Characteristics of Low-Temperature Polyvinyl Chloride Carbonization by Catalytic CuAl Layered Double Hydroxide
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Sample
2.3. Methods of Characterization and Instruments
3. Results and Discussion
3.1. Thermogravimetric Analysis of Catalytic Pyrolysis of PVC
3.2. Thermogravimetric Analysis of Different Contents of CuAl-LDH on the Carbonization of PVC
3.3. Effect of Varying Pyrolysis Atmosphere on the Carbonization of PVC Composites
3.4. Effect of Carbonization Temperature on the Carbonization of PVC Composites
3.5. Effect of Heating Rate on the Carbonization of PVC Composites
3.6. Effect of Carbonization Maintenance Time on the Carbonization of PVC Composites
3.7. Analysis of the Carbonized Product of PVC/CuAl-LDH-5% by Elemental Analysis
3.8. Analysis of the Carbonized Product of PVC/CuAl-LDH-5% by SEM
4. Conclusions
- (1)
- CuAl-LDH acts as a catalyst for pyrolysis, and at the right carbonization temperature (about 300 °C), the carbon material can be prepared by the use of low-temperature carbonization of PVC.
- (2)
- For a double-stage process for the low-temperature catalytic pyrolysis and carbonization of PVC, CuAl-LDH not only reduces the pyrolysis temperature and accelerates the dehydrochlorination of PVC in the pyrolysis stage, but also impedes the release of hydrocarbons in the carbonization stage.
- (3)
- For the process of low-temperature carbonization of PVC by CuAl-LDH catalysis, CuAl-LDH accounts for 5% of PVC mass when under vacuum atmosphere (vacuum degree ≤0.08 MPa) at a carbonization temperature of ≥300 °C, heating rate of ≥20 °C/min and carbonization maintenance time of 90 min.
- (4)
- The carbonized product is prepared by low-temperature carbonization of PVC, which displays a cellular structure on the surface and has high carbon content (66.91%) and hydrogen content (5.16%).
Author Contributions
Funding
Conflicts of Interest
References
- Starnes, W.H. Structural and mechanistic aspects of the thermal degradation of poly (vinyl chloride). Prog. Polym. Sci. 2002, 27, 2133–2170. [Google Scholar] [CrossRef]
- Miskolczi, N.; Bartha, L.; Angyal, A. Pyrolysis of polyvinyl chloride (PVC)-containing mixed plastic wastes for recovery of hydrocarbons. Energy Fuels. 2009, 23, 2743–2749. [Google Scholar] [CrossRef]
- Braun, D. Recycling of PVC. Prog. Polym. Sci. 2002, 27, 2171–2195. [Google Scholar] [CrossRef]
- Cao, Q.M.; Yuan, G.A.; Yin, L.J.; Chen, D.Z.; He, P.J.; Wang, H. Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: Influence of PVC content and heating rate. Waste Manag. 2016, 58, 241–249. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Bakhshandeh, G.R. Recycling of PVC wastes. Polym. Degrad. Stab. 2011, 96, 404–415. [Google Scholar] [CrossRef]
- Lin, Y.H.; Tseng, C.C.; Wei, T.T.; Hsu, C.T. Recycling of dual hazardous wastes in a catalytic fluidizing process. Catal. Today 2011, 174, 37–45. [Google Scholar] [CrossRef]
- Panagiotou, T.; Levendis, Y. A study on the combustion characteristics of PVC, poly (styrene), poly (ethylene), and poly (propylene) particles under high heating rates. Combust. Flame 1994, 99, 53–99. [Google Scholar] [CrossRef]
- McNeill, I.C.; Memetea, L.; Cole, W.J. A study of the products of PVC thermal degradation. Polym. Degrad. Stab. 1995, 49, 181–191. [Google Scholar] [CrossRef]
- Grimes, S.M.; Lateef, H.; Jafari, A.J.; Mehta, L. Studies of the effects of copper, copper (II) oxide and copper (II) chloride on the thermal degradation of poly (vinyl chloride). Polym. Degrad. Stab. 2006, 91, 3274–3280. [Google Scholar] [CrossRef]
- Williams, P.T.; Williams, E.A. Recycling plastic waste by pyrolysis. J. Inst. Energy 1998, 71, 81–93. [Google Scholar]
- Kaminsky, W.; Kim, J.S. Pyrolysis of mixed plastics into aromatics. J. Anal. Appl. Pyrol. 1999, 51, 127–134. [Google Scholar] [CrossRef]
- Costner, P. Correlation of chlorine input and PCDD/PCDF emissions at a full-scale hazardous waste incinerator. Organohalogen Compd. 1998, 36, 147–152. [Google Scholar]
- Zhu, H.M.; Jiang, X.G.; Yan, J.H.; Chi, Y.; Cen, K.F. TG-FTIR analysis of PVC thermal degradation and HCl removal. J. Anal. Appl. Pyrol. 2008, 82, 1–9. [Google Scholar] [CrossRef]
- Yu, J.; Sun, L.; Ma, C.; Qiao, Y.; Yao, H. Thermal degradation of PVC: A review. Waste Manag. 2016, 48, 300–314. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S. The Microwave Induced Pyrolysis of Problematic Plastics Enabling Recovery and Component Reuse; Civil and Environmental Engineering, Imperial College London: London, UK, 2014. [Google Scholar]
- Buekens; Castro, A.; Carneiro, C.; Vilarinho, C.; Soares, D.; Maçães, C.; Sousa, C.; Castro, F. Study of a two steps process for the valorization of PVC-containing wastes. Waste Biomass Valoriz. 2013, 4, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Qiao, W.M.; Song, Y.; Yoon, S.H.; Korai, Y.; Mochida, I.; Yoshiga, S.; Fukuda, H.; Yamazaki, A. Carbonization of waste PVC to develop porous carbon material without further activation. Waste Manag. 2006, 26, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.B.; Lu, J.; Gao, J. Study of the low temperature pyrolysis of PVC. Energy Fuels 2002, 16, 338–342. [Google Scholar] [CrossRef]
- López-Urionabarrenechea, A.; De Marco, I.; Caballero, B.M. Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Process. Technol. 2011, 92, 253–260. [Google Scholar] [CrossRef]
- Yuan, G.A.; Chen, D.Z.; Yin, L.J.; Wang, Z.; Zhao, L.; Wang, J.Y. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor. Waste Manag. 2014, 34, 1045–1050. [Google Scholar] [CrossRef]
- Lee, C.C.; Huffman, G.L. Medical waste management/incineration: Review. J. Hazard. Mater. 1996, 48, 1–30. [Google Scholar] [CrossRef]
- Tamplin, S.A.; Davidson, D.; Powis, B. Issues and options for the safe destruction and disposal of used injection materials. Waste Manag. 2005, 25, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Stabilized PVC Resin Composition. Available online: http://www.doc88.com/p-9035334267527.html (accessed on 3 December 2019).
