The Raft Protocol Distributed Consensus for
Dummies

Arnaud Bailly <abailly@murex.com> @abailly

2014-06

Who am |7

» Writing code since 1986

Who am |7

» Writing code since 1986
» Developping software since 1994

Who am |7

» Writing code since 1986
» Developping software since 1994
» Lead developer, Java/XP consultant at Murex since 2009

Who am 17

Writing code since 1986

Developping software since 1994

Lead developer, Java/XP consultant at Murex since 2009
Fascinated with distributed computing since ...

vV v vy

Who am 17

Writing code since 1986

Developping software since 1994

Lead developer, Java/XP consultant at Murex since 2009
Fascinated with distributed computing since ...

By the way, Murex is hiring!

vV v v VY

Why Should I Care about Distributed Consensus?

» Real world is distributed (multicore chips, WWW)

Why Should I Care about Distributed Consensus?

» Real world is distributed (multicore chips, WWW)

» Today's applications need to take care of distribution:
abstractions leak!

Why Should I Care about Distributed Consensus?

» Real world is distributed (multicore chips, WWW)

» Today's applications need to take care of distribution:
abstractions leak!

» Systems may fail, and large systems may fail more often

Why Should I Care about Distributed Consensus?

» Real world is distributed (multicore chips, WWW)

» Today's applications need to take care of distribution:
abstractions leak!

» Systems may fail, and large systems may fail more often

» fault-tolerance

Why Should I Care about Distributed Consensus?

» Real world is distributed (multicore chips, WWW)

» Today's applications need to take care of distribution:
abstractions leak!

» Systems may fail, and large systems may fail more often

» fault-tolerance

> Yet we need to provide fast service reliably

Why Should I Care about Distributed Consensus?

» Real world is distributed (multicore chips, WWW)

» Today's applications need to take care of distribution:
abstractions leak!

» Systems may fail, and large systems may fail more often

» fault-tolerance

> Yet we need to provide fast service reliably

» high-availabilty

Why Should I Care about Distributed Consensus?

v

Real world is distributed (multicore chips, WWW)

» Today's applications need to take care of distribution:
abstractions leak!

» Systems may fail, and large systems may fail more often

» fault-tolerance

v

Yet we need to provide fast service reliably

» high-availabilty

v

Consensus is a basic building block for all kind of distributed
systems features

Use Case: PaaS Configuration

» etcd is part of CoreQS, a linux distribution for clusters

Use Case: PaaS Configuration

» etcd is part of CoreQS, a linux distribution for clusters

» Provide consistent configuration for all docker containers
hosted on CoreOS

Use Case: PaaS Configuration

» etcd is part of CoreQS, a linux distribution for clusters

» Provide consistent configuration for all docker containers
hosted on CoreOS

» Uses on Raft Distributed Consensus implemented in Go

Use Case: Service Discovery

> Apache's ZooKeeper provides distributed consistent
hierarchical key-value store

http://nerds.airbnb.com/smartstack-service-discovery-cloud/
http://wiki.apache.org/hadoop/ZooKeeper/Zab

Use Case: Service Discovery

> Apache's ZooKeeper provides distributed consistent
hierarchical key-value store

» AirBnB uses ZK to provide service discovery in their
SmartStack solution

http://nerds.airbnb.com/smartstack-service-discovery-cloud/
http://wiki.apache.org/hadoop/ZooKeeper/Zab

Use Case: Service Discovery

> Apache's ZooKeeper provides distributed consistent
hierarchical key-value store

» AirBnB uses ZK to provide service discovery in their
SmartStack solution

» Example scenario:

http://nerds.airbnb.com/smartstack-service-discovery-cloud/
http://wiki.apache.org/hadoop/ZooKeeper/Zab

Use Case: Service Discovery

> Apache's ZooKeeper provides distributed consistent
hierarchical key-value store

» AirBnB uses ZK to provide service discovery in their
SmartStack solution
» Example scenario:

1. A room registration service instance starts

http://nerds.airbnb.com/smartstack-service-discovery-cloud/
http://wiki.apache.org/hadoop/ZooKeeper/Zab

Use Case: Service Discovery

> Apache's ZooKeeper provides distributed consistent
hierarchical key-value store

» AirBnB uses ZK to provide service discovery in their
SmartStack solution

» Example scenario:

1. A room registration service instance starts
2. It registers itself as an ephemeral node in ZK

http://nerds.airbnb.com/smartstack-service-discovery-cloud/
http://wiki.apache.org/hadoop/ZooKeeper/Zab

Use Case: Service Discovery

> Apache's ZooKeeper provides distributed consistent
hierarchical key-value store

» AirBnB uses ZK to provide service discovery in their
SmartStack solution

» Example scenario:

1. A room registration service instance starts

2. It registers itself as an ephemeral node in ZK

3. This triggers reconfiguration of HAProxy to this service in the
cluster

http://nerds.airbnb.com/smartstack-service-discovery-cloud/
http://wiki.apache.org/hadoop/ZooKeeper/Zab

Use Case: Service Discovery

> Apache's ZooKeeper provides distributed consistent
hierarchical key-value store

» AirBnB uses ZK to provide service discovery in their
SmartStack solution

» Example scenario:

1. A room registration service instance starts

2. It registers itself as an ephemeral node in ZK

3. This triggers reconfiguration of HAProxy to this service in the
cluster

4. The service then can address other services using “dynamic”
HAProxy-ed address

http://nerds.airbnb.com/smartstack-service-discovery-cloud/
http://wiki.apache.org/hadoop/ZooKeeper/Zab

Use Case: Service Discovery

> Apache's ZooKeeper provides distributed consistent
hierarchical key-value store

» AirBnB uses ZK to provide service discovery in their
SmartStack solution

» Example scenario:

1. A room registration service instance starts

2. It registers itself as an ephemeral node in ZK

3. This triggers reconfiguration of HAProxy to this service in the
cluster

4. The service then can address other services using “dynamic”
HAProxy-ed address

» zab ensures distributed consensus across ZK nodes

http://nerds.airbnb.com/smartstack-service-discovery-cloud/
http://wiki.apache.org/hadoop/ZooKeeper/Zab

Distributed Consensus is A Very Old Problem..

.. And it is Hard

1. Horses and messengers can get killed...

.. And it is Hard

1. Horses and messengers can get killed...
2. Horses can travel only so fast...

.. And it is Hard

1. Horses and messengers can get killed...
2. Horses can travel only so fast...
3. You can send only so many horses at once..

.. And it is Hard

1. Horses and messengers can get killed...

2. Horses can travel only so fast...

3. You can send only so many horses at once..
4. Enemy can setup ambushes...

.. And it is Hard

AN A

Horses and messengers can get killed...
Horses can travel only so fast...

You can send only so many horses at once...
Enemy can setup ambushes...
Army corps can move...

.. And it is Hard

ISR o

Horses and messengers can get killed...
Horses can travel only so fast...

You can send only so many horses at once...
Enemy can setup ambushes...
Army corps can move...
Nobody knows everything...

.. And it is Hard

No ok wh

Horses and messengers can get killed...
Horses can travel only so fast...

You can send only so many horses at once...
Enemy can setup ambushes...
Army corps can move...
Nobody knows everything...
You need to feed horses...

.. And it is Hard

e IR o

Horses and messengers can get killed...
Horses can travel only so fast...

You can send only so many horses at once...
Enemy can setup ambushes...
Army corps can move...

Nobody knows everything...

You need to feed horses...

Not all horses are created equal.

.. Even in Distributed Computing

The 8 Fallacies of Distributed Computing

1. The network is reliable.

https://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

.. Even in Distributed Computing

The 8 Fallacies of Distributed Computing

1. The network is reliable.
2. Latency is zero.

https://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

.. Even in Distributed Computing

The 8 Fallacies of Distributed Computing

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.

https://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

.. Even in Distributed Computing

The 8 Fallacies of Distributed Computing

o=

The network is reliable.
Latency is zero.
Bandwidth is infinite.
The network is secure.

https://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

.. Even in Distributed Computing

The 8 Fallacies of Distributed Computing

O e

The network is reliable.
Latency is zero.
Bandwidth is infinite.
The network is secure.
Topology doesn't change.

https://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

.. Even in Distributed Computing

The 8 Fallacies of Distributed Computing

I o

The network is reliable.
Latency is zero.

Bandwidth is infinite.

The network is secure.
Topology doesn't change.
There is one administrator.

https://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

.. Even in Distributed Computing

The 8 Fallacies of Distributed Computing

No o~ wh e

The network is reliable.
Latency is zero.

Bandwidth is infinite.

