Electricity meter: Difference between revisions
Wtshymanski (talk | contribs) reference for positive vars inductive, negative vars capacitive |
Added an electrical energy meter link |
||
Line 359: | Line 359: | ||
* [http://www.watthourmeters.com/ Photos and descriptions of historic and modern North American electricity meters] |
* [http://www.watthourmeters.com/ Photos and descriptions of historic and modern North American electricity meters] |
||
* [http://www.powermetrix.com/downloads/2009-BillingvsMeteringAccuracy.pdf Billing Vs. Metering Accuracy] |
* [http://www.powermetrix.com/downloads/2009-BillingvsMeteringAccuracy.pdf Billing Vs. Metering Accuracy] |
||
* [http://www.circutor.com CIRCUTOR: electronical energy meters] |
|||
{{DEFAULTSORT:Electricity Meter}} |
{{DEFAULTSORT:Electricity Meter}} |
Revision as of 10:51, 27 January 2010
This article needs additional citations for verification. (August 2009) |
An electric meter or energy meter is a device that measures the amount of electrical energy supplied to or produced by a residence, business or machine.
Electricity is a clean, convenient way to deliver energy. The electricity meter is how electricity providers measure billable services.
The most common type of meter measures kilowatt hours. When used in electricity retailing, the utilities record the values measured by these meters to generate an invoice for the electricity. They may also record other variables including the time when the electricity was used.
Since it is expensive to store large amounts of electricity, it must usually be generated as it is needed. More electricity requires more generators, and so providers want consumers to avoid causing peaks in consumption. Electricity meters have therefore been devised that encourage users to shift their consumption of power away from peak times, such as midafternoon, when many buildings turn on air-conditioning.
For these applications, meters measure demand, the maximum use of power in some interval. In some areas, the meters charge more money at certain times of day, to reduce use. Also, in some areas meters have relays to turn off nonessential equipment.[1]
Providers are also concerned about efficient use of their distribution network. So, they try to maximize the delivery of billable power. This includes methods to reduce tampering with the meters.
Also, the network has to be upgraded with thicker wires, larger transformers,or more generators if parts of it become too hot from excessive currents. The currents can be caused by either real power, in which the waves of voltage and current coincide, or apparent power, in which the waves of current and voltage do not overlap, and so cannot deliver power.
Since providers can only collect money for real power, they try to maximize the amount of real power delivered by their networks. Therefore, distribution networks always incorporate electricity meters that measure apparent power, usually by displaying or recording power factors or volt-amp-reactive-hours. Many industrial power meters can measure volt-amp-reactive hours.
History
The first accurate, recording electricity consumption meter was a DC meter by Dr Hermann Aron, who patented it in 1883. Hugo Hirst of the General Electric Company introduced it commercially into Great Britain from 1888.[2] Meters had been used prior to this, but they measured the rate of power consumption at that particular moment. Aron's meter recorded the total energy used over time, and showed it on a series of clock dials.
The first specimen of the AC kilowatt-hour meter produced on the basis of Hungarian Ottó Bláthy's patent and named after him was presented by the Ganz Works at the Frankfurt Fair in the autumn of 1889, and the first induction kilowatt-hour meter was already marketed by the factory at the end of the same year. These were the first alternating-current wattmeters, known by the name of Bláthy-meters.[3][citation needed]
Unit of measurement
The most common unit of measurement on the electricity meter is the kilowatt hour, which is equal to the amount of energy used by a load of one kilowatt over a period of one hour, or 3,600,000 joules. Some electricity companies use the SI megajoule instead.
Demand is normally measured in watts, but averaged over a period, most often a quarter or half hour.
Reactive power is measured in "Volt-amperes reactive", (varh) in kilovar-hours. By convention, a "lagging" or inductive load, such as a motor, will have positive reactive power. A "leading", or capacitive load, will have negative reactive power.[4]
Volt-amperes measures all power passed through a distribution network, including reactive and actual. This is equal to the product of root-mean-square volts and amperes.
