Lagrange reversion theorem: Difference between revisions
→References: added link |
→References: updated link to reference |
||
Line 41: | Line 41: | ||
== References == |
== References == |
||
[1] Lagrange, Joseph Louis, "Nouvelle méthode pour résoudre les équations littérales par le moyen des séries," ''Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin'', Vol. 24 (1770). (Available on-line at: http://gdz.sub.uni-goettingen.de/no_cache/dms/load/ |
[1] Lagrange, Joseph Louis, "Nouvelle méthode pour résoudre les équations littérales par le moyen des séries," ''Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin'', Vol. 24 (1770). (Available on-line at: http://gdz.sub.uni-goettingen.de/no_cache/dms/load/toc/?IDDOC=41060& .) |
||
[2] Lagrange, Joseph Louis, ''Oeuvres'', [Paris, 1869], Vol. 2, page 25; Vol. 3, pages 3-73. |
[2] Lagrange, Joseph Louis, ''Oeuvres'', [Paris, 1869], Vol. 2, page 25; Vol. 3, pages 3-73. |
Revision as of 08:40, 9 February 2008
- This page is about Lagrange reversion. For inversion, see Lagrange inversion theorem.
In mathematics, the Lagrange reversion theorem gives series or formal power series expansions of certain implicitly defined functions; indeed, of compositions with such functions.
Let v be a function of x and y in terms of another function f such that
Then for any function g,
for small y. If g is the identity
In 1770, Joseph Louis Lagrange (1736-1813) published his power series solution of the implicit equation for v mentioned above. However, his solution used cumbersome series expansions of logarithms [1,2]. In 1780, Pierre-Simon Laplace (1749-1827) published a simpler proof of the theorem, which was based on relations between partial derivatives with respect to the variable x and the parameter y [3-5]. Charles Hermite (1822-1901) presented the most straightforward proof of the theorem by using contour integration [6-8].
Lagrange's reversion theorem is used to obtain numerical solutions to Kepler's equation.
Simple proof
We start by writing
Writing the delta-function as an integral we have
The integral over k then gives and we have
Rearranging the sum and cancelling then gives the result
References
[1] Lagrange, Joseph Louis, "Nouvelle méthode pour résoudre les équations littérales par le moyen des séries," Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, Vol. 24 (1770). (Available on-line at: http://gdz.sub.uni-goettingen.de/no_cache/dms/load/toc/?IDDOC=41060& .)
[2] Lagrange, Joseph Louis, Oeuvres, [Paris, 1869], Vol. 2, page 25; Vol. 3, pages 3-73.
[3] Laplace, Pierre Simon de, "Mémoire sur l'usage du calcul aux différences partielles dans la théories des suites," Mémoires de l'Académie Royale des Sciences de Paris (1780).
[4] Laplace, Pierre Simon de, Oeuvres [Paris, 1843], Vol. 9, pages 313-335.
[5] Laplace's proof is presented in:
Goursat, Edouard, A Course in Mathematical Analysis (translated by E.R. Hedrick and O. Dunkel) [N.Y., N.Y.: Dover, 1959], Vol. I, pages 404-405.
[6] Hermite, Charles, "Sur quelques développements en série de fonctions de plusieurs variables," Comptes Rendus de l'Académie des Sciences des Paris, Vol. 60 (1865).
[7] Hermite, Charles, Oeuvres [Paris, 1908], Vol. 2, pages 319-346.
[8] Hermite's proof is presented in:
(i) Goursat, Edouard, A Course in Mathematical Analysis (translated by E. R. Hedrick and O. Dunkel) [N.Y., N.Y.: Dover, 1959], Vol. II, Part 1, pages 106-107.
(ii) Whittaker, E.T. and G.N. Watson, A Course of Modern Analysis, 4th ed. [Cambridge, England: Cambridge University Press, 1962] pages 132-133.
External links
- Lagrange Inversion [Reversion] Theorem on MathWorld
- Cornish-Fisher expansion, an application of the theorem
- Article on equation of time contains an application to Kepler's equation