Jump to content

Isotopes of rutherfordium

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Trappist the monk (talk | contribs) at 12:35, 18 February 2016 (Hot fusion studies: replace et al. in author/editor parameters with |display-authors=etal or |display-editors=etal; using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Rutherfordium (Rf) is a synthetic element, and thus a standard atomic mass cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was either 259Rf in 1966 or 257Rf in 1969. There are 15 known radioisotopes from 253Rf to 268Rf (2 of which, 266Rf and 268Rf, are unconfirmed) and 4 isomers. The longest-lived isotope is 267Rf with an estimated half-life of 5 hours. The longest directly measured half-life is 263Rf at 11 minutes, and the longest-lived isomer is 261mRf with a half-life of 81 seconds.

Table

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)
 
half-life decay
mode(s)[1][n 1]
daughter
isotope(s)
nuclear
spin
excitation energy
253Rf 104 149 253.10044(44)# 13(5) ms SF (51%) (various) (7/2)(+#)
α (49%) 249No
253mRf 200(150)# keV 52(14) µs
[48(+17−10) µs]
SF (various) (1/2)(−#)
254Rf 104 150 254.10005(30)# 23(3) µs SF (99.7%) (various) 0+
α (.3%) 250No
255Rf 104 151 255.10127(12)# 1.64(11) s SF (52%) (various) (9/2−)#
α (48%) 251No
256Rf 104 152 256.101152(19) 6.45(14) ms SF (96%) (various) 0+
α (6%) 252No
257Rf 104 153 257.102918(12)# 4.7(3) s α (79%) 253No (1/2+)
β+ (18%) 257Lr
SF (2.4%) (various)
257mRf 114(17) keV 3.9(4) s (11/2−)
258Rf 104 154 258.10343(3) 12(2) ms SF (87%) (various) 0+
α (13%) 254No
259Rf 104 155 259.10560(8)# 2.8(4) s α (93%) 255No 7/2+#
SF (7%) (various)
β+ (.3%) 259Lr
260Rf 104 156 260.10644(22)# 21(1) ms SF (98%) (various) 0+
α (2%) 256No
261Rf 104 157 261.10877(5) 68 s[2] α (76%) 257No 9/2+#
β+ (14%) 261Lr
SF (10%) (various)
261mRf 70(100)# keV 1.9(4) s[3] SF (73%) (various) 3/2+#
α (27%) 257No
262Rf 104 158 262.10993(24)# 2.3(4) s SF (99.2%) (various) 0+
α (.8%) 258No
262mRf 600(400)# keV 47(5) ms SF (various) high
263Rf 104 159 263.1125(2)# 11(3) min SF (70%) (various) 3/2+#
α (30%) 259No
264Rf 104 160 264.11388(39)# 1# h SF (various) 0+
265Rf[n 2] 104 161 265.11668(39)# 1.0 min[4] SF (various)
266Rf[n 3][n 4] 104 162 266.11817(50)# 10# h 0+
267Rf[n 5] 104 163 267.12179(62)# 1.3 h SF (various)
268Rf[n 3][n 6] 104 164 268.12397(77)# 1# h 0+
  1. ^ Abbreviations:
    EC: Electron capture
    SF: Spontaneous fission
  2. ^ Not directly synthesized, occurs in decay chain of 285Fl
  3. ^ a b Discovery of this isotope is unconfirmed
  4. ^ Not directly synthesized, occurs in decay chain of 282Uut
  5. ^ Not directly synthesized, occurs in decay chain of 287Fl
  6. ^ Not directly synthesized, occurs in decay chain of 288Uup

Notes

  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.

Nucleosynthesis

Super-heavy elements such as rutherfordium are produced by bombarding lighter elements in particle accelerators that induces fusion reactions. Whereas most of the isotopes of rutherfordium can be synthesized directly this way, some heavier ones have only been observed as decay products of elements with higher atomic numbers.[5]

Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons.[5] In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products.[6] The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).[7]

Hot fusion studies

The synthesis of rutherfordium was first attempted in 1964 by the team at Dubna using the hot fusion reaction of neon-22 projectiles with plutonium-242 targets:

The element Link does not exist. + The element Link does not exist.264−x
104
Rf
+ 3 or 5
n
.