Distortion of the electric current by loads is measured in several ways. Power factor is the ratio of resistive (or real power) to volt-amperes. A capacitive load has a leading power factor, and an inductive load has a lagging power factor. A purely resistive load (such as a filament lamp, heater or kettle) exhibits a power factor of 1. Current harmonics are a measure of distortion of the wave form. For example, electronic loads such as computer power supplies draw their current at the voltage peak to fill their internal storage elements. This can lead to a significant voltage drop near the supply voltage peak which shows as a flattening of the voltage waveform. This flattening causes odd harmonics which are not permissible if they exceed specific limits, as they are not only wasteful, but may interfere with the operation of other equipment. Harmonic emissions are mandated by law in EU and other countries to fall within specified limits.
- Other units of measurement
In addition to metering based on the amount of energy used, other types of metering are available.
Meters which measured the amount of charge (coulombs) used, known as ampere-hour meters, were used in the early days of electrification. These were dependent upon the supply voltage remaining constant for accurate measurement of energy usage, which was not a likely circumstance with most supplies.
Some meters measured only the length of time for which charge flowed, with no measurement of the magnitude of voltage or current being made. These were only suited for constant-load applications.
Neither type is likely to be used today.
Types of meters
Modern electricity meters operate by continuously measuring the instantaneous voltage (volts) and current (amperes) and finding the product of these to give instantaneous electrical power (watts) which is then integrated against time to give energy used (joules, kilowatt-hours etc). The meters fall into two basic categories, electromechanical and electronic.
Electromechanical meters
The most common type of electricity meter is the Thomson or electromechanical induction watt-hour meter, invented by Elihu Thomson in 1888.[5][6]
Electromechanical technology
The electromechanical induction meter operates by counting the revolutions of an aluminium disc which is made to rotate at a speed proportional to the power. The number of revolutions is thus proportional to the energy usage. It consumes a small amount of power, typically around 2 watts.
The metallic disc is acted upon by two coils. One coil is connected in such a way that it produces a magnetic flux in proportion to the voltage and the other produces a magnetic flux in proportion to the current. The field of the voltage coil is delayed by 90 degrees using a lag coil.[7] This produces eddy currents in the disc and the effect is such that a force is exerted on the disc in proportion to the product of the instantaneous current and voltage. A permanent magnet exerts an opposing force proportional to the speed of rotation of the disc. The equilibrium between these two opposing forces results in the disc rotating at a speed proportional to the power being used. The disc drives a register mechanism which integrates the speed of the disc over time by counting revolutions, much like the odometer in a car, in order to render a measurement of the total energy used over a period of time.
The type of meter described above is used on a single-phase AC supply. Different phase configurations use additional voltage and current coils.
Reading electromechanical meters
The aluminum disc is supported by a spindle which has a worm gear which drives the register. The register is a series of dials which record the amount of energy used. The dials may be of the cyclometer type, an odometer-like display that is easy to read where for each dial a single digit is shown through a window in the face of the meter, or of the pointer type where a pointer indicates each digit. It should be noted that with the dial pointer type, adjacent pointers generally rotate in opposite directions due to the gearing mechanism.
The amount of energy represented by one revolution of the disc is denoted by the symbol which is given in units of watt-hours per revolution. The value 7.2 is commonly seen. Using the value of , one can determine their power consumption at any given time by timing the disc with a stopwatch. If the time in seconds taken by the disc to complete one revolution is , then the power in watts is . For example, if , as above, and one revolution took place in 14.4 seconds, the power is 1800 watts. This method can be used to determine the power consumption of household devices by switching them on one by one.
Most domestic electricity meters must be read manually, whether by a representative of the power company or by the customer. Where the customer reads the meter, the reading may be supplied to the power company by telephone, post or over the internet. The electricity company will normally require a visit by a company representative at least annually in order to verify customer-supplied readings and to make a basic safety check of the meter.
Electromechanical accuracy
In an induction type meter, creep is a phenomenon that can adversely affect accuracy, that occurs when the meter disc rotates continuously with potential applied and the load terminals open circuited. A test for error due to creep is called a creep test.
Two standards govern meter accuracy, ANSI C12.20 for North America and IEC 62053.
Solid state meters
Some newer electricity meters are solid state and display the power used on an LCD, while newer electronic meters can be read automatically.
