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We present a simulation mode! tha synthesizes Malthusian and Boserupian notions of the way popula-
.ion growth and economic development were intertwined, The non-linear stochastic model consists of a
syitem ol cquations whose dynamics culminate in an industrial revolution afier hundreds of iterations.
The Industrial Revolution can thus be conceptuahized as a permanent “escape” from the Malthusian rap
that occurs once the economy is capable of permanently sustaining an cver growing population. We in-
vestigate the conditions for such an escape and their sensitivity 1o the parameters of the model, This is
done in an attempt to understand why some economies might have had difficuitics escaping [rom the
Malthusian trap (in contrast to the European expericnce in the eighteenth and rincieenth centuries).
Qur resulls show that the likelihood of an €SCape 15 sensitive to the savings rate and to the output clas-
ticities of the two sectors of the cconomty. When rot in a subsistence crisis, the chances that an escape
will ocecur Increase for larger values of the ratio of the savings rate to the growth rate of the population,
The chances of an ¢scape aiso inereasce substantially for larger vaiues of the outpur elasticities of [abor.

KEY WORDS: Demographic cconomics: Malthusiun trap; Indusirial Revolution; Boscrup.

INTRODUCTION

We propose a simulation model which synthesizes Malthusian and Boserupian no-
tions of econamic growth with endogenous populationt (Boserup, 1981). The model
captures the salient features of the demographic and economic experience of Eu-
rope between the Neolithic Agricultural Revolution and the Industrial Revolution
of the eighteenth century. Our conceptualization describes the “incessant contest”

"For other models exploring the Malthusian-Boserupian svnthesis see Lee, 956, 1988; Pryvor and Maurer,
1952; Robinson and Schuter, 1984, For other models with endogenous population growth see Steinmaiane,
VR Krelie, 1988 Nichans, 1963 Nelwon, 1956,
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between population growth and the means of subsistence by formalizing the mech-
anism of the “Malthusian trap”: when the per capita output of nutrients {alls below
a biologically determined minimum, the population is subject to random mortality
crises that can take on disastrous proportions. As ihe population decreases, its nu-
tritional status improves, thereby enabling the population to grow unhindered until
it once again falls below subsistence level.? These are long-run cycles in popuiation
and nutritional status during the course of which both capital accumulation and
technological progress take place.? Consequently, at the beginning of each phase
of demographic expansion the society has a greater likelihood of possessing suf-
ficient wealth and knowledge—broadly defined—to break out of the homeostatic
Malthusian equilibrium. Because in the past accumulation tended to accelerate dur-
ing periods of population expansion, we incorporate into the model such non-linear
processes. We refer to these as “Boserupian” episodes, taking the concept of the
positive economic effects of population growth more broadly than is usually con-
ceived, i.e., narrowly as population-induced technological change. We do this inas-
much as we believe that we remain within the essence of the Boserupian notion
that the effect of population growth can be other than capital diluting (Simon, 1986;
Steinmann, 1984).

This homeostasis, we believe, prevailed until the Industrial Revolution, during
which the world experienced an explosion in both population and per capita output
of such magnitude that an escape from the Malthusian trap resulted: the per-capita
output of nutrients remained above the minimum needed for the human population
to grow unhindered. We are thereby able to conceptualize the Industrial Revolution
as the culmination of a slow process begun millennia before and thus resolve the
apparent inconsistency between the continuity of economic processes and the dis-
continuity of the Industrial Revolution.* Qur mode! does not, however, encompass
the period after the Industrial Revolution.?

The model is specified with the European experience in mind, and its applica-
bility to other regions of the world remains an open question. For example, could
our model shed some light on the failure of the Asian economies to experience
an industrial revolution in the eighteenth century?® (Jones, 1981, Goldstone, 1985)
China, after all, did undergo economic processes similar to those of the European
countries. It also had a growing stock of capital, a growing population, and expe-
rienced agricultural improvements. Moreover, for a while at least, China enjoyed
technoiogical superiority relative to Western Europe. Why was Europe, and not an
Asian society the first to escape from the Malthusian trap? Therefore, one of our
main goals is to explore the parameter spaces of our model in order to provide

some insights into the reasons why some economies might have diverged from the
European path.

igg;_)an examination of cycles in nutritional status using anthropometric evidence see Komlos (1935,
jFor an cxami_nalion of technological change using modcls from evolutionary biology sec Mokyr {(1990).
SFor an overview of the recent scholarship on the Indusirial Revolution see Mokyr (1985).

For funiher details of the model sce Artzrouni and Komlos (1985).

“For a sensible discussion of the failures and successes of the diffusion of the Indusirial Revolution 1o
the rest of the world see Landes (1990).
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‘The paper is divided into five sections..In the first part we describe briefly the
salient features of the model and specify the parameter values for which the model
accurately replicates the growth pattern of the world’s population between 8000
B.C. and 1700 A.D. Our aim here is not to provide nuanced interpretations of all
aspects of economic and demographic processes and their interaction. Rather, it
is t0 provide a framework that adheres to historically valid stylized facts.” In the
second part we investigate mathematically the conditions under which a population
can be expected to escape the Malthusian trap. In the third section we explore the
sensitivity of these conditions to the parameter values. [n the fourth we logk at the
actual dynamies of the process and examine the conditions that help or hinder an
escape. In the conclusion we summarize and discuss the main tindings.