The first study produced evidence for a spontaneous fission with a 0.3 second half-life and another one at 8 seconds. While the former observation was eventually retracted, the latter eventually became associated with the 259Rf isotope.[8] In 1966, the Soviet team repeated the experiment using a chemical study of volatile chloride products. They identified a volatile chloride with eka-hafnium properties that decayed fast through spontaneous fission. This gave strong evidence for the formation of RfCl4, and although a half-life was not accurately measured, later evidence suggested that the product was most likely 259Rf. The team repeated the experiment several times over the next few years, and in 1971, they revised the spontaneous fission half-life for the isotope at 4.5 seconds.[8]

In 1969, researchers at the University of California led by Albert Ghiorso, tried to confirm the original results reported at Dubna. In a reaction of curium-248 with oxygen-16, they were unable to confirm the result of the Soviet team, but managed to observe the spontaneous fission of 260Rf with a very short half-life of 10–30 ms:

The element Link does not exist. + The element Link does not exist.260
104
Rf
+ 4
n
.

In 1970, the American team also studied the same reaction with oxygen-18 and identified 261Rf with a half-life of 65 seconds (later refined to 75 seconds).[9][10] Later experiments at the Lawrence Berkeley National Laboratory in California also revealed the formation of a short-lived isomer of 262Rf (which undergoes spontaneous fission with a half-life of 47 ms),[11] and spontaneous fission activities with long lifetimes tentatively assigned to 263Rf.[12]

Diagram of the experimental set-up used in the discovery of isotopes 257Rf and 259Rf

The reaction of californium-249 with carbon-13 was also investigated by the Ghiorso team, which indicated the formation of the short-lived 258Rf (which undergoes spontaneous fission in 11 ms):[13]

The element Link does not exist. + The element Link does not exist.258
104
Rf
+ 4
n
.

In trying to confirm these results by using carbon-12 instead, they also observed the first alpha decays from 257Rf.[13]

The reaction of berkelium-249 with nitrogen-14 was first studied in Dubna in 1977, and in 1985, researchers there confirmed the formation of the 260Rf isotope which quickly undergoes spontaneous fission in 28 ms:[8]

The element Link does not exist. + The element Link does not exist.260
104
Rf
+ 3
n
.

In 1996 the isotope 262Rf was observed in LBNL from the fusion of plutonium-244 with neon-22:

The element Link does not exist. + The element Link does not exist.266−x
104
Rf
+ 4 or 5
n
.

The team determined a half-life of 2.1 seconds, in contrast to earlier reports of 47 ms and suggested that the two half-lives might be due to different isomeric states of 262Rf.[14] Studies on the same reaction by a team at Dubna, lead to the observation in 2000 of alpha decays from 261Rf and spontaneous fissions of 261mRf.[15]

The hot fusion reaction using a uranium target was first reported at Dubna in 2000:

The element Link does not exist. + The element Link does not exist.264−x
104
Rf
+ x
n
(x = 3, 4, 5, 6).

They observed decays from 260Rf and 259Rf, and later for 259Rf. In 2006, as part of their program on the study of uranium targets in hot fusion reactions, the team at LBNL also observed 261Rf.[15][16][17]

Cold fusion studies

The first cold fusion experiments involving element 104 were done in 1974 at Dubna, by using light titanium-50 nuclei aimed at lead-208 isotope targets:

The element Link does not exist. + The element Link does not exist.258−x
104
Rf
+ x
n
(x = 1, 2, or 3).

