Jump to content

Research reactor: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Eio (talk | contribs)
Rescuing 2 sources, flagging 0 as dead, and archiving 0 sources. #IABot
Line 68: Line 68:
* [[Advanced Test Reactor|ATR]] at [[Idaho National Laboratory]] in Idaho Falls, ID, USA
* [[Advanced Test Reactor|ATR]] at [[Idaho National Laboratory]] in Idaho Falls, ID, USA
* [http://www.murr.missouri.edu/ the University of Missouri Research Reactor]
* [http://www.murr.missouri.edu/ the University of Missouri Research Reactor]
* [http://www.wsu.edu/nrc/ the Washington State University Nuclear Radiation Center, (Washington State University Reactor] {{dead link|date=December 2015}}
* [https://web.archive.org/20101021083431/http://www.wsu.edu:80/nrc/ the Washington State University Nuclear Radiation Center, (Washington State University Reactor]
* [[CROCUS]], a nuclear reactor operated by the [[École polytechnique fédérale de Lausanne]]
* [[CROCUS]], a nuclear reactor operated by the [[École polytechnique fédérale de Lausanne]]
* [[Maria reactor]] (30 MW) at [[POLATOM]] Institute of Nuclear Energy in Świerk-[[Otwock]], near [[Warsaw]], [[Poland]]
* [[Maria reactor]] (30 MW) at [[POLATOM]] Institute of Nuclear Energy in Świerk-[[Otwock]], near [[Warsaw]], [[Poland]]
Line 93: Line 93:


==External links==
==External links==
*[http://www.iaea.org/worldatom/rrdb/ Searchable list of Nuclear Research Reactors in the world]{{dead link|date=December 2015}}
*[https://web.archive.org/20110621090313/http://www.iaea.org:80/worldatom/rrdb/ Searchable list of Nuclear Research Reactors in the world]
*[http://www.trtr.org/ The National Organization of Test, Research, and Training Reactors, Inc.]
*[http://www.trtr.org/ The National Organization of Test, Research, and Training Reactors, Inc.]
*[http://neutronsources.org/ Neutronsources.org]
*[http://neutronsources.org/ Neutronsources.org]

Revision as of 08:35, 14 February 2016

The CROCUS research reactor of the École polytechnique fédérale de Lausanne, in Switzerland.

Research reactors are nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritime propulsion.

Purpose

The neutrons produced by a research reactor are used for neutron scattering, non-destructive testing, analysis and testing of materials, production of radioisotopes, research and public outreach and education. Research reactors that produce radioisotopes for medical or industrial use are sometimes called isotope reactors. Reactors that are optimised for beamline experiments nowadays compete with spallation sources.

Technical aspects

Research reactors are simpler than power reactors and operate at lower temperatures. They need far less fuel, and far less fission products build up as the fuel is used. On the other hand, their fuel requires more highly enriched uranium, typically up to 20% U-235, although some use 93% U-235; while 20% enrichment is not generally considered usable in nuclear weapons, 93% is commonly referred to as "weapons grade". They also have a very high power density in the core, which requires special design features. Like power reactors, the core needs cooling, typically natural or forced convection with water, and a moderator is required to slow the neutron velocities and enhance fission. As neutron production is their main function, most research reactors benefit from reflectors to reduce neutron loss from the core.

Conversion to LEU

The International Atomic Energy Agency and the U.S. Department of Energy initiated a program in 1978 to develop the means to convert research reactors from using highly enriched uranium to the use of low enriched uranium, in support of its nonproliferation policy.[1][2] By that time the U.S. had supplied research reactors and highly enriched uranium to 41 countries as part of its Atoms for Peace program. In 2004, the U.S. Department of Energy extended its Foreign Research Reactor Spent Nuclear Fuel Acceptance program until 2019.[3]

Also in 2004, the Texas A&M reactor switched to LEU after decades using HEU. These changes are a part of an anti-terrorism initiative since 9/11 begun by the Bush Administration.

Designers and constructors

While in the 1950s, 1960s and 1970s there were a number of companies that specialized in the design and construction of research reactors, the activity of this market cooled down afterwards, and many companies withdrew.

The market has consolidated today into a few companies that concentrate the key projects on a worldwide basis.

The most recent international tender (1999) for a research reactor was that organized by ANSTO for the design, construction and commissioning of the OPAL reactor. Four companies were prequalified: AECL, INVAP, Siemens and Technicatom. The project was awarded to INVAP that built the reactor. In recent years, AECL withdrew from this market, and Siemens and Technicatom activities were merged into AREVA.

Classes of research reactors

Research centers

- see also the sections on Research Reactors in List of nuclear reactors.

Research centers that operate a reactor:

Decommissioned research reactors:

References

  1. ^ "CRP on Conversion of Miniature Neutron Source Research Reactors (MNSR) to Low Enriched Uranium (LEU)". Nuclear Fuel Cycle & Waste Technology. International Atomic Energy Agency. 13 January 2014. Retrieved 25 October 2015.
  2. ^ [1]
  3. ^ [2]