How the magnitude of an experimental effect may be measured has been a matter of
concern for at least two decades. The phenomenon of effect size is still not well under-
stood, and it cannot be inferred from statistical significance. In recent years various ways
of assessing the amount of variance accounted for have been proposed as measures of
magnitude of effect. Other writers have proposed rules for standardizing effect size, with
the interpretations of the measures depending largely on intuitions buttressed by some
further general empirical norms. All the methods of assessing effect size have serious
Sflaws that limit their usefulness. The various statistical procedures for estimating variance
accounted for are based on different statistical models and can produce rather sharply
differing results, depending on the model employed. All the methods suffer from the
limitation that they reflect to too great an extent the particular characteristics of the
study being reported and hence have limited generalizability.
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% problem of which researching psychologists have been aware
for years (e.g., Bolles and Messick, 1958; Savage, 1957) but
that has had increasing attention over the past decade or so is how to
determine how large an effect is achieved by an experimental inter-
vention. Especially for psychologists working in applied areas it is
important to know more than that a treatment produces a statistically
significant main effect. However, even for theoretical problems it is at
least enlightening and often sobering to find out how much an effect is
at stake during the intricacies of a theoretical controversy. For example,
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Smith (1980) found a .25 standard deviation sex bias effect in published
studies in counseling and psychotherapy, a finding that accounts for
less than 2% of the variance in results. Unfortunately, a relationship
of that magnitude is likely to have little, if any, practical significance.!

A number of suggestions about ways of estimating the magnitude of
an experimental effect have been proposed, and clearly some of them
are useful—or at least better than relying solely on statistical signifi-
cance as a criterion. Yet we believe that there are serious shortcomings
with existing approaches and that alternatives need to be invented
and investigated. In our view, the problems are of sufficient complexity
that no one solution will suffice, and multiple approaches will be
required.

STATISTICAL SIGNIFICANCE

Perhaps for want of a better device, authors often resort to statistical
significance as an index of effect size, often implying that there is at
least a fairly direct relationship between the statistical significance of
a finding and its importance in the real world.2 Thus, for example, it
is fairly common to find authors noting that a finding is “highly”
significant or “very” significant, or reporting p values to four, five, and
even six decimal places, as if something of critical importance were
contained in those several zeros preceding the final digit.

Statistical significance in fact depends on several factors quite
unrelated to the magnitude of the experimental effect. First, whether
a finding is statistically significant depends on the alpha level one sets
(traditionally, .05). The statistical significance of a finding is also a
function of sample size, although the relationship of significance level
and sample size is nonlinear, being in general a function of v/N. Conse-
quently, studies with larger numbers of subjects yield smaller p values
for equal experimental effects, though sample size tends to be inversely
related to the percentage of variance accounted for (Craig et al., 1976).
It is also the case that whether one obtains a significant effect atallis a
function of the level chosen for beta, the arbitrarily defined probability
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of Type Il errors and the resulting power (1 - B) of a particular experi-
ment to reject the null hypothesis.

It is, of course, true that statistical significance is very much a
function of effect size. All other things kept equal, a larger difference
between means will be associated with a lower p value.’ Again, however,
the relationship is nonlinear, and it is hazardous to make comparisons
of significance levels across experiments or even across treatments
within an experiment. To take the latter, a less obvious case, if in
comparison to a control group one treatment is significant at the .01
level while another treatment is significant at only the .05 level, it is
tempting to conclude that the former is a stronger treatment. For that
to be a legitimate conclusion, the difference between means would have
to be larger and the error term the same. And to prove true generaliza-
bility, one would have to defend the proposition that the two treatments
were implemented with equal care and precision, a point to which we
will return.

WHAT IS AN EXPERIMENTAL EFFECT?

Perhaps it would be desirable at this point to clarify what we mean
by an experimental effect and also to indicate how our arguments may
be extended to nonexperimental research findings. In experimental
research an effect is usually reflected in the difference(s) between
measures of central tendency for different experimental groups, or at
least that is the simplest case. Thus, in a simple two-group (E and C)
design with posttest measures only, magnitude of the experimental
effect is achieved by: Effmag = mean Xg — mean Xc. If the data are
categorical and are cast in the form of a contingency table analysis,
say for volunteer donors and nondonors within experimental and
control groups, the experimental effect is the excess of observed versus
expected donors in the experimental as compared to the control
condition. If the data are analyzed by regression analysis, the experi-
mental effect is the regression coefficient associated with an E versus
C dummy variable. When we speak of experimental effects, we have in
mind a raw estimate or value that cannot, until processed in some
kind of index, be compared across studies, or even across different
main effects within the same experiment. To be concrete, the effect
produced by an analgesic is the difference in measured headache distress
between the experimental and placebo drug groups. If, on the average,
control subjects report headaches of 68 on a 100-point scale and
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experimentals report headaches of only 53, then the experimental effect
is 68 - 53 = 15 points of pain reduction.