The measurement of a spontaneous fission activity was assigned to 256Rf,[18] while later studies done at the Gesellschaft für Schwerionenforschung Institute (GSI), also measured decay properties for the isotopes 257Rf, and 255Rf.[19][20]

In 1974 researchers at Dubna investigated the reaction of lead-207 with titanium-50 to produce the isotope 255Rf.[21] In a 1994 study at GSI using the lead-206 isotope, 255Rf as well as 254Rf were detected. 253Rf was similarly detected that year when lead-204 was used instead.[20]

Decay studies

Most isotopes with an atomic mass below 262 have also observed as decay products of elements with a higher atomic number, allowing for refinement of their previously measured properties. Heavier isotopes of rutherfordium have only been observed as decay products. For example, a few alpha decay events terminating in 267Rf were observed in the decay chain of darmstadtium-279 since 2004:

279
110
Ds
275
108
Hs
+
α
271
106
Sg
+
α
267
104
Rf
+
α
.

This further underwent spontaneous fission with a half-life of about 1.3 h.[22][23][24]

Investigations on the synthesis of the dubnium-263 isotope in 1999 at the University of Bern revealed events consistent with electron capture to form 263Rf. A rutherfordium fraction was separated, and several spontaneous fission events with long half-lives of about 15 minutes were observed, as well as and alpha decays with half-lives of about 10 minutes.[12] Reports on the decay chain of flerovium-285 in 2010 showed five sequential alpha decays that terminate in 265Rf, which further undergoes spontaneous fission with a half-life of 152 seconds.[25]

Some experimental evidence was obtained in 2004 for an even heavier isotope, 268Rf, in the decay chain of an isotope of ununpentium:

The element ununpentium does not exist.The element ununtrium does not exist. +
α
280
111
Rg
+
α
276
109
Mt
+
α
272
107
Bh
+
α
268
105
Db
+
α
 ? → 268
104
Rf
+
ν
e
.

However, the last step in this chain was uncertain. After observing the five alpha decay events that generate dubnium-268, spontaneous fission events were observed with a long half-life. It is unclear whether these events were due to direct spontaneous fission of 268Db, or 268Db produced electron capture events with long half-lives to generate 268Rf. If the latter is produced and decays with a short half-life, the two possibilities cannot be distinguished.[26] Given that the electron capture of 268Db cannot be detected, these spontaneous fission events may be due to 268Rf, in which case the half-life of this isotope cannot be extracted.[27][28]

According to a 2007 report on the synthesis of ununtrium, the isotope 282113 was observed to undergo a similar decay to form 266Db, which undergoes spontaneous fission with a half-life of 22 minutes. Given that the electron capture of 266Db cannot be detected, these spontaneous fission events may be due to 266Rf, in which case the half-life of this isotope cannot be extracted.[29][30]

Nuclear isomerism

Currently suggested decay level scheme for 257Rfg,m from the studies reported in 2007 by Hessberger et al. at GSI[31]

Several early studies on the synthesis of 263Rf have indicated that this nuclide decays primarily by spontaneous fission with a half-life of 10–20 minutes. More recently, a study of hassium isotopes allowed the synthesis of atoms of 263Rf decaying with a shorter half-life of 8 seconds. These two different decay modes must be associated with two isomeric states, but specific assignments are difficult due to the low number of observed events.[12]

During research on the synthesis of rutherfordium isotopes utilizing the 244Pu(22Ne,5n)261Rf reaction, the product was found to undergo exclusive 8.28 MeV alpha decay with a half-life of 78 seconds. Later studies at GSI on the synthesis of copernicium and hassium isotopes produced conflicting data, as 261Rf produced in the decay chain was found to undergo 8.52 MeV alpha decay with a half-life of 4 seconds. Later results indicated a predominant fission branch. These contradictions led to some doubt on the discovery of copernicium. The first isomer is currently denoted 261aRf (or simply 261Rf) whilst the second is denoted 261bRf (or 261mRf). However, it is thought that the first nucleus belongs to a high-spin ground state and the latter to a low-spin metastable state.[32] The discovery and confirmation of 261bRf provided proof for the discovery of copernicium in 1996.[33]