THE MODEL

Our specification assumes that the economy is composed of two sectors: one pro-
ducing only nutrients and another producing everything else including capital (this
all-other-goods sector is denoted as AOG). The outputs Q,(r) of the nutrient-
producing sector and Qy(¢) of the AOG sector are described by production func-
tions of the Cobb-Dougias type:

Qr(t) = G Ky P ()™ ey
Qa(t) = CK ()" P ()7 (2)

where K (1) is the aggregate capital stock in period f, and P4(¢) and Pi{t) are the
workers engaged in the two sectors in period ¢; P(r) = P,(1) + P;(¢) is the total
population. The labor force participation rate is therefore one. The unit of time is
the decade and the model is implemented for the period extending from about 8000
B.C. to the nineteenth century.

The quantity of nutrients available per capita is given by

S(8) = Qa(t)/ P(1). (3)
The capital K(r) is accumulated through the following process:
K(+1)= KO+ A1) (4)

where the savings rate A(¢) grows siowly from one percent per decade in 8000 B.C,,
to four percent in 1700 A.D.8 saving are assumed to equal investments. Capital is
defined broadly to include not only land, as well as human and physical capital,
but aiso technological and scientific knowledge broadly conceived. Thus the capital
stock is not partitioned between the two sectors. We resort to this simplification

"For a historical lustification of the assurnptions see Jones (1981) and Komlos {1986).

3We experimented with different specifications of the savings function with quite similar results to the
ones reporied here. [nstead of the above specification we also tried a step function for the savings rate
which fluctuates back and forth between 2 and 5 percent of the output of the AOG scctor, In addition.
we also tricd a logistic function whose slope depended on $(1) — $*. The point is that, true to the
historical record accumulation does have to take place, somchow for the cscape to occur. However,
there is hardly a historical warrant for preferring one savings mechanism over another in such a long-
run view of economic development. The higher the savings rate relative to population growth, the faster
capital accumulated, and the sooner the cscape wiil occur.
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because of the uncertainty concerning the relative size or the relative growth rates
of the capital stock in the two sectors during these millennia. Allocating the capi-
tal stack at an arbitrary rate between the two sectors would have added nothing of
significance to the model’s analytic power. In any case, the accumulation of knowl-
edge, the increased sophistication of social organization, and many of the great sci-
entific and geographic discoveries of the past often advanced production in both
sectors. These intangibles as well as social overhead capital cannot be partitioned
in principle.

Another important task is to model the dynamics of population growth. We pos-
tulate that the growth rate of the total population P(r) is r* (per decade) as long
as §(t) > §* (ie., P(t +1) = P(e)[1 + r*]). It appears to be a reasonable approxima-
tion of reality that as long as subsistence was above a critical level, the population
tended to increase.

We specify the homeostatic stabilizing mechanism by postulating that whenever
the per capita nutritional intake S(r) drops below §*, the total population P(t) is
subject in a random fashion to [owered growth rates, which can become negative
(i.e, P(t +1) = P()[1 + r(1)], where r(t) is a random variable that is smaller than
r"—possibly negative—and is generated by a Monte Carlo-type simulation process).
The population is thus susceptible to small fluctuations as well as 1o those catas-
trophic cotlapses which have characterized populations of the past. As the popula-
tion declines, S(¢) increases and eventually exceeds §*. A cycle is completed and
the growth rate is again r* per decade until the next crisis. Hence, the model yields
oscillations of S(t) about §*, and captures the “incessant contest” between popu-
lation growth and available resources. (For a detailed description of the mode] see
(Antzrouni and Komlos, 1985)). The society has escaped the Malthusian trap only if
S$(1) remains permanently above $*, in which case the population grows unhindered
with a constant growth rate r*,

We next specify the allocation of the population between the two sectors. If the
population is not in a crisis (i.e. $(t) > §*), then we postulate that the popula-
tion in both sectors grows at the same rate r* (ie, Pt +1)=P;([1+r*] and
Pa(t +1)= P4(1)[1 + r*]). If the population is in a Malthusian crisis, we assume
that the AOG sector absorbs any change in the total population (i.e. Pyt+1)=
Pa(t) and Pt + 1) = P(t + 1)~ P4(t); if Py(t + 1) becomes negative in this last
€quation then P,(s + 1) is reset to 0 and P4z + 1) is set equal 1o P(¢ + 1)). The
simplified flowchart below describes the essential features of the mode! (Figure 1).

The initial value P(0) of the population in 8000 B.C. was taken equal to six mil-
lion (i.e., P(0)=6; P;(0) =1 and P4(0) = 5). The “escape rate” r* was set at 3
percent per decade. The exponents ay, as, fi, f2, were set at 0.5. The values of ¢,
C2, $7, and K(0) were chosen by trial and error in such a way that the mode] would
generate a time series P(¢) that would approximate the actual values of the world’s
popuiation from 8000 B.C. to 1700 A.D. (G =13 G = 213, §* = 0.08 K(0) = 4)
(Figure 2).