Extension of the above ideas to subject variables is straightforward.
The “effect” of sex of subject on a dependent variable is the difference
between the means for male and female subjects. However, it is also
possible to think about correlational results within the same framework.
A correlation between two variables is the “effect” of one on the other,
and the difference between two correlations enables one to compare two
different effects—for example, to answer the question whether the
relationship of family size to intelligence is greater than the relationship
of socioeconomic status to intelligence.

WHAT IS THE PROBLEM
IN ESTIMATING EFFECT SIZE?

Having just defined what is meant by an effect, we can now turn to
the problem of trying to see how big an effect is, of estimating the
magnitude of an experimental effect. The problem is not a simple one,
and it has generally been either ignored or treated as if it were simple.
Some illustration may help.

1. Suppose a group of children exposed to an early childhood edu-
cational enrichment program show a five-point superiority over a
control group on a 100-item achievement test. The experimental effect is
five points, but how much are those five points worth? Is the program
really a good one? Should congressmen vote money to implement it ona
nationwide basis? The critical questions cannot be answered.

2. An investigator finds that there is a correlation of .32 between
income and utilization of the services of mental health specialists. Is
that correlation grounds for supposing that persons with low incomes
are being seriously shortchanged in their access to mental health
services? s it a large enough relationship to demand action, or even
further study? There is no way of saying—at least not right now.

3. How many lives would an experimental medical unit have to
save to be considered impressive? A difference of one life could never
be statistically significant, but would five lives or twenty lives be
grounds for elation over an operation period of one year? Probably it
all depends, but how much and on what (see Rhoads, 1978)?

The foregoing examples are meant to convey the sense of uncer-
tainty, often bordering on the absurd, that must afflict any insightful
and honest investigator if asked what his or her results really mean in a
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practical sense. We believe that the same sense of uncertainty should
often afflict even the investigator of a theoretical problem, but it is
characteristic of theoretical research in psychology to ignore the issues
of significance in other than a statistical sense. Because we do not wish
to single out any particular investigation, we do not provide specific
references here, but as an example note that one theoretical investi-
gation with statistically significant results hung on the differences in
ratings of objects on a five-point scale, with obtained differences being
.22 and .25 points for two effects! One scarcely knows whether to
conclude that the theory is woefully weak to produce such small
differences or impressively powerful to be able to predict them.

A prevalent concept of effect size involves the notion of “accounting
for” or “explaining™ variance. Presumably a large experimental effect
is reflected in a large index, of whatever nature, of variance accounted
for.

WHAT DOES IT MEAN
TO “ACCOUNT FOR” VARIANCE?

Nearly all statistics books are vague at best when it comes to ex-
plaining what is meant by “accounting for” variance. We have even
encountered such circular explanations as that to account for variance
means to explain it, with explaining it meaning to be able to account
for it. Cohen and Cohen (1975), however, present a clear, understand-
able exposition of what is entailed in accounting for variance. Space
does not permit elaboration here (see Sechrest and Yeaton, 198lc,
for a detailed discussion), but put simply, accounting for variance
means that one is able to reduce the variance in one’s errors of predic-
tions of scores by applying some knowledge more precise than that a
person is a member of a population. In the experimental paradigm,
knowing merely that a person was a subject in an experiment enables
no better prediction of his or her standing on a dependent variable than
the overall mean for the sample. However, if an experimental treatment
accounts for some of the total variance, that means that by knowing
which treatment condition a subject was in, a better prediction, the
mean for the condition, can be made, and variance of errors of pre-
diction will be reduced from the variance of the total sample to some
lower value.

It will be noted that accounting for 25% or so of the variance in some
scores does not make a great deal of difference in the standard deviation
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of errors of prediction. Let us suppose that a population exists for
which the mean intelligence score is 100, and let us suppose that the
standard deviation of those scores is 15, which results in a variance of
225. Accounting for 259% of the variance reduces the standard deviation
of errors of predicted intelligence from only 15 to 13, a feat more un-
impressive than usually imagined.

