Jump to content

Starch: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverting possible vandalism by 173.25.93.166 to version by Jcaraballo. False positive? Report it. Thanks, ClueBot NG. (424454) (Bot)
deleted a little bit and added a alot!
Line 1: Line 1:
starch in homo
{{Chembox
| verifiedrevid = 413879767
| ImageFile = Cornstarch_mixed_with_water.jpg
| ImageSize =
| ImageName = Cornstarch being mixed with water
| IUPACName =
| OtherNames =
| Section1 = {{Chembox Identifiers
| CASNo = 9005-25-8
| CASNo_Ref = {{cascite|correct|CAS}}
| EC-number = 232-679-6
| RTECS = GM5090000
}}
| Section2 = {{Chembox Properties
| Formula = (C<sub>6</sub>H<sub>10</sub>O<sub>5</sub>)<sub>''n''</sub>
| MolarMass =
| Appearance = white powder
| Density = 1.5 g/cm<sup>3</sup>
| Solubility = none
| MeltingPt = decomp.
}}
| Section7 = {{Chembox Hazards
| ExternalMSDS = [http://www.inchem.org/documents/icsc/icsc/eics1553.htm ICSC 1553]
| EUIndex = not listed
| Autoignition = 410 °C
}}
}}
[[File:Amylose2.svg|thumb|right|270px|Structure of the [[amylose]] molecule.]]
[[File:Amylopektin Sessel.svg|thumb|right|270px|Structure of the [[amylopectin]] molecule.]]
[[Image:Wheat starch granules.JPG|thumb|right|Granules of wheat starch, stained with iodine, photographed through a light microscope.]]
'''Starch''' or '''amylum''' is a [[carbohydrate]] consisting of a large number of [[glucose]] units joined together by [[glycosidic bond]]s. This [[polysaccharide]] is produced by all green [[plant]]s as an energy store. It is the most common carbohydrate in the human diet and is contained in large amounts in such [[staple food]]s as [[potato]]es, [[wheat]], [[maize]] (corn), [[rice]], and [[cassava]].

Pure starch is a white, tasteless and odorless powder that is insoluble in cold water or alcohol. It consists of two types of molecules: the linear and [[helix|helical]] [[amylose]] and the branched [[amylopectin]].
Depending on the plant, starch generally contains 20 to 25% amylose and 75 to 80% amylopectin.<ref>{{Cite book | last1 = Brown | first1 = W. H. | last2 = Poon | first2 = T. | year = 2005 | title = Introduction to organic chemistry | edition = 3rd | publisher = Wiley | isbn = 0-471-44451-0}}.</ref> [[Glycogen]], the glucose store of animals, is a more branched version of amylopectin.

Starch is processed to produce many of the sugars in processed foods. When dissolved in warm water, it can be used as a thickening, stiffening or gluing agent, giving [[wheatpaste]].

==Name==
The word "starch" is [[etymology|derived]] from [[Middle English]] ''sterchen'', meaning to stiffen. "amylum" is [[Latin]] for starch, from the [[Greek language|Greek]] αμυλον, "amylon" which means "not ground at a mill". The root [[amyl]] is used in biochemistry for several compounds related to starch.

==History==
Starch grains from the [[rhizome]]s of ''[[Typha]]'' (cattails, bullrushes) as [[flour]] have been identified from [[grinding stone]]s in Europe dating back to 30,000 years ago.<ref name="Revedin">{{cite journal|author=Revedin A, Aranguren B, Becattini R, Longo L, Marconi E, Lippi MM, Skakun N, Sinitsyn A, Spiridonova E, Svoboda J.|year=2010|title=Thirty thousand-year-old evidence of plant food processing|journal=Proc Natl Acad Sci U S A. |volume=107|pages=18815–18819|doi=10.1073/pnas.1006993107|pmid=20956317|pmc=2973873}}</ref>

