Aluminium nitride: Difference between revisions
Appearance
Content deleted Content added
Updating {{chembox}} (no changed fields - added verified revid - updated 'DrugBank_Ref', 'UNII_Ref', 'ChEMBL_Ref', 'KEGG_Ref') per Chem/Drugbox validation (report [[Wikipedia_talk:WikiProject_Che |
m Clean up duplicate template arguments using findargdups |
||
(232 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Nitride of aluminum}} |
|||
{{For|the three-letter acronym|ALN (disambiguation)}} |
|||
{{hatnote group|{{redirect|AlN||Aln (disambiguation)}}{{distinguish|Aluminium nitrate}}}} |
|||
{{chembox |
|||
{{Chembox |
|||
| verifiedrevid = 445878819 |
|||
| Watchedfields = changed |
|||
| Name = Aluminium nitride |
|||
| verifiedrevid = 446888761 |
|||
| ImageFile = Aluminium Nitride.jpg |
|||
| Name = Aluminium nitride |
|||
| ImageName = Aluminum Nitride powder |
|||
| ImageFile = Aluminium Nitride.jpg |
|||
| ImageFile1 = Wurtzite polyhedra.png |
|||
| ImageName = Aluminium Nitride powder |
|||
| OtherNames = Aluminum nitride |
|||
| ImageFile1 = Wurtzite polyhedra.png |
|||
| Reference =<ref>{{cite web|url = http://accuratus.com/alumni.html|title = Aluminum Nitride|publisher = Accuratus}}</ref> |
|||
| OtherNames = AlN |
|||
| Section1 = {{Chembox Identifiers |
|||
| IUPACName = |
|||
| Reference = |
|||
| SystematicName = |
|||
| Section1 = {{Chembox Identifiers |
|||
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} |
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} |
||
| ChemSpiderID = 81668 |
| ChemSpiderID = 81668 |
||
Line 14: | Line 18: | ||
| ChEBI_Ref = {{ebicite|correct|EBI}} |
| ChEBI_Ref = {{ebicite|correct|EBI}} |
||
| ChEBI = 50884 |
| ChEBI = 50884 |
||
| SMILES = [AlH2-]1[N+]47[AlH-]2[N+][AlH-]3[N+]8([AlH2-][NH+]([AlH2-]4)[AlH2-]6)[AlH-]4[N+][AlH-]5[N+]6([AlH2-]6)[Al-]78[N+]78[AlH-]([NH+]69)[NH+]5[AlH2-][NH+]4[AlH-]7[NH+]3[AlH2-][NH+]2[AlH-]8[NH+]1[AlH2-]9 |
|||
| SMILES = [Al]#N |
|||
| SMILES1 = [AlH2-]1[NH+]([AlH2-]6)[AlH2-][NH+]7[AlH-]2[N+][Al-]3([N+][AlH-]9[N+]5)[N+]18[Al-]45[N+][AlH-]5[NH+]6[Al-]78[N+]78[AlH2-][NH+]5[AlH2-][N+]4([AlH2-][NH+]9[AlH2-]4)[AlH-]7[N+]34[AlH2-][NH+]2[AlH2-]8 |
|||
| InChIKey = PIGFYZPCRLYGLF-PXKYIXAJAH |
| InChIKey = PIGFYZPCRLYGLF-PXKYIXAJAH |
||
| StdInChI_Ref = {{stdinchicite|correct|chemspider}} |
| StdInChI_Ref = {{stdinchicite|correct|chemspider}} |
||
Line 22: | Line 27: | ||
| CASNo = 24304-00-5 |
| CASNo = 24304-00-5 |
||
| CASNo_Ref = {{cascite|correct|CAS}} |
| CASNo_Ref = {{cascite|correct|CAS}} |
||
| UNII_Ref = {{fdacite|correct|FDA}} |
|||
| UNII = 7K47D7P3M0 |
|||
| PubChem = 90455 |
| PubChem = 90455 |
||
| EINECS = 246-140-8 |
|||
}} |
|||
| RTECS = BD1055000 |
|||
| Section2 = {{Chembox Properties |
|||
| Gmelin = 13611 |
|||
| Appearance = crystalline solid, bluish white |
|||
}} |
|||
| Formula = AlN |
|||
| Section2 = {{Chembox Properties |
|||
| MolarMass = 40.9882 g/mol |
|||
| Formula = |
|||
| MolarMass_notes = |
|||
| Al=1 | N=1 |
|||
| MolarMass = 40.989 g/mol<ref name=crc/> |
|||
| Appearance = white to pale-yellow solid |
| Appearance = white to pale-yellow solid |
||
| Density = 3. |
| Density = 3.255 g/cm<sup>3</sup><ref name=crc>Haynes, p. 4.45.</ref> |
||
| |
| MeltingPtC = 2500 |
||
| MeltingPt_ref = <ref>Haynes, p. 12.80.</ref> |
|||
| Melting_notes = |
|||
| BoilingPtC = |
|||
| BoilingPt = 2517 °C (decomp) |
|||
| |
| BoilingPt_notes = |
||
| SublimationConditions = |
| SublimationConditions = |
||
| Solubility = |
| Solubility = hydrolyses (powder), insoluble (monocrystalline) |
||
| SolubleOther = insoluble, subject of hydrolysis in water solutions of bases and acids <ref>{{cite journal | title = Hydrolysis behavior of aluminum nitride in various solutions | last1 = Fukumoto | first1 = S. | last2 = Hookabe | first2 = T. | last3 = Tsubakino | first3 = H. | year = 2010 | journal = J. Mat. Science | volume = 35 | issue = 11 | pages = 2743–2748 | doi=10.1023/A:1004718329003| s2cid = 91552821 }}</ref> |
|||
| SolubilityProduct = |
| SolubilityProduct = |
||
| SolubilityProductAs = |
| SolubilityProductAs = |
||
| SolubilityOther = |
|||
| Solvent = |
| Solvent = |
||
| pKa = |
| pKa = |
||
| pKb = |
| pKb = |
||
| |
| IsoelectricPt = |
||
| LambdaMax = |
| LambdaMax = |
||
| Absorbance = |
| Absorbance = |
||