The model was specified with the European experience in mind, and its applica-
bility to other regions of the world is left unexplored. For example, could our model
shed light on the failure of the Chinese economy to experience an industrial revolu-
tion in the eighteenth century? After all, in the Middle Ages at least China was by
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FIGURE 1. Simpiified flowchart describing the mechanism of the modet.
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FIGURE . Simulation of the world's population growth (only the peried from 1500 B.C. t0 1700 A.D.
is shown)

no means a backward economy relative to Western Europe. Why was Europe, and
not China, or India, or the Ottoman Empire the first to escape from the Malthusian
trap? We believe that a detailed analysis of the escape conditions, coupled with a
sensitivity analysis of the model to the various parameters might illuminate such
issues.

THE ESCAPE ANALYSIS

We recall that the papulation is said to have escaped from the Malthusian trap
when §(f) remains larger than S* (P;(2) and P4{r) then grow at a constant rate
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FIGURE 3. Phase-plane representation of the dynamics of G () in an escape.

r*.) We begin by examining necessary conditions for the €scape, 1.€., conditions that
are satisfied when the escape occurs. In order to simpiify the analysis we assume
that the savings rate A(t) remains constant once the £scape occurs. (If the escape
oceurs at some period ¢ with a fixed value of the savings rate, the escape will occur
a fortiori if the savings rate continues to increase), It can be seen from Egs. (1)(4)
that the growth rate G(¢) of the capital stock satisfies

_Ke+rn o smguoy
G = K(1) *1*[(;(,_1)“]1_01 )

where s = 1+ r*. (For simplicity of notations we assume thar s = 0 is the time at
which the population has escaped). The iterative process of Eq. (5) defines G(¢)
recursively as a function of G(r —1). The fixed point of this process is

50 = gor/(t-an) _ (6)

This fixed point is the point of equilibrium of the process generating G(¢). In-
deed, it can be seen that jf G(to) = 5o for some t,, then G(¢£) = 54 for all t>1.
Furthermore, 54 is an attractive fixed point: if the value G(0) of the growth rate
at the first epoch of the escape is less than s¢, then G(r) (r = 1,2,...) will increase
monatonically and converge to so. If G(0) is iarger than 50, then G(¢) will decrease
monatonically to s,. The process is graphically represented in Figure 3.

We now define the level of subsistence as the dimensionless quantity D(r) =
S(1)/S*. We observe that $(¢) 2 §* is equivalent to D(r) 2 1. From Eq. (3) it can
be seen that

DG = DOGOY ! = 0,1,... (7

where & = 3, /(1 ~— ) and
= ghr=ltae (8)
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From Eq. (7) it follows that

GO’
DYy=D(0)|—=< & t=0,1,... 9
=p0) g2 v ©
Given that G(r) tends to 5o when ¢ becomes large, Eq. (9) shows that u is neces-
sarily larger than or equal to 1. Indeed, if & < 1 then D(¢) of Eq. (9) would tend to
0, which contradicts the assumption that the popuiation has escaped. The condition
# < 1 under which an escape cannot occur is equivalent to

/(1 - ) < (1~ )/ 5 (10)

This inequality may help understand why some economies did not escape the Mal-
thusian trap. If for example the Oriental economies were plagued by decreasing
returns to scale, their output elasticities may have satisfied inequality (10), thus pre-
cluding the possibility of an escape. Perhaps both output elasticities of labor a3 and
f2 were small, in which case inequality (10) is also satisfied. In such a case, as pop-
ulation grows, the output O (r) will not grow quickly enough in Egq. (1), and conse-
quently the growth of the capital stock K (1) will be insufficient to enable Qa(1) to
keep up with population growth; S(r) will then eventuaily fall below $*. This result
is worthy of emphasis: in an overpopulated economy which does not have constant
retums to scale the output elasticity of labor can be crucial. If it is small then the
escape is impossible. We now distinguish between the cases « = 1 and > 1,

L u=1:
When 1 = 1 inequality (10} becomes an equality and is

of(1-a)=(1-7)/6 (11)

We observe that Eq. (11) is satisfied, in particular, when both sectors have constant
returns to scale. (Both sides of Eq. (11) are then equali to 1) If u =1 Eq. (9) shows
that when the population has escaped D(r) approaches the limit

L = D(0)[G(0)/s0]’ (12)

where L is necessarily larger than 1. When u = 1 sufficient conditions for the es-
cape follow directly from the previous discussion. In the space of initial values
[G(0), D(0)] there are two regions £, and E, for which the escape will occur. If
G(0) > 55 then Eq. (9) shows that D(¢) will always be larger than D(0) since G(r)
decreases to 5¢. Hence D{(0) > 1 is sufficient to ensure an escape and £ is

DH>1
E = { , (13)
G(0) = 59
If G(0) < s5p then G (1) increases to sy and therefore E>is
DN > {54/ G0N
E:={ ()2 50/ GON* (1
G(0) < 59
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FIGURE 4. Escape region for [G0),D(0)); (u = 1).

