N;Q, in A4 lies in A,. Therefore,
elements of N, operate as scalars on W(p). Let geNj; act as the scalar ¢ on W(p).
Since g preserves the form and (e(x)®x;, e(x)®x,)=1, ¢*=1, whence c= +1
and g is trivial on U(p)+V( ) because W(p)>’=Uy(p)+V(p) and G ﬁfe\s the
vector d. It follows that g acts as 1 or z(p) does on B(p). Thus, Nf=Q(p) N,
where N, is the kernel of the action on B(p). Since N, acts faithfully on B(p),
N, SZ(N,). So, Ny=Z(Q(p) N-

A consequence of this paragraph is that Q(p)=0,(N,) and N, is 2-con-
strained.
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It remains to identify N,/Q(p), which has a 24-dimensional projective repre-
sentation over IF, and is embedded in Out(Q(p))=0~(24,2). This identifi-
cation follows at once from Lemma 2.21, and we are done.

Lemma 12.2. Q is the unique subgroup in S€Syl,(C) which contains {z> as its
center and is isomorphic to Q. Consequently, Q(p) is weakly closed in S(p) with
respect to C, and S(p)eSyl,(C,)=Syl,(G(p)).

Proof. The second statement follows from the first and Lemma 12.1. So, let us
verify the first statement. Note that S=S{p) since p is odd.

Suppose that {z>=0, @, =S5, 0, =0, 0, Q.

For te§, m(Cy,.,(t) =16 (see Lemma 2.30). Define 2°=[Q nQ,/{z)| and 2°
=10./Q@,nQ|. We have a<16 and 1<b=1l, since m(S/Q)=11; see Lem-
ma 2.15. Also a+b=24, so that b=8 and a=>13. Since a>3(24), there is an
extraspecial group Q*=<Q0nQ,, |0*=2%*1 ¢=1. We have 2c¢ £a. Choose Q*
to maximize c¢. Set R*=<Q,0,>=00Q,. Then |R¥=2%""=29+2b+1  Als0,
QO*<aR because QnQ,/(z) is central in R*<z) as R*=QQ, and
0/{z)=Q,/{z) are abelian. Since QnQ,/{z) is central in R*/(z), R*
:CR*(Q*)Q*- AlSO, ICR*(Q*)|=2a+2b—2c+1 and |CQ(Q*)|___21+24—2c
=2'*a¥b=2¢ 5o that |Cr.(Q*)/Cy(Q*)=2"225. Since Q* is extraspecial, there
is a vector feA, with g(£)eQ* The shape of Cp.(Q*) indicates that the
stabilizer in -1 of <§, —¢&) contains an elementary abelian group of order 2,
b=8. However, the 2-rank of -3 is at most 6, by Lemma 2.22, a contradiction.
This completes the proof.

Lemma 12.3. Q(p) is strongly closed in S(p) with respect to C,.

Proof. We let bars denote images in azCl/(z(p)). Lemma 12.2 shows that
Q(p) 1s weakly closed in S(p). It suffices to prove that Q(p) is strongly closed in
S(p), and to do so, we assume otherwise and use Lemma 2.14 to get a
contradiction. In that notation, we take C, for G, S(p) for T, Q(p) for A=W
and we have r <11 (see Lemma 2.15).

We establish some notation relevant to the use of Lemma 2.14. Let o:

C(p)—-1 and ¥ N, /{+1} (N, /{ L 1}/O,(N,/Jit1})=M,, be the natural
maps. We may replace S with a conjugate to assume that S(p)?<N,,/{ +1}.
Let ¥={B<S(p)|B is conjugate in 61 to a subgroup of Q(p). B£Q(p)}, r
=max {m(B®)|Be Y}, % .={BeS |\m(B?)=r}, ¥*={BecS |m(B)+r=24}. Then
S, Srax and F* are nonempty, although we do not know whether &, nF*
is empty or not.

For BZS(p), let c¢(By=dim Csgs(B)=dimC,, ,(B). Then m(B)<c(B)
+m(B*). Also,

(%) 24<r+c(B)+m(B?) for BeS*.
We claim that

(%) if Be&, (B®)* consists of 2-central
involutions of C, and 8 <r<10.
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The first part and r =8 follow from r <11, Corollary 2.30 and Lemma 2.14(ii.2).
Suppose that r=11. Take Be%,,,. By Lemma 2.15, B®=0,(N,,/{ +1}), which
contains non-2-central involutions, a contradiction.

Let V be the subspace of ¥ corresponding to the subgroup By:
=B?N0,(N,,/{+1}) of O,(N,, /{ +1}), m(V)=m(B,)+ 1. In an obvious way, an
element of B, corresponds to a pair {S, S+ Q} of ¥-sets in V. Lemma 2.25 and
(%*) imply that such an § must be @, ©, an octad or a 16-set and m(B,)<5.

‘We argue that we may assume B,=1. Any involution ze(B¢)* is 2-central
in Cf=-1 and B < Cryp(z)=2,*" - D4(2), which has a subgroup 21"%.2°- 4, of
odd index, conjugate to a subgroup of N,,/{+1}. Sylow’s theorem gives the
result. So, we do assume B, = 1.

Now take Be%,,.. We shall argue that m(B)=r=8.

Suppose that B is of octad type (in the sense of Definition 2.27), based on
the octad O,. Let H, be the stabilizer of @ in (N,,/{ £1})¥=M,,, Hy=2* A,
and let H, <H, be the centralizer of B,. We have m,(H,)=r—m(B,) since
B?/B,—H,, whence, by Corollary 2.24, 62m,(H,;)=28—-m(B,) and m{(B,)=2.
Thus, B, has an element associated to an octad @ disjoint from ¢, and so H,
lies in the stabilizer H, of each member of the trio {0, 0,, O+0,+Q},
H,=~23%.2% L,(2). Note that H, =1 if m(B,)=5, so that 2<m(B,)<4. If m(B,)
=2, Corollary 2.24 gives m(B?/B,)<6 and r=m(B)<8, as desired. So, we may
assume m(B,)=3. Therefore, B, contains elements associated to octads @, @,
disjoint from @, so that ¢, NO,+@. Thus, H, lies in the stabilizer of the
associated sextet and fixes the tetrads O0,—0,, 0,—0,, O,n0, and 0O,
+(O,v0,)+Q ie. H, lies in a subgroup H;=2°.3.2 (see Lemma 2.31). If
m(B?/By)=5, B?/B,<0,(H;), a contradiction to (x*) and Lemmas 2.29 and
2.31 (iii). Thus, m(B?/B,)<4. Since m(B®)=rz=8, m(By)=4, so that m(B,)=4
and r=8.