ESTIMATING SIZE OF EFFECTS

The problem of estimating the magnitude of an experimental effect
as we noted, has been recognized for some time, although not so widely
that it has achieved any degree of prominence in the research literature
(e.g., Soderquist and Hussian, 1978). However, as early as 1935, Kelly
developed the correlation measure € (epsilon squared) which could
be used to estimate effect size, though it was Bolles and Messick (1958)
who made one of the earliest attempts to deal with the issue of esti-
mating substantive significance, proposing the coefficient of utility U
for use in statistically assessing the usefulness of specific experimental
variables. Underlying the rule-of-thumb approaches soon to be dis-
cussed is the notion that some index of effect size can be devised for
which useful, if arbitrary, comparisons may be made of the results of
different experiments. We emphasize in advance, however, the arbi-
trary nature of the rules, for none of them speaks in a direct way to the
issue of social or practical importance of findings, only to relative size
of effects.

COHEN'S RULE OF THUMB

As much as any other person Cohen has been responsible for bringing
the issue of effect size to the attention of the social science community
(Cohen, 1977). In an article published in 1962, Cohen analyzed research
reports in a complete volume of the Journal of Abnormal and Social
Psychology in an attempt to determine the statistical power with which
each analysis might confront the null hypothesis. Since this seminal
article, several researchers have conducted power analyses in other
disciplines (e.g., Brewer [1972] in education, Katzer and Sodt [1973]
and Chase and Tucker [1975] in communications research, and Chase
and Chase [1976] in applied psychological research). In Cohen’s article
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it was necessary for him to set an effect size in order to estimate power.
Cohen simply stated that some effect sizes represented “small,” “me-
dium,” and “large” effects and confessed that the values he chose were
arbitrary but seemed “reasonable,” urging readers to render their own
judgment on the matter.

Cohen wished to establish a set of metrics for effect sizes that would™
make it possible to compare effect sizes across experiments. Moreover,
he aimed to make it possible to compare effect sizes across different
statistics so that, for example, one could estimate whether an experi-
mental result estimated by a chi-square test for difference between
proportions is less or greater than a result estimated by a t-test for
difference between means. Cohen’s classification of effect sizes for
difference between means as small, medium, and large was based on
the ratio (M, - M;)/o. The specific values he chose were .25, .50, and
1.00 for small, medium, and large, respectively, though more recently,
Cohen (1977) has reduced the initial ratios to .20, .50, and .80. These
values for effect sizes are now being cited with some frequency in the
literature, despite the fact that they have no compelling rationale other
than that they seemed like a good idea at the time.

We note that what Cohen means by “small” effect is likely to be
really a small effect size in any practical sense. A difference between
means of only .20 represents about 1% of the variance in the dependent
variable, and even a “large” effect of .80 represents only about 149 of
the variance in the dependent variable. To put it another way, Cohen’s
small effect size would be reflected in a correlation of only .10 and a
large effect in a correlation of only .37. Those are limited aspirations,
indeed. Somewhat astoundingly, however, Cohen (1973b) notes that
researchers are often implicitly testing for effect sizes smaller than what
he has defined as small!

The big advantage of Cohen’s rule of thumb is that effect size, by
his procedure, is standardized and hence independent of specific popu-
lation or sample values. One can compare the relative effects of manipu-
lations as diverse as psychotherapy and demand characteristics on
dependent variables as diverse as IQ and reduction in cigarette smoking.
Since Cohen’s rule of thumb is standardized, one can, for purposes of
statistical power analysis, state an anticipated effect size and do power
analysis without the necessity for estimating population variance that
would otherwise be required.

Glass and his colleagues (Glass et al., 1981; Smith and Glass, 1977,
Smith et al., 1980) have provided a practical application of Cohen’s
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method of standardizing results in their meta-analyses of psycho-
therapy and drug outcome studies. They converted relevant effects in
several hundreds of studies to standard deviation units; that is, effects
were expressed in terms of a fraction of a standard deviation of differ-
ence between experimental and control groups. From these quantitative
syntheses they found, for example, that systematic desensitization re-
sults in an average effect of .48a. The meta-analytic approach, however,
does not address the fundamental question of the value of the resulting
effect. We are still uncertain whether .75¢ or .400 or any other fraction
of a standard deviation difference in a dependent measure is worth
the money and effort required to produce it. What can a group of
children whose math scores are at the fiftieth percentile do that a group
whose scores are at the fortieth percentile cannot do?