| BandGap = 6.015 eV<ref>Haynes, p. 12.85.</ref><ref>{{cite journal | last1 = Feneberg | first1 = M. | last2 = Leute | first2 = R. A. R. | last3 = Neuschl | first3 = B. | last4 = Thonke | first4 = K. | last5 = Bickermann | first5 = M. | year = 2010 | title =none | journal = Phys. Rev. B | volume = 82 | issue = 7| page = 075208 | doi=10.1103/physrevb.82.075208| bibcode = 2010PhRvB..82g5208F }}</ref> ([[Direct and indirect band gaps|direct]]) |
|||
| BandGap = 6.2 eV ([[Direct and indirect band gaps|direct]]) |
|||
| ElectronMobility = ~300 cm<sup>2</sup>/(V·s) |
| ElectronMobility = ~300 cm<sup>2</sup>/(V·s) |
||
| SpecRotation = |
| SpecRotation = |
||
| MagSus = |
| MagSus = |
||
| ThermalConductivity = 321 W/(m·K)<ref name="prop20">{{cite journal | url = https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.4.044602 | title = Experimental observation of high intrinsic thermal conductivity of AlN | year = 2020 | doi = 10.1103/PhysRevMaterials.4.044602 | access-date = 2020-04-03 | last1 = Cheng | first1 = Zhe | last2 = Koh | first2 = Yee Rui | last3 = Mamun | first3 = Abdullah | last4 = Shi | first4 = Jingjing | last5 = Bai | first5 = Tingyu | last6 = Huynh | first6 = Kenny | last7 = Yates | first7 = Luke | last8 = Liu | first8 = Zeyu | last9 = Li | first9 = Ruiyang | last10 = Lee | first10 = Eungkyu | last11 = Liao | first11 = Michael E. | last12 = Wang | first12 = Yekan | last13 = Yu | first13 = Hsuan Ming | last14 = Kushimoto | first14 = Maki | last15 = Luo | first15 = Tengfei | last16 = Goorsky | first16 = Mark S. | last17 = Hopkins | first17 = Patrick E. | last18 = Amano | first18 = Hiroshi | last19 = Khan | first19 = Asif | last20 = Graham | first20 = Samuel | journal = Physical Review Materials | volume = 4 | issue = 4 | page = 044602 | arxiv = 1911.01595 | bibcode = 2020PhRvM...4d4602C | s2cid = 207780348 }}</ref> |
|||
| ThermalConductivity = 285 W/(m·K) |
|||
| RefractIndex = 1.9–2.2 |
|||
| Viscosity = |
| Viscosity = |
||
| CriticalRelativeHumidity = |
|||
| Dipole = |
| Dipole = |
||
}} |
|||
| CoefficientThermalExpansion = 4.5{{e|–6}}/°C |
|||
| Section3 = {{Chembox Structure |
|||
}} |
|||
| Structure_ref=<ref>{{cite journal |doi=10.1111/j.1151-2916.1989.tb07662.x |title=Liquid-Phase Sintering of Aluminum Nitride by Europium Oxide Additives |journal=Journal of the American Ceramic Society |volume=72 |issue=8 |pages=1409–1414 |year=1989 |last1=Vandamme |first1=Nobuko S. |last2=Richard |first2=Sarah M. |last3=Winzer |first3=Stephen R.}}</ref> |
|||
| Section3 = {{Chembox Structure |
|||
| MolShape = |
| MolShape = |
||
| CrystalStruct = [[Wurtzite]] |
| CrystalStruct = [[Wurtzite]] |
||
| SpaceGroup = ''C''<sub>6v</sub><sup>4</sup>-''P''6<sub>3</sub>''mc'' |
| SpaceGroup = ''C''<sub>6v</sub><sup>4</sup>-''P''6<sub>3</sub>''mc'', No. 186, [[Pearson symbol|hP4]] |
||
| Coordination = Tetrahedral |
| Coordination = Tetrahedral |
||
| Dipole = |
| Dipole = |
||
| LattConst_a =0.31117 nm |
|||
| LattConst_c =0.49788 nm |
|||
| UnitCellFormulas =2 |
|||
}} |
|||
| Section4 = {{Chembox Thermochemistry |
|||
| Thermochemistry_ref=<ref>Haynes, p. 5.4.</ref> |
|||
| DeltaHf = −318.0 kJ/mol |
|||
| DeltaGf = −287.0 kJ/mol |
|||
| Entropy = 20.2 J/(mol·K) |
|||
| HeatCapacity = 30.1 J/(mol·K) |
|||
}} |
|||
| Section5 = |
|||
| Section6 = |
|||
| Section7 = {{Chembox Hazards |
|||
| NFPA-H = 1 | NFPA-F = 0 | NFPA-R = 0 |
|||
| GHSPictograms = {{GHS07}}{{GHS08}}{{GHS09}} |
|||
| GHSSignalWord = Warning |
|||
| HPhrases = {{H-phrases|315|319|335|373|411}} |
|||
| PPhrases = {{P-phrases|260|261|264|271|280|301+330+331|302+352|303+361+353|304+340|305+351+338|310|312|321|332+313|337+313|362|363|403+233|405|501}} |
|||
}} |
|||
}} |
}} |
||
| Section4 = {{Chembox Thermochemistry |
|||
| DeltaHf = |
|||
| DeltaHc = |
|||
| Entropy = |
|||
| HeatCapacity = 740 J·Kg<sup>-1</sup> K<sup>-1</sup> |
|||
}} |
|||
}} |
|||