Pure extracted wheat starch paste was used in [[Ancient Egypt]] possibly to glue [[papyrus]].<ref>[[Pliny the Elder]], The [[Natural History (Pliny)]], Book XIII, Chapter 26, [http://www.perseus.tufts.edu/cgi-bin/ptext?doc=Perseus%3Atext%3A1999.02.0137&query=head%3D%23817 The paste used in preparation of paper]</ref> The extraction of starch is first described in the [[Natural History (Pliny)|Natural History]] of [[Pliny the Elder]] around AD 77-79.<ref>[[Pliny the Elder]], The [[Natural History (Pliny)]], Book XIII, Chapter 17, [http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.02.0137%3Abook%3D18%3Achapter%3D17]</ref> Romans used it also in cosmetic creams, to powder the hair and to thicken sauces. Persians and Indians used it to make dishes similar to gothumai wheat [[halva]]. Rice starch as surface treatment of paper has been used in paper production in China, from 700 AD onwards.<ref>Dard Hunter (1947). ''Papermaking''. DoverPublications. ISBN 9780486236193, page 194.</ref>

==Energy store of plants==
In [[photosynthesis]], plants use light energy to produce glucose from [[carbon dioxide]]. The glucose is stored mainly in the form of starch granules, in [[plastid]]s such as [[chloroplast]]s and especially [[amyloplast]]s. Toward the end of the growing season, starch accumulates in twigs of trees near the buds. [[Fruit]], [[seed]]s, [[rhizome]]s, and [[tuber]]s store starch to prepare for the next growing season.

Glucose is soluble in water, hydrophilic, binds much water and then takes up much space; glucose in the form of starch, on the other hand, is not soluble and can be stored much more compactly.

Glucose molecules are bound in starch by the easily hydrolyzed alpha bonds. The same type of bond can also be seen in the animal reserve polysaccharide glycogen. This is in contrast to many structural polysaccharides such as [[chitin]], [[cellulose]] and [[peptidoglycan]], which are bound by beta-bonds and are much more resistant to hydrolysis.

===Biosynthesis===
Plants produce starch by first converting [[glucose 1-phosphate]] to [[Adenosine diphosphate|ADP]]-glucose using the enzyme [[glucose-1-phosphate adenylyltransferase]]. This step requires energy in the form of [[Adenosine triphosphate|ATP]]. The enzyme [[starch synthase]] then adds the ADP-glucose via a 1,4-alpha [[glycosidic bond]] to a growing chain of glucose residues, liberating [[Adenosine diphosphate|ADP]] and creating amylose. [[Starch branching enzyme]] introduces 1,6-alpha glycosidic bonds between these chains, creating the branched amylopectin. The starch debranching enzyme [[isoamylase]] removes some of these branches. Several [[isoform]]s of these enzymes exist, leading to a highly complex synthesis process.<ref>{{Cite journal
|volume=2 |issue=2 |pages=335–41 |first=A M
|last=Smith |title=The biosynthesis of starch granules
|journal=Biomacromolecules |year=2001 |pmid=11749190
|doi=10.1021/bm000133c
}}</ref>

While amylose was traditionally thought to be completely unbranched, it is now known that some of its molecules contain a few branch points.<ref>David R. Lineback, "Starch", in AccessScience@McGraw-Hill.</ref>

Glycogen and amylopectin have the same structure, but the former has about one branch point per ten 1,4-alpha bonds, compared to about one branch point per thirty 1,4-alpha bonds in amylopectin.<ref>{{cite book |author=Stryer, Lubert; Berg, Jeremy Mark; Tymoczko, John L. |title=Biochemistry |publisher=W.H. Freeman |location=San Francisco |year=2002 |isbn=0-7167-3051-0 |edition=5th |url=http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=stryer |chapter=Section 11.2.2 |chapterurl=http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=stryer.section.1517#1522}}</ref> Another difference is that glycogen is synthesised from [[Uridine diphosphate glucose|UDP-glucose]] while starch is synthesised from ADP-glucose.

==Properties==
===Structure===
Starch molecules arrange themselves in the plant in semi-crystalline granules. Each plant species has a unique starch granular size: [[rice starch]] is relatively small (about 2μm) while [[potato starch]]es have larger granules (up to 100μm). Although in absolute mass only about one quarter of the starch granules in plants consist of amylose, there are about 150 times more amylose molecules than amylopectin molecules. Amylose is a much smaller molecule than amylopectin.