A detailed spectroscopic study of the production of 257Rf nuclei using the reaction 208Pb(50Ti,n)257Rf allowed the identification of an isomeric level in 257Rf. The work confirmed that 257gRf has a complex spectrum with 15 alpha lines. A level structure diagram was calculated for both isomers.[34] Similar isomers were reported for 256Rf also.[35]

Future experiments

The team at GSI are planning to perform first detailed spectroscopic studies on the isotope 259Rf. It will be produced in the new reaction:

Chemical yields of isotopes

Cold fusion

The table below provides cross-sections and excitation energies for cold fusion reactions producing rutherfordium isotopes directly. Data in bold represents maxima derived from excitation function measurements. + represents an observed exit channel.

Projectile Target CN 1n 2n 3n
50Ti 208Pb 258Rf 38.0 nb, 17.0 MeV 12.3 nb, 21.5 MeV 660 pb, 29.0 MeV
50Ti 207Pb 257Rf 4.8 nb
50Ti 206Pb 256Rf 800 pb, 21.5 MeV 2.4 nb, 21.5 MeV
50Ti 204Pb 254Rf 190 pb, 15.6 MeV
48Ti 208Pb 256Rf 380 pb, 17.0 MeV

Hot fusion

The table below provides cross-sections and excitation energies for hot fusion reactions producing rutherfordium isotopes directly. Data in bold represents maxima derived from excitation function measurements. + represents an observed exit channel.

Projectile Target CN 3n 4n 5n
26Mg 238U 264Rf 240 pb 1.1 nb
22Ne 244Pu 266Rf + 4.0 nb
18O 248Cm 266Rf + 13.0 nb