Next suppose that our Be¥,,, has B, of sextet type, (thus not of octad
type). If m(B,)<2, r=8 by Corollary 2.24. So, m(B,)= 3, without loss. Let = be
the relevant sextet, with tetrads T, ..., Ty (£ is unique since m(B,)=3). Let .«/
be the set of octads associated to elements of B, and # the set of tetrads
involved in members of /. We have |%4|=4 and since B, is not of octad type,
|#|=5 and every member of # is expressible as an intersection of two mem-
bers of .. Therefore, the stabilizer in (N,,/{ +1})¥ of B, is simply the setwise
stabilizer of all of the members of B, and it has shape 2°.3 since |#|=5 (see
Lemma 2.31). So, m(B,)=4 and m(B?/B,)<4 by Lemma 2.29 and 2.31 (iii) and
(#*). Therefore, r =8 in this case as well.

We have r=8. We now take Be¥* and analyze C,,,(B) carefully. Unfor-
tunately, we don’t know that Be%, ., so that the preceeding paragraphs may
not apply to B. We do have ¢(B)+m(B?)=zm(B)=16. Without loss, B, =+1, as
before. We complete the search for a contradiction by analyzing cases. Define
B, ={beB|b*¥€0,(N,,)/{ £1}}, m, =m(B,/B,), m,=m(B/B,).

Case 1. m(B®)23. Take Q(p)<B<B such that B®nB, has order 2 and B
covers B/B, (this can be done since B is elementary abelian). Then Be¥. By
Lemmas 2.28 and 2.32, ¢(B)< 12, so that m(B?)=4. Note that m(B,)=5 implies
B?=B,, ¢(B)=8 so that m(B)<13 and (x) fails for B. Therefore, m(B,)=4.
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Suppose m(By)=2. We claim that m, 3. Suppose m, =4. Since B, operates
regularly on Q+0, (via ), the only %-sets fixed modulo (@) by B, are 0,
and Q+0,. Therefore, |C,(B,)| <2, contradicting m(B,)=2.

Suppose m(By)=3. By Lemma 2.28, ¢(B)<10, implying m(B?)=6 so that m,
+m,26—m(By)26—4=2. From Lemma 2.32, we get the contribution of A(4)
+2A4/24 to ¢(B) and since ¢(B)=8 and d<1 in the notation of 2.28, we get
c(B)=8, m, =0, m,=2,d=1 and c(B)=8. Therefore, m(B*)=8, a contradiction
tom, +m,=2 and m(B,)<4.

We have m(B,)<2. Suppose m(B,)=2. Then m +m223 2=1, whence
¢(B)<12 by Lemma 2.32 and so m, +m,=2. Again, 232 gives ¢(B)<11 and m,
+m,=3. So, ¢(B)<10 or m,; =0 and m,=3 and c(B)=11. Note that m,z1 in
any case because c¢(B)<10 implies that m(B®)=6, whence m,+m,=4 and
m, =1 because m; £3 when m(B,) 2 2. Since m, 21 and m, +m, 23, the contri-
bution ¢, (B) of A(4)+24/24 to ¢(B) is at most 7, whence d=3 (in the notation
of 2.28) gives ¢(B)<10. Then m, +m,=4 and ¢,(B)<6, so that ¢(B)<6+d=9
and m, +m,=5. Again, ¢,(B)<5, so that ¢(B)<5+d=8 and ¢(B)=8, m(B*)=8
and m,+m,=6. If m,=4, this gives ¢,(B)<2 and c¢(B)<2+d=5, a con-
tradiction. So, 1 £m, <3, m; 23 and we get c(B)< 10—m, =7, a contradiction.

We have m(B,)=1 and B=B. Since m,+m,22, ¢(B)<1l, implying
m(B®) =5, m +m,=z4 and c¢(B)£9 or ¢(B)=10, m; =0, m,=4 (see 2.28 and
2.32). If ¢(B) <9, another round with (%) and Lemma 2.32 gives m, +m, =6 and
¢(B)=8 and m(B¥)=8, a contradiction to m{(By)=1 and Corollary 2.24. So,
¢(B)=10, m, =0, m,=4. Then (x) fails.

Case 2. m(B®)=2. By (*), we must have c(B)=14. If B,=B¢ Lemma 2.28
implies that ¢(B)=13, a contradiction. So, |B,|=2. Then Lemma 2.32 applies
to give a contradiction.
Case 3. m(B®)=1. Then B?=B,, ¢(B)=16 and, from (x), m(B)=16 or 17. So, B
={R, t), where R=BnQ(p) and ¢ is an involution. We have |R}=2'% or 2'°.
Set K, =Ngg(B), K=K, B. Then |Q(p):K,|<2 and |K,:R|=25; see (++) and
Corollary 2.30. By 2.14(i), there is geC', such that B <Q(p) and K*<S(p). Set
29=|K%:KEnQ(p)}, L=K5nQ(p). Since I[Kl,tjl 27 or 28 and |K,:L[57|
=|K%:L|=2¢ |[I*7, 1]|227 " Since <If~ LE<0(p), we get 2779< 1 or a=7.
In particular, KggQ( ) So Kfe¥ and since m(K5)+r=23+8=224, K§e¥'*

Therefore, one of the previous cases applies to K (as m((K%)®)=az=7) and we
get our contradiction,

Lemma 12.4. In G(p), C(p) is the centralizer of z(p), for all primes p2 5.

Proof. By Lemma 12.3 and [26] and the irreducible action of N, on the
commutator quotient group of Q(p)=Q, Q(p) is a Sylow 2-group of its normal
closure N, in C,, and N, is solvable of 2-length one. If Q(p)<N,,, we are done
by Lemma 12.1; so, let us assume that Q(p)tN. Then O,(N,)={z(p)>. For
some odd prime r#p, [0,(N,), @(p)]+1. Let R be a subgroup of O,(N,) which
is minimal with respect to bemg normalized by, but not centralized by, C(p).
Then R is a special r-group (modify the argument of [27], p.181). If

Cr(Q(p))* 1, we contradict Lemma 12.1. So, Cp{Q(p))=1 and R=[R, Q(p)] is
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elementary abelian. Thus, on R, Q(p) acts by a collection of linear characters,
which must form at least one nontrivial orbit under the action of C(p). The
orbits for C(p) on the nonprincipal linear characters of Q(p) have lengths
98,280, 8,292,375 and 8,386,560 (see the proof of Lemma 5.1(iv)), whence
m(R)=98,280. The smallest degree of a representation for R.C(p) over IF,
nontrivial on R is at least 2-98,280> 98,304 =dim W(p), a contradiction.