'''Aluminium nitride''' ([[Aluminium|Al]][[Nitrogen|N]]) is a solid [[nitride]] of [[aluminium]]. It has a high [[thermal conductivity]] of up to 321 W/(m·K)<ref name="prop20">{{cite journal | url = https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.4.044602 | title = Experimental observation of high intrinsic thermal conductivity of AlN | year = 2020 | doi = 10.1103/PhysRevMaterials.4.044602 | access-date = 2020-04-03 | last1 = Cheng | first1 = Zhe | last2 = Koh | first2 = Yee Rui | last3 = Mamun | first3 = Abdullah | last4 = Shi | first4 = Jingjing | last5 = Bai | first5 = Tingyu | last6 = Huynh | first6 = Kenny | last7 = Yates | first7 = Luke | last8 = Liu | first8 = Zeyu | last9 = Li | first9 = Ruiyang | last10 = Lee | first10 = Eungkyu | last11 = Liao | first11 = Michael E. | last12 = Wang | first12 = Yekan | last13 = Yu | first13 = Hsuan Ming | last14 = Kushimoto | first14 = Maki | last15 = Luo | first15 = Tengfei | last16 = Goorsky | first16 = Mark S. | last17 = Hopkins | first17 = Patrick E. | last18 = Amano | first18 = Hiroshi | last19 = Khan | first19 = Asif | last20 = Graham | first20 = Samuel | journal = Physical Review Materials | volume = 4 | issue = 4 | page = 044602 | arxiv = 1911.01595 | bibcode = 2020PhRvM...4d4602C | s2cid = 207780348 }}</ref> and is an electrical insulator. Its [[Wurtzite (crystal structure)|wurtzite]] phase (w-AlN) has a [[band gap]] of ~6 eV at room temperature and has a potential application in [[optoelectronic]]s operating at [[deep ultraviolet]] frequencies. |
|||
'''Aluminium nitride''' ([[Aluminium|Al]][[Nitrogen|N]]) is a [[nitride]] of [[aluminium]]. Its [[Wurtzite (crystal structure)|wurtzite]] [[phase (matter)|phase]] (w-AlN) is a [[wide bandgap semiconductors|wide]] [[band gap]] (6.2 eV) [[semiconductor material]], giving it potential application for [[Ultraviolet#Subtypes|deep ultraviolet]] [[optoelectronic]]s. |
|||
==History and physical properties== |
|||
AlN was first synthesized in 1862 by F. Briegleb and A. Geuther.<ref>{{cite book|page=11 | author1= Fesenko I. P. | author2= Prokopiv M. M. | author3= Chasnyk V. I. |display-authors=etal | date = 2015| title = Aluminium nitride based functional materials, prepared from nano/micron-sized powders via hot pressing/pressureless sintering | publisher = EPC ALCON | isbn = 978-966-8449-53-6}}</ref><ref>{{cite journal | last1=Briegleb | first1=F. | last2=Geuther | first2=A. | title=Ueber das Stickstoffmagnesium und die Affinitäten des Stickgases zu Metallen | journal=Justus Liebigs Annalen der Chemie | volume=123 | issue=2 | date=1862 | pages=228–241 | doi=10.1002/jlac.18621230212 | url=https://zenodo.org/record/2344471 }}</ref> |
|||
AlN, in the pure (undoped) state has an [[electrical conductivity]] of 10<sup>−11</sup>–10<sup>−13</sup> Ω<sup>−1</sup>⋅cm<sup>−1</sup>, rising to 10<sup>−5</sup>–10<sup>−6</sup> Ω<sup>−1</sup>⋅cm<sup>−1</sup> when doped.<ref name="prop1"/> [[Electrical breakdown]] occurs at a field of 1.2–1.8{{e|5}} V/mm ([[dielectric strength]]).<ref name="prop1"/> |
|||
The material exists primarily in the hexagonal [[Wurtzite (crystal structure)|wurtzite]] crystal structure, but also has a metastable cubic [[Zincblende (crystal structure)|zincblende]] phase, which is synthesized primarily in the form of thin films. It is predicted that the cubic phase of AlN (zb-AlN) can exhibit [[superconductivity]] at high pressures.<ref>{{cite journal | last1=Dancy | first1=G. Selva | last2=Sheeba | first2=V. Benaline | last3=Louis | first3=C. Nirmala | last4=Amalraj | first4=A. | title=Superconductivity in Group III-V Semiconductor AlN Under High Pressure | journal=Orbital - the Electronic Journal of Chemistry | publisher=Instituto de Quimica - Univ. Federal do Mato Grosso do Sul | volume=7 | issue=3 | date=2015-09-30 | issn=1984-6428 | doi=10.17807/orbital.v7i3.628 | doi-access=free }}</ref> In AlN wurtzite crystal structure, Al and N alternate along the c-axis, and each bond is tetrahedrally coordinated with four atoms per unit cell. |
|||
One of the unique intrinsic properties of [[wurtzite]] AlN is its spontaneous polarization. The origin of spontaneous polarization is the strong ionic character of chemical bonds in wurtzite AlN due to the large difference in [[electronegativity]] between aluminium and nitrogen atoms. Furthermore, the non-centrosymmetric wurtzite crystal structure gives rise to a net polarization along the c-axis. Compared with other III-nitride materials, AlN has a larger spontaneous polarization due to the higher nonideality of its crystal structure (P<sub>sp</sub>: AlN 0.081 C/m<sup>2</sup> > InN 0.032 C/m<sup>2</sup> > GaN 0.029 C/m<sup>2</sup>).