
&
Consensus

RAFT
RAFTER

Tom Santero
catsI newports

distributed
systems

Andrew Stone
catsI bread

distributed
systems

@tsantero

@andew_j_stone

tsantero

andewjstone

tsantero

astone

@
basho.com

tsantero

astone

@
basho.com

(notice Andrew’s contact keeps getting shorter?)

http://thinkdistributed.io
A Chris Meiklejohn Production

http://thinkdistributed.io
http://thinkdistributed.io

The Usual
Suspects

“Strongly Consistent Datastores”

MongoDB Redis

MySQL others...

async { replication
disk persistence

Failure Detection

Problem?

Single Node w/ async disc writes

Data is written to fs buffer, user is sent
acknowledgement, power goes out

Data not yet written to disk is LOST

System is UNAVAILABLE

Single Disk Solutions: fsync, battery backup, prayer

Failure Mode 1

Master/Slave with asynchronous
replication

Data is written by user and acknowledged

Data synced on Primary, but crashes

Failure Mode 2

?Consistent Available

?Consistent Available

?Consistent Available

Primary Failed. Data not yet written to Secondary

Write already ack’d to Client

 if promote_secondary() == true;
 {
 stderr(“data loss”);
 }
else
 {
 stderr(“system unavailable”);
 }

 (╯°□°）╯（ ┻━┻

Synchronous Writes FTW?

PostgreSQL / Oracle

Master / Slave

Ack when Slave confirms Write

Problem?

Problem?
Failure Detection

Automated Failover

“split brain” partitions

Solution!

Solution!
Consensus protocols!

(Paxos, ZAB, Raft)

RYOW Consistency

Safe Serializability

What is
Consensus?

“The problem of reaching agreement among
remote processes is one of the most

fundamental problems in distributed
computing and is at the core of many

algorithms for distributed data processing,
distributed file management, and fault-

tolerant distributed applications.”

In a distributed system...

despite failures.

multiple processes
agreeing on a value

host0 host1 host2

Replicated Log

v0

host0 host1 host2

Replicated Log

v0 v1 v2 v3 v4 v5 ... v(n-1)

host0 host1 host2

Replicated Log

Consensus{ termination

agreement

validity

Consensus{ termination

agreement

validity

non faulty processes
eventually decide on a value

Consensus{ termination

agreement

validity

non faulty processes
eventually decide on a value

processes that decide
do so on the same value

Consensus{ termination

agreement

validity

non faulty processes
eventually decide on a value

processes that decide
do so on the same value

value must have been proposed

Theoretical

Real World

Back to 1985...

Back to 1985... The
FLP

Result

&Safety Liveness

bad things can’t happen

good things
eventually happen

Consensus{ termination

agreement

validity

non faulty processes
eventually decide on a value

processes that decide
do so on the same value

value must have been proposed

{ termination

agreement

validity

non faulty processes
eventually decide on a value

processes that decide
do so on the same value

value must have been proposed

Safety
Liveness

Safety
Liveness { termination

agreement

validity

non faulty processes
eventually decide on a value

processes that decide
do so on the same value

value must have been proposed

Safety
Liveness { termination

agreement

validity

non faulty processes
eventually decide on a value

processes that decide
do so on the same value

value must have been proposed

Safety
Liveness { termination

agreement

validity

non faulty processes
eventually decide on a value

processes that decide
do so on the same value

value must have been proposed

non-triviality

The FLP Result:
perfect Safety and Liveness in
async consensus is impossible

Symmetric
vs

Asymmetric

Raft

Motivation: RAMCloud
large scale, general purpose, distributed storage

all data lives in DRAM

strong consistency model

https://ramcloud.stanford.edu/

https://ramcloud.stanford.edu/wiki/display/ramcloud/RAMCloud
https://ramcloud.stanford.edu/wiki/display/ramcloud/RAMCloud

