Polyphenol Content and Biological Activities of Ruta graveolens L. and Artemisia abrotanum L. in Northern Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Plant Materials
2.2. Phenolic Compound Analysis
2.3. Antioxidant Activity
2.4. Anticancer Activities
2.4.1. Antiproliferative Assay
2.4.2. Flow Cytometry
2.5. Antibacterial Activities
2.6. Antifungal Activities
2.7. Statistical Analyses
3. Results
3.1. Polyphenol Profiles of the Leaf Extracts
3.2. Antioxidant Effects
3.3. MTT Assay and Flow Cytometry
3.4. Antibacterial Activities of Leaf Extracta and Identified Polyphenols
3.5. Antifungal Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halagarda, M.; Groth, S.; Popek, S.; Rohn, S.; Pedan, V. Antioxidant activity and phenolic profile of selected organic and conventional honeys from Poland. Antioxidants 2020, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elansary, H.O.; Szopa, A.; Kupica, P.; Ekiert, H.; El-Ansary, D.O.; Al-Mana, F.A.; Mahmoud, E.A. Polyphenol profile and antimicrobial and cytotoxic activities of natural Mentha × piperita and Mentha longifolia populations in Northern Saudi Arabia. Processes 2020, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.Z.M.; Elansary, H.O.; Ali, H.M.; El-Settawy, A.A.; Elshikh, M.S.; Abdel-Salam, E.M.; Skalicka-Wozniak, K. Bioactivity of essential oils extracted from Cupressus macrocarpa branchlets and Corymbia citriodora leaves grown in Egypt. BMC Complement. Altern. Med. 2018, 18, 23. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Al-Mana, F.A.; Mahmoud, E.A.; El-Abedin, T.K.A.Z.; Mattar, M.A.; Ekiert, H. Phenolic compounds of Catalpa speciosa, Taxus cuspidata, and Magnolia acuminata have antioxidant and anticancer activity. Molecules 2019, 24, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Mattar, M.A.; Al-Yafrasi, M.A.; El-Ansary, D.O.; Zin El-Abedin, T.K.; Yessoufou, K. Polyphenol profile and pharmaceutical potential of Quercus spp. bark extracts. Plants 2019, 8, 486. [Google Scholar] [CrossRef] [Green Version]
- Elansary, H.O. Tree bark phenols regulate the physiological and biochemical performance of Gladiolus flowers. Processes 2020, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Elansary, H.O.; Szopa, A.; Klimek-Szczykutowicz, M.; Jafernik, K.; Ekiert, H.; Mahmoud, E.A.; Barakat, A.A.; El-Ansary, D.O. Mammillaria species—Polyphenols studies and anti-cancer, anti-oxidant, and anti-bacterial activities. Molecules 2019, 25, 131. [Google Scholar]
- Khan, M.; Siddiqui, S.A. Concurrent chemoradiotherapy with or without induction chemotherapy for the management of cervical lymph node metastasis from unknown primary tumor. J. Cancer Res. Ther. 2018, 14, 1117–1120. [Google Scholar] [CrossRef]
- Alvarado-Sansininea, J.J.; Sánchez-Sánchez, L.; López-Muñoz, H.; Escobar, M.L.; Flores-Guzmán, F.; Tavera-Hernández, R.; Jiménez-Estrada, M. Quercetagetin and Patuletin: Antiproliferative, necrotic and apoptotic activity in tumor cell lines. Molecules 2018, 23, 2579. [Google Scholar] [CrossRef] [Green Version]