<ref name=":0">{{Cite journal |last=Ambacher |first=O |date=1998-10-21 |title=Growth and applications of Group III-nitrides |url=https://iopscience.iop.org/article/10.1088/0022-3727/31/20/001 |journal=Journal of Physics D: Applied Physics |volume=31 |issue=20 |pages=2653–2710 |doi=10.1088/0022-3727/31/20/001 |s2cid=250782290 |issn=0022-3727}}</ref> Moreover, the piezoelectric nature of AlN gives rise to internal piezoelectric polarization charges under strain. These polarization effects can be utilized to induce a high density of free carriers at III-nitride semiconductor heterostructure interfaces completely dispensing with the need of intentional doping. Owing to the broken inversion symmetry along the polar direction, AlN thin film can be grown on either metal-polar or nitrogen-polar faces. Their bulk and surface properties depend significantly on this choice. The polarization effect is currently under investigation for both polarities. |
|||
Critical spontaneous and piezoelectric polarization constants for AlN are listed in the table below:<ref name=":0" /><ref>{{Cite journal |last1=Ambacher |first1=O. |last2=Foutz |first2=B. |last3=Smart |first3=J. |last4=Shealy |first4=J. R. |last5=Weimann |first5=N. G. |last6=Chu |first6=K. |last7=Murphy |first7=M. |last8=Sierakowski |first8=A. J. |last9=Schaff |first9=W. J. |last10=Eastman |first10=L. F. |last11=Dimitrov |first11=R. |last12=Mitchell |first12=A. |last13=Stutzmann |first13=M. |date=2000-01-01 |title=Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures |journal=Journal of Applied Physics |volume=87 |issue=1 |pages=334–344 |doi=10.1063/1.371866 |issn=0021-8979|doi-access=free |bibcode=2000JAP....87..334A }}</ref> |
|||
{| class="wikitable" style="margin-left: auto; margin-right: auto; border: none;" |
|||
|+Critical spontaneous and piezoelectric polarization constants for AlN |
|||
! |
|||
|e<sub>31</sub> |
|||
(C/m<sup>2</sup>) |
|||
|e<sub>33</sub> |
|||
(C/m<sup>2</sup>) |
|||
|c<sub>13</sub> |
|||
(GPa) |
|||
|c<sub>33</sub> |
|||
(GPa) |
|||
|a<sub>0</sub> |
|||
(Å) |
|||
|c<sub>0</sub> |
|||
(Å) |
|||
|- |
|||
|AlN |
|||
|<nowiki>-0.60</nowiki> |
|||
|1.46 |
|||
|108 |
|||
|373 |
|||
|3.112 |
|||
|4.982 |
|||
|} |
|||
AlN has high [[thermal conductivity]], high-quality MOCVD-grown AlN single crystal has an intrinsic thermal conductivity of 321 W/(m·K), consistent with a first-principle calculation.<ref name="prop20">{{cite journal | url = https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.4.044602 | title = Experimental observation of high intrinsic thermal conductivity of AlN | year = 2020 | doi = 10.1103/PhysRevMaterials.4.044602 | access-date = 2020-04-03 | last1 = Cheng | first1 = Zhe | last2 = Koh | first2 = Yee Rui | last3 = Mamun | first3 = Abdullah | last4 = Shi | first4 = Jingjing | last5 = Bai | first5 = Tingyu | last6 = Huynh | first6 = Kenny | last7 = Yates | first7 = Luke | last8 = Liu | first8 = Zeyu | last9 = Li | first9 = Ruiyang | last10 = Lee | first10 = Eungkyu | last11 = Liao | first11 = Michael E. | last12 = Wang | first12 = Yekan | last13 = Yu | first13 = Hsuan Ming | last14 = Kushimoto | first14 = Maki | last15 = Luo | first15 = Tengfei | last16 = Goorsky | first16 = Mark S. | last17 = Hopkins | first17 = Patrick E. | last18 = Amano | first18 = Hiroshi | last19 = Khan | first19 = Asif | last20 = Graham | first20 = Samuel | journal = Physical Review Materials | volume = 4 | issue = 4 | page = 044602 | arxiv = 1911.01595 | bibcode = 2020PhRvM...4d4602C | s2cid = 207780348 }}</ref> For an electrically insulating [[ceramic]], it is 70–210 W/(m·K) for polycrystalline material, and as high as 285 W/(m·K) for single crystals).<ref name="prop1">{{cite web | url = http://www.ioffe.rssi.ru/SVA/NSM/Semicond/AlN/index.html | work = Ioffe Database | title = AlN – Aluminium Nitride | publisher = FTI im. A. F. Ioffe, RAN | location = Sankt-Peterburg | access-date = 2014-01-01 }}</ref> |
|||
AlN is one of the few materials that have both a wide and direct bandgap (almost twice that of [[Silicon carbide|SiC]] and [[Gallium nitride|GaN]]) and large thermal conductivity.<ref>{{Cite journal |last1=Hickman |first1=Austin Lee |last2=Chaudhuri |first2=Reet |last3=Bader |first3=Samuel James |last4=Nomoto |first4=Kazuki |last5=Li |first5=Lei |last6=Hwang |first6=James C M |last7=Grace Xing |first7=Huili |last8=Jena |first8=Debdeep |date=2021-04-01 |title=Next generation electronics on the ultrawide-bandgap aluminum nitride platform |journal=Semiconductor Science and Technology |volume=36 |issue=4 |pages=044001 |doi=10.1088/1361-6641/abe5fd |s2cid=233936255 |issn=0268-1242|doi-access=free |bibcode=2021SeScT..36d4001H }}</ref> This is due to its small atomic mass, strong interatomic bonds, and simple crystal structure.