Motivation: RAMCloud
large scale, general purpose, distributed storage

all data lives in DRAM

strong consistency model
100 byte object

reads in 5μs

https://ramcloud.stanford.edu/

https://ramcloud.stanford.edu/wiki/display/ramcloud/RAMCloud
https://ramcloud.stanford.edu/wiki/display/ramcloud/RAMCloud

John OusterhoutDiego Ongaro

In Search of an
Understandable

Consensus Algorithm

https://ramcloud.stanford.edu/raft.pdf

https://ramcloud.stanford.edu/wiki/download/attachments/11370504/raft.pdf
https://ramcloud.stanford.edu/wiki/download/attachments/11370504/raft.pdf

“Unfortunately, Paxos is quite difficult to
understand, in spite of numerous attempts to
make it more approachable. Furthermore, its

architecture is unsuitable for building
practical systems, requiring complex changes
to create an efficient and complete solution.

As a result, both system builders and students
struggle with Paxos. �”

Design Goals:

Understandability & Decomposition

Strong Leadership Model

Joint Consensus for Membership Changes

Log

SM

C Consensus Module

Replicated Log

State Machine

Log

SMC

Log

SMC

Log

SMC

Client

C

Log

SMC

Log

SMC

Log

SMC

Client

1. client makes request to Leader

C

Log

SMC

Log

SMC

Log

SMC

Client

2. consensus module manages request

C

Log

SMC

Log

SMC

Log

SMC

Client

3. persist instruction to local log

v

C

Log

SMC

Log

SMC

Log

SMC

Client

v

C

Log

SMC

Log

SMC

Log

SMC

Client

v

4. leader replicates command to
other machines

C CC

Log

SMC

Log

SMC

Log

SMC

Client

v

C CC

Log

SMC

Log

SMC

Log

SMC

Client

v

C C

v v

5. command recorded to local
machines’ log

C

Log

SMC

Log

SMC

Log

SMC

Client

v

C C

v v

C

Log

SMC

Log

SMC

Log

SMC

Client

v

C C

v v

6. wait for majority to respond that
command has been persisted

C

Log

SMC

Log

SMC

Log

SMC

Client

v

C C

v v

C

Log

SMC

Log

SMC

Log

SMC

Client

v

C C

v v

7. command forwarded to state machines
for processing

SM SM SMC

Log

SMC

Log

SMC

Log

SMC

Client

v

C C

v v

7. command forwarded to state machines
for processing

SM SM SMC

Log

SMC

Log

SMC

Log

SMC

Client

v

C C

v v

SMC

Log

SMC

Log

SMC

Log

SMC

Client

v

C C

v v

SM

8. SM processes
command, ACKs to client

C

Log

SMC

Log

SMC

Log

SMC

Client

v

C C

v v

SMC

Why does that work?

job of the consensus module to: C

manage replicated logs

determine when it’s safe to pass
to state machine for execution

only requires majority participation

Why does that work?

job of the consensus module to: C

manage replicated logs

determine when it’s safe to pass
to state machine for execution

only requires majority participation

Safety {
Liveness {

2F + 1

2F + 1
solve for F

F + 1
service

unavailable

Fail-Stop
Behavior

What If The

Leader
DIES?

Leader Election!

1. Select 1/N servers to act as Leader
2. Leader ensures Safety and Linearizability
3. Detect crashes + Elect new Leader
4. Maintain consistency after Leadership “coups”
5. Depose old Leaders if they return
6. Manage cluster topology

Possible Server Roles:

Leader Follower Candidate

Possible Server Roles:

Leader Follower Candidate

At most only 1 valid Leader at a time

Receives commands from clients

Commits entries

Sends heartbeats

Possible Server Roles:

Leader Follower Candidate

Replicate state changes

Passive member of cluster
during normal operation

Vote for Candidates

Possible Server Roles:

Leader Follower Candidate

Initiate and coordinate Leader Election

Was previously a Follower

Terms:

election normal operation

Term 1 Term 2 Term 3 Term 4

no emerging leader

LeaderFollower Candidate

LeaderFollower Candidate

times out,
starts election

LeaderFollower Candidate

LeaderFollower Candidate

times out,
new election

LeaderFollower Candidate

LeaderFollower Candidate

receives votes from
majority of servers

LeaderFollower Candidate

LeaderFollower Candidate

discover server with
higher term

LeaderFollower Candidate

LeaderFollower Candidate

discover current leader
or higher term

LeaderFollower Candidate

Potential Use Cases:

Distributed Lock Manager

Database Transactions Automated Failover

Configuration Management

http://coreos.com/blog/distributed-configuration-with-etcd/index.html

Service Discovery etc...

http://coreos.com/blog/distributed-configuration-with-etcd/index.html
http://coreos.com/blog/distributed-configuration-with-etcd/index.html

Rafter
github.com/andrewjstone/rafter

•A labor of love, a work in progress

•A library for building strongly consistent distributed
systems in Erlang

• Implements the raft consensus protocol in Erlang

•Fundamental abstraction is the replicated log

What:

Replicated Log

•API operates on log entries

•Log entries contain commands

•Commands are transparent to Rafter

•Systems build on top of rafter with pluggable state
machines that process commands upon log entry
commit.

Erlang

Erlang: A Concurrent Language

•Processes are the fundamental abstraction

•Processes can only communicate by sending each
other messages

•Processes do not share state

•Processes are managed by supervisor processes in a
hierarchy

Erlang: A Concurrent Language
	 loop()	 -‐>
	 	 	 	 	 	 receive
	 	 	 	 	 	 	 	 	 	 {From,	 Msg}	 -‐>
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 From	 !	 Msg,
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 loop()
	 	 	 	 	 	 end.
	
%%	 Spawn	 100,000	 echo	 servers	 	 	 	 	 	 	 	 	 	 	
Pids	 =	 [spawn(fun	 loop/0)	 ||	 _	 <-‐	
lists:seq(1,100000)]

%%	 Send	 a	 message	 to	 the	 first	 process
lists:nth(0,	 Pids)	 !	 {self(),	 ayo}.

Erlang: A Functional Language

• Single Assignment Variables

• Tail-Recursion

• Pattern Matching
{op,	 {set,	 Key,	 	 Val}}	 =	 {op,	 {set,	 <<“job”>>,	 <<“developer”>>}}

• Bit Syntax
Header	 =	 <<Sha1:20/binary,	 Type:8,	 Term:64,	 Index:64,	 DataSize:32>>

Erlang: A Distributed Language
Location Transparency: Processes can send messages to other
processes without having to know if the other process is local.

%%	 Send	 to	 a	 local	 gen_server	 process
gen_server:cast(peer1,	 do_something)

%%	 Send	 to	 a	 gen_server	 on	 another	 machine
gen_server:cast({‘peer1@rafter1.basho.com’},	 do_something)

%%	 wrapped	 in	 a	 function	 with	 a	 variable	 name	 for	 a	 clean	 client	 API
do_something(Name)	 -‐>	 gen_server:cast(Name,	 do_something).

%%	 Using	 the	 API
Result	 =	 do_something(peer1).

mailto:peer1@rafter1.basho.com
mailto:peer1@rafter1.basho.com

Erlang: A Reliable Language

•Erlang embraces “Fail-Fast”

•Code for the good case. Fail otherwise.

•Supervisors relaunch failed processes

•Links and Monitors alert other processes of failure

•Avoids coding most error paths and helps prevent
logic errors from propagating

OTP

• OTP is a set of modules and standards that simplifies the
building of reliable, well engineered erlang applications.

• The gen_server, gen_fsm and gen_event modules are the
most important parts of OTP

• They wrap processes as server “behaviors” in order to facilitate
building common, standardized distributed applications that
integrate well with the Erlang Runtime

Implementation
github.com/andrewjstone/rafter

Peers

•Each peer is made up of two supervised processes

•A gen_fsm that implements the raft consensus fsm

•A gen_server that wraps the persistent log

•An API module hides the implementation

Rafter API

• The entire user api lives in rafter.erl

• rafter:start_node(peer1, kv_sm).