The proof is complete.

Lemma 12.5. For all primes p=5 G(p) is a simple group of order
246320597611213%17.19.23.29.31.41.47.59.71.

Proof. Lemmas 12.4, 2.16 and the fact that ¢ causes z and z, to fuse (this shows
that conclusion (i) of Lemma 2.16 does not hold in our case).

Proposition 12.6. The group G={C, ) is simple of order
246320597611213%17.19.23.29.31.41.47.59.71.

Proof. Lemmas 12.5 and 2.33.

13. Consequences

From our construction of G, we may deduce existence of other sporadic simple
groups and the existence of certain nonsplit group extensions.

In this section our dependency on the classification of finite simple groups
increases. We also require work on F; and its subgroups done by other authors
(some of this material is not yet published).

Notation 13.1. Let G:=<{C,0), as in Sect. 12. We pick out certain elements
aeC of odd order. It suffices to give the class of the element a®e-0 in the
notation of [12]. We do so with a subscript: a;,, as,, etc.

Lemma 13.2. (i) Co(ay0)=Z, %2178 4,.
(il) Celazp)=(Z,x21712)3U,(3)2
(i) Celas)=Z, ><(21+8)( SUZ,).
() Celar) =2, x 2179 GL(G3, 2),
(V) Colg(A)=(Z,x2 722)(-2), for ieA,.

Proof. For the first four assertions, see [11, 12]. The last statement follows
from [117], p. 240, or [36].

Remark. It would take additional work to determine the precise isomorphism
types of the groups in 13.2. From [12], these groups are 2-constrained.

Lemma 13.3. The groups Cgla)/{a> of Lemma 13.2 are all simple (for a=a,,
etc.). Their orders are as follows:

(i) 2'°319537213.19.31 (Thompson’s group Fs),

(i) 2213165273 11.13.17.23.29 (Fischer’s group F},),

(iii) 2'43°5°7.11.19 (the Harada-Norton group F.),

(iv) 2'°3352.73.17 (Held’s group, Held),

(v) 241313567211,13.17.19.23.31.47 (Fischer’s {3, 4}-transposition group,
F,).
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Proof. Since we have not determined the precise isomorphism types of the
groups in 13.2, we get the conclusions most quickly by referring to the solution
of the so-called “0, extraspecial problem” from the classification theory. For a
discussion of this problem, we refer to survey articles [62], p. 111, and [73]
and the references contained therein.

In all these cases we must eliminate the trivial possibility Cg(a)
=0(Cg(a)) Cc(a). This can be done if we can take a conjugate of a in C which
lies in the group H of Sect. 10 (because H=<C (o) and z°=zz,). This is clear
for (ii), (iii), (iv) and (v). For (i) it can not be done. Instead, we replace ¢ by
a'€0,(X) o such that |Cy(o')|;=3" (such ¢’ exist because a Sylow 3-group of X
has order 3® and must centralize an element of the coset 0,(X)o). Taking a
=a,.,eCy(0"), we get 6'e C5(a) F0(Cqz(a)) C(a), as required.

Finally, we must show that C(a,g)/{a,p> is not isomorphic to M,, or
GL(5, 2) (these groups have some involutions whose centralizers are isomorphic
to one in Held [41]). Take beC, b conjugate to a,y, such that a’=a? a=a,,,
[Celay, b]=1. If C(a)/{ad>=M,, or GL(S,2), the structure of Aut(C(a)/{(a))
implies that C(a)/{a) is embedded in Cg{b)=3.F,,, a perfect group. Since
3len(GL(5, 2)) —n(3.F;,), C(a)/<ayFEGL(5, 2). Suppose Cgla)/{ay)~M,,. Since
a is a rational element of C [12] and since Out(M,,)=1 [4], there is an
involution teC,(L(Cg{a))) N C(b) such that a'=a~'. It follows that C.(t)/<{t>
contains a subgroup isomorphic to Z, x M,,, a contradiction to [12,22] and
Lemma 2.41.

Remark. It seems reasonable that, with our representation of G on B and
knowledge of |G|, a reasonably direct calculation of these orders would be
possible.

By studying local subgroups of G, one can find sporadic simple groups
other than the ones listed above. However, we cannot claim new existence
proofs of them since they are involved in -1 or F;, in natural ways, and their
description involves only the groups -1 or F;, rather than F,. See Table 4.1
for a description of involvement of sporadic groups in one another.

The embedding of Held into F;, was first proved by Simon Norton in 1975
[53] by studying linear groups of dimension 783 over @Q(e?"/?). Such an
embedding was suspected to exist by Fischer about 1970. The existence of F;
implies this embedding, because we may choose a5, to normalize {a,,z> and to
satisfy Co({aqp, a3p0)=Ccla,p) [12], [41]. The structure of Aut(Held) [38]
implies that Cg(a,,) < Cglasp).

We can also obtain embeddings of Fy and Fg-2= AutF, [40] into 2F,
=F,~C4(q(4), 1eA,, by choosing appropriate involutions in C which invert
ayc and as., respectively. To carry out these arguments, we require the
discussion of fusion of involutions of C in G found in [36], mainly the fact
that G has two classes of involutions; or see [22].

Say u is a 2-element in C inverting a,.. Since Out(F;)=1 [69], we may
assume that [L(C(a, ), u]=1. So |F;| divides |C(u}{. Since 19]|F,| but 194|C|,
the involution of {u) lies in 2A4. If (u|=24, Z,x F; is embedded in F,, against
Lemma 2.41. So |u|=2, and we have our embedding.
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A similar argument does the job for a,., taking ueC so that (a;)" =(as)’
and using Out (F5)=Z,.

A bit more care in selecting u yields an embedding of Z,, into F,(2)
{40, 53].

Remark. The next result shows that some interesting examples of nonsplit
group extensions may be found among the subgroups of F,. Of particular
significance is 13.4(i) because, among all the known finite simple groups, only
F, has not had its multiplier settled. In [36], an upper bound of Z, was
obtained for the multiplier. It was well known that, if F, exists, the multiplier
of F, must be Z,. However, an independent construction of a nonsplit exten-
sion 1 »Z,—~F,—>F,—1 has not been done, and seems to be very difficult. See
[35] for a recent commentary on the multiplier situation.