Starch becomes soluble in water when heated. The granules swell and burst, the semi-crystalline structure is lost and the smaller amylose molecules start leaching out of the granule, forming a network that holds water and increasing the mixture's [[viscosity]]. This process is called [[starch gelatinization]]. During cooking the starch becomes a paste and increases further in viscosity. During cooling or prolonged storage of the paste, the semi-crystalline structure partially recovers and the starch paste thickens, expelling water. This is mainly caused by the [[retrogradation (starch)|retrogradation]] of the amylose. This process is responsible for the hardening of bread or [[staling]], and for the water layer on top of a starch gel ([[syneresis (chemistry)|syneresis]]).

Some cultivated plant varieties have pure amylopectin starch without amylose, known as ''waxy starches''. The most used is [[waxy corn|waxy maize]], others are [[glutinous rice]] and [[waxy potato starch]]. Waxy starches have less retrogradation, resulting in a more stable paste. High amylose starch, [[amylomaize]], is cultivated for the use of its gel strength.

===Hydrolysis===
The [[enzyme]]s that break down or [[hydrolysis|hydrolyze]] starch into the constituent sugars are known as [[amylase]]s.

Alpha-[[amylase]]s are found in plants and in animals. Human [[saliva]] is rich in amylase, and the [[pancreas]] also secretes the enzyme. Individuals from populations with a high-starch diet tend to have more amylase genes than those with low-starch diets;<ref name="Variations">{{cite article | url = http://www.nature.com/ng/journal/v39/n10/full/ng2123.html | title = Diet and the evolution of human amylase gene copy number variation | journal = Nature Genetics |publisher = Nature Publishing Group|volume=39|pages= 1256&ndash;1260|year=2007|doi=10.1038/ng2123|author = Perry, George H., ''et al''}}</ref> [[chimpanzee]]s have very few amylase genes.<ref name="Variations"/> It is possible that turning to a high-starch diet was a significant event in human evolution.<ref>{{cite article|first=P.Z.|last=Myers|url=http://scienceblogs.com/pharyngula/2008/12/amylase_and_human_evolution.php|title=Amylase and human evolution|date= December 11, 2008}}</ref>

Beta-amylase cuts starch into [[maltose]] units. This process is important in the digestion of starch and is also used in [[brewing]], where the amylase from the skin of the seed grains is responsible for converting starch to maltose ([[Malting]], [[Mashing]]).

===Dextrinization===
If starch is subjected to dry heat, it breaks down to form [[pyrodextrin]]s, in a process known as dextrinization. Pyrodextrins are brown in color. This process is partially responsible for the browning of toasted bread.

===Chemical tests===
{{Main|Iodine test}}
[[Iodine]] solution is used to test for starch; a dark blue color indicates the presence of starch. The details of this reaction are not yet fully known, but it is thought that the iodine (I<sub>3</sub><sup>−</sup> and I<sub>5</sub><sup>−</sup> ions) fit inside the coils of [[amylose]], the charge transfers between the iodine and the starch, and the energy level spacings in the resulting complex correspond to the absorption spectrum in the visible light region. The strength of the resulting blue color depends on the amount of amylose present. Waxy starches with little or no amylose present will color red.

[[File:Stärkemehl 800 fach Polfilter.jpg|thumb|right|250px|Starch, 800x magnified, under polarized light.]]

[[Starch indicator]] solution consisting of water, starch and iodine is often used in [[redox]] titrations: in the presence of an [[oxidizing agent]] the solution turns blue, in the presence of [[reducing agent]] the blue color disappears because [[triiodide]] (I<sub>3</sub><sup>−</sup>) ions break up into three iodide ions, disassembling the starch-iodine complex.
A 0.3% [[Percentage solution|w/w]] solution is the standard concentration for a starch indicator. It is made by adding 3&nbsp;grams of soluble starch to 1 litre of heated water; the solution is cooled before use (starch-iodine complex becomes unstable at temperatures above 35 °C).