• rafter:set_config(peer1, [peer1, peer2, peer3, peer4, peer5]).

• rafter:op(peer1, {set, <<“Omar”>>, <<“gonna get got”>>}).

• rafter:op(peer1, {get, <<“Omar”>>}).

Output State Machines

•Commands are applied in order to each peer’s state
machine as their entries are committed

•All peers in a consensus group can only run one type
of state machine passed in during start_node/2

•Each State machine must export apply/1

Hypothetical KV store

%%	 API
kv_sm:set(Key,	 Val)	 -‐>	
	 	 	 	 Peer	 =	 get_local_peer(),
	 	 	 	 rafter:op(Peer,	 {set,	 Key,	 Value}).

%%	 State	 Machine	 callback
kv_sm:apply({set,	 Key,	 Value})	 -‐>	 ets:insert({kv_sm_store,	
{Key,	 Value});

kv_sm:apply({get,	 Key})	 -‐>	 ets:lookup(kv_sm_store,	 Key).

rafter_consensus_fsm

•gen_fsm that implements Raft

•3 states - follower, candidate, leader

•Messages sent and received between fsm’s according
to raft protocol

•State handling functions pattern match on messages
to simplify and shorten handler clauses.

rafter_log.erl

• Log API used by rafter_consensus_fsm and rafter_config

• Utilizes Binary pattern matching for reading logs

• Writes out entries to append only log.

• State machine commands encoded with term_to_binary/1

rafter_config.erl

•Rafter handles dynamic reconfiguration of it’s clusters
at runtime

•Depending upon the configuration of the cluster,
different code paths need navigating, such as whether
a majority of votes has been received.

• Instead of embedding this logic in the consensus fsm,
it was abstracted out into a module of pure functions

rafter_config.erl API

-‐spec	 quorum_min(peer(),	 	 #config{},	 dict())	 -‐>	 non_neg_integer().

-‐spec	 has_vote(peer(),	 #config{})	 -‐>	 boolean().

-‐spec	 allow_config(#config{},	 list(peer()))	 -‐>	 boolean().

-‐spec	 voters(#config{})	 -‐>	 list(peer()).

Testing

Property Based Testing

•Use Erlang QuickCheck

•Too complex to get into now

•Come hear me talk about it at Erlang Factory Lite in
Berlin!

shameless plug

Other Raft Implementations

https://ramcloud.stanford.edu/wiki/display/logcabin/LogCabin

http://coreos.com/blog/distributed-configuration-with-etcd/index.html

https://github.com/benbjohnson/go-raft

https://github.com/coreos/etcd

https://ramcloud.stanford.edu/wiki/display/logcabin/LogCabin
https://ramcloud.stanford.edu/wiki/display/logcabin/LogCabin
http://coreos.com/blog/distributed-configuration-with-etcd/index.html
http://coreos.com/blog/distributed-configuration-with-etcd/index.html
https://github.com/benbjohnson/go-raft
https://github.com/benbjohnson/go-raft
https://github.com/coreos/etcd
https://github.com/coreos/etcd

github.com/andrewjstone/rafter

Plugs
Shameless

(a few more)

RICON West
http://ricon.io/west.html

Études for Erlang
http://meetup.com/Erlang-NYC

http://ricon.io/west.html
http://ricon.io/west.html
http://ricon.io/west.html
http://ricon.io/west.html

Andy Gross - Introducing us to Raft

Diego Ongaro - writing Raft, clarifying Tom’s understanding, reviewing slides

Chris Meiklejohn - http://thinkdistributed.io - being an inspiration

Justin Sheehy - reviewing slides, correcting poor assumptions

Reid Draper - helping rubber duck solutions

Kelly McLaughlin - helping rubber duck solutions

John Daily - for his consistent pedantry concerning Tom’s abuse of English

Basho - letting us indulge our intellect on the company’s dime (we’re hiring)

Thanks File

http://thinkdistributed.io
http://thinkdistributed.io

Any and all questions
can be sent to /dev/null

@tsantero @andrew_j_stone