Fischer was the first to notice the nonsplit sequences of 13.4(i1). Kusefoglu
[46,47] has shown that H*(0(7, 3),IF))= H*(Q(7, 3),IF])=IF, and, moreover,
has settled all H*(0%(n, 3), IF%) and H?*(Q(n, 3), IF%) except for (n, £)=(8, —). The
only solid information we have about the degree 2 cohomology group for (n, ¢)
=(8, —) is that it is nonzero (and 13.4(ii) is the only proof we know of).

The multiplier of F;, was settled originally by Griess [33] and Norton
[54], and that of 2E(2) by Griess [32].

Proposition 13.4. (i) The Schur multiplier of F, has order 2, and C;(q(1), AeA,,
is a covering group of F,.

(ii) There is a subgroup E=Z% of G such that E=C4(E), N;(E)/JE=0"(8, 3)
and 1=E—-Ny(E)—-07(8,3)—1 is nonsplit. Also, there is E,<E, |E,|=3 so
that 1 > E/E, - NG (E)nNg(E|)—0(7, 3) > 1 is nonsplit.

(iii) The Schur multiplier of F,, has order 3.

(iv) The Schur multiplier of *E¢(2) is Z, X Z, x Z,.

Proof. (i) In [36], it is shown that the Schur multiplier has order at most 2.
Also, in [36] it is shown that the action of -2 on A/2A4 is uniserial with
Loewey factors of dimensions 1, 22, 1, in that order. Consequently,
1-5{g(4A)) = Cy(q(A)) = F,—1 is a nonsplit extension, and (i) follows.

(ii) Take A< C such that |A]=3, Cy(4)={z) and N.(4)=2-3-Suz-2
[22, 36]. From [36], N(AY=C.(A)=6-Suz is perfect. By [19, 60], Ng(A)
=0(Ng{(A)) - Ng(Az>) and O(Ngz(A4))/A must be abelian and is inverted by z.

If O(Ng(A)> A, N(A)/A acts faithfully on O(N,;(A4)). We argue that this is
the case. Since we know |G|,=3?° we shall get O,;(Ny(4))>A4 by Sylow’s
theorem. Let RS N((A), R=ZS so that Ny_ (R)/C(R)=M,,. Since R has a
4-dimensional IF; A4 ¢-constituent in common with the usual 6-dimensional per-
mutation module for IF; 4, [11], where we take A<M, ;=M ,,, identified
with Ny 4,(R)/Cc(R), we get that R is the J-subgroup ([27], p.271) of
PeSyly(Ny.4(R)). Thus, R is characteristic in P, and so |[Ng(R)|;>|P|=3°%
Since (z)eSyl,(C4(R)), a Frattini argument shows that C covers N;(R)/Cg(R),
giving |NG(R)/C¢(R)|;=3% and |C4(R)|;>3% The structure of Ng(A) given
above shows that O,(N;(4))> A4, as required.

If pen(O(Ngz(A)), the p-rank of O(Ng;(A))/A must be at least 8 since a
subgroup T=2'*% of Nq(4) acts faithfully on O(N,(A))/A. Since |G|
=246320597611213%m where m is squarefree, we have p=3 or 5. If p=35, we
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observe that the faithful action of a 3°M,, subgroup of N.(4)/A on
0,.(0O(N4(A)) forces the 5-rank to be at least 11, a contradiction. So O(Ng(A))
=0,(Ng;(A4)). Since teZ(T)* fuses in N;(A) to an element t'e{T, 2> —Z({T, z))
(see Lemma 2.10 and [25]), a comparison of the traces of ¢ and ¢ shows that
m(04(Ng(A4))/4)=12. Since |G|;=3%% and |Suz|,=3", we get |O;(Ng(A)|=3">.
We claim that O,(Ng(A)) is extraspecial. Suppose false. Then the action of z
implies that O,(Ng(4))=Z}*> and that Ng(4) leaves Cg . ay(2) and
[0;{(Ng(A)), z] invariant; in particular, a Sylow 3-group of N;(A) has noncyclic
center. By looking in F,,, we find that a Sylow 3-normalizer looks like
31+100,(2)- 2 [20] and that in C(a,,)=3F;, the corresponding subgroup is K
=3 x31719 U, (2)-2 [33]. If PeSyl;(K), Z(P)=Z2. Our remarks about N;(4)
then imply that Z(P) is in the center of a Sylow 3-group of G, a contradiction
to |Casp)l;=3'""<|Gl;. So O;(Ng(A4)) is extraspecial.

Take B=N((A) so that C.({(4, B)) is the perfect group 2-3-3-U,(3) and
such that A and B are conjugate in C. Set R=0;(N;(A4)). Since Ng;(A) is 3-
constrained, C.({(4, B)) acts nontrivially on C(B) ([27], p. 179). Therefore, if
3*=|Cr(B)/A|, k=6 because 74|GL(5, 3). So, Crx(B)~Z} and [R, B]=C(B).
Set E={Cg(B), B)~Z5. In each of Ny_y,(E), X=4 or B, the group of
automorphisms effected on E is 3%.SO~(6,3)-2-2 (to see this, look at the
normal  3-subgroups of O,(C4(X) Co(KA, B)), X=A,B). Thus Y:
=Ng(E)/C4(E) satisfies O4(Y)=1 and F*(Y) quasisimple. To identify Y, the
quickest method is to quote the standard form problem for
L(Cy(zC(E))=SO(6,3)=2-U,(3) to get Y~O0(8,3), e=+ or — [3]. If the
extension 1 - E — Ng(E)— Y—1 were split,

1—{A,B>—>Cs;({(A4,B))—>2U,(3)—1

would be split, which is not the case. Therefore, e= —(if ¢ were +, Z(Y)~Z,
by [2], p. 196, and the extension would be split) and we get the first part of (ii).
The second part follows by considering the preceding statements and realizing
that we may take a,,e{A4, B) —-(4AuB).

(iil) In [33], it is shown that the Schur multiplier of F}, has order at most
3. We get that 1—{a;,>—>Cslasp)—F3,—1 is nonsplit from the fact that
a;peCclasp); see above remarks.