References

  1. ^ http://www.nucleonica.net/unc.aspx
  2. ^ http://flerovlab.jinr.ru/linkc/flnr_presentations/Mendeleev%20simposium/Tuerler.pdf
  3. ^ http://journals.aps.org/prc/pdf/10.1103/PhysRevC.83.034602
  4. ^ V. K. Utyonkov (March 31 – April 2, 2015). "Synthesis of superheavy nuclei at limits of stability: 239,240Pu + 48Ca and 249-251Cf + 48Ca reactions" (PDF). Super Heavy Nuclei International Symposium, Texas A & M University, College Station TX, USA. {{cite journal}}: Cite journal requires |journal= (help)
  5. ^ a b Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009). "Discovery of the element with atomic number 112 (IUPAC Technical Report)". Pure and Applied Chemistry. 81 (7): 1331. doi:10.1351/PAC-REP-08-03-05.
  6. ^ Armbruster, Peter; Munzenberg, Gottfried (1989). "Creating superheavy elements". Scientific American. 34: 36–42. {{cite journal}}: Unknown parameter |lastauthoramp= ignored (|name-list-style= suggested) (help)
  7. ^ Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 261 (2): 301–308. doi:10.1016/0022-0728(89)80006-3.
  8. ^ a b c "Discovery of the transneptunium elements", IUPAC/IUPAP Technical Report, Pure & Appl. Chem., Vol. 65, No. 8, pp. 1757-1814,1993. Retrieved on 2008-03-04
  9. ^ Ghiorso, A.; Nurmia, M.; Eskola, K.; Eskola, P. (1970). "261Rf; new isotope of element 104". Physics Letters B. 32 (2): 95–98. Bibcode:1970PhLB...32...95G. doi:10.1016/0370-2693(70)90595-2.
  10. ^ Sylwester; Gregorich, K. E.; Lee, D. M.; Kadkhodayan, B.; Türler, A.; Adams, J. L.; Kacher, C. D.; Lane, M. R.; Laue, C.; McGrath, C. A. (2000). "On-line gas chromatographic studies of Rf, Zr, and Hf bromides". Radiochimica Acta. 88 (12_2000): 837. doi:10.1524/ract.2000.88.12.837. {{cite journal}}: Cite has empty unknown parameter: |author-separator= (help); Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  11. ^ Somerville, L. P.; Nurmia, M. J.; Nitschke, J. M.; Ghiorso, A.; Hulet, E. K.; Lougheed, R. W. (1985). "Spontaneous fission of rutherfordium isotopes". Physical Review C. 31 (5): 1801–1815. Bibcode:1985PhRvC..31.1801S. doi:10.1103/PhysRevC.31.1801.
  12. ^ a b c Kratz; Nähler, A.; Rieth, U.; Kronenberg, A.; Kuczewski, B.; Strub, E.; Brüchle, W.; Schädel, M.; Schausten, B. (2003). "An EC-branch in the decay of 27-s263Db: Evidence for the new isotope263Rf" (PDF). Radiochim. Acta. 91 (1–2003): 59–62. doi:10.1524/ract.91.1.59.19010. {{cite journal}}: Cite has empty unknown parameter: |author-separator= (help); Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  13. ^ a b Ghiorso; et al. (1969). "Positive Identification of Two Alpha-Particle-Emitting Isotopes of Element 104". Phys. Rev. Lett. 22: 1317–1320. doi:10.1103/physrevlett.22.1317.
  14. ^ Lane; Gregorich, K.; Lee, D.; Mohar, M.; Hsu, M.; Kacher, C.; Kadkhodayan, B.; Neu, M.; Stoyer, N.; Sylwester, E. R.; Yang, J. C.; Hoffman, D. C. (1996). "Spontaneous fission properties of 104262Rf". Physical Review C. 53 (6): 2893–2899. Bibcode:1996PhRvC..53.2893L. doi:10.1103/PhysRevC.53.2893. {{cite journal}}: Cite has empty unknown parameter: |author-separator= (help); Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  15. ^ a b Lazarev, Yu; Lobanov, Yu.; Oganessian, Yu.; Utyonkov, V.; Abdullin, F.; Polyakov, A.; Rigol, J.; Shirokovsky, I.; Tsyganov, Yu.; Iliev, S.; Subbotin, V.; Sukhov, A.; Buklanov, G.; Mezentsev, A.; Subotic, K.; Moody, K.; Stoyer, N.; Wild, J.; Lougheed, R. (2000). "Decay properties of 257No, 261Rf, and 262Rf". Physical Review C. 62 (6): 64307. Bibcode:2000PhRvC..62f4307L. doi:10.1103/PhysRevC.62.064307. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  16. ^ Gregorich, K. E.; et al. (2005). "Systematic Study of Heavy Element Production in Compound Nucleus Reactions with 238U Targets" (PDF). LBNL annual report. Retrieved 2008-02-29.