FRIEDMAN'S rn

Friedman (1968) attempted to establish a single generalizable index
of magnitude of experimental effect by expressing the relationship
between a statistical measure such as t, F, or xz and sample size as a
correlation. Beyond expressing the notion of effect size in a general
form, Friedman’s contribution is a table making possible the quick
estimation of effect size. One merely needs values for an inferential
statistic and for sample size to enter the table, and rm may be read
directly. To take but one example, a t of 2.50 with a sample size of
60 produces an r, of about .31, indicating that a little less than 109
of the variance is accounted for.

w’ AND RELATED STATISTICS

Largely with impetus from Hays (1963, 1973) a statistic he named
w’ (omega squared) has come into use in estimating proportions of
variance accounted for in experiments involving parametric tests of
differences between means—t and ANOVA. Hays noted that ’is a
population value to be estimated from sample data. The formulae for
estimating w’ are considered to produce biased estimates in unknown
degree. Hays also notes that o’ applies to ANOVA models with fixed
effects. The formula for w® will vary according to the specific design
that is involved, but for a simple one-way ANOVA it is;

est ll)2 = [SSbcl - (J - l)MSwuh] / [Ssmt + MSwith]
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Hays also discusses n° (eta squared), a sample statistic useful for
descriptive purposes within any one experiment and interpreted in the
same way as w’. Actually, n° has traditionally been used to quantify
curvilinear relationships (Peters and Van Voorhis, 1940). Its use to
estimate proportion of variance accounted for by an experimental
treatment (Cohen, 1965) is a direct extension of its capacity to express
the relationship between variables not necessarily either ordered or
linear in magnitude. Since 7 is a correlation ratio, n* is interpretable as
proportion of variance in one variable accounted for by the other. Hays
notes that since 5’ is a sample statistic, it is subject to capitalizing on
chance and usually gives a larger estimate accounted for than does ’.
The computational formula for %” is: dfn(F)/[dfx(F) + dfp].

Hays describes an additional statistic for estimating proportion of
variance accounted for, pi (rho), the intraclass correlation. According
to Hays, pi provides an estimate of variance accounted for in analyses
involving a random effects model. It is also a population parameter.

Although Hays asserted that w’ is applicable only for analyses up
to the two-way ANOVA, Fleiss (1969), Vaughn and Corballis (1969),
Halderson and Glasnapp (1972), and Dodd and Schultz (1973) have
extended the rationale and computation to include random and mixed
models and more complex designs. Halderson and Glasnapp (1972) give
generalized rules for estimating magnitudes of effects in factorial and
repeated measures ANOVA designs. Refinement in the methodology,
notably in the estimation of interaction terms in mixed models (Dwyer,
1974), and attention to assumptions underlying the model (Gaebelein
and Soderquist, 1976) have subsequently been proposed.

COMPARISONS AMONG EFFECT SIZE ESTIMATES

Considerable energy has been expended to develop a set of guidelines
to assist researchers in the choice of an appropriate statistical analysis
of outcomes. Witness the number of statistical analysis and design
textbooks available to students and faculty (e.g., Cochran and Cox,
1957; Kirk, 1968; Myers, 1966, Winer, 1962). With the exception of a
few Monte Carlo studies (e.g., Carroll and Nordholm, 1975; Keselman,
1975), however, little comparable energy has been invested with esti-
mates of effect size. The choice among these estimates is rather arbitrary.

An obvious consideration in the choice of an estimate is the know!-
edge of exactly what quantity is being estimated. As we noted, the
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terminology “percentage of variance accounted for” is deficient in
important ways as a descriptor of what is being estimated by effect
size indicators. Furthermore, the computational formulae offer little
intuition as to the actual quantities being estimated. This has the effect
of inhibiting comparison, since we cannot ascertain if we are estimating
fundamentally different quantities. Knowing that «’® is a population
parameter and that partial #° is a sample statistic does make strict
comparison impossible, though some “feeling” for the differences be-
tween these two estimates is desirable.

Further confusion is added when we learn that n° has been referred
to in different ways by different researchers. Kennedy (1970) noted
that Kerlinger (1964) defined 71 = SS:/SSta and claimed that Cohen
(1965) and Friedman (1968) in their previous research had defined
7 as dfx(Fx)/[dfx(Fx) + dfp]. However, Cohen (1973a) subsequently
corrected Kennedy's use of the terminology eta squared for 7: =
dfn(Fx)/[dfx(Fx) + dfp], recognizing this as a formula for partial eta
squared. The confusion between eta squared and partial eta squared
was alleviated considerably by Kennedy, who showed by algebraic
simplication that partial n? = SS,/(SSx + SS.), thus making obvious the
fact that the difference between the two eta square estimates is in the
denominator of the two estimates; SSto will change when any of the
sources of variation in an experiment change, and the number of these
sources will increase as the complexity of the experiment increases.
However, SS; + SS. only varies as a function of one additional source
of variation, namely SS.. Though there is no difference between these
two estimates in the one-way ANOVA since SSto = SS, + SS,, eta
squared and partial eta squared will almost always differ in higher order
ANOVA’s. Even partial eta squares for different sources of variation
are not comparable when they have different bases (denominators)
and cannot legitimately be added together to obtain a total percentage
of variance accounted for (Cohen, 1973a).