In addition to measuring electricity used, solid state meters can also record other parameters of the load and supply such as maximum demand, power factor and reactive power used etc. They can also include electronic clock mechanisms to compute a value, rather than an amount of electricity consumed, with the pricing varying by the time of day, day of week, and seasonally.
Solid-state technology
Most solid-state meters use a current transformer to measure the current. This means that the main current-carrying conductors need not pass through the meter itself and so the meter can be located remotely from the main current-carrying conductors, which is a particular advantage in large-power installations. It is also possible to use remote current transformers with electromechanical meters though this is less common.
Communication technologies
Remote meter reading is a practical example of telemetry. It saves the cost of a human meter reader and the resulting mistakes, but it also allows more measurements, and remote provisioning. Many smart meters now include a switch to interrupt or restore service.
Historically, rotating meters could report their power information remotely, using a pair of contact closures attached to a KYZ line.
In a KYZ interface, the Y and Z wires are switch contacts, shorted to K for half of a rotor's circumference. To measure the rotor direction, the Z signal is offset by 90 degrees from the Y. When the rotor rotates in the opposite direction, showing export of power, the sequence reverses. The time between pulses measures the demand. The number of pulses is total power usage.[8]
KYZ outputs were historically attached to "totalizer relays" feeding a "totalizer" so that many meters could be read all at once in one place.
KYZ outputs are also the classic way of attaching electric meters to programmable logic controllers, HVACs or other control systems. Some modern meters also supply a contact closure that warns when the meter detects a demand near a higher tariff.
Some meters have an open collector output that gives 32-100 ms pulses for a constant amount of used electrical energy. Usually 1000-10000 pulses per kWh. Output is limited to max 27 V DC and 27 mA DC. The output usually follows the DIN 43864 standard.[9][10]
Often, meters designed for semi-automated reading have a serial port on that communicates by infrared LED through the faceplate of the meter. In some apartment buildings, a similar protocol is used, but in a wired bus using a serial current loop to connect all the meters to a single plug. The plug is often near the mailboxes. In the European Union, the most common infrared and protocol is "FLAG", a simplified subset of mode C of IEC 61107. In the U.S. and Canada, the favoured infrared protocol is ANSI C12.18. Some industrial meters use a protocol for programmable logic controllers (Modbus).
The most modern protocol proposed for this purpose is DLM/COSEM which can operate over any medium, including serial ports. The data can be transmitted by Zigbee, WiFi, telephone lines or over the power lines themselves. Some meters can be read over the internet.
High end electronic meters now use Low Power Radio, GSM, GPRS, Bluetooth, IrDA, as well as the now conventional RS-485 wired link. They now store the entire usage profiles with time stamps and relay them at a click of a button. The demand readings stored with the profiles accurately indicate the load requirements of the customer. This load profile data is processed at the utilities and renders itself to a variety of representations, all sorts of graphs, reports et el.
Automatic reading
AMR (Automatic Meter Reading) and RMR (Remote Meter Reading) describe various systems that allow meters to be checked without the need to send a meter reader out. This can be effectively achieved using off-site metering, that is an electronic meter is placed at the junction point where all the connections originate, inaccessible to the end-user, and it relays the readings via the AMR technology to the utility.
Solid-state design
As in the block diagram, the meter has a power supply, a metering engine, A processing and communication engine (i.e. a microcontroller), and other add-on modules such as RTC, LCD display, communication ports/modules and so on.
The metering engine is given the voltage and current inputs and has a voltage reference, samplers and quantisers followed by an ADC section to yield the digitised equivalents of all the inputs. These inputs are then processed using a Digital Signal Processor to calculate the various metering parameters such as powers, energies etc.
The largest source of long-term errors in the meter is drift in the preamp, followed by the precision of the voltage reference. Both of these vary with temperature as well, and vary wildly because most meters are outdoors. Characterizing and compensating for these is a major part of meter design.
The processing and communication section has the responsibility of calculating the various derived quantities from the digital values generated by the metering engine. This also has the responsibility of communication using various protocols and interface with other addon modules connected as slaves to it.