The escape regions E| and £, are represented graphically in Figure 4,

Given an initial point [G(0), D(0)] in the escape region, the previous analysis
shows that the subsequent points [(G(¢), D(¢£)] will approach the vertical axis G(0)y=
s0; G(¢) tends to sy and D(t) tends to the limit L. Four possible trajectories of the
points [G(¢),D(¢)] are shown. When (GO, D(0)] is in E2D(¢) decreases to its limit
and G(?) increases to sg; when (G(0),D(0)] is in EyD(¢) increases to its limit and
G (1) decreases to sy,

To summarize this analysis, the escape hinges on sufficiently large initial values
of [G(0),D(0)]. Of course D(r) must be larger than 1. If G(¢) > sy then the escape
occurs, regardless of the value of D(¢), as long as D(t) 21 (region Ep); G(r) may
be less than s¢, but the smaller value of G(¢) must then be compensated by a Jarger
value of D(0) (region Ez). This is intuitively plausible. Indeed, this shows that an
escape hinges on a compromise between a sufficiently high growth rate of the cap-
ital, and a sufficiently high nutritional lével. Hence, the growth rate of the capital
stock might be lower if the nutritional status of the population is higher, because
the population will have time to build up its capital stock before its nutritional status
deteriorates below the level of subsistence. This is an important insight. Whereas
in prior decades scholars were intent on measuring the rate of growth of capital
stock as a crucial component of the Industrial Revolution they faited to emphasize
the importance of nutritional status in the process. In other words, two societies in
which capital grows at the same rate may not both have an industrial revolution
escape if the nutritional status of one of the populations is lower than that of the
other.

2ou>l:

The analysis for &> | is similar to the previous one. If G(0) > sy and D>
1 then G(f) will decrease to sy and D(¢) of Eg. (9) will increase monotanically
since u’ will also increase with 7. Hence the escape is guaranteed tor G{)) > 59
and D(0) > L. If G(0) < sy the situation is stightly more complex since G(1) on the
right-hand side of Eq. (9) then increases monotonically to sg. Given the term «f in
Eq. (9) it can be seen that D(¢r) will increase monotonically and approach intinity if
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FIGURE 5. Escape region for [G(®),D¢0)); (u > 1).
G(0) is larger than the quantity
5y = sU=80/8 _ (15)

which is itself less than sq,. Therefore if 51 < G(0) < s5¢ an escape will occur as
long as D(0) > 1, since D(¢) then increases monotonically as G(r) approaches sq.
If G(0) < sy, D(¢) first decreases, then increases as soon as G(r) becomes larger
than 5y. In order for D(r) to remain larger than 1 while D(t) decreases (i.c., as long
as G(¢) < 5y) the initial value D(0) must satisty, for a given G(0),

. [en1’ 1
bz i [Z5] & 2

The results are iilustrated in Figure 5 which depicts the three components £, E»
and E; of the escape region.

If G(0)> 5o and D(0) > 1 (region Ej) then as before G(1) decreases monotoni-
cally to so while D(t) increases to infinity. If 5, < G(0) <50 and D(0) > 1 (Region
E3) then G(¢) increases to 5o and D(¢) increases to infinity. If G(0) < sy and D(0)
satisfies (16) (Region £3) then the escape will also occur, with D(r) first decreasing,
until &(r) reaches sy, and then increasing to infinity, once the point [G(0), D(0))
enters E-.

We will now examine in more detail the escape condition in terms of the demo-
graphic variables P;(¢) and P,(¢). In order to simplify the analysis we will assume
that the economy has constant returns to scale, i.e., @, + @z = 1= 4+ . In such
a case u = | which implies that if the population escapes the Malthusian trap then
D(r) will converge to an equilibrium value (and not grow indefinitely, which would
occur if u > 1)

We drop the functional notations P; (1), P.(r), K{(r), and A(r); we let Py, Py, K,
and A denote the values of the variables at the outset of the escape. In view of Egs.
(3)H5) the escape regions £; and E: of Eqs. (13) and (14) may be equivilently
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FIGURE 6. Locus of escape conditions for (PasPr). K = 100: r* = 0.05; oy =g = 8= .= 5

expressed as

Pr 2> P; (17)
' {P; <@,P% _p, (18)
P < P; (19
F2= {P;jzp;“" > (Py + P;)0a/6s (20)
where
0= ACK™™  Pf = (50/8)1 €3))
b= GK™M/S* 6= GAq)/s" 8y = 5 (22

A typical locus of escape conditions on P; and P, is represented in Figure 6.

The escape region £, + E, is defined by three equations. First there is the €gua-
tion Py = @3Pﬁ‘ — P4 (curve ¢ in Figure 6) which Separates the plane (P, P;) into
two regions: if the point (Pa,Pr) is above ¢ (i.e., in region A) then S(r) < §*, ie.,
the population is in a nutritional crisis. The population P; is then subjected to
mortality crises until the popuiation falls below the curve ¢ (into region C) where
S(t) > $*, i.e., where the population is at least temporarily above the subsistence
level. (It can easily be seen from the definition of S(¢) that the points on the curve
¢ are such that S(z) = 5*). In order to escape permanently S(¢) must remain above
S*. This constraint (which is expressed by (20)) implies two more equations, namely
the straight lines m; and mi. The two straight lines determine a cone, and the
escape region £ + £, is inside that cone, and under the curve c.