'''Microscopy of starch granules''' - Each species of plant has a unique shape of starch granules in granular size, shape and crystallisation pattern. Under the [[microscope]], starch grains stained with iodine illuminated from behind with [[polarized light]] show a distinctive [[Maltese cross]] effect (also known as [[extinction cross]] and [[birefringence]]).

==Starch as food==
Starch is the most common [[carbohydrate]] in the human diet and is contained in many [[staple food]]s. The major sources of starch intake worldwide are the [[cereals]] [[rice]], [[wheat]], and [[maize]], and the [[root vegetable]]s [[potato]]es and [[cassava]].<ref>Anne-Charlotte Eliasson (2004). ''Starch in food: Structure, function and applications''. Woodhead Publishing. ISBN 978-0-8493-2555-7.</ref> Many other starchy foods are grown, some only in specific climates, including [[acorn]]s, [[arrowroot]], [[arracacha]], [[banana]]s, [[barley]], [[breadfruit]], [[buckwheat]], [[canna (plant)|canna]], [[colacasia]], [[katakuri]], [[kudzu]], [[malanga]], [[millet]], [[oat]]s, [[oca]], [[polynesian arrowroot]], [[sago]], [[sorghum]], [[sweet potato]]es, [[rye]], [[taro]], [[chestnut]]s, [[water chestnut]]s and [[yam (vegetable)|yams]], and many kinds of [[bean]]s, such as [[vicia faba|favas]], [[lentils]], [[mung bean]]s, [[peas]], and [[chickpea]]s.

Widely used prepared foods containing starch are [[bread]], [[pancake]]s, [[cereals]], [[noodles]], [[pasta]], [[porridge]] and [[tortilla]].

[[digestion|Digestive]] enzymes have problems digesting crystalline structures. Raw starch will digest poorly in the [[duodenum]] and [[small intestine]], while bacterial degradation will take place mainly in the [[colon (anatomy)|colon]]. [[Resistant starch]] is starch that escapes digestion in the small intestine of healthy individuals. In order to increase the digestibility, starch is cooked. Hence, before humans started using fire, eating grains was not a very useful way to get energy.

Starch gelatinization during cake baking can be impaired by sugar competing for [[water]], preventing gelatinization and improving texture.

===Starch industry===
The starch industry extracts and refines starches from seeds, roots and tubers, by wet grinding, washing, sieving and drying. Today, the main commercial refined starches are [[cornstarch]], [[tapioca]], wheat and [[potato starch]]. To a lesser extent, sources include rice, sweet potato, sago and mung bean. Historically, [[Florida arrowroot]] was also commercialized. Starch is still extracted from more than 50 types of plants.

Untreated starch requires heat to thicken or gelatinize. When a starch is pre-cooked, it can then be used to thicken instantly in cold water. This is referred to as a [[Starch gelatinization|pregelatinized starch]].

==== Starch sugars ====
Starch can be [[hydrolyzed]] into simpler carbohydrates by [[acid]]s, various [[enzyme]]s, or a combination of the two. The resulting fragments are known as [[dextrin]]s. The extent of conversion is typically quantified by '''''[[dextrose equivalent]]''''' (DE), which is roughly the fraction of the [[glycosidic bond]]s in starch that have been broken.

These starch sugars are by far the most common starch based food ingredient and are used as sweetener in many drinks and foods. They include:

* [[Maltodextrin]], a lightly hydrolyzed (DE 10&ndash;20) starch product used as a bland-tasting filler and thickener.
* Various glucose syrup / [[corn syrup]]s (DE 30&ndash;70), viscous solutions used as sweeteners and thickeners in many kinds of processed foods.
* [[Dextrose]] (DE 100), commercial glucose, prepared by the complete hydrolysis of starch.
* [[High fructose syrup]], made by treating dextrose solutions with the enzyme [[glucose isomerase]], until a substantial fraction of the glucose has been converted to fructose. In the United States, [[high fructose corn syrup]] is the principal sweetener used in sweetened beverages because fructose has better handling characteristics, such as microbiological stability, and more consistent sweetness/flavor. One kind of high fructose corn syrup, HFCS-55, is typically sweeter than regular [[sucrose]] because it is made with more fructose, while the sweetness of HFCS-42 is on par with sucrose.<ref>{{cite web|url=http://www.elmhurst.edu/~chm/vchembook/549sweet.html|title= Sweetners - Introduction|publisher = Elmhurst College|author = Ophardt, Charles}}</ref><ref>{{cite web|url = http://www.foodproductdesign.com/articles/2008/12/hfcs-how-sweet-it-is.aspx|title = HFCS: How Sweet It Is|date=
December 2, 2008|first= John S.|last= White}}</ref>
* [[Sugar alcohol]]s, such as [[maltitol]], [[erythritol]], [[sorbitol]], [[mannitol]] and [[hydrogenated starch hydrolysate]], are sweeteners made by reducing sugars.

