Mathematics > Combinatorics
[Submitted on 1 Sep 2024]
Title:Connections between Combinations Without Specified Separations and Strongly Restricted Permutations, Compositions, and Bit Strings
View PDF HTML (experimental)Abstract:Let $S_n$ and $S_{n,k}$ be, respectively, the number of subsets and $k$-subsets of $\mathbb{N}_n=\{1,\ldots,n\}$ such that no two subset elements differ by an element of the set $\mathcal{Q}$. We prove a bijection between such $k$-subsets when $\mathcal{Q}=\{m,2m,\ldots,jm\}$ with $j,m>0$ and permutations $\pi$ of $\mathbb{N}_{n+jm}$ with $k$ excedances satisfying $\pi(i)-i\in\{-m,0,jm\}$ for all $i\in\mathbb{N}_{n+jm}$. We also identify a bijection between another class of restricted permutation and the cases $\mathcal{Q}=\{1,q\}$. This bijection allows us to prove a conjectured recursion relation for the number of such permutations which corresponds to the case $\mathcal{Q}=\{1,4\}$. We also obtain recursion relations for $S_n$ and $S_{n,k}$ in the case $\mathcal{Q}=\{1,5\}$ by first obtaining related recursion relations for the numbers of closed walks of a given length on a particular class of directed pseudograph. We give some classes of $\mathcal{Q}$ for which $S_n$ is also the number of compositions of $n+q$ into a given set of allowed parts, where $q$ is the largest element of $\mathcal{Q}$. A bijection between the $k$-subsets for any $\mathcal{Q}$ and bit strings is also noted. Aided by this, an efficient algorithm for finding $S_n$ and $S_{n,k}$ is given. We also prove a bijection between $k$-subsets for a class of $\mathcal{Q}$ and the set representations of size $k$ of equivalence classes for the occurrence of a given length-($q+1$) subword within bit strings. We then formulate a straightforward procedure for obtaining the generating function for the number of such equivalence classes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.