- Sezer, E.D.; Oktay, L.M.; Karadadaş, E.; Memmedov, H.; Selvi Gunel, N.; Sözmen, E. Assessing anticancer potential of blueberry flavonoids, quercetin, kaempferol, and gentisic acid, through oxidative stress and apoptosis parameters on HCT-116 cells. J. Med. Food 2019, 22, 1118–1126. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; El-Hefny, M.; Ali, H.M.; Elansary, H.O.; Nasser, R.A.; El-Settawy, A.A.A.; El Shanhorey, N.; Ashmawy, N.A.; Salem, A.Z.M. Antibacterial activity of extracted bioactive molecules of Schinus terebinthifolius ripened fruits against some pathogenic bacteria. Microb. Pathog. 2018, 120, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.; ElFayoumi, H.M.; Youns, M.; Barakat, W. Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Abdal Dayem, A.; Choi, H.Y.; Yang, G.M.; Kim, K.; Saha, S.K.; Cho, S.G. The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: Molecular mechanisms. Nutrients 2016, 8, 581. [Google Scholar] [CrossRef]
- Costea, T.; Nagy, P.; Ganea, C.; Szöllősi, J.; Mocanu, M.M. Molecular mechanisms and bioavailability of polyphenols in prostate cancer. Int. J. Mol. Sci. 2019, 20, 1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaacob, K.b.; Abdullah, C.M.; Joulain, D. Essential of Ruta graveolens L. J. Essent. Oil Res. 1989, 1, 203–207. [Google Scholar] [CrossRef]
- Szopa, A.; Ekiert, H.; Szewczyk, A.; Fugas, E. Production of bioactive phenolic acids and furanocoumarins in in vitro cultures of Ruta graveolens L. and Ruta graveolens ssp. divaricata (Tenore) Gams. under different light conditions. Plant Cell Tissue Organ Cult. 2012, 110, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Ueng, Y.F.; Chen, C.C.; Huang, Y.L.; Lee, I.J.; Yun, C.H.; Chen, Y.H.; Huang, C.C. Effects of aqueous extract of Ruta graveolens and its ingredients on cytochrome P450, uridine diphosphate (UDP)-glucuronosyltransferase, and reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H)-quinone oxidoreductase in mice. J. Food Drug Anal. 2015, 23, 516–528. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, E.A.; Elansary, H.O.; El-Ansary, D.O.; Al-Mana, F.A. Elevated bioactivity of ruta graveolens against cancer cells and microbes using seaweeds. Processes 2020, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Sidwa-Gorycka, M.; Krolicka, A.; Orlita, A.; Malinski, E.; Golebiowski, M.; Kumirska, J.; Chromik, A.; Biskup, E.; Stepnowski, P.; Lojkowska, E. Genetic transformation of Ruta graveolens L. by Agrobacterium rhizogenes: Hairy root cultures a promising approach for production of coumarins and furanocoumarins. Plant Cell Tissue Organ Cult. 2009, 97, 59–69. [Google Scholar] [CrossRef]
- Diwan, R.; Malpathak, N. Phytochemical composition and antioxidant potential of Ruta graveolens L. in vitro culture lines. J. Bot. 2012, 2012. [Google Scholar] [CrossRef]
- Mancuso, G.; Borgonovo, G.; Scaglioni, L.; Bassoli, A. Phytochemicals from Ruta graveolens activate TAS2R bitter taste receptors and TRP channels involved in gustation and nociception. Molecules 2015, 20, 18907–18922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Qurainy, F.; Khan, S.; Ali, M.A.; Al-hemaid, F.M.; Tarroum, M.; Ashraf, M. Authentication of Ruta graveolens and its adulterant using internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Pak. J. Bot. 2011, 43, 1613–1620. [Google Scholar]
- Malik, A.; Mir, S.R.; Ahmad, J. Ruta graveolens L. essential oil composition under different nutritional treatments. Middle East J. Sci. Res. 2013, 17, 885–890. [Google Scholar]