====Modified starches====
A [[modified starch|modified food starch]] is a starch that has been chemically modified to allow the starch to function properly under conditions frequently encountered during processing or storage, such as high heat, high shear, low pH, freeze/thaw and cooling.

The modified starches are [[E number|E coded]] according to the [[Codex Alimentarius|International Numbering System]] for Food Additives (INS):<ref>[http://www.fao.org/ag/agn/jecfa-additives/specs/Monograph1/Additive-287.pdf Modified Starches]. CODEX ALIMENTARIUS published in FNP 52 Add 9 (2001)</ref>
* 1401 Acid-treated starch
* 1402 Alkaline-treated starch
* 1403 Bleached starch
* 1404 Oxidized starch
* 1405 Starches, enzyme-treated
* 1410 Monostarch [[phosphate]]
* 1412 Distarch phosphate
* 1413 Phosphated distarch phosphate
* 1414 [[Acetylated]] distarch phosphate
* 1420 Starch acetate
* 1422 [[Acetylated distarch adipate]]
* 1440 Hydroxypropyl starch
* 1442 [[Hydroxypropyl distarch phosphate]]
* 1443 Hydroxypropyl distarch glycerol
* 1450 Starch sodium octenyl succinate
* 1451 Acetylated oxidized starch

INS 1401, 1402, 1403 and 1405 are in the EU food ingredients without an E-number. Typical modified starches for technical applications are [[Paper chemicals#Cationic starch|cationic starch]]es , hydroxyethyl starch and carboxymethylated starches.

====Use as food additive====
As an additive for [[food processing]], food starches are typically used as thickeners and stabilizers in foods such as puddings, custards, soups, sauces, gravies, pie fillings, and salad dressings, and to make noodles and pastas.

Gummed sweets such as [[jelly beans]] and [[wine gums]] are not manufactured using a mold in the conventional sense. A tray is filled with native starch and leveled. A positive mold is then pressed into the starch leaving an impression of 1000 or so jelly beans. The jelly mix is then poured into the impressions and put into a stove to set. This method greatly reduces the number of molds that must be manufactured.

In the pharmaceutical industry, starch is also used as an [[excipient]], as [[tablet]] disintegrant or as binder.

==Industrial applications==
[[Image:AdhesivesForHouseUse006.jpg|thumb|right|250px|<center>Starch adhesive.</center>]]

===Papermaking===
[[Papermaking]] is the largest non-food application for starches globally, consuming millions of metric tons annually. In a typical sheet of copy paper for instance, the starch content may be as high as 8%. Both chemically
modified and unmodified starches are used in papermaking. In the wet part of the papermaking process, generally called the “wet-end”, the starches used are cationic and have a positive charge bound to the starch polymer. These starch derivatives associate with the anionic or negatively charged paper fibers / [[cellulose]] and inorganic fillers. Cationic starches together with other retention and internal [[sizing]] agent help to give the necessary strength properties to the paper web to be formed in the papermaking process ([[wet strength]]), and to provide strength to the final paper sheet (dry strength).

In the dry end of the papermaking process, the paper web is rewetted with a starch based solution. The process is called [[sizing|surface sizing]]. Starches used have been chemically, or enzymatically depolymerized at the paper mill or by the starch industry (oxidized starch). The size - starch solutions are applied to the paper web by means of various mechanical presses (size press). Together with surface sizing agent the surface starches impart additional strength to the paper web and additionally provide water hold out or "size" for superior printing properties. Starch is also used in paper coating as one of the binders for the coating formulation a mixture of pigments, binders and thickeners. [[Coated paper]] has improved smoothness, hardness, whiteness and gloss and thus improves printing characteristics.