(iv) It is relatively easy to see that Z,xZ,xZ, is an upper bound for
H?(2E¢(2), ©/Z) [32]. The hard part of settling this Schur multiplier is to show
that Z, x Z, is the 2-part of the multiplier. We do this as follows. Let i, , k be
distinct indices in &, and let V={q(4;, 4;)><Q. Then V=Z,xZ, and V¥ is
in the class 24; see Lemma 13.3(v). Set M =C.(V). Then M/MnQ=U(2)
[11] and MnQx=2'*2°x2x 2. We claim that VS[MnQ, MnC]. Let Y20,
Y = C map onto the natural M, subgroup of N,,/{+1} fixing i,j and k. Note
that a natural M,, subgroup of M,, fixes a 2-dimensional submodule of
P(Q),,.,/% but that this module has no trivial quotient module since a natural
M,, fixes no €-set other than Q and ¢. Thus, <z, V) =<z, [E, Y]) (this “E” is
q(A(4)), as in earlier sections), implying the claim. Thus, C (V)Y =C4(V).

We obtain Cg;(V)/V =2E4(2) from the solution of the “0, extraspecial”
problem ([67], specifically), using z°=zz,, e C,(V) as before to eliminate the
trivial case C4(V)=0(Cq(V)) C(V).

The proof of Proposition 13.4 is complete.
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Remark. From the existence of the perfect group 2.2.2E,(2) one may derive
the existence of the perfect groups 2.F,(2), 2.224,(2), 2.F,,, 2.2.4,(4) and
from the existence of the perfect group 3.F,,, one may derive the existence of
the perfect groups 3.B;(3), 3.G,(3) as sections, which also occur within the
group 3%.07(8,3) of Proposition 13.4(ii). The existence of -0 implies the
existence of a number of nonsplit extensions, as noted in [11].

More than ten years ago, Jack McLaughlin observed that the sporadic
groups are connected with many examples of nonvanishing low degree coho-
mology. In F; we find Dempwolff’s nonsplit extension 2°.GL(5,2) [16] and in
LyS we find the nonsplit extension 5%.SL(3, 5), which had been shown to exist
abstractly by McLaughlin. For an example of nonvanishing degree 1 coho-
mology, look at a particular section of -0 isomorphic to 3°. M,,. Not only can
we observe subgroups of sporadic groups which exhibit nonvanishing coho-
mology of degrees 1 and 2, but such examples in the groups of Lie type seem
to be connected to sporadic phenomena which lead to sporadic groups. A
“nonstandard” complement in 3*. 4,<U,(3) is contained in L,(4)-subgroup of
U,(3), and these two maximal subgroups of U,(3) are “tied together” by
McLaughlin’s group. We once observed that the “sporadic” nonvanishing of
degree 1 cohomology for a group of Lie type seems to be connected to a
“sporadic” maximal subgroups. For example, A,<A, “explains”
H'(Q7(6,2),2°)~Z,; see [57]. The most obvious examples of extensions in
groups of Lie type are the parabolic subgroups. They split over the maximal
normal unipotent subgroup by virtue of the Levi complement. In contrast, the
candidates for “parabolic subgroups” in sporadic groups often involve nonsplit
extensions. See [59]. However, it is not always true that HY(L, F)=0 in a
group G of Lie type, for L the commutator subgroup of a Levi complement
and F an L-chief factor within the normal unipotent subgroup of a parabolic
subgroup of G. There are a number of counterexamples, including infinite
families of counterexamples, such as L=Sp(2n, g), F=1FqZ", G=Sp(2n+2,4q),q
=2",n22 or L=Sp(6,q), F=IF}, G=F,(qg), q=2".

It is tempting to think that the sporadic groups and the exceptional low
degree cohomology groups are linked in some deep way. Because of the great
importance of centralizers of involutions in the classification of finite simple
groups, the occurrence of nonsplit central extensions of simple groups (clas-
sified by H?(—, Q/Z)) within sporadic groups strongly suggests that there is
some connection. If there is a theory explaining such connections, the role in it
of cohomology with coefficients in nontrivial modules is less clear,

For Sect. 14, we need a result.

Lemma 13.5. Let Qte C/Q be an involution.

(i) If Qt is 2-central, Qt contains involutions;

(i) If Qt is not 2-central, Qt does not contain involutions if Cc(Q1) has
shape (2x2xG,(4)2 and Qt does contain involutions if C,o(Qt) has shape
21Y M, 2

Proof. Certainly, C—Q contains involutions since Rj=R, and R,nQ=E, in
the notation of Chap. 10. In fact, R, Q/Q corresponds to O,(N,,/{ +1}) under



The Friendly Giant 91

the natural map ¢:C—-1. Thus, Qt contains involutions if
CeolQ)=2*8. D, (2)or 2'" M, 2.

Consider the remaining case. We refer to [11, 12] for the information we
require about -0. Suppose % is in the remaining class. Then C(t%)=(V x L){u),
V=73, L=G,(4), lu|=2, and there is V, <L, V, conjugate to V in C/Q. There
is an element & of order 3 in - I centralizing L and fixed point free on 4/2A4. In
G, the structure of C.(0) for 0eC, |0)|=3 with §°=h, is as described in the
proof of 13.4(ii), ie, 3'*'%.2.Suz. The structure of 2.Suz implies that V,
corresponds to a quaternion group of order 8 in C(8)/0,(C(6)). Thus, Qt
contains an element with square z. Since A4/2A is a free F,<{t*>-module (Corol-
lary 2.30), Q¢ contains no involution, as required.

14. The Happy Family and the Pariahs

It is clear from Sect. 13 and a study of subgroups of F,, F,, and -1 that we
have 20 sporadic groups involved in the Friendly Giant. We call the set of
sporadic groups which are involved in the Friendly Giant and Happy Family.
There are 20 or 21 sporadics involved in the Happy Family ~ whether J,
belongs or not is unsettled as of this writing. The sporadics outside the Happy
Family are called the Pariahs. Since n(LyS)—n(F,)={37, 67} and n(J,)—n(F,)
={37, 43}, Lagrange’s theorem implies that LyS and J, are Pariahs. It is not
obvious how to show that J,, O'S and Ru are Pariahs. We do so in this
section.

We conclude this section with a table of involvements of sporadic groups in
one another and with a table giving fusion information for possible embedd-
ings of J, in F,.

Lemma 14.1. Ru is a Pariah.

Proof. Suppose that X is a quasi-simple subgroup of F,, X/Z(X)=~Ru. Then
|Z(X)|=1 or 2.

Suppose Z(X)=<{u> has order 2. If u is 2-central, we get an embedding
Ru—-1, which is impossible since 29en(Ru)—=n(-1). If u is not 2-central, we
get an embedding Ru—F,, which is impossible since 29en(Ru)—n(F,).

