Παραγοντικό
ν | ν! |
---|---|
0 | 1 |
1 | 1 |
2 | 2 |
3 | 6 |
4 | 24 |
5 | 120 |
6 | 720 |
7 | 5040 |
8 | 40320 |
9 | 362880 |
10 | 3628800 |
11 | 39916800 |
12 | 479001600 |
13 | 6227020800 |
14 | 87178291200 |
15 | 1307674368000 |
16 | 20922789888000 |
17 | 355687428096000 |
18 | 6402373705728000 |
19 | 121645100408832000 |
20 | 2432902008176640000 |
25 | 1.551121004×1025 |
50 | 3.041409320×1064 |
70 | 1.197857167×10100 |
100 | 9.332621544×10157 |
450 | 1.733368733×101000 |
1000 | 4.023872601×102567 |
3249 | 6.412337688×1010000 |
10000 | 2.846259681×1035659 |
25206 | 1.205703438×10100000 |
100000 | 2.824229408×10456573 |
205023 | 2.503898932×101000004 |
1000000 | 8.263931688×105565708 |
10100 | 1010101.9981097754820 |
Στα μαθηματικά τo παραγοντικό ενός φυσικού αριθμού συμβολίζεται με , διαβάζεται νυ παραγοντικό, και είναι το γινόμενο όλων των θετικών ακεραίων μικρότερων ή ίσων με :
- .
Για παράδειγμα,
- ,
- ,
- ,
- ,
- .
Το παραγοντικό ενός αριθμού ισούται με το πλήθος των δυνατών μεταθέσεων των στοιχείων ενός συνόλου, δηλαδή το πλήθος των διαφορετικών τρόπων με τους οποίους μπορούμε να βάλουμε σε μια σειρά τα στοιχεία ενός συνόλου. Για παράδειγμα, για το σύνολο , υπάρχουν συνολικά δυνατές μεταθέσεις, οι οποίες είναι οι εξής: , , , , , .
Ορισμός
[Επεξεργασία | επεξεργασία κώδικα]Το ορίζεται αναδρομικά ως εξής για τον φυσικό αριθμό :
ή μη-αναδρομικά, κάνοντας χρήση του συμβόλου για τον πολλαπλασιασμό, ως εξής:
Η σύμβαση 0! = 1
[Επεξεργασία | επεξεργασία κώδικα]Παρατηρήστε ότι και στους δύο παραπάνω ορισμούς η σύμβαση είναι ότι . Αυτό βοηθάει σε διάφορους ορισμούς που προκύπτουν από αυτόν του παραγοντικού, όπως είναι οι διωνυμικοί συντελεστές , οι οποίοι για δίνονται από τον τύπο
Ο ορισμός του , επιτρέπει στον ορισμό να δουλεύει για , καθώς και για χωρίς αλλαγές.
Πλήθος μεταθέσεων
[Επεξεργασία | επεξεργασία κώδικα]Όπως αναφέρθηκε στην εισαγωγή, το πλήθος των δυνατών μεταθέσεων ενός συνόλου με στοιχεία είναι . Αυτό προκύπτει επαγωγικά. Για , υπάρχει μία δυνατή μετάθεση για αυτό το στοιχείο.
Για , υπάρχουν τρόποι να διαλέξουμε το πρώτο στοιχείο της μετάθεσης (διαλέγοντας οποιοδήποτε από τα στοιχεία) και έπειτα υπάρχουν στοιχεία για τις υπόλοιπες θέσεις. Από την επαγωγική υπόθεση υπάρχουν τρόποι να διατάξουμε αυτά τα στοιχεία και επομένως συνολικά τρόποι να διατάξουμε τα στοιχεία.
Ασυμπτωτική συμπεριφορά
[Επεξεργασία | επεξεργασία κώδικα]Σε αρκετές εφαρμογές είναι πιο βολικό να δουλεύουμε με προσεγγίσεις του , αντί με τον κλειστό τύπο.