<ref>{{Cite journal |last1=Xu |first1=Runjie Lily |last2=Muñoz Rojo |first2=Miguel |last3=Islam |first3=S. M. |last4=Sood |first4=Aditya |last5=Vareskic |first5=Bozo |last6=Katre |first6=Ankita |last7=Mingo |first7=Natalio |last8=Goodson |first8=Kenneth E. |author-link8=Kenneth E. Goodson |last9=Xing |first9=Huili Grace |last10=Jena |first10=Debdeep |last11=Pop |first11=Eric |author-link11=Eric Pop |date=2019-11-14 |title=Thermal conductivity of crystalline AlN and the influence of atomic-scale defects |url=https://aip.scitation.org/doi/10.1063/1.5097172 |journal=Journal of Applied Physics |volume=126 |issue=18 |pages=185105 |arxiv=1904.00345 |bibcode=2019JAP...126r5105X |doi=10.1063/1.5097172 |issn=0021-8979 |s2cid=90262793}}</ref> This property makes AlN attractive for application in high speed and high power communication networks. Many devices handle and manipulate large amounts of energy in small volumes and at high speeds, so due to the electrically insulating nature and high thermal conductivity of AlN, it becomes a potential material for high-power power electronics. Among group III-nitride materials, AlN has higher thermal conductivity compared to [[gallium nitride]] (GaN). Therefore, AlN is more advantageous than GaN in terms of heat dissipation in many power and radio frequency electronic devices. |
|||
Thermal expansivity is another critical property for high temperature applications. The calculated thermal expansion coefficients of AlN at 300 K are 4.2×10<sup>−6</sup> K<sup>−1</sup>along a-axis and 5.3×10<sup>−6</sup> K<sup>−1</sup> along c-axis.<ref>{{Cite journal |last1=Slack |first1=Glen A. |last2=Bartram |first2=S. F. |date=1975-01-01 |title=Thermal expansion of some diamondlike crystals |journal=Journal of Applied Physics |volume=46 |issue=1 |pages=89–98 |doi=10.1063/1.321373 |issn=0021-8979|doi-access=free |bibcode=1975JAP....46...89S }}</ref> |
|||
==History== |
|||
AlN was first synthesized in 1877, but it was not until the middle of the 1980s that its potential for application in microelectronics was realized due to its relative high [[thermal conductivity]] for an electrical insulating [[ceramic]] (70–210 W·m<sup>−1</sup>·K<sup>−1</sup> for polycrystalline material, and as high as 285 W·m<sup>−1</sup>·K<sup>−1</sup> for single crystals).<ref>[http://www.ioffe.rssi.ru/SVA/NSM/Semicond/AlN/index.html Ioffe data archive]</ref> |
|||
==Stability and chemical properties== |
==Stability and chemical properties== |
||
Aluminium nitride is stable at high temperatures in inert atmospheres and melts at |
Aluminium nitride is stable at high temperatures in inert atmospheres and melts at about {{cvt|2200|C|K F}}. In a vacuum, AlN decomposes at ~{{cvt|1800|C|K F|abbr=on}}. In the air, surface oxidation occurs above {{cvt|700|C|K F|abbr=on}}, and even at room temperature, surface oxide layers of 5–10 nm thickness have been detected. This oxide layer protects the material up to {{cvt|1370|C|K F|abbr=on}}. Above this temperature bulk oxidation occurs. Aluminium nitride is stable in hydrogen and carbon-dioxide atmospheres up to {{cvt|980|C|K F|abbr=on}}.<ref name=berger>{{cite book | author = Berger, L. I. | title = Semiconductor Materials | publisher = CRC Press | year = 1997 | isbn = 978-0-8493-8912-2 | pages = [https://archive.org/details/semiconductormat0000berg/page/123 123]–124 | url = https://archive.org/details/semiconductormat0000berg | url-access = registration }}</ref> |
||
The material dissolves slowly in mineral |
The material dissolves slowly in [[mineral acid]]s through [[Intergranular corrosion|grain-boundary attack]] and in strong [[alkali]]es through attack on the aluminium-nitride grains. The material hydrolyzes slowly in water. Aluminium nitride is resistant to attack from most molten salts, including [[chloride]]s and [[cryolite]].<ref>{{Cite journal |last1=Pradhan |first1=S |last2=Jena |first2=S K |last3=Patnaik |first3=S C |last4=Swain |first4=P K |last5=Majhi |first5=J |date=2015-02-19 |title=Wear characteristics of Al-AlN composites produced in-situ by nitrogenation |journal=IOP Conference Series: Materials Science and Engineering |volume=75 |issue=1 |pages=012034 |doi=10.1088/1757-899X/75/1/012034 |s2cid=137160554 |issn=1757-899X |doi-access=free |bibcode=2015MS&E...75a2034P }}</ref> |