- Van der Ven, L.; Van Gemert, M.L.M.; Batenburg, L.F.; Keern, J.J.; Gielgens, L.H.; Koster, T.P.M.; Fischer, H.R. On the action of hydrotalcite-like clay materials as stabilizers in polyvinylchloride. Appl. Clay Sci. 2000, 17, 25–34. [Google Scholar] [CrossRef]
- Pike, R.D.; Starnes, W.H.; Jeng, J.P.; Bryant, W.S.; Kourtesis, P.; Adams, C.W.; Bunge, S.D.; Kang, Y.M.; Kim, A.S.; Kim, J.H.; et al. Low-valent metals as reductive crosslinking agents: A new strategy for smoke suppression of poly (vinyl chloride). Macromolecules 1997, 30, 6957–6965. [Google Scholar] [CrossRef]
- Fan, G.; Li, F.; Evans, D.G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, T.; Christopher, J.; Sakthivel, A. Progress on layered hydrotalcite (HT) materials as potential support and catalytic materials. RSC Adv. 2015, 5, 98853–98875. [Google Scholar] [CrossRef]
- Yang, Y. Preparation and Flammability of PVC/CuAl-LDH Nanocomposites Synthesized by Melt Blending. Sci. Adv. Mater. 2015, 7, 1858–1862. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.H.; Han, X.X.; Zhang, X.; Yi, M.T.; Yang, S.Y.; Yu, D.Y.; Liu, W.J. Catalytic Dechlorination and Charring Reaction of Polyvinyl Chloride by CuAl Layered Double Hydroxide. Energy Fuels 2018, 32, 2407–2413. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, W.; Liu, T. Effects of copper-containing layered double hydroxide on thermal and smoke behavior of poly (vinyl chloride). J. Appl. Polym. Sci. 2011, 122, 273–281. [Google Scholar] [CrossRef]
Sample | PVC (g) | TOTM (g) | CuAl-LDH (g) |
---|---|---|---|
PVC | 100 | 25 | 0 |
PVC/CuAl-LDH-4% | 100 | 25 | 4 |
PVC/CuAl-LDH-5% | 100 | 25 | 5 |
PVC/CuAl-LDH-6% | 100 | 25 | 6 |
PVC/CuAl-LDH-7% | 100 | 25 | 7 |
Name | Symbols/Units | Mass Ratio of CuAl-LDH (%) | ||||
---|---|---|---|---|---|---|
0 | 4 | 5 | 6 | 7 | ||
Onset degradation temperature | Tonset (°C) | 252 | 241 | 238 | 239 | 241 |
Temperature of the maximum mass loss rate in the first stage | Tmax1 (°C) | 317 | 305 | 300 | 304 | 305 |
Yield of residue at end temperature | Wend (%) | 6.35 | 11.38 | 20.48 | 15.04 | 14.71 |
Heating Rate (°C/min) | 10 | 20 | 30 | 40 |
---|---|---|---|---|
Yield of carbonized product (%) | 31.5 | 33.3 | 31.3 | 30.5 |
Sample | C (%) | H (%) | N (%) |
---|---|---|---|
PVC/CuAl-LDH-5% | 66.91 | 5.16 | 0.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, E.; Liu, W.; Zhang, S.; Fu, N.; Tian, Z. Characteristics of Low-Temperature Polyvinyl Chloride Carbonization by Catalytic CuAl Layered Double Hydroxide. Processes 2020, 8, 120. https://doi.org/10.3390/pr8010120
Pang E, Liu W, Zhang S, Fu N, Tian Z. Characteristics of Low-Temperature Polyvinyl Chloride Carbonization by Catalytic CuAl Layered Double Hydroxide. Processes. 2020; 8(1):120. https://doi.org/10.3390/pr8010120
Chicago/Turabian StylePang, Erwei, Weijun Liu, Shuhua Zhang, Nengshuo Fu, and Zhongxun Tian. 2020. "Characteristics of Low-Temperature Polyvinyl Chloride Carbonization by Catalytic CuAl Layered Double Hydroxide" Processes 8, no. 1: 120. https://doi.org/10.3390/pr8010120