- Kowalski, R.; Wawrzykowski, J.; Zawiślak, G. Analysis of essential oils and extracts from Artemisia abrotanum L. and Artemisia dracunculus L. Herba Pol. 2007, 53, 246–254. [Google Scholar]
- Tabanca, N.; Demirci, B.; Blythe, E.; Bernier, U.; Ali, A.; Wedge, D.; Khan, I.; Baser, K.H.C. Composition of Artemisia abrotanum and A. pontica essential oils and their repellent activity against Aedes aegypti. Planta Med. 2011, 77, 1305. [Google Scholar] [CrossRef]
- Baiceanu, E.; Vlase, L.; Baiceanu, A.; Nanes, M.; Rusu, D.; Crisan, G. New polyphenols identified in Artemisiae abrotani herba extract. Molecules 2015, 20, 11063–11075. [Google Scholar] [CrossRef]
- Malik, R.; Gupta, R.C.; Kumari, S. Genetic diversity in different populations of Artemisia absinthium Linn. from Kashmir Himalaya. Cytologia 2010, 75, 273–276. [Google Scholar] [CrossRef] [Green Version]
- Lemma, W.M.; Michael, J.C.; George, O.K. Genetic diversity of biennial wormwood. Weed Sci. 2004, 52, 53–60. [Google Scholar]
- Rzepka-Plevneš, D.; Smolik, M.; Urbanek, K.; Jadczak, D. Morphological and Genetic Variability in Some Artemisia Species; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2009; pp. 687–694. [Google Scholar]
- Vallès, J.; Garcia, S.; Hidalgo, O.; Martín, J.; Pellicer, J.; Sanz, M.; Garnatje, T. Biology, genome evolution, biotechnological issues and research including applied perspectives in Artemisia (Asteraceae). In Advances in Botanical Research; Kader, J.C., Delseny, M., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 60, pp. 349–419. [Google Scholar]
- Elansary, H.O.; Szopa, A.; Kubica, P.; El-Ansary, D.O.; Ekiert, H.; Al-Mana, F.A. Malus baccata var. gracilis and Malus toringoides Bark polyphenol studies and antioxidant, antimicrobial and anticancer activities. Processes 2020, 8, 283. [Google Scholar] [CrossRef] [Green Version]
- Ellnain-Wojtaszek, M.; Zgórka, G. High-performance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 1457–1471. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Maślanka, A.; Szewczyk, A.; Muszyńska, B. Determination of physiologically active compounds in four species of Genus phellinus. Nat. Prod. Commun. 2017, 12, 363–366. [Google Scholar] [PubMed]
- Elansary, H.O.; Yessoufou, K.; Abdel-Hamid, A.M.E.; El-Esawi, M.A.; Ali, H.M.; Elshikh, M.S. Seaweed extracts enhance salam turfgrass performance during prolonged irrigation intervals and saline shock. Front. Plant Sci. 2017, 8, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, J.P.A.; Miranda, I.; Sousa, V.B.; Pereira, H. Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts. PLoS ONE 2018, 13, e0197135. [Google Scholar] [CrossRef]
- El-Esawi, A.M.; Elkelish, A.; Soliman, M.; Elansary, O.H.; Zaid, A.; Shabir, W.H. Serratia marcescens BM1 enhances cadmium stress tolerance and phytoremediation potential of soybean through modulation of osmolytes, leaf gas exchange, antioxidant machinery, and stress-responsive genes expression. Antioxidants 2020, 9, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elansary, H.O.; Agnieszka, S.; Klimek-Szczykutowicz, M.; Ekiert, H.; Barakat, A.A.; Al-Mana, F.A. Antiproliferative, antimicrobial, and antifungal activities of polyphenol extracts from Ferocactus species. Processes 2020, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Elansary, H.O.; Mahmoud, E.A. Basil cultivar identification using chemotyping still favored over genotyping using core barcodes and possible resources of antioxidants. J. Essent. Oil Res. 2015, 27, 82–87. [Google Scholar] [CrossRef]