||
Aluminium nitride can be patterned with a Cl<sub>2</sub>-based [[reactive ion etch]].<ref>{{cite journal |last1=Chih-ming Lin |last2=Ting-ta Yen |last3=Yun-ju Lai |last4=Felmetsger |first4=V. V. |last5=Hopcroft |first5=M. A. |last6=Kuypers |first6=J. H. |last7=Pisano |first7=A. P. |title=Temperature-compensated aluminum nitride lamb wave resonators |journal=IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control |date=March 2010 |volume=57 |issue=3 |pages=524–532 |doi=10.1109/TUFFC.2010.1443 |pmid=20211766 |s2cid=20028149}}</ref><ref>{{cite journal |last1=Xiong |first1=Chi |last2=Pernice |first2=Wolfram H. P. |last3=Sun |first3=Xiankai |last4=Schuck |first4=Carsten |last5=Fong |first5=King Y. |last6=Tang |first6=Hong X. |title=Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics |journal=New Journal of Physics |date=2012 |volume=14 |issue=9 |pages=095014 |doi=10.1088/1367-2630/14/9/095014 |language=en |issn=1367-2630 |bibcode=2012NJPh...14i5014X |arxiv=1210.0975 |s2cid=118571039}}</ref> |
|||
==Manufacture== |
==Manufacture== |
||
AlN is synthesized by the [[carbothermal reduction]] of [[aluminium oxide]] or by direct nitridation of aluminium. The use of [[sintering]] aids and hot pressing is required to produce a dense technical |
AlN is synthesized by the [[carbothermal reduction]] of [[aluminium oxide]] in the presence of gaseous nitrogen or ammonia or by direct nitridation of aluminium.<ref>{{Cite journal |last1=Yamakawa |first1=Tomohiro |last2=Tatami |first2=Junichi |last3=Wakihara |first3=Toru |last4=Komeya |first4=Katsutoshi |last5=Meguro |first5=Takeshi |last6=MacKenzie |first6=Kenneth J. D. |last7=Takagi |first7=Shinichi |last8=Yokouchi |first8=Masahiro |date=2005-10-04 |title=Synthesis of AlN Nanopowder from γ-Al2O3 by Reduction-Nitridation in a Mixture of NH3-C3H8 |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2005.00693.x |journal=Journal of the American Ceramic Society |language=en |volume=89 |issue=1 |pages=171–175 |doi=10.1111/j.1551-2916.2005.00693.x |issn=0002-7820 |access-date=2023-06-26}}</ref> The use of [[sintering]] aids, such as Y<sub>2</sub>O<sub>3</sub> or CaO, and hot pressing is required to produce a dense technical-grade material.{{cn|date=October 2023}} |
||
==Applications== |
==Applications== |
||
[[Epitaxy|Epitaxially]] grown [[thin film]] crystalline aluminium nitride is used for [[surface acoustic wave]] sensors (SAWs) deposited on silicon [[wafer (electronics)|wafers]] because of AlN's [[piezoelectric]] properties. Recent advancements in [[Materials science|material science]] have permitted the deposition of piezoelectric AlN films on polymeric substrates, thus enabling the development of flexible SAW devices.<ref>{{Cite journal |last=Lamanna |first=Leonardo |date=November 2023 |title=Recent Progress in Polymeric Flexible Surface Acoustic Wave Devices: Materials, Processing, and Applications |journal=Advanced Materials Technologies |language=en |volume=8 |issue=21 |doi=10.1002/admt.202300362 |issn=2365-709X|doi-access=free }}</ref> One application is an [[RF and microwave filter|RF filter]], widely used in mobile phones,<ref>{{cite news |newspaper=Investor's Business Daily |author=Tsuruoka, Doug |date=2014-03-17 |url=http://news.investors.com/technology/031714-693520-aapl-drives-avgo-fbar-filter-shipments.htm?ven=rss |title=Apple, Samsung Cellphone Filter Orders Lift Avago}}</ref> which is called a [[thin-film bulk acoustic resonator]] (FBAR). This is a [[microelectromechanical systems|MEMS]] device that uses aluminium nitride sandwiched between two metal layers.<ref>{{cite web | url=http://www.en-genius.net/site/zones/wirelessZONE/product_reviews/hfp_052702 | title = ACPF-7001: Agilent Technologies Announces FBAR Filter for U.S. PCS Band Mobile Phones and Data Cards | work = wirelessZONE | publisher = EN-Genius Network Ltd. | date = 2002-05-27 | access-date = 2008-10-18 }}</ref> |
|||
Metallization methods are available to allow AlN to be used in electronics applications similar to those of alumina and [[beryllium oxide]]. |
|||