We have Z(X)=1. Take a four-group V<X so that Cy(V)=Z3xSz(8).
Suppose that veV* is 2-central in F,. We may suppose that v=z, C(V)=C.
Since 13]|Sz(8), Cx(V) fixes no element of Q/{z>. Thus, Cy(V)/{(z)> is embed-
ded in -1 and Sz(8) is involved in the centralizer of an involution, ¢, of - 1. A
look at [12] shows that 13]|C.,(t)] implies C.,(1)=(Z3x G,(4))-2. But 7 does
not divide the order of a 2-local in G,(4), a contradiction. So V* lies in the
class of u, where Cj (u)=2F,. The centralizers of involutious in F, have shape
(2x2xF,(2)2, 2'*2%)(-2), 2-2E4(2)-2 and 2°-2'°.D,(2)-2; see Lemma 2.41.
Since 13]Sz(8)], we get an embedding of Sz(8) into F,(2) or *E4(2), a con-
tradiction to Lemma 2.36.

Now take B<tA<F, with 4/B=Ru and |A| minimal. By the Frattini
argument, B is nilpotent. Since the Schur multiplier of Ru is Z,, minimality of
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A implies that O(B)S[B, A]. Let n=n(B), n,=n—{2}. The action of H=<A/B,
H=2°-G,(2), on B/B’ shows that m,(B/B’)z 63 for pern,, whence m,=¢ and =
={2}. Since the order of 2 modulo 29 is 28, m,(B/B')=28. Since 29 does not
divide |- 1| or |F,], an element of order 29 is fixed point free on B. Since |F,|,
=2%0<2%¢ Bx~738 Take heA, |h|=13. Then B,:= Cy(h) has order 2* or 2'°.
Let xeBf. If x is 2-central in F,, we may assume that x=zeZ(C). Then
{B,,hy<C and h fixed point free on Q/Q  imply that the centralizer of an
element of order 13 in -1 contains a copy of Z3 a contradiction [12]. So x is in
the class 24, implying that F, contains a copy of Z3 whose centralizer has
order divisible by 13. Since the centralizers of involutions in F, look like
2:2E4(2)-2, (229 (-2), 2x2x F,(2))2 and 2-2%.21%.D,(2)-2 and 13 does not
divide the order of D,(2) or of a parabolic subgroup of 2E.(2), we have a
contradiction. The proof is complete.

Definition 14.2. Let X, Y be a pair of finite groups. An (X, Y)-fusion pattern is a
class function f: X — Y such that x and f(x) have the same order, for all xeX.
The fusion pattern test for the fusion pattern f is the test that x— y(f(x)) be a
character of X, for all irreducible characters y of Y.

Note that these tests are lengthy but mechanical in nature. They can be
verified in a straightforward way with a computer since one simply checks
whether the inner product of x+—y(f(x)) with every irreducible character of X
is a nonnegative integer.

Lemma 14.3. Exactly 18 fusion pattern tests for (J,, F,) are satisfied. If J, is
involved in F,, it is contained in F,.

Proof. The fact that fusion pattern tests for (J;, F;) are passed by exactly 18
fusion patterns has been established by Charles C. Sims and Steven D. Smith,

independently, with computer programs. These fusion patterns are listed in
Table 14.2.

To prove the second statement, we assume that J, is involved in but not
contained in F,, then derive a contradiction.

Take B<tASG=x=F,, A/B=J,, |A| minimal. Then, by the Frattini argument,
B is nilpotent. By the fact that J, has trivial Schur multiplier [35], [43], B
=[B, A]. Let n=n(B), n,=n—{2}. If pen,, the action of a 2*.7-3 subgroup of
A/B on 0,(B)/®(0,(B)) shows that m,(B/B)27, whence p=3 or 5 by Lemma
12.6. The order of 3, 5 modulo 19 is 18, 9, respectively. Considering the action
of an element of order 19, we get m,(B/B)=18, 9 for p=3,5 respectively. If p
=5, we contradict Lemma 12.6. So p=3, and we find that m,(B/B)=18. So
|0,(B)|=3'® or 3'% as |F,|[;=32° and |J,|;=3. The action of a 2*.7-3 sub-
group on O,(B/B’) shows that an element x of order 7 centralizes a subgroup
B, of 04(B) with the property m,(B,/B,nB’}=6 or O4(B) is elementary abelian
of order 3'° (use the fact that 3 has order 6 modulo 7). In the former case, we
quote the work of [22] to get C(x)=Z,x Held or 7'*°24.; in either case a
Sylow 3-group of C(x) has order dividing 3%, a contradiction. So O,(B)~Z.°.
Thus, a Sylow 3-group of F, has an elementary abelian maximal subgroup.
This is certainly false, since the section C/0,(C)=-1 contains a subgroup
31+4.8p(4, 3). Therefore, 7, =0, and B is a 2-group.
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Let ./ be the set of IF,J -irreducible modules which occur as A-chief
factors within B. If no module in &/ lies in the principal 2-block for J,, the
extension 1 »B—A—J, —»1 splits, and we contradict Lemma 14.3. Thus, </,
={Xes/| X is in the principal 2-block} is nonempty. Since J; has trivial Schur
multiplier, o/, ={X e, X is not the trivial module} is nonempty. By Lemma
2 of,, dim X =20 for Xeo/,. Let xeA, |x|=19. From [22] and since the order
of 2 modulo 19 is 18, dim Cy(x)=2, and B=Z2° Set V=Cg(x), B,=[B, x].
Then Cg4(V)=2-2-2E4(2) and B,{x) maps to a 2-local of C;(V)/V=2E(_2).
This is a contradiction since 19 does not divide the order of any parabolic
subgroup of 2E4(2).

Lemma 14.4. J, is a Pariah.

Proof. Suppose that X is a quasisimple subgroup of G~F, with X/Z(X)~J,;
then [Z(X)|=1 or 3 [52], [35]. If |Z(X)|=3, 19en(J,)nn(C4z(Z(X))) implies
that C;{Z(x))~Z, x F; [12], a contradiction since Z(X)=£X'. So, Z(X)=1.

The following statement was kindly supplied by Steven D. Smith, who used
the character table of J; from Janko's paper [44] and the class list and certain
characters (“head characters”) of F, found in Conway and Norton’s paper
[13]:

We used simple FORTRAN programs at the IBM 370 installation at the
California Institute of Technology to study (J,, F,) fusion patterns.