We note that the escape region £ = £ + £, EXpresses two constraints on P4 and
P;. First, the fact that any point (P4, Pr) must be below the curve ¢ in order for
the population to be abaove its subsistence level implies that for a gtven vatue of the
capital K(#), the total population must not be tog large in order to sustain itself.
This is an intuitively obvious constraint,
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A second, more subtle constraint, is implied by the straight lines m, and ms». The
fact that (P4, P;) must be in the cone defined by these two lines indicates that there
must be a compromise between the two sectors of the population: neither sector
can be much larger or much smaller than the other. This result s again intuitively
plausibie because if the nutrition-producing population P4 is large at the time of
cscape, there will be enough nutrients produced, but not enough capital. Hence
P(t) = P4(t) + P;(¢) will grow more quickly than Q 4(r), which will eventually result
in a value of S(¢) falling below S*. Conversely, if the capital producing sector P; is
large, the production of nutrients will be insufficient to sustain a large population,
and will rapidly lead to a subsistence crisis.

We now proceed to explore the sensitivity of the escape region to the parameters
of the model.

SENSITIVITY ANALYSIS

It can be seen from (20) that the slopes wy and w, of the lines my and m, are the
two positive solutions (when they exist) of the equation

xPU= (1 + x) (23)

_ S* ( r* A/far 2
=& e . (24)

The smaller slope (w,) is less than B1/B2 and the larger one (wa) is larger than
£1/B2. In order for the two solutions wy and wa to exist 4 must be smailer than a
critical value p, equal to

where

e = 183", (25)

The smaller u is, the smaller wy will be, the larger w, will be, and therefore the
more “open” the cone defined by the lines m; and m» will be. If {L is close to fic the
cone closes up. At the limit, if g = yi. the two lines are confounded and the escape
region disappears. The two lines then intersect the curve ¢ at the point where the
curve ¢ reaches its maximum. (The point (P, P;) also approaches this maximum if
j¢ 1s close 1o p,).

The condition p < g, is equivalent to

A 1 S* @z /i dof
re > ) (Cz;tc) (26)

This inequality shows that for given output elasticities, and given values of S, G,
C; the ratio of the savings rate A to the escape rate r* must be larger than R*. In
other words the smaller R*, the smaller A/r* needs to be in order for an escape
region tQ exist.

The value of R* has a natural interpretation. For example if S$* is large, this
means that the nutritional level needed to escape is relatively high, and R* will also
be larger. If R* is larger, the saving rate A must be lurger or the escape rate r*
of the population must he smaller in order to bring the ratio A/r* above R*. An
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increase in either ¢ or 2 also makes an escape easier since R* then becomes
smaller. '

These simpie observations help to explain why certain economies may not have
escaped from the Malthusian trap. Perhaps the ratio of the saving rate to the popu-
lation growth rate was not large enough, either because A was too small, or because
r* was tog large; or perhaps because the coefficients Ci and G were not large
enough.

A sensitivity analysis of R* as a function of the output elasticities appears in Table
L The calculations in panel A of Table 1 show that at any level of a; (three exam-
ples are provided: oy = 0.2, 0.5 and 0.8) R* increases rapidly and consistently as
P1 increases from 0.2 to 0.6, At values of 3; greater than 0.6, R* decreases slightly.
Also, the values of R* are larger for larger values of a;. These results show that for

of an escape decrease as P1 increases (since the requirement on the ratio Afre s
greater—i.e, A/r* must be larger for an escape region to exist). Hence, technologi-
cal changes that increases B> (even with a corresponding decline in 8;) will increase
the likelihood of an escape.

Panel B of Table 1 shows that for 4, constant R* increases monotonically as
@y increases. (Three examples are provided: §; = 0.2, 0.5, and 0.8). This confirms
the results from panel A since an escape will be more likely for a smaller output
elasticity a; of capital in the AOG sector.

Thus in our model the larger the output elasticities of labor in both sectors, the
easier it will be for the population to escape from the Malthusian trap.

We next investigate the dynamics of the mode! and explore the determinants of
an escape from the Malthusian trap.

DYNAMIC ANALYSIS

Figure 6 depicts the compromise that must exist at any given time between P, and
P in order for an €scape to occur. If the paint (P4 Pr) is in the €scape region
Ey + E; we recall that both P4(t) and P;(t) grow at a constant rate r*. (In what
follows the points (Pa(t), Pi(1)) represent the sequence of populations in the twa
sectors following some initial values P, and Pr).

When the €scape occurs the points (Pa(t), P (1)) will mave beyond (P4,P;) and
along the ray between the origin and (P4, P). The curve ¢ then moves upward with
the points (P,(r), P;(t)) which remain in a continuously expanding escape region.
{The straight lines M, and m» do not depend on K(f) and remain unchanged as
K(t) increases; the curve ¢ on the contrary expands as K(t) increases).

We recall that if the population has not escaped the Malthusian trap, it is subject
to a regulating mechanism that leaves society always close 10 the nutritional status
3(r) = S* above which the escape occurs. The resulting homeostasis keeps the paint
(Pa(t), Pr(£)) always close to the curve ¢ of Figure 6 since that curve represents the
locus of points for which S(1) is equal to §*.