We wondered immediately if w* was analogous to n” or to partial
n’. To answer this question, we consulted Table 1 in Vaughn and
Corballis (1969), which gives variance components for fixed, mixed,
and random designs in one- and two-way ANOVAs. Since w’ = 6,/
for the one- and two-way ANOVA, o’ is analogous to n’, since both
denominators are expressed in terms of total variation. Additionally,
it is apparent that Hays’s o’ could be considered the fixed model case
of the general components of variance approach. Previously we had
wondered why »” was relevant to fixed models and pi, the intraclass
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correlation, to random models as stated by Hays (1963). The reason is
simply that ’ (an arbitrary symbol) refers to the fixed model case from
which its computational formula is derived, while p; is comparable to
o’ except that it is the symbol chosen to designate the computational
formula taken from the same components of variance approach when
the model is random. A third symbol could just as easily have been
chosen for those formulae derived from the components of variance
approach when the underlying model is mixed.

To summarize briefly, both w” and p; can be considered special cases
of the components of variance approach. And though it is a population
parameter, w’ is more analogous to n’, since its denominator (ofo) is
more similar to the denominator in 7° (SSto) than to the denominator
in the partial n° (SSs + SS.).

One means of clarifying the important points made in this section
on the comparison of effect sizes is to illustrate the extent of differences
among effect size estimates with specific examples taken from the
literature. Table | shows several effect size estimates calculated from
data taken from Byrne and Rhamey (1965). n® and o’ are very com-
parable, as are partial 7* and r7. However, these two separate sets of
estimates are discrepant. Since partial n° is based on a denominator
using only source and error SS, sums of squares based on other main
effects and interactions are not used in the calculation as they would be
in effect size estimates based on total variation (n° and w”). Conse-
quently, partial n° will be substantially larger than w® when any other
sources (main effects or interactions) account for considerable variance,
as is the case in Byrne and Rhamey. Only when SSto: approximates
SS: + SS. (i.e., other sources of variance are close to zero) will these
measures be comparable. Also obvious from Table 1 is that partial
n%, partial na, and partial n¢xa sum to more than 100%. This is also
true of r4, though this is not true of n° or w’. Since effect sizes are typi-
cally of small absolute magnitude, the undesirable feature of accounting
for more than 1009% variance would not likely be discovered by re-
searchers.

Effect size estimates in Table 1 (taken from Vitalo, 1970) allow
comparisons in the one-way ANOVA as well as this two-way case.
Here, the proportion of variance accounted for by sources is smaller
than proportions in the Byrne and Rhamey study. n’, partial °, and
1% are indeed equal in the one-way ANOVA. Though o is more similar
to n° than to partial n° and rm, such a population parameter is not
likely to approximate closely sample statistics when the sample size is
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TABLE 1
Comparison of Effect Size Estimates in Three Different Studies*
5 55
Source of Variation T SS% (.02 = Partial 2.2
Tot = artial M —rm

Percentage of Variance Accounted for

I. Evaluation (E) 41.0 40.6 56.5
Attitudes (A) 23.1 22.5 42.3
Ex A 4.3 3.1 119

II. (a) (1-way ANOVA)
Conditioning 28.0 20.8 28.0

(b) (2-way ANOVA,
between Ss)

Conditioning (C) 2 0.0 0.0
Interviewing (1) 5.9 2.2 6.4
CxI 7.4 3.7 7.9

1II. (From a 3-way ANOVA)

Achievement (A) 57. 57.6 71.6
Company policy (C) 16.8 17.0 42.7
AxC 0.8 1.2 49

*Byrne and Rhamey, 1965 (I); Vitalo, 1970 (II); Lindsay et al., 1967 (III).

small, as is the case in Vitalo. Effect size estimates of sources in the
two-way ANOVA are generally comparable, since other sources than
those being tested account for small proportions of the total variance.
Again, o’ is more discrepant from 5’ than in the Byrne and Rhamey
data due to the smaller sample size.

Another interesting comparison among effect size estimates can be
made by choosing published studies which have reported effect size
estimates. For example, in Lindsay, Marks, and Gorlow (1967) the
n’ effect size estimate closely parallels respective w” values due to the
large sample size. However, the existence of main effects, which account
for substantial portions of the total variance, causes w’ and partial
7 to be discrepant.