Τύπος Στίρλινγκ
[Επεξεργασία | επεξεργασία κώδικα]Ο τύπος του Στίρλινγκ δίνει ότι
ή ισοδύναμα
Φράγματα
[Επεξεργασία | επεξεργασία κώδικα]Σε κάποιες εφαρμογές (ειδικά στον χώρο της θεωρητικής πληροφορικής), τα παρακάτω φράγματα[1] δίνουν αρκετά ικανοποιητικά αποτελέσματα:
Εφαρμογές
[Επεξεργασία | επεξεργασία κώδικα]Κυκλικές μεταθέσεις
[Επεξεργασία | επεξεργασία κώδικα]Έστω ότι θέλουμε να μετρήσουμε το πλήθος των δυνατών κυκλικών μεταθέσεων. Για παράδειγμα, μπορεί να θέλουμε να τοποθετήσουμε άτομα σε ένα κυκλικό τραπέζι με θέσεις, τότε υπάρχουν οι εξής δυνατές μεταθέσεις. Παρατηρήστε ότι οι διατάξεις , , και είναι ισοδύναμες.
Στην γενική περίπτωση κάθε διάταξη είναι ισοδύναμη με τις κυκλικές διατάξεις της. Επομένως, από τις δυνατές μεταθέσεις, ακριβώς οι αντιστοιχούν σε διαφορετικές μεταθέσεις σε έναν κύκλο.
Διατάξεις
[Επεξεργασία | επεξεργασία κώδικα]Ορισμός μαθηματικής σταθεράς
[Επεξεργασία | επεξεργασία κώδικα]Το παραγοντικό εμφανίζεται και στον εξής ορισμό της μαθηματικής σταθεράς e,
Δυναμοσειρές τριγωνομετρικών συναρτήσεων
[Επεξεργασία | επεξεργασία κώδικα]Η συνάρτηση του ημιτόνου μπορεί να οριστεί ως εξής:
Επίσης, η συνάρτηση του συνημιτόνου μπορεί να οριστεί ως εξής:
Σειρά Τέιλορ
[Επεξεργασία | επεξεργασία κώδικα]Η σειρά Τέιλορ μίας πραγματικής συνάρτησης στο σημείο είναι η δυναμοσειρά
Υπολογισμός
[Επεξεργασία | επεξεργασία κώδικα]Παρακάτω δίνονται οι δύο κλασσικές υλοποιήσεις για τον υπολογισμό του παραγοντικού: η αναδρομική και η γραμμική υλοποίηση. Σε γλώσσες προγραμματισμού με ακεραίους πεπερασμένου μεγέθους ο παρακάτω κώδικας θα οδηγήσει σε υπερχείλιση όταν το είναι μεγάλο. Και οι δύο αλγόριθμοι χρησιμοποιούν πολλαπλασιασμούς.
Αναδρομικός υπολογισμός
[Επεξεργασία | επεξεργασία κώδικα]int factorial(int n) {
if (n == 1) return 1;
return n * factorial(n - 1);
}
Γραμμικός υπολογισμός
[Επεξεργασία | επεξεργασία κώδικα]int factorial(int n) {
int ans = 1;
for (int i = 1; i <= n; ++i) {
ans *= i;
}
return ans;
}
Αντιπαραγοντικό
[Επεξεργασία | επεξεργασία κώδικα]Το αντιπαραγοντικό ενός φυσικού αριθμού συμβολίζεται με , διαβάζεται νι αντιπαραγοντικό, και είναι το πηλίκο όλων των θετικών ακέραιων μικρότερων ή ίσων με , δηλαδή
και συμβατικά .
Το αντιπαραγοντικό μας δίνει η πιθανότητα εντοπισμού μίας συγκεκριμένης μετάθεσης από το σύνολο των μεταθέσεων. Για παράδειγμα, το σύνολο , μας δίνει τις μεταθέσεις: και . Η πιθανότητα εύρεσης της επιθυμητής μετάθεσης ( ή ), δίνεται από το αντιπαραγοντικό του δηλαδή , συνεπώς .
Ομοίως, για το , το αντιπαραγοντικό του είναι ίσο με , δηλαδή περίπου .
Δείτε επίσης
[Επεξεργασία | επεξεργασία κώδικα]Παραπομπές
[Επεξεργασία | επεξεργασία κώδικα]- ↑ Mitzenmacher, Michael (2017). Probability and computing : randomization and probabilistic techniques in algorithms and data analysis (2η έκδοση). Cambridge, United Kingdom. σελίδες 100,109. ISBN 978-1-107-15488-9.
Εξωτερικοί σύνδεσμοι
[Επεξεργασία | επεξεργασία κώδικα]- (Αγγλικά) Weisstein, Eric W., «Factorial», από MathWorld. Ανακτήθηκε 2020-07-22.
Αυτό το μαθηματικό λήμμα χρειάζεται επέκταση. Μπορείτε να βοηθήσετε την Βικιπαίδεια επεκτείνοντάς το. |