To a given level K of the capital stock there corresponds the value Py of the
population in the nutrient-producing sector at which the curve ¢ and the straight
line m, intersect (see Figure 6). The actual value of P4 is then either less than or
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TABLE 1
Sensitivity of R* (the right-hand side of (26)) 1o the output clasticitics ey and 8) (; =1~; a3 =
1—). [C), G5, $* are fixed at their previous values]. Pancl A: sensitivity of R* 0 gy for fixed ay.
Panel B: sensitivity of R* to oy for fixed 4.

Panel A Panei B

a, B, R* a, B, R*
.200 .200 .113 L200 L2200 , 113
.200 .300 .288 .300 200 144
200 400 417 .400 .200 .183
.200 .500 487 .500 .200 . 232
.200 .6500 511 ,600 .200 .295
200 700 .505 .700 .200 .375
. 200 .800 477 .BOO L.200 477
.500 .200 232 2040 .500 .487
.500 .300 416 .300 500 .515
.500 400 .52% .400 .500 .546
500 .500 .578 .500 .500 .578
.500 600 .5986 .00 500 .612
.500 700 .591 .700 500 .648
.500 .800 570 .B00 .500 .6B6
.800 .200 .A77 .200 . 800 477
. 800 300 .602 L300 ..800 506
. 800 400 660 400 .BOOD .537
.B00 .500 .686 500 . 800 .8570
.800 .600 .695 .B00 . B00 .605
.800 .700 .692 700 . 800 .643
800 .800 .682 . 800 .800 .682

greater than P} with a corresponding value of P; for which the point (P, P;) is
close to the curve c. We now distinguish between these two possibilities for P,g.
If P4 < P}, with (P4, Pr) close to the curve c, then the ratio P, /P4 will be larger

than wy, the slope of the straight line my. If (P4, Pr) is just below the curve ¢ then
the population is in E| and has escaped the Maithusian trap. If (P4, Pr) is just
above ¢, the population is in a nutritional crisis, but as soon as a mortality crisis
brings down the population P; the point (P4, P;) will fall back into E; and the
population will escape the Malthusian trap (uniess the mortality crisis is of extreme
magnitude and (P4, Py) falls below the line m,).

It Py> Py, with (P4, Pr) close to the curve ¢, then P;/P4 is less than wy. If
(P4, P} 1s just below the curve ¢, then the points (P.(+), Py (1)) grow along the
ray between the origin and (P4, P;). The slope of that ray is P;/P, which is less
than wy, and therefore the population tends to move further away from the escape
region. The curve ¢ expands with K(¢) but the point (P.(¢), P;(t)) eventually jumps
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FIGURE 7. Dynamics of the points (P.i(t), Pt{t)) when P4 is larger than P (Boxed value) and just
below the curve ¢ (here denoted ¢;).

over ¢, and the population is back in a nutritional crisis. Figure 7 depicts a stylized
representation of the dynamics of the points (P4(1), Pr(t)) in this case.

In the example of Figure 7 there corresponds to an initial point (P4, Pr) a curve ¢
(denoted c;). (The coordinates of the corresponding point (P}, P;) are boxed). The
initial point 1 (a circled 1) is below ¢y, so the population 1s above the subsistence
level and grows at rate r*. The next point (2) gives rise 1o a new value K(¢) of the
capital and thus to a new curve ¢ (denoted ¢»). In the example the population is still
above the subsistence level (since 2 is below the curve ¢3). Therefore the population
grows along the same ray to point 3. To this point there corresponds a curve €3
which is now below the point (P4, P;) and the population is in a Malthusian crisis.
The values (P73, P;) prevailing at that period are also given in Figure 5.

We recall that in a nutritional crisis the population P,(f) in the nutrient-producing
sector remains stationary whereas the population Pr(f} is subject to randomly de-
termined mortality shocks; Pr(t) may continue to grow for a while, but eventually
is subject to a decreasing growth rate, which will bring the population above the
subsistence level. In the example, P;(¢) grows for one period and results in a point
4 which is still below subsistence level (since the point 4 is above the correspond-
ing curve c4). The population Py(f) is then subjected to a severe mortality crisis,
and collapses to the point 5, thus bringing society back above the level of subsis-
tence. This completes a cycle, which has illustrated the mechanics of the homeo-
static mechanism implied by our model. '

We have focused on the case when P;/P, was less than w,, because we be-
lieve that historically the population Py in the all-other-goods producing sector was
indeed more susceptible to mortality crises than the population P, in the nutrient-
producing sector. The analysis conducted so far suggests that the failure of P, to be-
come sufficiently large with respect to Py could be a reason why certain economies
may have not escaped the Malthusian trap. One ought not think that the absolute
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level of the labor force in the AQG sector, or in conventional terms the urban-
commercial-industrial sector, is the crucial variable for an economy to have an in-
dustrial revolution. Rather, the ratio of the labor force empioyed in the AOG sector
to the labor force employed in the nutrient-producing sector is an important deter-
minant of the likelihood of an escape. Even small variations in this ratio will suffice
to make a crucial difference to the outcome of economic processes.

It remains to be seen under what circumstances an escape could occur in the
case depicted in Figure 7, since we believe that such an example represents the
plausible trajectory of a society with a relatively small population in the all-other-
goods producing sector that struggles to emancipate itself from the Malthusian trap.