===Corrugated board adhesives===
[[Corrugated board]] adhesives are the next largest application of non-food starches globally. Starch [[glue]]s are mostly based on unmodified native starches, plus some additive such as [[borax]] and [[caustic soda]]. Part of the starch is gelatinized to carry the slurry of uncooked starches and prevent sedimentation. This opaque glue is called a SteinHall adhesive. The glue is applied on tips of the fluting. The fluted paper is pressed to paper called liner. This is then dried under high heat, which causes the rest of the uncooked starch in glue to swell/gelatinize. This gelatinizing makes the glue a fast and strong adhesive for corrugated board production.

===Clothing starch===
Clothing or laundry starch is a liquid that is prepared by mixing a vegetable starch in water (earlier preparations also had to be boiled), and is used in the [[laundry|laundering]] of [[clothing|clothes]]. Starch was widely used in [[Europe]] in the 16th and 17th centuries to stiffen the wide collars and [[Ruff (clothing)|ruffs]] of fine linen which surrounded the necks of the well-to-do. During the 19th century and early 20th century, it was stylish to stiffen the collars and sleeves of men's [[shirt]]s and the ruffles of girls' [[petticoat]]s by applying starch to them as the clean clothes were being [[ironing|ironed]]. Aside from the smooth, crisp edges it gave to clothing, it served practical purposes as well. [[dust|Dirt]] and [[sweat]] from a person's neck and wrists would stick to the starch rather than to the fibers of the clothing, and would easily wash away along with the starch. After each laundering, the starch would be reapplied. Today, the product is sold in [[Aerosol spray|aerosol cans]] for home use.

===Other===
Another large non-food starch application is in the construction industry, where starch is used in the gypsum [[wall board]] manufacturing process. Chemically modified or unmodified starches are added to the stucco containing primarily [[gypsum]]. Top and bottom heavyweight sheets of paper are applied to the formulation, and the process is allowed to heat and cure to form the eventual rigid wall board. The starches act as a glue for the cured gypsum rock with the paper covering, and also provide rigidity to the board.

Starch is used in the manufacture of various '''adhesives''' or glues<ref>{{Cite web | url = http://www.ars.usda.gov/is/ar/archive/apr00/wood0400.htm | title = Stuck on Starch: A new wood adhesive | publisher = US Department of Agriculture|year = 2000}}</ref> for book-binding, [[wallpaper adhesive]]s, [[paper bag#Multiwall paper sacks|paper sack]] production, tube winding, [[adhesive tape#Water activated tape|gummed paper]], envelope adhesives, school glues and bottle labeling. Starch derivatives, such as yellow dextrins, can be modified by addition of some chemicals to form a hard glue for paper work; some of those forms use borax or [[soda ash]], which are mixed with the starch solution at 50-70&nbsp;°C to create a very good adhesive. Sodium silicate can be added to reinforce these formulae.

*Starch is also used to make some [[packing peanut]]s, and some [[dropped ceiling|drop ceiling]] tiles.
*Textile chemicals from starch are used to reduce breaking of yarns during weaving; the warp yarns are [[sizing#Textile warp sizing|sized]], especially for [[cotton]]. Starch is also used as [[textile printing]] thickener.
*In the [[printing]] industry, food grade starch<ref>{{Cite web | url = http://www.russell-webb.com/anti_set_off_powder/soluble_anti-set-off-powder.html
| title = Spray Powder | publisher = Russell-Webb | accessdate = 2007-07-05
|archiveurl = http://web.archive.org/web/20070809214841/http://www.russell-webb.com/anti_set_off_powder/soluble_anti-set-off-powder.html <!-- Bot retrieved archive --> |archivedate = 2007-08-09}}</ref> is used in the manufacture of [[anti-set-off spray powder]] used to separate printed sheets of paper to avoid wet ink being [[set-off (printing)|set off]].
*Starch is used to produce various [[bioplastic]]s, synthetic polymers that are biodegradable. An example is [[polylactic acid]].
*For body powder, powdered corn starch is used as a substitute for [[talcum]] powder, and similarly in other health and beauty products.
*In oil exploration, starch is used to adjust the viscosity of [[drilling fluid]], which is used to lubricate the drill head and suspend the grinding residue in petroleum extraction.
*Glucose from starch can be further fermented to [[biofuel]] [[ethanol]].
*[[Hydrogen production]] can use starch as the raw material, using enzymes.<ref>{{cite journal |author=Zhang YH, Evans BR, Mielenz JR, Hopkins RC, Adams MW |title=High-yield hydrogen production from starch and water by a synthetic enzymatic pathway |journal=PLoS ONE |volume=2 |issue=5 |pages=e456 |year=2007 |pmid=17520015 |pmc=1866174 |doi=10.1371/journal.pone.0000456 |url=http://www.plosone.org/article/fetchArticle.action?articleURI=info:doi/10.1371/journal.pone.0000456 }}</ref>