RTC and other add-on modules are attached as slaves to the processing and communication section for various input/output functions. On a modern meter most if not all of this will be implemented inside the microprocessor, such as the Real Time Clock (RTC), LCD controller, temperature sensor, memory and analog to digital converters.
Multiple tariff (variable rate) meters
Electricity retailers may wish to charge customers different tariffs at different times of the day to better reflect the costs of generation and transmission. Since it is not generally possible to store electricity during a period of low demand for use during a period of high demand, costs will vary significantly depending on the time of day. Low cost generation capacity (baseload) such as coal can take many hours to reach peak efficiency from a cold start, meaning a surplus in times of low demand, whereas high cost but flexible generating capacity (such as gas turbines) must be kept available to respond at a moment's notice (spinning reserve) to periods of peak demand, perhaps being used for a few minutes per day, or even year, which is very expensive.
Some multiple tariff meters use different tariffs for different amounts of demand. These are usually industrial meters.
Domestic usage
Domestic variable-rate meters generally permit two to three tariffs ("peak", "off-peak" and "shoulder") and in such installations a simple electromechanical time switch may be used. Historically, these have often been used in conjunction with electrical storage heaters or hot water storage systems.
Multiple tariffs are made easier by time of use (TOU) meters which incorporate or are connected to a time switch and which have multiple registers.
Switching between the tariffs may happen via a radio-activated switch rather than a time switch to prevent tampering with a sealed time switch to obtain cheaper electricity.
United Kingdom
Radio-activated switching is common in the UK, with a nightly data signal sent within the longwave carrier of BBC Radio 4, 198 kHz. The time of off-peak usage is between 12.30am - 7.30am, and this is designed to power storage heaters and immersion heaters. In the UK, such tariffs are branded Economy 7 or White Meter. The popularity of such tariffs has declined in recent years, at least in the domestic market, due to the (perceived or real) deficiencies of storage heaters and the low cost of natural gas.
Some[citation needed] meters using Economy 7 switch the entire electricity supply to the cheaper rate during the 7 hour night time period, not just the storage heater circuit. The downside of this is that the daytime rate will be a touch higher, and standing charges may be a little higher too. For instance, normal rate electricity may be 7p per kWh, whereas Economy 7's daytime rate might be 7.5p per kWh, but only 2.8p per kWh at night. Timer switches installed on washing machines, tumble dryers, dishwashers and immersion heaters may be set so that they switch on only when the rate is lower.
Commercial usage
Large commercial and industrial premises may use electronic meters which record power usage in blocks of half an hour or less. This is because most electricity grids have demand surges throughout the day, and the power company may wish to give price incentives to large customers to reduce demand at these times. These demand surges often correspond to meal times or, famously, to advertisements in popular television programmes.
Appliance energy meters
Plug in electricity meters (or "Plug load" meters) measure energy used by individual appliances. The meter is plugged into an outlet, and the appliance to be measured is plugged into the meter. Such meters can help in energy conservation by identifying major energy users, or devices that consume excessive standby power. A power meter can often be borrowed from the local power authorities[11] or a local public library.[12][13]
In-home energy use displays
A potentially powerful means to reduce household energy consumption is to provide convenient real-time feedback to users so they can change their energy using behavior. Recently, low-cost energy feedback displays have become available. A study using a consumer-readable meter in 500 Ontario homes by Hydro One showed an average 6.5% drop in total electricity use when compared with a similarly sized control group. Hydro One subsequently offered free power monitors to 30,000 customers based on the success of the pilot.[14] Projects such as Google PowerMeter, take information from a smart meter and make it more readily available to users to help encourage conservation.[15]
Smart meters
Smart meters go a step further than simple AMR (automatic meter reading). They offer additional functionality including a real-time or near real-time reads, power outage notification, and power quality monitoring. They allow price setting agencies to introduce different prices for consumption based on the time of day and the season.
These price differences can be used to reduce peaks in demand (load shifting or peak lopping), reducing the need for additional power plants and in particular the higher polluting and costly to operate natural gas powered peaker plants. The feedback they provide to consumers has also been shown to cut overall energy consumption.[citation needed]
Another type of smart meter uses nonintrusive load monitoring to automatically determine the number and type of appliances in a residence, how much energy each uses and when. This meter is used by electric utilities to do surveys of energy use. It eliminates the need to put timers on all of the appliances in a house to determine how much energy each uses.