- Lysiuk, R.; Konieczynski, P.; Viapiana, A.; Wesolowsk, M. Chemical composition of selected commercial herbal remedies in relation to geographical origin and inter-species diversity. Biol. Trace Elem. Res. 2017, 178, 1–9. [Google Scholar]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Ali, H.M.; Elshikh, M.S.; Abdel-Salam, E.M.; El-Esawi, M.; El-Ansary, D.O. Bioactivities of traditional medicinal plants in Alexandria. Evid. Based Complement. Alternat. Med. 2018, 2018, 1463579. [Google Scholar] [CrossRef] [Green Version]
- Elansary, H.O.; Yessoufou, K.; Shokralla, S.; Mahmoud, E.A.; Skaicka-Wozniak, K. Enhancing mint and basil oil composition and antibacterial activity using seaweed extracts. Ind. Crop. Prod. 2016, 92, 50–56. [Google Scholar] [CrossRef]
- Abd El-Kareem, M.S.M.; Mohamed, A.R.; Elansary, H.O.; Al-Mana, F.A. Mass spectral fragmentation of Pelargonium graveolens essential oil using GC–MS semi-empirical calculations and biological potential. Processes 2020, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Turesson, G. The species and the variety as ecological units. Hereditas 1922, 3, 100–113. [Google Scholar] [CrossRef]
- Milesi, S.; Massot, B.; Gontier, E.; Bourgaud, F. Ruta graveolens L.: A promising species for the production of furanocoumarins. Plant Sci. 2001, 161, 189–199. [Google Scholar] [CrossRef]
- Austin, D.J.; Brown, S.A. Furanocoumarin biosynthesis in Ruta graveolens cell cultures. Phytochemistry 1973, 12, 1657–1667. [Google Scholar] [CrossRef]
- Asgarpanah, J.; Khoshkam, R. Phytochemistry and pharmacological properties of Ruta graveolens L. J. Med. Plant Res. 2012, 6, 3942–3949. [Google Scholar] [CrossRef]
- Meinhart, A.; Damin, F.; Miranda, L.; Ferreira, T.; Teixeira, J.; Godoy, H. Chlorogenic acid isomer contents in 100 plants commercialized in Brazil. Food Res. Int. 2017, 99, 522–530. [Google Scholar] [CrossRef]
- Ekiert, H.; Szewczyk, A.; Szopa, A. Free phenolic acids in Ruta graveolens L. in vitro culture. Die Pharmazie 2009, 64, 694–696. [Google Scholar]
- Tunon, H.; Thorsell, W.; Mikiver, A.; Malander, I. Arthropod repellency, especially tick (Ixodes ricinus), exerted by extract from Artemisia abrotanum and essential oil from flowers of Dianthus caryophyllum. Fitoterapia 2006, 77, 257–261. [Google Scholar] [CrossRef]
- Bora, K.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Ferrer-Gallego, R.; Hernandez-Hierro, J.M.; Rivas-Gonzalo, J.; Escribano, T. Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: Synergistic effect and modulation by aromas. Food Res. Int. 2014, 62, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Bergendorff, O.; Sterner, O. Spasmolytic flavonols from Artemisia abrotanum. Planta Med. 1995, 61, 370–371. [Google Scholar] [CrossRef]
- Zhang, M.; Swarts, S.G.; Yin, L.; Liu, C.; Tian, Y.; Cao, Y.; Swarts, M.; Yang, S.; Zhang, S.B.; Zhang, K.; et al. Antioxidant properties of quercetin. Adv. Exp. Med. Biol. 2011, 701, 283–289. [Google Scholar] [PubMed]