==See also==
* [[Acrylamide]], present in fried potatoes
* [[Baking]], making starches digestible
* [[Cooking]]
* [[Distilled beverage]], brewing from starch alcohol
* [[Flour]]
* [[Modified starch]]
* [[Non-Newtonian fluid]]
* [[Starch indicator]]
* [[Yeast extract]]

== References ==
{{Reflist}}

==External links==
{{wiktionary|starch}}
{{Commons category}}
* [http://www.aac-eu.org/ European Association of starch manufactures AAF]
* [http://www.lsbu.ac.uk/water/hysta.html Starch], by Martin Chaplin
* [http://www3.interscience.wiley.com/journal/5007532/home Starch - Stärke], scientific journal on starch

{{carbohydrates}}

<!-- Categories -->
[[Category:Starch]]
[[Category:Nutrition]]
[[Category:Edible thickening agents]]
[[Category:Staple foods]]
[[Category:Excipients]]
[[Category:Printing]]

[[ar:نشا]]
[[az:Nişasta]]
[[bs:Škrob]]
[[bg:Нишесте]]
[[ca:Midó]]
[[cs:Škrob]]
[[da:Kulhydrat#Stivelse]]
[[de:Stärke]]
[[et:Tärklis]]
[[el:Άμυλο]]
[[es:Almidón]]
[[eo:Amelo]]
[[eu:Almidoi]]
[[fa:نشاسته]]
[[fr:Amidon]]
[[fy:Stiselmoal]]
[[gl:Amidón]]
[[ko:녹말]]
[[hi:मंड]]
[[hr:Škrob]]
[[io:Amilo]]
[[id:Amilum]]
[[is:Sterkja]]
[[it:Amido]]
[[he:עמילן]]
[[ka:სახამებელი]]
[[sw:Wanga]]
[[la:Amylum]]
[[lv:Ciete]]
[[lt:Krakmolas]]
[[lij:Sugo (chimica)]]
[[hu:Keményítő]]
[[mk:Скроб]]
[[ml:അന്നജം]]
[[ms:Kanji]]
[[nl:Zetmeel]]
[[ja:デンプン]]
[[nap:Posema]]
[[no:Stivelse]]
[[nn:Stive]]
[[oc:Amidon]]
[[pl:Skrobia]]
[[pt:Amido]]
[[ro:Amidon]]
[[qu:Miqu]]
[[ru:Крахмал]]
[[sq:Amidoni]]
[[simple:Starch]]
[[sk:Škrob]]
[[sl:Škrob]]
[[sr:Скроб]]
[[sh:Škrob]]
[[su:Aci]]
[[fi:Tärkkelys]]
[[sv:Stärkelse]]
[[ta:மாப்பொருள்]]
[[tl:Gawgaw]]
[[th:แป้ง (อาหาร)]]
[[tr:Nişasta]]
[[uk:Крохмаль]]
[[ur:نشاستہ]]
[[vi:Tinh bột]]
[[yi:קראכמל]]
[[zh-yue:澱粉]]
[[zh:淀粉]]

Revision as of 23:39, 19 May 2011

starch in homo