Prepayment meters
The standard business model of electricity retailing involves the electricity company billing the customer for the amount of energy used in the previous month or quarter. In some countries, if the retailer believes that the customer may not pay the bill, a prepayment meter may be installed. This requires the customer to make advance payment before electricity can be used. If the available credit is exhausted then the supply of electricity is cut off by a relay.
In the UK, mechanical prepayment meters used to be common in rented accommodation. Disadvantages of these included the need for regular visits to remove cash, and risk of theft of the cash in the meter.
Modern solid-state electricity meters, in conjunction with smart card technology, have removed these disadvantages and such meters are commonly used for customers considered to be a poor credit risk. In the UK, one system is the PayPoint network, where rechargeable tokens (Quantum cards for natural gas, or plastic "keys" for electricity) can be loaded with whatever money the customer has available.
Recently smartcards are introduced as much reliable tokens that allows two way data exchange between meter and the utility.
In South Africa and Northern Ireland prepaid meters are recharged by entering a unique, encoded twenty digit number using a keypad. This makes the tokens, essentially a slip of paper, very cheap to produce.
Around the world, experiments are going on, especially in developing countries, to test pre-payment systems. In some cases, a lack of social acceptance has led to non-implementation of this technology. Utilities are finding it to depend on one supplier and multiple supplier systems demand their own system and network connectivity. There are various groups, such as the Standard Transfer Specification (STS) association, which promote common standards for prepayment metering systems across manufacturers. However in spite of these efforts prepayment meter market had not spread except in South Africa.
Time of day metering
Time of Day metering (TOD), also known as Time of Usage (TOU) or Seasonal Time of Day (SToD), metering involves dividing the day, month and year into tariff slots and with higher rates at peak load periods and low tariff rates at off-peak load periods. While this can be used to automatically control usage on the part of the customer (resulting in automatic load control), it is often simply the customers responsibility to control his own usage, or pay accordingly (voluntary load control). This also allows the utilities to plan their transmission infrastructure appropriately. See also Demand-side Management (DSM).
TOD metering normally splits rates into two segments, peak and off-peak, with peak typically occurring during the day (non-holiday days only), such as from 1 pm to 9 pm Monday through Friday during the summer and from 6:30 am to 12 noon and 5 pm to 9 pm during the winter. The times of peak demand/cost will vary in different markets around the world.
Large commercial users can purchase power by the hour using either forecast pricing or real time pricing. Prices range from we pay you to take it (negative) to $1000/MWh (100 cents/kWh).[16]
Some utilities allow residential customers to pay hourly rates, such as Illinois, which uses day ahead pricing.[17][18]
Power export metering
Many electricity customers are installing their own electricity generating equipment, whether for reasons of economy, redundancy or environmental reasons. When a customer is generating more electricity than required for his own use, the surplus may be exported back to the power grid. Customers that generate back into the "grid" usually must have special equipment and/or safety devices to protect the grid components (as well as the customer's own) in case of faults (electrical short circuits) or maintenance of the grid (say voltage potential on a downed line going into an exporting customers facility).
This exported energy may be accounted for in the simplest case by the meter running backwards during periods of net export, thus reducing the customer's recorded energy usage by the amount exported. This in effect results in the customer being paid for his/her exports at the full retail price of electricity. Unless equipped with a detent or equivalent, a standard meter will accurately record power flow in each direction by simply running backwards when power is exported. Such meters are no longer legal in the UK but instead a meter capable of separately measuring imported and exported energy is required. Where allowed by law, utilities maintain a profitable margin between the price of energy delivered to the consumer and the rate credited for consumer-generated energy that flows back to the grid. Lately, upload sources typically originate from renewable sources (e.g., wind turbines, photovoltaic cells), or gas or steam turbines, which are often found in cogeneration systems. Another potential upload source that has been proposed is plug-in hybrid car batteries (vehicle-to-grid power systems). This requires a "smart grid," which includes meters that measure electricity via communication networks that require remote control and give customers timing and pricing options. Vehicle-to-grid systems could be installed at workplace parking lots and garages and at park and rides and could help drivers charge their batteries at home at night when off-peak power prices are cheaper, and receive bill crediting for selling excess electricity back to the grid during high-demand hours.