- Murakami, Y.; Kawata, A.; Ito, S.; Katayama, T.; Fujisawa, S. Radical-scavenging and anti-inflammatory activity of quercetin and related compounds and their combinations against RAW264.7 cells stimulated with Porphyromonas gingivalis Fimbriae. Relationships between anti-inflammatory activity and quantum chemical parameters. In Vivo 2015, 29, 701–710. [Google Scholar] [PubMed]
- Liang, N.; Kitts, D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilic, I.; Yesiloglu, Y. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 115, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Buravlev, E.V.; Dvornikova, I.A.; Schevchenko, O.G.; Kutchin, A.V. Synthesis and antioxidant ability of novel derivatives based on para-coumaric acid containing isobornyl groups. Chem. Biodivers. 2019, 16, e1900362. [Google Scholar] [CrossRef]
- Pavić, V.; Flačer, D.; Jakovljević, M.; Molnar, M.; Jokić, S. Assessment of total phenolic content, in vitro antioxidant and antibacterial activity of Ruta graveolens L. extracts obtained by choline chloride based natural deep eutectic solvents. Plants 2019, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Świsłocka, R.; Regulska, E.; Karpińska, J.; Świderski, G.; Lewandowski, W. Molecular structure and antioxidant properties of alkali metal salts of rosmarinic acid. experimental and DFT studies. Molecules 2019, 24, 2645. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.X.; Liu, J.; Bai, Y.; Li, J.; Liu, E.W.; He, J.; Jiao, X.C.; Wang, Z.Z.; Gao, X.M.; Zhang, B.L.; et al. The activity-integrated method for quality assessment of reduning injection by on-line DPPH-CE-DAD. PLoS ONE 2014, 9, e106254. [Google Scholar] [CrossRef]
- Bagdas, D.; Gul, N.Y.; Topal, A.; Tas, S.; Ozyigit, M.O.; Cinkilic, N.; Gul, Z.; Etoz, B.C.; Ziyanok, S.; Inan, S.; et al. Pharmacologic overview of systemic chlorogenic acid therapy on experimental wound healing. Naunyn Schmiedebergs Arch. Pharmacol. 2014, 387, 1101–1116. [Google Scholar] [CrossRef]
- Fadlalla, K.; Watson, A.; Yehualaeshet, T.; Turner, T.; Samuel, T. Ruta graveolens extract induces DNA damage pathways and blocks Akt activation to inhibit cancer cell proliferation and survival. Anticancer Res. 2011, 31, 233–241. [Google Scholar]
- Schelz, Z.; Ocsovszki, I.; Bozsity, N.; Hohmann, J.; Zupko, I. Antiproliferative effects of various furanoacridones isolated from Ruta graveolens on human breast cancer cell lines. Anticancer Res. 2016, 36, 2751–2758. [Google Scholar] [PubMed]
- Lee, R.H.; Cho, J.H.; Jeon, Y.J.; Bang, W.; Cho, J.J.; Choi, N.J.; Seo, K.S.; Shim, J.H.; Chae, J.I. Quercetin induces antiproliferative activity against human hepatocellular carcinoma (HepG2) cells by suppressing specificity protein 1 (Sp1). Drug Dev. Res. 2015, 76, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Heber, D.; Henning, S.M. Quercetin increased the antiproliferative activity of green tea polyphenol (-)-epigallocatechin gallate in prostate cancer cells. Nutr. Cancer 2012, 64, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.H.; Yuan, L.; Meng, L.Y.; Qiu, J.L.; Wang, C.B. Quercetin-loaded mixed micelles exhibit enhanced cytotoxic efficacy in non-small cell lung cancer in vitro. Exp. Ther. Med. 2017, 14, 5503–5508. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Yi, J.; Zhang, Y.; Yokoyama, W. Improved chemical stability and antiproliferative activities of curcumin-loaded nanoparticles with a chitosan chlorogenic acid conjugate. J. Agric. Food Chem. 2017, 65, 10812–10819. [Google Scholar] [CrossRef]