AlN is also used to build [[Piezoelectricity|piezoelectric]] micromachined [[ultrasonic transducers]], which emit and receive ultrasound and which can be used for in-air rangefinding over distances of up to a meter.<ref>{{cite web | url=http://www.technologyreview.com/news/520841/a-gestural-interface-for-smart-watches/ | title = A Gestural Interface for Smart Watches |website=MIT Technology Review |last=Metz |first=Rachel |archive-url=http://web.archive.org/web/20131102010259/https://www.technologyreview.com/news/520841/a-gestural-interface-for-smart-watches/ |archive-date=Nov 2, 2013}}</ref><ref> |
|||
Currently there is much research into developing [[light-emitting diode]]s to operate in the ultraviolet using the [[gallium nitride]] based semiconductors and, using the alloy [[aluminum gallium nitride]], wavelengths as short as 250 nm have been achieved. In May 2006, an inefficient AlN [[Light-emitting diode|LED]] emission at 210 nm has been reported.<ref>{{cite journal|author=Y. Taniyasu ''et al.''|title=An aluminium nitride light-emitting diode with a wavelength of 210 nanometres|journal=Nature|volume=441|year=2006|page=325|url=http://physicsworld.com/cws/article/news/24926|doi=10.1038/nature04760|pmid=16710416|issue=7091}}</ref> |
|||
{{cite conference |
|||
| first1 = R. |
|||
| last1 = Przybyla |
|||
| first2 = et |
|||
| last2 = al |
|||
| title = 3D Ultrasonic Gesture Recognition |
|||
| book-title = International Solid State Circuits Conference |
|||
| place = San Francisco |
|||
| pages = 210–211 |
|||
| url = https://www.researchgate.net/publication/260991545 |
|||
| year = 2014}} |
|||
</ref> |
|||
Metallization methods are available to allow AlN to be used in electronics applications similar to those of alumina and [[beryllium oxide]]. AlN nanotubes as inorganic quasi-one-dimensional nanotubes, which are isoelectronic with carbon nanotubes, have been suggested as chemical sensors for toxic gases.<ref>{{cite journal | last1 = Ahmadi | first1 = A. | last2 = Hadipour | first2 = N. L. | last3 = Kamfiroozi | first3 = M. | last4 = Bagheri | first4 = Z. | year = 2012 | title = Theoretical study of aluminium nitride nanotubes for chemical sensing of formaldehyde | journal = Sensors and Actuators B: Chemical | volume = 161 | issue = 1 | pages = 1025–1029 | doi = 10.1016/j.snb.2011.12.001 | bibcode = 2012SeAcB.161.1025A }}</ref><ref>{{cite journal | last1 = Ahmadi Peyghan | first1 = A. | last2 = Omidvar | first2 = A. | last3 = Hadipour | first3 = N. L. | last4 = Bagheri | first4 = Z. | last5 = Kamfiroozi | first5 = M. | year = 2012 | title = Can aluminum nitride nanotubes detect the toxic NH<sub>3</sub> molecules? | journal = Physica E | volume = 44 | issue = 7–8 | pages = 1357–1360 | doi=10.1016/j.physe.2012.02.018 | bibcode = 2012PhyE...44.1357A }}</ref> |
|||
Among the applications of AlN are |
|||
*opto-electronics, |
|||
*dielectric layers in optical storage media, |
|||
*electronic substrates, chip carriers where high thermal conductivity is essential, |
|||
*military applications, |
|||
*as a [[crucible]] to grow crystals of [[gallium arsenide]], |
|||
*[[steel]] and [[semiconductor]] manufacturing. |
|||
Currently there is much research into developing [[light-emitting diode]]s to operate in the ultraviolet using [[gallium nitride]] based semiconductors and, using the alloy [[aluminium gallium nitride]], wavelengths as short as 250 nm have been achieved. In 2006, an inefficient AlN [[Light-emitting diode|LED]] emission at 210 nm was reported.<ref>{{cite journal | author = Taniyasu, Y. | title = An Aluminium Nitride Light-Emitting Diode with a Wavelength of 210 Nanometres | journal = Nature | volume = 441 | year = 2006 | url = http://physicsworld.com/cws/article/news/2006/may/17/leds-move-into-the-ultraviolet | doi = 10.1038/nature04760 | pmid = 16710416 | issue = 7091 | pages = 325–328 |display-authors=etal | bibcode = 2006Natur.441..325T | s2cid = 4373542 }}</ref> |
|||
[[Epitaxy|Epitaxially]] grown [[thin film]] crystalline aluminium nitride is also used for [[surface acoustic wave]] sensors (SAW's) deposited on silicon [[wafer (electronics)|wafers]] because of the AlN's [[piezoelectric]] properties. One application is an [[RF and microwave filter|RF filter]] used in mobile phones called a [[thin film bulk acoustic resonator]] (FBAR). This is a [[microelectromechanical systems|MEMS]] device that uses aluminium nitride sandwiched between two metal layers.<ref>{{cite web |url=http://www.en-genius.net/site/zones/wirelessZONE/product_reviews/hfp_052702 |title=ACPF-7001: Agilent Technologies Announces FBAR Filter for U.S. PCS Band Mobile Phones and Data Cards |work=wirelessZONE |publisher=EN-Genius Network Ltd. |date=2002-05-27 |accessdate=2008-10-18}}</ref> |