Ownership
Following the deregulation of electricity supply markets in many countries (e.g., UK), the company responsible for an electricity meter may not be obvious. Depending on the arrangements in place, the meter may be the property of the meter Operator, electricity distributor, the retailer or for some large users of electricity the meter may belong to the customer.
The company responsible for reading the meter may not always be the company which owns it. Meter reading is now sometimes subcontracted and in some areas the same person may read gas, water and electricity meters at the same time.
Location
The location of an electricity meter varies with each installation. Possible locations include on a power pylon serving the property, in a street-side cabinet (meter box) or inside the premises adjacent to the consumer unit / distribution board. Electricity companies may prefer external locations as the meter can be read without gaining access to the premises but external meters may be more prone to vandalism.
Current transformers permit the meter to be located remotely from the current-carrying conductors. This is common in large installations. For example a substation serving a single large customer may have metering equipment installed in a cabinet, without bringing heavy cables into the cabinet.
Connection
In North America, it is common for electricity meters to plug into a standardised socket. This allows the meter to be replaced without disturbing the wires to the socket. Some sockets may have a bypass while the meter is removed for service. The amount of electricity used without being recorded during this small time is considered insignificant when compared to the inconvenience which might be caused to the customer by cutting off the electricity supply.
In the UK, the supply and load terminals are normally provided in the meter housing itself, at least for smaller meters (up to around 100 A).
Tampering and security
Meters can be manipulated to make them under-register, effectively allowing power use without paying for it. This theft or fraud can be dangerous as well as dishonest.
Power companies often install remote-reporting meters specifically to enable remote detection of tampering, and specifically to discover energy theft. The change to smart power meters is useful to stop energy theft.
When tampering is detected, the normal tactic, legal in most areas of the USA, is to switch the subscriber to a "tampering" tariff charged at the meter's maximum designed current. At US$ 0.095/kWh, a standard residential 50 A meter causes a legally collectible charge of about US$ 5,000.00 per month. Meter readers are trained to spot signs of tampering, and with crude mechanical meters, the maximum rate may be charged each billing period until the tamper is removed, or the service is disconnected.
A common method of tampering on older meters is to attach magnets to the outside of the meter. These magnetically saturate the coils or current transformers, preventing the alternating current from forming eddy currents in the rotor, or inducing voltages in the current transformer.
Rectified DC loads cause mechanical (but not electronic) meters to under-register. DC current does not cause the coils to make eddy currents in the disk, so this causes reduced rotation and a lower bill.
Some combinations of capacitive and inductive load can interact with the coils and mass of a rotor and cause reduced or reverse motion.
All of these effects can be detected by the electric company, and many modern meters can detect or compensate for them.
The owner of the meter normally secures the meter against tampering. Revenue meters' mechanisms and connections are sealed. Meters may also measure VAR-hours (the reflected load), neutral and DC currents (elevated by most electrical tampering), ambient magnetic fields, etc. Even simple mechanical meters can have mechanical flags that are dropped by magnetic tampering or large DC currents.
Newer computerized meters usually have counter-measures against tampering. AMR (Automated Meter Reading) meters often have sensors that can report opening of the meter cover, magnetic anomalies, extra clock setting, glued buttons, inverted installation, reversed or switched phases etc.
Some tampers bypass the meter, wholly or in part. Safe tampers of this type normally increase the neutral current at the meter. Most split-phase residential meters in the United States are unable to detect neutral currents. However, modern tamper-resistant meters can detect and bill it at standard rates.[19]
Disconnecting a meter's neutral connector is unsafe because shorts can then pass through people or equipment rather than a metallic ground to the generator.