Hard and fast decision rules regarding choice among effect size
estimates are difficult to produce and perhaps undesirable. However,
w’ appears to be the logical choice if the researcher wishes to be con-
servative in statements regarding percentage of total variance accounted
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for. The fact that partial #° values summed across all the sources of
variation in an experiment may total more than 1009 should be
considered a weakness of thi. statistic. It is also a bit uncomfortable
to work with percentages that do not share the same base and that do
not use 100% as a standard, even when the sum does not surpass 100%.
However, given the typical research scenario in which the total SSs is
made up largely of error variability, while other sources of variation
contribute little to the total, the choice of an appropriate effect size
estimate may be based on more practical considerations, such as
computational ease. The best practice may be to report two or more
estimates and let the reader judge the effectiveness of the results re-
ported in the experiment.

HOW MUCH VARIANCE
IS THERE TO BE EXPLAINED?

It seems generally and naively to be assumed by those who favor
calculations of proportion of variance explained that the actual variance
to be explained is 100%. That assumption is unwarranted, since it
requires the additional assumption that the dependent measure is
measured without error. For the most part, investigators seem con-
ceptually to deal with total variance as if it consisted of two parts: that
variance accounted for by the experimental factors and a residual part
commonly called “error.” Actually the total variance is better regarded
as “partitionable” three ways: variance explained by the experimental
factors, reliable variance not accounted for by experimental factors,
and error, or unreliable variance. By definition, unreliable variance
cannot be accounted for.

Consider, for example, a study of a helicopter patrol strategy for
decreasing the incidence of specific crimes (e.g., Schnelle et al., 1977).
Presumably, the number of crimes occurring during helicopter patrol-
ling would be subject to errors reflected in a host of reliable factors not
accounted for by the experimental manipulation (number of criminals
in the area, time of year, unemployment rate, etc.). Consequently, what
variance could even in principle be explained by the helicopter patrol
intervention would be total variance minus the error variance. If the
patrol strategy manipulation accounted for 209 of the total variance,
when there was only 409 reliable variance, the seeming importance of
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the experimental factors might be small even though, from the more
insightful position where total reliable variance is known, the impor-
tance of experimental factors would be greatly enhanced.

The argument presented here is reflected in the psychometric
relationship between reliability and validity of a measure, it being the
case that the maximum achievable validity of measure is limited to
\/ru. Thus, if a measure has a reliability coefficient® of .81, the maxi-
mum validity coefficient that could be associated with a predictor of
that measure would be .90, but it is the reliability coefficient, .81
(i.e., .902), that indicates the reliable variance to be accounted for.
Therefore, if a dependent measure in an experiment had a reliability
of .81, rather than estimating proportion of variance accounted for by
an experimental variable against a maximum of 100%, the estimate
should be done against the base of 819. A variable that accounted
for 209% of the total variance in such a situation would account for
259 of the reliable variance.

WHAT DETERMINES OUR ABILITY
TO ACCOUNT FOR VARIANCE?

Now that the concept of accounting for variance has been explained
in detail, it remains to be explained what determines variance accounted
for. As a general proposition it can be stated that all measures of
variance accounted for are specific to characteristics of the experiments
from which the estimates were obtained, and therefore the ultimate
interpretation of proportion of variance accounted for is a dubious
prospect at best. There are, in fact, several determinants of variance
accounted for within any experiment, and there are only inexact ways
of knowing about or estimating the importance of those determinants.

The problem of interpreting a measure of variance accounted for
begins with the fact that all such measures are essentially ratios of
variance within some treatment to a more inclusive variance estimate
ranging from treatment plus error up to total experimental variance.
The fact that a ratio is involved should suggest immediately that
estimates of variance accounted for might be unstable, since small
changes in the denominator may well change estimates drastically due
to decisions made about how an experiment will be carried out. (For a
more extended discussion of the following factors that determine our
ability to account for variance, see Sechrest and Yeaton, 1981c.)
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BUILT-IN VARIANCE

First, the total variance to be accounted for will vary as a conse-
quence of how much variance is built into the experiment. Thus, if
experimental subjects are quite heterogeneous in factors associated
with scores on dependent measures, there will be a larger total variance
than if subjects are homogeneous (Glass and Hakstian, 1969). It should
be easier to account for a lot of variance in the self-esteem scores of
15-year-old male delinquents in two experimental conditions than to
account for the same proportion of variance in scores of two groups of
delinquents whose only commonality is that they all live in the same
county. Failure to replicate otherwise consistent results may be ex-
plained by the heterogeneity of the subject sample used in the study
(e.g., Oakes, 1972).