  17. ^ Gates; Garcia, M. A.; Gregorich, K. E.; Düllmann, Ch. E.; Dragojević, I.; Dvorak, J.; Eichler, R.; Folden, C. M.; Loveland, W.; Nelson, S. L.; Pang, G. K.; Stavsetra, L.; Sudowe, R.; Türler, A.; Nitsche, H. (2008). "Synthesis of rutherfordium isotopes in the 238U(26Mg,xn)264−xRf reaction and study of their decay properties". Physical Review C. 77 (3): 34603. Bibcode:2008PhRvC..77c4603G. doi:10.1103/PhysRevC.77.034603. {{cite journal}}: Cite has empty unknown parameter: |author-separator= (help); Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  18. ^ Oganessian, Yu. Ts.; Demin, A. G.; Il'inov, A. S.; Tret'yakova, S. P.; Pleve, A. A.; Penionzhkevich, Yu. É.; Ivanov, M. P.; Tret'yakov, Yu. P. (1975). "Experiments on the synthesis of neutron-deficient kurchatovium isotopes in reactions induced by 50Ti Ions". Nuclear Physics A. 38 (6): 492–501. Bibcode:1975NuPhA.239..157O. doi:10.1016/0375-9474(75)91140-9.
  19. ^ Heßberger, F. P.; Münzenberg, G.; Hofmann, S.; Reisdorf, W.; Schmidt, K. H.; Schött, H. J.; Armbruster, P.; Hingmann, R.; Thuma, B.; Vermeulen, D. (1985). "Study of evaporation residues produced in reactions of 207,208Pb with 50Ti". Zeitschrift für Physik A. 321 (2): 317–327. Bibcode:1985ZPhyA.321..317H. doi:10.1007/BF01493453. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  20. ^ a b Heßberger, F. P.; Hofmann, S.; Ninov, V.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. K.; Yeremin, A. V.; Andreyev, A. N.; Saro, S. (1997). "Spontaneous fission and alpha-decay properties of neutron deficient isotopes 257−253104 and 258106". Zeitschrift für Physik A. 359 (4): 415–425. Bibcode:1997ZPhyA.359..415A. doi:10.1007/s002180050422.
  21. ^ Heßberger, F. P.; Hofmann, S.; Ackermann, D.; Ninov, V.; Leino, M.; Münzenberg, G.; Saro, S.; Lavrentev, A.; Popeko, A. G.; Yeremin, A. V.; Stodel, Ch. (2001). "Decay properties of neutron-deficient isotopes 256,257Db, 255Rf, 252,253Lr"]". European Physical Journal A. 12 (1): 57–67. Bibcode:2001EPJA...12...57H. doi:10.1007/s100500170039.
  22. ^ Hofmann, S. (2009). The Euroschool Lectures on Physics with Exotic Beams, Vol. III Lecture Notes in Physics. Vol. 764. Springer. pp. 203–252. doi:10.1007/978-3-540-85839-3_6.
  23. ^ Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S.; Gikal, B. N.; Mezentsev, A. N.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Voinov, A. A.; Buklanov, G. V.; Subotic, K.; Zagrebaev, V. I.; Itkis, M. G.; Patin, J. B.; Moody, K. J.; Wild, J. F.; Stoyer, M. A.; Stoyer, N. J.; Shaughnessy, D. A.; Kenneally, J. M.; Wilk, P. A.; Lougheed, R. W.; Il’kaev, R. I.; Vesnovskii, S. P. (2004). "Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca". Physical Review C. 70 (6): 064609. Bibcode:2004PhRvC..70f4609O. doi:10.1103/PhysRevC.70.064609. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  24. ^ Oganessian, Yuri (2007). "Heaviest nuclei from 48Ca-induced reactions". Journal of Physics G: Nuclear and Particle Physics. 34 (4): R165. Bibcode:2007JPhG...34..165O. doi:10.1088/0954-3899/34/4/R01.