The potential for an escape exists only at the point 3 when the population is in
a crisis. In order for the population to escape, P;(t) would have to grow enough
so that Py(f)/P4(t) can become larger than wy, the slope of m, (this means that
the point 4 would have to jump over the line /). However this condition is not in
itself sufficient, since in such a case the point 4 will be above the line m1; but may
also be above the curve c. That is actually the case in Figure 7. If the point 4 had
been higher (i.e., if P;(¢) had grown more than it did) the population (P,4(r), P ()
could have found itself above the line m, but the population would still be in a
crisis since (P4(¢), P;(¢)) would also be above the curve c4. (A number of actual
simulations have shown however that in this case and after a few mortality crises
the population will often fall into the escape region—provided the curve ¢ grows
sufficiently and the point (P4(#), Pr(#)) does not fall back below the line m,).

Numerous simulations have shaown that there are two types of behavior for a pop-
ulation that starts below the line m;, depending on the magnitude of the monality
crises. If the mortality crises are severe then the population P; () is regularly dec-
imated and the points (P,(¢),P;(¢)) tend to move further away from the line m
without ever escaping.

If the mortality crises are not {00 severe and P;(r) is allowed to grow somewhat
even during a crisis, then the points (P4(¢), P;(¢)) tend to move upward, staying just
below the line m, and always close to the current value of (P}, P}). In this case, it
is apparent that the likelihood of an escape will depend crucially on the two angles
~y and 7» depicted in Figure 7; 71 is the angle between the tangent to the curve ¢ at
P% and the horizontal axis; 72 is the angle between the line my and the horizontal
axis (the tangent of v, is wy, the slope of my).

The larger the angie 4 = 7, + 72, the more difficult it will be for the population to
escape, since in a crisis the population P;(¢) will have to increase more (in absolute
terms) when 7 is larger.

The angle 7 is equal to arctan(w;). The tangent to the curve ¢ at Py is Bo(1+
w1) — 1. This tangent is negative and so the angle 7;, considered as positive is equal
to 41 = arctan(l — B2(1 + wy)) which for a fixed (> is a decreasing function of wy.
Therefore when 32 is.fixed, a change in w; has opposite effects on 7y and 72 if wy
decreases the angle -y, decreases but the angle -, increases. In order 10 disentangle
the relative effects of 4, and 72 on their sum -y we perform a sensitivity analysis of
these angles to the values of §; and A,

Table 2 gives the values of the angles vy, 7 and 72 for different values of
(82 = 1—g) and differem values of A. For a fixed 5, the angle -y decreases as A
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TABLE 2
Sensitivity of the angles <, ¥y and v, to 8, and X. (o) = 0.5)
A =
B, Y Y, . Y, |w,=tan(y,)

200 .04 § 11.404 10.995 .409 .007
200 .05 11.370 l1.108 .262 .Q05
«200 .06 11.351 11.173 +178 .003
.500 +04 [ 32.569 22.237 10.332 .182
.500 +05 | 29.980 24.198 5.782 .101
-500Q .06 | 28.804 25.036 3.768 .0686
.800 .04 1 58.474 35.586 22.888 .422
-B0O .05 | 49.683 17.061 12.622 .224
-800 .06 | 45.773 37.648 B.125 .143

increases. The sensitivity of 7 to A however is greater for larper values of 3;. Also
the values of v increase for larger values of p1. The values of v, 7, and 7; are
insensitive to the value of a.

This analysis complements the one concerning the critical value R* of the ratio
A/r*. Indeed, we saw that when §; is smail, R* is also small which eases the demand
on the ratio A/r* in order for an escape region to exist. Here we see that if an
escape region exists, the escape is more likely when 8, is small.

Table 2 clearly shows that -y, is the driving force behind any variation in the angle
7- Indeed, 7, is much more sensitive than -, to variations in the parameters and
therefore when « increases, it is because v, increases. The fact that 7 and 7y, vary
in the same direction (at least for a fixed fy) suggests that y,—or its tangent w;—
is the single most important determinant of an escape. Indeed, when -y, (or w) is
small the likelihood of an escape increases,in two ways.

First, when the slope w, is smaller this puts less demand on the relative value
of Py since the ratio P; /P4 need only be larger than w, in order for Pi/P4 to be
above the line m; (which is a necessary condition for the escape).

Second, since v decreases with 7, it becomes easier for the population to move
from a nutritional crisis into the escape region. This is best seen by considering the
point 3 in Figure 7. If the angle 4 had been smaller the point 4 may have been
above the line m, and in the escape region.

It is worth emphasizing that the angles ¥, and 72 do not depend on the capital
stock K(¢). Indeed, as X (¢) increases the point (P4, P;) moves up along the line
my with angles 7, and <, that remain unchanged. This implies that the probability
of an escape increases with X{(t) since, everything else being equal, the growth rate
required for P (¢) to move into the escape region becomes smailer. This can be seen
in Figure 7: the absolute vaiue of the increase needed in the value of P (1) for the
point 3 10 move above m, is independent of the actual value of P (1). Therefore,
with a larger capital stock K{(¢), the coordinates (Pa(r), P; (1)) (the point 3) are
larger which will put less demand on the growih rate ot P (1} in order to bring
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(Pa(t + 1), P;(¢t + 1)) (the point 4) above m,. This shows that, everything else being
equal, the escape becomes easier as the stock of capital increases.