For convenience, the calculation was done in three stages. First, for each
fusion pattern, the power map in F, was applied and the result checked for
agreement with the power map of J,; just 156 patterns survived this test. Then
for these patterns a “crude” character-theoretic test was applied - computing
the sums only modulo |J4| for the inner products (x,,,n) with y the 196,883-
character of F,, and # each irreducible character of J; (in effect, requiring y,,
to be a generalized character). Just 84 patterns survived this test. Finally for
these patterns the multiplicities (y;,,#) were computed in full, and required to
be nonnegative integers; and just 12 patterns remained. (These 12 patterns
were then tested with the next-larger F,-irreducible, and all survived.) As a
precaution, several of the computed multiplicities were re-verified by hand.

From this work of Smith, we know that the involutions of X must be
conjugate in G to z, that all elements of order 5 in X are S-central in G and
that all the elements of order 3 are 3-central in G. These facts will suffice to
obtain a contradiction.

We may assume that ze X. Take he Cy(z), |h|=3. Then Cy(h)=Z,x A,. We
have Cg(h=3'"'2.2.Suz. Take S=<C4(h), S=6.Suz. Then L:
=SNn0,4(C4s(h) Cy(hY =Z,x Ag or 3.A4,. Since elements of order § in X lie in
the class 5B of G (the 5-central class), the same is true of elements of order 5
in L. Thus, if S<-0 is the natural embedding, and yeL, |y|=5, y is either 5-
central in -0 or fixed point free on the Leech lattice. A look at the class list
[12] reveals that yeS implies y acts fixed point freely on A. Let M be a natural
12 dimensional module for CS. Since the traces lie in Q{e2™/?), the remarks
about y imply that the irreducible € L-constituents or M have degrees divisible
by 4. A look at the character tables of A4 and 3.4, shows that all these
conditions may not be met. Therefore, G contains no subgroup isomorphic to
J,.
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Suppose that B<1tA<F,, A/B=J, and |A4| minimal. Then, by the Frattini
argument, B is nilpotent. Since the multiplier of J; is Z; [52], [35],
0,.(B)<[B, A]. Also, n(B/[B, A])< {3} by minimality of A. Let n=n=n(B), 7,
={pen|p>2 and [0,(B), A]+1}. Considering the action of a 2*(3 x A5) sub-
group of 4/B on O,(B/B’), we find that m,(B/B')=15 for pen,. Thus, n,<{3}.
Suppose m,={3}. Then |J;|,=3° implies that O,(B)=Z.>. Since the order of 3
modulo 19 is 18, we have a contradiction. Suppose 2en. Then, considering the
action of a 3%-3-32.8 subgroup of A4/B on 0,(B), we get m,(B/B)=24. Since
an element of order 19, 17 in F, has centralizer of shape Z,,x A5 and Z,,
x L,(7), respectively (see [22]) we get m,(B/B’)= 36,40, then m,(B/B’)=54, and
a contradiction. The proof is complete.

Lemma 14.5. 0'S is a Pariah.

Table 14.1. Involvement of Sporadic Groups in One Another

(x=yes, - =no, ?=unsettled)

~
-~ NN :: el d
T 288 3 i 5 20 n @ Y
SEISSNNSIZEEZ TSN 08 0 0wl W
M, * x o % % % k% ok % ok % k% 7 % % * %
M, P * c k% v ok ok %k -k % * ok
M,, * k% * % ok ok k% % k% ? % % * %
M,, © % % % % % * % ® *
M,, e % ® - * 7 % *
Jl . * . x 9 9 .
JZ-—HJ * * % 7 ? 7 %
Js * .
Held * % *
HiS * P * % *
McL * PR x % % .
Suz ® ok . *
-1 % *
2 * % * %
-3 * * *
F,, . sk % * %
23 * o * %
F, to* *
LyS * .
Ru *
oS *
F, * %
F, M
Fy * k%
F * ke %
Js N -

Most of the involvements are “obvious” and many noninvolvements are easy to verify by looking
at local information or standard representations. The referee has helped fiil in the table and cites
work of Enright which shows that M, is embedded in 2F,, as the intersection of copies of 2F,,
and X, in F,;. The referee has furnished “character restriction” arguments as proof of the
noninvolvements (M, ,, -2), (M, F,3), (J5, F,,), (J,,Ru), (J,, F,;), (McL, F), (Suz, F;,), (Suz, F,).
Thanks go also to Ronald Solomon for spotting an error in an early version of this table



The Friendly Giant 95

Proof. Suppose that X <G~F,, X quasisimple and X/Z(X)~O0'S. Let Z=X,
Z~17, such that C(Z)/Z(X) is the perfect group 4.L,(4). Set {t>)=Q,(Z). If
C;(t)~2F,, then Z maps to a group of order 2 with centralizer (2 x 2 x F,(2))2
in F,, a contradiction since Z < Cy(Z). So, C4(t)~ C and we may as well take
t=z. The structures of the centralizers of elements of order 2 in -1 [12] show
that Z <0, so that Z={q(£)), for some vector ¢ of type 3. Thus, we have an
embedding of Cy(Z)Q/Q~Cy(Z2)/Z~L,(4) or 3.L;4) into -3. By [I2],
Cx(Z)/Z ~L,(4), ie, Z(X)=1. Let K:=C4(Z)*<-0. Then K'~L,(4) since the
Schur multiplier of -3 is trivial [33, 357.

According to the character table of L,(4), there are two irreducible charac-
ters of degrees less than 24; they have degrees 1 and 20. So, L:=C (K') has
rank 4 and is a Z-direct summand of A. By looking at P(), a module
extension of ¥ by P(Q)/%, one sees that the modular irreducible constituents of
the degree 20 irreducible taken modulo 2 have dimensions 1, 1,9 and 9, and, in
particular, if heK, [h|=7, then dim C ), ,(h)=6. Set R:={q(C 4(h)>~21*°,
Since R,:={q(L), z) <R and |R,|=2° R, is nonabelian. Set R,:=(R,z)<R.
Since Out(R,) is solvable or has every nonsolvable composition factor isomor-
phic to L;(2) or A5, [R,, Cx(Z)]£[R,, R,]1={z), whence [R,, C4(Z)]=1 by
the three subgroups lemma and Cy(Z)= C4(Z).

We now obtain a contradiction. Since L;(4) is not involved in M,, and
-333~3%-M,,, R, does not contain a quaternion group. Since R, is non-

Table 14.2. Fusion Maps for (J, F}) (see Lemma 14.3)

Rational class for
J, (designated by

order of element): 1 2 3 5 6 7 10 11 15 19
Fusion pattern
(class in F): 14 2B 34 5A 6C 74 10B 114 154 194
34 54 6C 7B 10B 154
3B SA 6B 74 10B 15B
3B SA4 6B 7B 10B 15B
3B 54 6E 74 10B 15B
3B SA4 6FE 7B 10B 15B
3B SB 6B TA 10D 15C
3B SB 6B 74 10E 15C
3B SB 6B 7B 10D 15C
3B SB 6B 7B 10E 15C
3B 5B 6E 74 10D 15C
3B 5B 6E 74 10E 15C
3B 5B 6E 7B 10D 15C
3B SB 6E 7B 10E 15C
3C 5B 6F 74 10D 15D
3C 5B 6F 74 10E 15D
3C 5B 6F 7B 10D 15D
3iC 5B 6F 7B 10E 15D

(Columns 1, 2, 11 and 19 are constant).