- Ali, F.; Hassan, N.; Abdrabou, R. Hepatoprotective and antiproliferative activity of moringinine, chlorogenic acid and quercetin. Int. J. Res. Med. Sci. 2016, 4, 1147–1153. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.H.; Rajamanickam, V.; Nagarajan, S. Antiproliferative effect of p-coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem. Biol. Interact. 2018, 291, 16–28. [Google Scholar] [CrossRef]
- Janicke, B.; Hegardt, C.; Krogh, M.; Onning, G.; Akesson, B.; Cirenajwis, H.M.; Oredsson, S.M. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutr. Cancer 2011, 63, 611–622. [Google Scholar] [CrossRef]
- Tayarani-Najaran, Z.; Makki, F.S.; Alamolhodaei, N.S.; Mojarrab, M.; Emami, S.A. Cytotoxic and apoptotic effects of different extracts of Artemisia biennis Willd. on K562 and HL-60 cell lines. Iran. J. Basic Med. Sci. 2017, 20, 166–171. [Google Scholar]
- Gordanian, B.; Behbahani, M.; Carapetian, J.; Fazilati, M. In vitro evaluation of cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species. Res. Pharm. Sci. 2014, 9, 91–96. [Google Scholar]
- Hirai, I.; Okuno, M.; Katsuma, R.; Arita, N.; Tachibana, M.; Yamamoto, Y. Characterisation of anti-Staphylococcus aureus activity of quercetin. Int. J. Food Sci. Technol. 2010, 45, 1250–1254. [Google Scholar] [CrossRef]
- Jaisinghani, R. Antibacterial properties of quercetin. Microbiol. Res. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhai, X.; Sun, Y.; Yin, C.; Yang, E.; Wang, W.; Sun, D. Antibacterial activity of chlorogenic acid-loaded SiO2 nanoparticles caused by accumulation of reactive oxygen species. Nanotechnology 2020, 31, 185101. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Liu, J.; Cao, M.L.; Deng, J.M.; Kou, J. Extrication process of chlorogenic acid in Crofton weed and antibacterial mechanism of chlorogenic acid on Escherichia coli. J. Environ. Biol. 2016, 37, 1049–1055. [Google Scholar]
- Bag, A.; Chattopadhyay, R.R. Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p-coumaric acid against food-borne bacteria Bacillus cereus and Salmonella typhimurium. Lett. Appl. Microbiol. 2017, 65, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.F.G.; Sales, J.A.; da Rocha, M.G.; Galdino, L.M.; de Aguiar, L.; Pereira-Neto, W.d.A.; de Aguiar Cordeiro, R.; Castelo-Branco, D.d.S.C.M.; Sidrim, J.J.C.; Brilhante, R.S.N. Antifungal effects of the flavonoids kaempferol and quercetin: A possible alternative for the control of fungal biofilms. Biofouling 2019, 35, 320–328. [Google Scholar] [CrossRef]
- Morales, J.; Mendoza, L.; Cotoras, M. Alteration of oxidative phosphorylation as a possible mechanism of the antifungal action of p-coumaric acid against Botrytis cinerea. J. Appl. Microbiol. 2017, 123, 969–976. [Google Scholar] [CrossRef]