DISCUSSION

We have described a model that captures the dynamics of a Malthusian homeostasis
which has constrained the growth of the European populations until the eighteenth
century. With a simulation we were able to replicate the world’s demographic his-
tory until the eighteenth century and generate an escape from the Malthusian trap
that was brought about by the accumulation of capital broadly defined, and an in-
crease in the savings rate A(¢).

The subsequent analysis showed that with a; = 8 = 0.5 the ratio A/r* had to be
larger than 0.578 (Table 1) in order for an escape region to exist. With an escape
rate r* of 0.05, A(z) had to be larger than 0.05 x 0.578 = 0.028 per decade. In our
simulation A(¢) reached that threshold value in about 1600 A.D. The “cone of es-
cape” opened up rapidly thereafter as the savings rate continued to increase, and
the point (P4(¢), P;(¢)) then easily fell in the broadening escape region. This exam-
ple illustrates our first finding, namely that there is a lower bound on the rate of
savings below which an economy cannot escape from the Malthusian trap. In other
words, anecdotal evidence on the rate of growth of the capital stock does not suffice
in explaining European exceptionalism; rather, the rate of growth of the European
capital stock must be compared carefully to the ones obtained elsewhere before the
role of accumulation can be understood in a comparative perspective,

The minimum value R* of the ratio A/r* below which an £scape cannot occur is
quite sensitive to the output elasticities. When either one of the output elasticities
ay and [y of the capiral stock is small, R* tends to be small, thus making an escape
more likely. With small values of R* it becomes easier for the ratio Afr* to exceed
the value below which there cannot be an escape (Table 1). Conversely, small elas-
ticities of labor a; and f» make an escape more difficult since then A/r® must be
larger before an escape region even exists. Therefore, if during the eighteenth and
nineteenth centuries the elasticities of labor were smaller in the Japanese aggregate
production function, say, than in England, this factor could be part of the explana-
tion why an industrial revolution first took place in the latter country rather than in
the former.

Of course the mere existence of an escape region does not guarantee that the
escape will occur. Our findings concerning the dynamics of the model have shawn
the critical role played by the slope wy of the line my. The smaller this slope, the
casier it is for the population P; in the AOG sector to become large enough to
allow the population to escape. Table 2 shows the sensitivity of this slope to §
and A. For example with g; = 0.5 an increase of the savings rate from 0.04 to 0.06
brings the slope down from 0.182 to 0.066. In other words, with A = 0.04 the ratio
P;{P4 needs 1o be larger than 0.182 in order for the population to escape; with
A = 0.06 the ratio need only be larger than 0.066 for an escape to occur (provided
of course the point (P4, P;) is below the curve ¢ at the time). Table 2 aiso shows
that wy is very sensitive to f;: with A = 0.05w; grows from 0.005 to 0.101 when 8,
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increases from 0.2 to 0.5. This again demonstrates the crucial role played by the
output elasticity of labor in the nutrient-producing sector.

In our simulation, presented in Figure 2, the escape hinged on an increasing value
of the savings rate A(¢) but the above sensitivity analysis shows that an increase in
A(#) is only one of the possible shifts in the parameter values that can bring about
an industrial revolution. We thus hope to have shown that the Industrial Revolu-
tion may well have resulted from a small shift of one of the madel’s parameters;
such a shift can suddenly “open up” the escape region in which the population
(Pa(), P;(¢)) then grows unhindered.

The escape analysis is quite independent of the model's specificaticns during a nu-
tritional crisis. For example the allocation of the population between the two sectors
does not play a crucial role. If the population P4(t) does not remain constant and is
also affected by a nutritional crisis, then point § in Figure 7 would be moved further
to the left to reflect the fact that both sectors of the population have decreased. In
addition, one could conceive of a more sophisticated version of this model in which
the capital K(r) would not be strictly increasing, and could be allowed to decrease
slightly during periods of crisis. This would mean that the curve ¢ would expand in
times of prosperity but would shrink again in a crisis. These variants of the model
would not change the escape analysis, which, therefore, remains valid for a wide
variety of model specifications that may be worthy of further investigations.

To be sure, the answer to the riddle of why Europe was first to industrialize
may well lie beyond the scope of the sensitivity analysis proposed here, The an-
swer might turn on environmental, political, and cultural differences emphasized by
E. L. Jones (1981). Furthermore, it is conceivable that Japan, and perhaps even
China was merely lagging behind Europe, and if Europe’s Industrial Revolution had
not occurred they might have had an industrial revolution quite independently of
Europe.

In sum, there are numerous reasons why the Asian experience of economic devei-
opment during the early-modern period diverged from the European pattern. The
upshot of this paper is that these differences can be fruitfully expiored within the
conceptualization of our model. However, much more empirical work is needed on
the various parameters such as the output elasticities of the factors of production
before one can enumerate with more certainty the major reasons for the differences
in the European and Oriental patterns of economic development.
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