The referee has furnished a character restriction argument which eliminates the cases with 34 (one
examines the 19-local structure of X'y x F;)
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abelian, R, =R,~DyxZ, x Z, and any element of order 4 in R, is conjugate
in R to its inverse. Take xeR, so that x inverts Z<R, under conjugation.
Then, [Cy(Z), x]S[Cx(Z), R;]=1 gives a contradiction.

We are now left with the case that O'S or its 3-fold cover are involved in
F; but not by containment. We take A<F, of minimal order with B<a4 so
that A/B~(0'S. Then B is nilpotent and [B, A]1<0,.(B). Since J, is contained
in O'S, we get a contradiction to this situation as follows. We repeat the
arguments of Lemmas 14.3 to get [B, A]1<0,(B). Then O0,(B)+1 and 2-con-
straint of 4 imply that an element x of order 19 in A acts nontrivially on B.
Since [C(x)[=2%.3.5.19 [22], |F,|,=2%¢, |0'S|,=2° and 46—9<2-19, we get
|B|,=2'% 2'? or 2?°. But now, the nontrivial action of an extraspecial group
of order 7° in A/B on B shows that |B|,=>23"7=22!, a contradiction.

15. Concluding Remarks

As stated in the introduction, work on the putative simple group F, began in
November, 1973. Bernd Fischer suggested the possibility of a finite simple
group having a 3-local subgroup of shape 3'*?2.2.Suz.2. A number of other
group theorists got involved at this point, mainly Conway, Harada, Norton
and Thompson. Many properties of this hypothetical simple group were de-
rived, including shapes of various local subgroups and a correct guess of its
order, using the result of Frobenius which says that the cardinality of {geG|g"
=1} is divisible by n, for any finite group G and integer dividing {G| (a proof
that its order is the number of Sect. | was written down by Griess [36]). The
existence of several additional simple groups was derived (see Sect. 13). Coin-
cidentally, Harada had been working on a standard form problem for a
component of shape 2. HiS, exactly the situation which comes up in the group
Fs. Norton’s thesis was concerned with properties of F, and an existence and
uniqueness proof (based on a complex representation of degree 133). The
group of Thompson, F;, was constructed by Thompson and Peter Smith, who
did some computer work, as a linear group of degree 248. The group F,, while
noticed as a subquotient of F,, had been proposed by Fischer during the
summer of 1973 as a group generated by a class of {3, 4}-transpositions.
Indeed, F, appeared to have a perfect central extension 2F, and the possibility
of a simple group having 2F, and C=~(2'*2%) (-1) as centralizers of in-
volutions is what led this author to his investigations [37], independently of
the work of the aforementioned individuals.

The group F, was constructed a few years later by Jeffrey Leon and
Charles Sims with the aid of a computing machine [51].

Norton and others at Cambridge did some preliminary work on characters
and conjugacy classes for F,, notably the facts discussed in Sect. 1. Ultimately,
combined work of Fischer, Livingstone and Thorne led to a complete de-
termination of the character table!, It must be pointed out that all this work

' It should be pointed out that the notations for conjugacy classes in [13] and [22] differ; we

use that of [13] in this paper
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was made under the assumption that F, has an irreducible complex character
of degree 196,883. That 196,883 is a lower bound for the degree of a nontrivial
complex character was pointed out by Griess [37] and was also noticed by
Conway and Norton [13].

Norton has recently announced a uniqueness proof of F,. He studied a
graph on the class of involutions 24 in which two distinct involutions are
joined by an edge if and only if their product lies in 24 and found a matrix in
the commuting algebra of the group action on the permutation module within
an eigenvalue of multiplicity 196,883. It follows that any finite simple group
with an involution whose centralizer is isomorphic to C must have an irreduc-
ible character of degree 196,883. Thus, the “hard” assumption of Thompson’s
uniqueness proof [71] is valid; formal proofs of the remaining assumptions
should not be difficult to write out. Granting this, we summarize: A finite
simple group which contains C as the centralizer of an involution must be
isomorphic to the Friendly Giant.

The algebra B which figures so importantly in our construction of G is a
somewhat mysterious object. We can state no homogeneous linear identity,
linearly independent of xy=yx, which is satisfied by elements of B. The
classical theories of linear algebras use such identities as starting points. In our
case, we use an automorphism group as the starting point (and never stray too
far from it). The presence of the algebra was a guide in defining G. Once we
had G £G(B), the algebra was used only to make a few points in Sect. 12.

After Norton’s finding (see Sect. 1), some attention was directed to com-
mutative nonassociative algebras with certain finite groups as automorphisms.
Such algebras were irreducible as modules, or were the direct sum of a module
and its dual, and were often connected to some rank 3 permutation repre-
sentation of the group [54, 61]. The term “Norton algebra” has been applied
to some of these examples. As with B, no axioms for these algebras were given
and no characterizations were made. These investigations were interesting and
encouraging but had no direct bearing on the discussion of B in this paper.

It is natural to ask whether any of the Pariahs (see Sect.14) can be
constructed explicitly as automorphisms of some kind of linear algebra. In-
deed, Frohardt has completed such a construction of J,; the algebra is com-
mutative and nonassociative and is the direct sum of an 85-dimensional com-
plex irreducible module with its dual. Similar constructions for the other
Pariahs will surely be available in due course. One result will be more con-
trolled settings in which to study the sporadic groups. Another will be that the
theory of these groups will be relatively free of dependence on computers.

We conclude by expressing our hope that the ideas in this paper will lead
to further methods for studying the finite simple groups.

List of Notations and Definitions

We give at least the first occurrences of notations used in this paper which are not in general use.
Among the more standard definitions are x*=y~'xy, [x, y]=x"'y~'xy for group elements x, y;
£ g—, = for membership, containment and equality, up to G-conjugacy; |X| for the cardinality of

X ; Sol(G) for the largest solvable normal subgroup of G; Out(G)= Aut (G)/Inn(G).
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Section 1
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