The network is secure.
Topology doesn't change.
There is one administrator.
Transport cost is zero.

https://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

.. Even in Distributed Computing

The 8 Fallacies of Distributed Computing

The network is reliable.
Latency is zero.
Bandwidth is infinite.

The network is secure.
Topology doesn't change.
There is one administrator.
Transport cost is zero.

NSO W=

The network is homogeneous.

https://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

Fundamental Impossibility

Figure : The Fischer-Lynch-Paterson Theorem (aka. FLP)

In an Asynchronous Network...

It is not possible to reach distributed consensus with
arbitrary communication failures

Distributed Algorithms, Nancy Lynch, 1997,
Morkan-Kaufmann

In a Partially Synchronous Network...

It is possible to reach consensus assuming f processes fail
and there is an upper bound d on delivery time for all
messages, provided the number of processes is greater
than 2f

Nancy Lynch, op.cit.

In Practice

Paxos

> Renowned consensus algorithm invented by Leslie Lamport

Paxos

> Renowned consensus algorithm invented by Leslie Lamport

» Provides foundations for several implementations: ZooKeeper
(kinda...), Chubby

Paxos

> Renowned consensus algorithm invented by Leslie Lamport

» Provides foundations for several implementations: ZooKeeper
(kinda...), Chubby

» But it is hard to implement correctly:

Paxos

> Renowned consensus algorithm invented by Leslie Lamport

» Provides foundations for several implementations: ZooKeeper
(kinda...), Chubby

» But it is hard to implement correctly:
While Paxos can be described with a page of
pseudo-code, our complete implementation contains
several thousand lines of C++ code. Converting the
algorithm into a practical system involved
implementing many features some published in the
literature and some not.

Paxos

> Renowned consensus algorithm invented by Leslie Lamport

» Provides foundations for several implementations: ZooKeeper
(kinda...), Chubby

» But it is hard to implement correctly:

While Paxos can be described with a page of
pseudo-code, our complete implementation contains
several thousand lines of C++ code. Converting the
algorithm into a practical system involved

implementing many features some published in the
literature and some not.

Paxos Made Live - An Engineering Perspective,
T.Chandra et al.

Raft

> In Search of an Understandable Consensus Algorithm,
D.Ongaro and J.Osterhout, 2013

http://github.com/coreos/etcd
http://coreos.com

Raft

> In Search of an Understandable Consensus Algorithm,
D.Ongaro and J.Osterhout, 2013
> Novel algorithm designed with understandability in mind

http://github.com/coreos/etcd
http://coreos.com

Raft

> In Search of an Understandable Consensus Algorithm,
D.Ongaro and J.Osterhout, 2013

> Novel algorithm designed with understandability in mind

» Dozens of implementations in various language

http://github.com/coreos/etcd
http://coreos.com

Raft

v

In Search of an Understandable Consensus Algorithm,
D.Ongaro and J.Osterhout, 2013

Novel algorithm designed with understandability in mind

v

v

Dozens of implementations in various language

v

Most prominent use is currently Go version for etcd
distributed configuration system in CoreOS

http://github.com/coreos/etcd
http://coreos.com

Principle: Replicated State Machine With Persistent Log

state machine

=

consensus

| updates |
'

Jm

SN

log

DA

Principles of Operation

> [eader-follower based algorithm: Leader is the single entry
point for all operations on the cluster

https://dl.acm.org/citation.cfm?id=866204

Principles of Operation

> [eader-follower based algorithm: Leader is the single entry
point for all operations on the cluster

» Each instance is a Replicated state machine whose state is
uniquely determined by a linear persistent log

https://dl.acm.org/citation.cfm?id=866204

Principles of Operation

> [eader-follower based algorithm: Leader is the single entry
point for all operations on the cluster

» Each instance is a Replicated state machine whose state is
uniquely determined by a linear persistent log

> Leader orchestrates safe log replication to its followers

https://dl.acm.org/citation.cfm?id=866204

Raft Algorithm

ReavesT WrE

Figure : Ney requests being appointed leader

Raft Algorithm

Mé"{

L‘S‘rs S

LAvwes

Figure : Ney becomes leader

Raft Algorithm

Figure : Leader replicates own log to followers

Raft Algorithm

Figure : Ney receives attack order and propagates it

Raft Algorithm

Figure : Ney receives march order but is isolated

Raft Algorithm

Figure : Lannes is appointed leader for new term

Raft Algorithm

LANNES

Figure : Ney comes back and tries to propagates march order

Raft Algorithm

Figure : Ney fallback to follower state

Other Features

» Cluster Reconfiguration Supports cluster membership
changes w/o service interruption