|||
AlN-based [[High-electron-mobility transistor|high electron mobility transistors]] (HEMTs) have attracted a high level of attention due to AlN’s superior properties, such as better thermal management, reduced buffer leakage, and excellent integration for all nitride electronics. AlN buffer layer is a critical building block for AlN-based HEMTs, and it has been grown by using MOCVD or MBE on different substrates. Building on top of AlN buffer, n-channel devices with [[Two-dimensional electron gas|2D electron gas]] (2DEG) and p-channel devices with 2D hole gas (2DHG) have been demonstrated. The combination of high-density 2DEG and 2DHG on the same semiconductor platform makes it a potential candidate for CMOS devices. |
|||
Aluminum oxide ceramics facilitate [[polymerization]] reactions, enhancing efficiency and consistency in creating [[plastics]] and [[resins]].<ref>{{cite web |url=https://www.preciseceramic.com/blog/what-is-aluminum-nitride-ceramic.html |title=What is Aluminum Nitride Ceramic? |last=Ross |first=Lisa |date=Apr 12, 2024 |website=Advanced Ceramic Materials |access-date=Nov 2, 2024}}</ref> They are also used in [[microwave]] applications as a substrate and heat sink.<ref>{{cite journal |last1=Ma |first1=Yupu |last2=Wei |first2=Tao |year=2023 |title= Embedded Microfluidic Cooling in Aluminum Nitride HTCC Substrate for High-Power Radio Frequency Chip Array |journal=J. Thermal Sci. Eng. Appl |volume=15 |issue=10 |pages=101004-101012 |doi=10.1115/1.4062400}}</ref> More researchers are examining the production of [[Light-emitting diode|light-emitting diodes(LEDs)]] to operate in the ultraviolet region using [[Aluminium gallium nitride|aluminium gallium nitride(AlGaN)]] based semiconductors.<ref>{{cite journal |last1=Lang |first1=Jing |last2=Xu |first2=Fujun |year=2024 |title= Progress in Performance of AlGaN-Based Ultraviolet Light Emitting Diodes |journal=Advanced Electronic Materials |page=2300840 |doi=10.1002/aelm.202300840 |doi-access=free}}</ref> |
|||
Among the applications of AlN are |
|||
* opto-electronics, |
|||
* dielectric layers in optical storage media, |
|||
* electronic substrates, chip carriers where high thermal conductivity is essential, |
|||
* military applications, |
|||
* as a [[crucible]] to grow crystals of [[gallium arsenide]], |
|||
* [[steel]] and [[semiconductor]] manufacturing. |
|||
==See also== |
==See also== |
||
*[[Boron nitride]] |
*[[Boron nitride]] |
||
*[[Aluminium phosphide]] |
*[[Aluminium phosphide]] |
||
*[[Aluminium arsenide]] |
|||
*[[Aluminium antimonide]] |
|||
*[[Gallium nitride]] |
|||
*[[Indium nitride]] |
*[[Indium nitride]] |
||
*[[Aluminium oxynitride]] |
|||
*[[Titanium aluminium nitride]], TiAlN or AlTiN |
|||
==References== |
==References== |
||
{{ |
{{Reflist}} |
||
== |
==Cited sources== |
||
*{{cite book|page=4.45 | editor= Haynes, William M. | date = 2016| title = CRC Handbook of Chemistry and Physics | edition = 97th | publisher = [[CRC Press]] | isbn = 9781498754293| title-link= CRC Handbook of Chemistry and Physics }} |
|||
*[http://www.ioffe.rssi.ru/SVA/NSM/Semicond/AlN/index.html Ioffe data archive] |
|||
*[http://www.lrsm.upenn.edu/~frenchrh/download/9308esaln.pdf Electronic Structure of AlN] |
|||
*[http://physchem.ox.ac.uk/MSDS/AL/aluminium_nitride.html MSDS (University of Oxford)] |
|||
{{Aluminium compounds}} |
{{Aluminium compounds}} |
||
{{Nitrides}} |
|||
{{Authority control}} |
|||
[[Category:Nitrides]] |
[[Category:Nitrides]] |
||
[[Category:Aluminium compounds]] |
[[Category:Aluminium compounds]] |
||
[[Category:Semiconductor materials]] |
|||
[[Category:Piezoelectric materials]] |
[[Category:Piezoelectric materials]] |
||
[[Category:III-V |
[[Category:III-V semiconductors]] |
||
[[Category:Light-emitting diode materials]] |
[[Category:Light-emitting diode materials]] |
||
[[Category:III-V compounds]] |
|||
[[Category:Wurtzite structure type]] |
|||
[[ar:نتريد الألومنيوم]] |
|||
[[de:Aluminiumnitrid]] |
|||
[[es:Nitruro de aluminio]] |
|||
[[fa:آلومینیم نیترید]] |
|||
[[fr:Nitrure d'aluminium]] |
|||
[[it:Nitruro di alluminio]] |
|||
[[ja:窒化アルミニウム]] |
|||
[[pl:Azotek glinu]] |
|||
[[pt:Nitreto de alumínio]] |
|||
[[ru:Нитрид алюминия]] |
|||
[[sr:Алуминијум-нитрид]] |
|||
[[zh:氮化鋁]] |