  25. ^ Ellison, P.; Gregorich, K.; Berryman, J.; Bleuel, D.; Clark, R.; Dragojević, I.; Dvorak, J.; Fallon, P.; Fineman-Sotomayor, C.; N.N., J. M.; Gothe, O. R.; Lee, I. Y.; Loveland, W. D.; McLaughlin, J. P.; Paschalis, S.; Petri, M.; Qian, J.; Stavsetra, L.; Wiedeking, M.; Nitsche, H. (2010). "New Superheavy Element Isotopes: ". Physical Review Letters. 105 (18): 182701. Bibcode:2010PhRvL.105r2701E. doi:10.1103/PhysRevLett.105.182701. PMID 21231101. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  26. ^ Oganessian, Yury Ts; Dmitriev, Sergey N (2009). "Superheavy elements in D I Mendeleev's Periodic Table". Russian Chemical Reviews. 78 (12): 1077–1087. Bibcode:2009RuCRv..78.1077O. doi:10.1070/RC2009v078n12ABEH004096.
  27. ^ "CERN Document Server: Record#831577: Chemical Identification of Dubnium as a Decay Product of Element 115 Produced in the Reaction $\rm {^{48}Ca}+{^{243}Am}$". Cdsweb.cern.ch. Retrieved 2010-09-19.
  28. ^ Krebs, Robert E. (2006). The history and use of our earth's chemical elements: a reference guide. Greenwood Publishing Group. p. 344. ISBN 978-0-313-33438-2. Retrieved 2010-09-19.
  29. ^ Oganessian; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Sagaidak, R.; Shirokovsky, I.; Tsyganov, Yu.; Voinov, A.; Gulbekian, G.; Bogomolov, S.; Gikal, B.; Mezentsev, A.; Subbotin, V.; Sukhov, A.; Subotic, K.; Zagrebaev, V.; Vostokin, G.; Itkis, M.; Henderson, R.; Kenneally, J.; Landrum, J.; Moody, K.; Shaughnessy, D.; Stoyer, M.; Stoyer, N.; Wilk, P. (2007). "Synthesis of the isotope 282113 in the Np237+Ca48 fusion reaction". Physical Review C. 76 (1): 11601. Bibcode:2007PhRvC..76a1601O. doi:10.1103/PhysRevC.76.011601. {{cite journal}}: Cite has empty unknown parameter: |author-separator= (help); Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  30. ^ Hofmann, S. (2009). The Euroschool Lectures on Physics with Exotic Beams, Vol. III Lecture Notes in Physics. Vol. 764. Springer. p. 229. doi:10.1007/978-3-540-85839-3_6.
  31. ^ Streicher, B.; Heßberger, F. P.; Antalic, S.; Hofmann, S.; Ackermann, D.; Heinz, S.; Kindler, B.; Khuyagbaatar, J.; Kojouharov, I.; Kuusiniemi, P.; Leino, M.; Lommel, B.; Mann, R.; Šáro, Š.; Sulignano, B.; Uusitalo, J.; Venhart, M. (2010). "Alpha-gamma decay studies of 261Sg and 257Rf". The European Physical Journal A. 45 (3): 275–286. Bibcode:2010EPJA...45..275S. doi:10.1140/epja/i2010-11005-2. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  32. ^ Dressler, R.; Türler, A. "Evidence for isomeric states in 261Rf" (PDF). PSI Annual Report 2001. Retrieved 2008-01-29. {{cite journal}}: Cite journal requires |journal= (help)
  33. ^ Barber, R. C.; Gaeggeler, H. W.; Karol, P. J.; Nakahara, H.; Vardaci, E; Vogt, E. (2009). "Discovery of the element with atomic number 112" (IUPAC Technical Report). Pure Appl. Chem. 81 (7): 1331. doi:10.1351/PAC-REP-08-03-05.
  34. ^ Qian, J.; Heinz, A.; Khoo, T.; Janssens, R.; Peterson, D.; Seweryniak, D.; Ahmad, I.; Asai, M.; Back, B.; Carpenter, M.; Garnsworthy, A.; Greene, J.; Hecht, A.; Jiang, C.; Kondev, F.; Lauritsen, T.; Lister, C.; Robinson, A.; Savard, G.; Scott, R.; Vondrasek, R.; Wang, X.; Winkler, R.; Zhu, S. (2009). "Spectroscopy of Rf257". Physical Review C. 79 (6): 064319. Bibcode:2009PhRvC..79f4319Q. doi:10.1103/PhysRevC.79.064319. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  35. ^ Jeppesen; Dragojević, I.; Clark, R.; Gregorich, K.; Ali, M.; Allmond, J.; Beausang, C.; Bleuel, D.; Cromaz, M.; Deleplanque, M.; Ellison, P.; Fallon, P.; Garcia, M.; Gates, J.; Greene, J.; Gros, S.; Lee, I.; Liu, H.; MacChiavelli, A.; Nelson, S.; Nitsche, H.; Pavan, J.; Stavsetra, L.; Stephens, F.; Wiedeking, M.; Wyss, R.; Xu, F. (2009). "Multi-quasiparticle states in256Rf". Physical Review C. 79 (3): 031303(R). Bibcode:2009PhRvC..79c1303J. doi:10.1103/PhysRevC.79.031303. {{cite journal}}: Cite has empty unknown parameter: |author-separator= (help); Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)