- Elansary, H.O.M.; Adamec, L.; Štorchová, H. Uniformity of organellar DNA in Aldrovanda vesiculosa, an endangered aquatic carnivorous species, distributed across four continents. Aquat. Bot. 2010, 24, 214–220. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; El-Hefny, M.; Nasser, R.A.; Ali, H.M.; El-Shanhorey, N.A.; Elansary, H.O. Medicinal and biological values of Callistemon viminalis extracts: History, current situation and prospects. Asian Pac. J. Trop. Med. 2017, 10, 229–237. [Google Scholar] [CrossRef]
Compound | R. graveolens | A. abrotanum |
---|---|---|
Caffeic acid | 18.2 ± 0.5 | 11.2 ± 1.0 |
Chlorogenic acid | 356.0 ± 25.2 | 40.0 ± 3.6 |
p-Coumaric acid | 158.6 ± 18.2 | nd |
Isochlorogenic acid | nd | 496.3 ± 72.5 |
Protocatechuic acid | 49.2 ± 4.8 | 25.2 ± 3.7 |
Syringic acid | nd | 1.9 ± 0.3 |
rosmarinic acid | nd | 241.1 ± 9.2 |
Vanillic acid | nd | 17.9 ± 1.0 |
Quercetin | 375.4 ± 17.2 | nd |
Quercitrin | nd | 106.6 ± 7.2 |
Rutoside | 1010.1 ± 70.1 | nd |
DPPH (IC50, µg/mL) | β-Carotene-Bleaching Assay (IC50, µg/mL) | FRAP (IC50, mM TEAC/g Extract) | |
---|---|---|---|
R. graveolens | 21.3 ± 1.5c | 26.7 ± 2.7c | 32.8 ± 3.1c |
A. abrotanum | 27.1 ± 2.3a | 35.4 ± 0.3a | 39.1 ± 4.1a |
Quercetin | 5.6 ± 0.1d | 6.3 ± 0.1d | 7.9 ± 0.3d |
Chlorogenic acid | 4.2 ± 0.3e | 5.1 ± 0.3d | 6.9 ± 0.2d |
Isochlorogenic acid | 5.17 ± 0.1d | 6.2 ± 0.1d | 7.3 ± 0.1d |
Rosmarinic acid (ok) | 2.7 ± 0.3f | 3.1 ± 0.2e | 3.5 ± 0.2e |
p-Coumaric acid | 3.4 ± 0.1e | 3.9 ± 0.1e | 4.3 ± 0.1e |
Quercitrin | 23.1 ± 2.1b | 28.2 ± 1.5b | 34.9 ± 2.6b |
BHT | 2.7 ± 0.1f | 3.3 ± 0.1e | – |
Trolox | – | – | 3.2 ± 0.3e |
HeLa * | HT-29 | MCF-7 | Jurkat | HEK-293 | |
---|---|---|---|---|---|
R. graveolens | 42.12 ± 3.8b | 47.17 ± 3.2b | 64.86 ± 4.3b | 73.33 ± 4.6b | >400 |
A. abrotanum | 49.97 ± 5.1a | 54.75 ± 2.9a | 71.04 ± 5.5a | 82.64 ± 4.1a | >400 |
Quercetin | 4.9 ± 1.3d | 7.45 ± 1.8f | 21.11 ± 2.6e | 38.31 ± 3.1e | >400 |
Chlorogenic acid | 4.35 ± 0.5d | 15.65 ± 2.5e | 38.65 ± 3.4d | 41.65 ± 4.6e | >400 |
Isochlorogenic acid | 5.6 ± 1.7d | 18.53 ± 1.1d | 46.63 ± 2.1c | 52.73 ± 3.2c | >400 |
Rosmarinic acid | 35.30 ± 3.1c | 25.26 ± 1.7c | 24.26 ± 1.5e | 45.75 ± 3.7d | >400 |
p-Coumaric acid | 6.2 ± 0.3d | 7.8 ± 0.3f | 16.8 ± 1.3f | 33.7 ± 2.6f | >400 |
Vinblastine sulfate | 2.0 ± 0.04e | 15.8 ± 0.5e | ‒ | 0.12 ± 0.02g | 43.2 ± 2.4 |
Taxol | ‒ | ‒ | 0.06 ± 0.005g | ‒ | ‒ |
B. cereus MIC MBC | P. aeruginosa MIC MBC | L. monocytogenes MIC MBC | E. coli MIC MBC | M. flavus MIC MBC | S. aureus MIC MBC | |
---|---|---|---|---|---|---|
R. graveolens | 0.37 ± 0.02c | 0.39 ± 0.01c | 0.43 ± 0.03c | 0.36 ± 0.05c | 0.49 ± 0.05c | 0.31 ± 0.05c |
0.75 ± 0.05 | 0.98 ± 0.04 | 0.89 ± 0.05 | 0.96 ± 0.03 | 0.99 ± 0.07 | 0.84 ± 0.03 | |
A. abrotanum | 0.41 ± 0.03c | 0.47 ± 0.02c | 0.45 ± 0.03c | 0.39± 0.03c | 0.57 ± 0.03c | 0.38 ± 0.05c |
0.91 ± 0.03 | 1.75 ± 0.03 | 0.99 ± 0.04 | 1.02 ± 0.05 | 1.08 ± 0.04 | 0.97 ± 0.05 | |
Quercitrin | 0.07 ± 0.01c | 0.12 ± 0.01c | 0.14 ± 0.01c | 0.13 ± 0.01c | 0.12 ± 0.01c | 0.15 ± 0.01c |
0.13 ± 0.02 | 0.25 ± 0.03 | 0.31 ± 0.03 | 0.28 ± 0.03 | 0.30 ± 0.03 | 0.31 ± 0.03 | |
Isochlorogenic acid | 0.14 ± 0.01c | 0.13 ± 0.01c | 0.13 ± 0.01c | 0.11 ± 0.01c | 0.11 ± 0.01c | 0.11 ± 0.01c |
0.35 ± 0.03 | 0.34 ± 0.03 | 0.35 ± 0.03 | 0.30 ± 0.03 | 0.31 ± 0.03 | 0.31 ± 0.03 | |