EXPERIMENTAL PRECISION

Another determinant of total variance in an experiment is the
precision achieved in planning and the integrity maintained in imple-
menting the experiment (Sechrest et al., 1979; Yeaton and Sechrest,
1981a). Consider, for example, the almost certain difference between
otherwise identical experiments when one of them involves only a
single, motivated experimenter, while the other involves several experi-
menters with little direct interest in the outcome. The second experiment
would certainly have a greater total variance, and the apparent experi-
mental effect would be smaller. Note, however, that there is no neces-
sary effect on means of the experimental groups; hence, subtracting one
mean from another might well suggest the same effect in the two experi-
ments. There are many sources of imprecision that might cause two
experiments to differ even if the same experimental treatment is being
employed. Degree of standardization of experimenter demand, clarity
of instructions, calibration of apparatus, degree of control achieved
with respect to strength of the experimental manipulation, reliability
of outcome measures, and many other factors will affect total variance
to be explained and, consequently, proportion of variance explainable
by any given variable.

An interesting instance is provided by two experiments (Brady et al.,
1976; Vitalo, 1970) involving the same experimental treatment and a
generally serious attempt at replication. Brady et al. state that “the
only known deviation from Vitalo’s (1970) study is that the number of
subjects was increased from 28 to 32.” A critical difference in the results
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of the two studies was that Vitalo reported an F of 13.10 (p <.005) for
an experimenters X conditions interaction, while Brady et al. obtained
an F of only 1.54 (n.s.). The problem becomes clear when the SS for
error is examined, for it is 2.40 in the first study and 19.88 in the second.
(All other SSs in the source table were comparable.) For whatever
reason, and despite their seemingly careful attempt to replicate Vitalo’s
experiment, Brady, Rowe, and Smouse produced a considerably larger
amount of unexplained variation in the within-subjects part of their
experiment.

Even if one wanted to compare the variance accounted for by two
treatments within the same experiment, it is important to recognize
that they may contribute differentially to error variance. Consider an
experiment in which a drug and a behavioral intervention are to be
jointly tested. It may be possible to achieve more control over the drug
dosage than over the behavioral manipulation. In such a case, one
might be seriously misled about the potential magnitude of the effect
produced by the drug, since it would be judged not in terms of its own
characteristic error but in terms of the total error associated with it
and the behavior manipulation.

NUMBER OF TREATMENTS

Another factor which determines the variance one can account for
in an experiment is the number of treatments being tested within the
experiment. In general we would expect that the more effects that are
being analyzed for, the smaller the error term would be. Thus, one
could expect to account by any one variable for a larger proportion of
the variance when one or more other variables is being simultaneously
studied (Kennedy, 1970).

The various indices of variance accounted for utilize different de-
nominators and hence are differentially susceptible to the effects of
multiple factors in experiments. Specifically, w® uses an estimate of
total variance in the denominator, while n° and rn, use source plus error.
Therefore, w® will always be smaller than the other indices in multifactor
experiments and probably is the index to be preferred.

STRENGTH OF TREATMENTS

Of great theoretical and practical interest is the fact that proportion
of variance accounted for obviously depends on the strength of the
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experimental treatment (see Sechrest and Redner, 1979; Sechrest et al.,
1979; Yeaton and Redner, forthcoming). A weak treatment could
account for only a small proportion of the variance in most experiments,
while a strong treatment could account for a large proportion. The
problem in interpreting proportion of variance accounted for is that
we rarely—at least in the social and behavioral sciences—have an
independent measure of the strength of the treatment administered. For
example, suppose one wished to know whether attitudinal similarity or
physical attractiveness is a stronger determinant of interpersonal
attraction. One could probably do little better than merely to describe
the manipulations used to produce the levels of each factor and con-
clude that for the levels tested one or the other factor seemed to account
for more variance in interpersonal attraction. For the more important
theoretical question of which is generally more important, no statement
can be made. There is no common metric for the two variables, so one
cannot say how much physical attractiveness is equal to how much
attitudinal similarity; consequently one could not say whether the
treatments were of even approximately equal strength.

In only a few cases do experimenters attempt to determine the
strength of a treatment employed, other than by its effect on the
dependent variable. When the attempt is made, it is often by means of
a “manipulation check” whose meaning can only be taken literally.
To show, for example, that experimental and control groups differ as
they should on a seven-point rating scale gives no clue about the
strength of treatment beyond the fact that it was different between
the two conditions. How many scale points of difference between
experimentz] and control groups means would be indicative of a
moderately strong treatment? Of a very strong treatment? Without
some way of assessing the strength of treatment, it makes little sense
to talk about the proportion of variance it accounts for.