Other Features

» Cluster Reconfiguration Supports cluster membership
changes w/o service interruption

» Log compaction Logs can grow very large on systems with
high throughput, slowing down rebuild after crash and
occupying unnecessary disk space

Other Features

» Cluster Reconfiguration Supports cluster membership
changes w/o service interruption

» Log compaction Logs can grow very large on systems with
high throughput, slowing down rebuild after crash and
occupying unnecessary disk space

» Snapshotting replaces history prefix with a representation of
the state

Java Implementation: Barge

https://qithub. com/mgodave/barge !

» OSS project started by Dave Rusek with contributions from
Justin Santa Barbara and yours truly

https://github.com/mgodave/barge
http://github.com/mgodave
http://github.com/justinsb

Java Implementation: Barge

https://qithub. com/mgodave/barge !

» OSS project started by Dave Rusek with contributions from
Justin Santa Barbara and yours truly

» Still very young but usable, provides 2 transport methods:
Raw TCP and HTTP

https://github.com/mgodave/barge
http://github.com/mgodave
http://github.com/justinsb

Java Implementation: Barge

https://qithub. com/mgodave/barge !

» OSS project started by Dave Rusek with contributions from
Justin Santa Barbara and yours truly

» Still very young but usable, provides 2 transport methods:
Raw TCP and HTTP

» Feature complete w.r.t base protocol but missing cluster
reconfiguration and log compaction

https://github.com/mgodave/barge
http://github.com/mgodave
http://github.com/justinsb

Java Implementation: Barge

https://qithub. com/mgodave/barge !

» OSS project started by Dave Rusek with contributions from
Justin Santa Barbara and yours truly

» Still very young but usable, provides 2 transport methods:
Raw TCP and HTTP

» Feature complete w.r.t base protocol but missing cluster
reconfiguration and log compaction

» Friendly (Apache 2.0) License, Pull Requests are welcomed

https://github.com/mgodave/barge
http://github.com/mgodave
http://github.com/justinsb

Demo

Takeaways

» Understand your consistency requirements

Takeaways

» Understand your consistency requirements

» Strong consistency Consensus

Takeaways

» Understand your consistency requirements

» Strong consistency Consensus

» Lowered barrier of entry to use consensus at applicative level

Takeaways

» Understand your consistency requirements

» Strong consistency Consensus

» Lowered barrier of entry to use consensus at applicative level

» Raft is lightweight and understandable

Takeaways

» Understand your consistency requirements

» Strong consistency Consensus

» Lowered barrier of entry to use consensus at applicative level

» Raft is lightweight and understandable

» Not a Silver Bullet

Takeaways

» Understand your consistency requirements
» Strong consistency Consensus

» Lowered barrier of entry to use consensus at applicative level
» Raft is lightweight and understandable

» Not a Silver Bullet

» Strong Consistency has a cost you don’t want to pay for high
throughput and large data sets

Takeaways

» Understand your consistency requirements

» Strong consistency Consensus

» Lowered barrier of entry to use consensus at applicative level

» Raft is lightweight and understandable

» Not a Silver Bullet

» Strong Consistency has a cost you don’t want to pay for high
throughput and large data sets

» Sweet spot: Configuration data, synchronizing clients at key
points

TINSTAAFL

[Ar=a ¢

Questions?

Credits & Links

» ETH Zurich Course on Distributed Systems

http://www.disco.ethz.ch/lectures/hs10/distsys/
http://en.wikipedia.org/wiki/File:Austerlitz-baron-Pascal.jpg
http://people.csail.mit.edu/lynch/

Credits & Links

» ETH Zurich Course on Distributed Systems
» Napoléon a Austerlitz

http://www.disco.ethz.ch/lectures/hs10/distsys/
http://en.wikipedia.org/wiki/File:Austerlitz-baron-Pascal.jpg
http://people.csail.mit.edu/lynch/

Credits & Links

» ETH Zurich Course on Distributed Systems

» Napoléon a Austerlitz
» Nancy Lynch at CSAIL

http://www.disco.ethz.ch/lectures/hs10/distsys/
http://en.wikipedia.org/wiki/File:Austerlitz-baron-Pascal.jpg
http://people.csail.mit.edu/lynch/