p-Coumaric acid | 0.13 ± 0.01c | 0.07 ± 0.01c | 0.25 ± 0.01c | 0.13 ± 0.01c | 0.15 ± 0.02c | 0.24 ± 0.02c |
0.30 ± 0.01 | 0.23 ± 0.03 | 0.57 ± 0.03 | 0.26 ± 0.03 | 0.39 ± 0.03 | 0.48 ± 0.03 | |
Rosmarinic acid | 38.42 ± 2.53a | 36.4 ± 1.46a | 45.42 ± 2.75a | 40.4 ± 2.67a | 30.53 ± 2.53a | 21.53 ± 1.53a |
>500 | >500 | >500 | >500 | >500 | >500 | |
Quercetin | 31.37 ± 1.86b | 32.1 ± 1.15b | 41.42 ± 2.75b | 37.8 ± 1.42b | 27.21 ± 3.98b | 20.75 ± 0.86b |
>500 | >500 | >500 | >500 | >500 | >500 | |
Streptomycin | 0.06 ± 0.01c | 0.10 ± 0.01c | 0.11 ± 0.01c | 0.10 ± 0.01c | 0.11 ± 0.01c | 0.14 ± 0.01c |
0.15 ± 0.02 | 0.20 ± 0.01 | 0.23 ± 0.02 | 0.21 ± 0.02 | 0.20 ± 0.03 | 0.32 ± 0.03 |
Aspergillusflavus MIC MFC | Aspergillusochraceus MIC MFC | Aspergillusniger MIC MFC | Candida albicans MIC MFC | Penicilliumfuniculosum MIC MFC | Penicillium ochrochloron MIC MFC | |
---|---|---|---|---|---|---|
R. graveolens | 0.33 ± 0.03b | 0.47± 0.05b | 0.61± 0.06b | 0.78 ± 0.07b | 0.53 ± 0.03d | 0.64 ± 0.05c |
0.84 ± 0.03 | 1.02 ± 0.7 | 1.12 ± 0.09 | 1.77 ± 0.13 | 1.05 ± 0.05 | 1.54 ± 0.23 | |
A. abrotanum | 0.39 ± 0.05b | 0.55 ± 0.05b | 0.78 ± 0.08b | 0.86 ± 0.09b | 0.85 ± 0.07d | 0.86 ± 0.07c |
0.91 ± 0.05 | 1.23 ± 0.09 | 1.32 ± 0.11 | 1.96 ± 0.17 | 1.75 ± 0.09 | 1.89 ± 0.15 | |
Quercetin | 0.30 ± 0.02b | 0.21 ± 0.01b | 0.23 ± 0.03b | 0.05 ± 0.01b | 0.25 ± 0.02d | 0.28 ± 0.01c |
0.61 ± 0.03 | 0.77 ± 0.05 | 0.79 ± 0.04 | 0.35 ± 0.03 | 0.71 ± 0.05 | 0.61 ± 0.05 | |
Isochlorogenic acid | 4.13 ± 0.2b | 5.34 ± 0.75b | 6.12 ± 0.76b | 10.33 ± 0.87b | 23.21 ± 2.42b | 30.32 ± 1.97b |
24.23 ± 1.97 | 32.42 ± 1.64 | 38.33 ± 3.1 | 51.23 ± 3.53 | 61.45 ± 3.89 | 82.76 ± 3.53 | |
p-Coumaric acid | 0.20 ± 0.02b | 0.21 ± 0.01b | 0.23 ± 0.02b | 0.30 ± 0.01b | 0.23 ± 0.02d | 0.21 ± 0.01c |
0.41 ± 0.05 | 0.43 ± 0.03 | 0.42 ± 0.01 | 0.62 ± 0.03 | 0.58 ± 0.03 | 0.41 ± 0.03 | |
Quercitrin | 0.16 ± 0.01b | 0.19 ± 0.01b | 0.11 ± 0.01b | 0.26 ± 0.03b | 0.29 ± 0.01d | 0.21 ± 0.02c |
0.31 ± 0.03 | 0.43 ± 0.03 | 0.25 ± 0.02 | 0.57 ± 0.03 | 0.50 ± 0.01 | 0.45 ± 0.03 | |
Rosmarinic acid | 185.14 ± 9.86a | 221.53 ± 12.63a | 235.42 ± 23.53a | 381.3 ± 25.53a | 211.43 ± 13.71a | 353.2 ± 24.76a |
>1000 | >1000 | >1000 | >1000 | >1000 | >1000 | |
KTZ (Ketoconazole) | 0.21 ± 0.01b | 0.21 ± 0.01b | 0.11 ± 0.01b | 0.21 ± 0.02b | 2.04 ± 0.11c | 0.23 ± 0.01c |
0.43 ± 0.05 | 0.45 ± 0.02 | 0.20 ± 0.02 | 0.41 ± 0.02 | 3.63 ± 0.12 | 0.45 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; El-Ansary, D.O.; A. Al-Mana, F.; Mahmoud, E.A. Polyphenol Content and Biological Activities of Ruta graveolens L. and Artemisia abrotanum L. in Northern Saudi Arabia. Processes 2020, 8, 531. https://doi.org/10.3390/pr8050531
Elansary HO, Szopa A, Kubica P, Ekiert H, El-Ansary DO, A. Al-Mana F, Mahmoud EA. Polyphenol Content and Biological Activities of Ruta graveolens L. and Artemisia abrotanum L. in Northern Saudi Arabia. Processes. 2020; 8(5):531. https://doi.org/10.3390/pr8050531
Chicago/Turabian StyleElansary, Hosam O., Agnieszka Szopa, Paweł Kubica, Halina Ekiert, Diaa O. El-Ansary, Fahed A. Al-Mana, and Eman A. Mahmoud. 2020. "Polyphenol Content and Biological Activities of Ruta graveolens L. and Artemisia abrotanum L. in Northern Saudi Arabia" Processes 8, no. 5: 531. https://doi.org/10.3390/pr8050531