RANGE OF TREATMENTS

Still another limitation on interpretations of proportion of variance
accounted for is that for any treatment involving more than two levels
of an estimate of proportion of variance accounted for, far more can be
obscured than revealed. If one were testing the effects of two alternative
drugs for controlling blood pressure, even if one of the drugs were more
effective than the other, relatively little of the variance in terminal
blood pressures might be accounted for by the treatment effect. If],
however, one added an untreated control group to the experiment, the
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treatment effect might, with seeming magic, be doubled. Glass and
Hakstian (1969) have addressed this problem and note that it had
previously been discussed by Sir Ronald Fisher (1946). A particularly
apt example, however, has been provided by Levin (1967). He described
an experiment with six experimental conditions analyzed by a one-way
ANOVA, with the result that o’ was 37%. However, subsequent
analyses indicated that over 85% of the explained variation was attrib-
utable to the superiority of one group to all the others.

REAL-WORLD VARIANCE

One final problem in interpreting proportion of variance accounted
for has to do with its “external validity” that is, its relationship to any
“real-world” context in which one might want to draw inferences about
the probable effect of some intervention. The variance that exists
within an experiment depends largely on how the experimenter plans
and implements the experiment. In the laboratory, when an experi-
menter studies the probability of a guilty verdict as a function of the
physical attractiveness of a defendant, all other potential sources of
variance in the determination of the verdict are controlled out of the
experiment to as great an extent as possible, thus reducing the error
term (unexplained variance) to a value below that likely to exist in the
extraexperimental context. We are not arguing that physical attractive-
ness has no effect outside the social psychology laboratory; but we do
argue that the fact that physical attractiveness can be made to affect
responses in the laboratory in some degree does not mean that physical
attractiveness has the same effect, let alone to the same degree, in the
extraexperimental world.

THE SEARCH FOR EFFECTIVENESS CRITERIA

It appears to us that no purely statistical method for assessing
magnitude of experimental effects is going to be satisfactory, at least
if one leaves the fairly abstract world of theory building and enters into
the realm of practical decision making. On the other hand, it is clearly
not going to be satisfactory to continue as if all significant effects were
important or to rely on haphazard or intuitive judgments. There appear
to be no simple solutions for a whole variety of reasons, some of which
would be remediable by changes in editorial policies and in ways in
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which investigators report their findings. At present it does not appear
to us likely that any single procedure or set of rules will soon emerge.
What is more likely is that the demands and customs prevalent in
different research areas will result in differing opportunities to develop
empirical rules for estimation of effect size. Some rules are likely to
involve a degree of arbitrariness and good judgment, while others will
probably be normative at some level.

We have begun to explore several alternative methods and to assess
the interrelation of these approaches (Sechrest and Yeaton, 198la,
1981b; Yeaton and Sechrest, 1981a, 1981b). These initial efforts may
provide the first steps toward the development of a set of useful tools
for thinking about the outcome of experiments. The ability of these
methods to discriminate between large and small experimental effects
may be reflected in the acceptability of the procedures to investigators
and decision makers. That these methods be impressive enough for
acceptance is a telling test of our success in estimating magnitudes of
experimental effects.

NOTES

1. However, see Sechrest and Yeaton (1981a) for an explanation of why small differ-
ences at the means of two distributions may in some circumstances be important at the
extremes.

2. A particularly cogent treatment of the test of significance and problems in its
interpretation was provided some years ago by Bakan (1966), in a paper still worth
reading.

3. Meehl (1967) has noted the paradox in the differences between the approaches and
methods of physics and psychology: The better the methods employed in physics, the
greater the probability that the experiment will disprove the hypothesis, while in psy-
chology hypotheses are stated in terms of deviations from the null.

4. Space limitations prevent further explanation, but we note that it obviously makes
a great deal of difference which reliability coefficient one chooses to estimate variance to
be accounted for. Cronbach et al. (1972) present a particularly cogent discussion of the
issues involved, and their work should be consulted.

5. Tversky and Kahneman (1971) have demonstrated that attempts to replicate ex-
perimental findings are quite likely to fail unless the replication experiment has a sub-
stantially larger N with the resulting increase in statistical power. Brady et al. were on the
right track in increasing sample size but did not go far enough. In order to know whether
they did or did not replicate Vitalo’s findings, it would be necessary to have a tabie of
means as well as an ANOVA table, since the direction of results could have been replicated
even though statistical significance was not achieved. Unfortunately, Brady et al. did not
give a table of means, nor do they report directions of effects in their text.
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