A phantom loop connection via an earth ground is often much higher resistance than the metallic neutral connector. Even in these cases, metering at the substation can alert the operator to tampering. Substations, interties and transformers normally have a high-accuracy meter for the area served. Power companies normally investigate discrepancies between the total billed and the total generated, in order to find and fix power distribution problems. These investigations are an effective method of discovering tampering.
In North America power thefts are often connected with indoor marijuana grow operations. Narcotics detectives associate abnormally high power usage with the lighting such operations require. Indoor marijuana growers aware of this are particularly motivated to steal electricity simply to conceal their usage of it.
Privacy issues
The introduction of advanced meters in residential areas has produced additional privacy issues that may affect ordinary customers. These meters are often capable of recording energy usage every 15, 30 or 60 minutes. These can be used for surveillance, revealing information about people's possessions and behavior.[20] For instance, it can show when the customer is away for extended periods. Nonintrusive load monitoring gives even more detail about what appliances people have and their living and use patterns.
A more detailed and recent analysis of this issue was performed by the Illinois Security Lab.[21]
See also
- AEP meter label format
- Blondel's theorem
- Distributed generation
- Electricity distribution
- Electricity generation
- Feed-in Tariff
- Fixed bill
- Meter Operator
- Meter-Bus
- Net metering
- Utility submeter
- Virtual power plant
- Wattmeter
Notes
- ^ E.g., Minnkota Power's Load Management System, accessed 22 August 2009. This system is also widely used in states with extensive government ownership of power generation, such as the Czech Republic.
- ^ Whyte, Adam Gowans (1930). Forty Years of Electrical Progress. London: Ernest Benn. pp. 31, 159.
- ^ Eugenii Katz. "Blathy". People.clarkson.edu. Retrieved 2009-08-04. [dead link ]
- ^ IEEE Recommended practice for industrial and commercial power systems analysis Standard 399-1997, IEEE, ISBN 1-55937-968-5 page 47
- ^ Jehl, Francis (1941). Menlo Park Reminiscences. Kessinger Publishing. p.841
- ^ Fleming, J.A. (1914). Magnets and Electric Currents. New York: Spon & Chamberlain., p. 335
- ^ "Volume 3-10" (PDF). Retrieved 2009-08-04.
- ^ Handbook for Electricity Metering. EEI., see index of current edition
- ^ "Technical" (PDF). 080918 emh-meter.de
- ^ "Enermet E420i Electricity Meter" (PDF). 080918 landisgyr.eu
- ^ "Residential — Home Energy Audit — Watts Up". Austin Utilities. Retrieved 2009-08-04.
- ^ "Portable Energy Meter". Mge.com. Retrieved 2009-08-04.
- ^ "LINKcat". Linkcat.info. Retrieved 2009-08-04.
- ^ "CBPHydroOneReprint" (PDF). Retrieved 2009-08-04.
- ^ Verne Kopytoff (2009-02-22). "Google plans meter to detail home energy use". San Francisco Chronicle. Retrieved 2009-02-11.
{{cite news}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Market Data Exchange Day ahead, Hour ahead and Real time pricing for New York
- ^ Ameren Day Ahead Pricing
- ^ "Real Time Pricing". Thewattspot.com. Retrieved 2009-08-04.
- ^ Teridian Semiconductors Application Note, "Antitamper Features Enabled by the 71M6511" The 71M6511 is a single chip metering device widely used in computerised meters.
- ^ Hart, G.W. (1989). "Residential energy monitoring and computerized surveillance via utility power flows". Technology and Society Magazine, IEEE. 8 (2): 12–16. doi:10.1109/44.31557.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - ^ Attested Metering project website
References
- "Handbook for Electricity Metering" by The Edison Electric Institute—The Bible of electric meters, continuously updated since electricity was discovered.
External links
- Electricity Meter - Interactive Java Tutorial National High Magnetic Field Laboratory
- The Theories and Modelling of the Kilowatt-Hour Meter Paper describing in detail the mathematics and physics behind induction meters
- How to use your meter to calculate money saved by replacing old appliances
- Watt-Hour Meter Maintenance and Testing
- A brief history of meter companies and meter evolution
- Photos and descriptions of historic and modern North American electricity meters
- Billing Vs. Metering Accuracy
- CIRCUTOR: electronical energy meters