Térszög
A térszög (jele: Ω) olyan szög a háromdimenziós térben, amelyet egy 0 csúcspontú, tetszőleges zárt vezérgörbéjű kúp határoz meg. A térszöget annak a felületdarabnak a nagyságával mérjük, amelyet a kúpfelület az 0 középpontú gömbből kivág. (A kivágott felület alakja közömbös, csak a nagysága számít.)
A térszög azt méri, hogy az adott pontból nézve milyen nagynak tűnik egy objektum. (Például egy közel lévő kis objektum ugyanakkora térszöget zárhat be, mint egy távoli nagy objektum.) A térszög úgy viszonyul a gömb felszínéhez, mint a síkszög a kör kerületéhez, vagyis értéke egyenesen arányos az objektumnak vetületének az 0 középpontú gömb felszínén mért területével (S) , és fordítottan a gömbsugár (r) négyzetével: (ahol k arányossági konstans).
Amennyiben a k konstanst 1-nek választjuk, akkor a térszög mértékegysége az SI-beli szteradián (jele: sr). Ekkor a térszög legnagyobb értéke a teljes gömbfelülethez tartozik: .
A térszög mérhető még négyzetfokban () vagy gömbrészben ().
A gömbrész méretének meghatározásához az adott objektum területét osztani kell a gömb teljes felszínével. A gömbrész (legyen most jele: gr) értéke ezután átszámítható szteradiánná vagy négyzetfokká (legyen most jele: nf) a következő képletek segítségével:
- - a szteradián érték kiszámításához szorozni kell a gömbrész értéket -vel.
- - a négyzetfok érték kiszámításához szorozni kell a gömbrész értéket , vagyis -vel.
Definíció
[szerkesztés]Legyen A tetszőleges felület, és S A vetülete az r sugarú gömb felszínén. Ekkor az A felület Ω térszöge
ahol a gömb középpontjából kifelé mutató egységvektor, infinitezimálisan kicsiny felületdarab, és ρ ennek a gömb középpontjától mért távolsága.
Alkalmazások
[szerkesztés]- A fényerősség és a fénysűrűség (luminancia)
- A gömbháromszögek gömbi feleslege
- Fémkomplexekben a ligandumok méretének meghatározása
- Elektromos és mágneses térerősség
- Gauss-törvény
Más dimenziókban
[szerkesztés]A térszög általánosítható minden d dimenzióra a d-gömbre való kiterjesztéssel. A gömbi szimmetriával kapcsolatban gyakran szükség is van erre. A teljes d dimenziós gömb térszöge
ahol a teljes gammafüggvény.
Ha d egész, akkor a gammafüggvény értéke kiszámítható. Ezzel
Ez a képlet kiadja a kör kerületét a síkban és a 4π szteradiánt a háromdimenziós térben. Kevésbé nyilvánvaló, hogy a intervallumra a 2-t adja ki, ami megegyezik ennek a szakasznak a hosszával.
Egyes objektumok térszögei
[szerkesztés]Tetraéder
[szerkesztés]Legyenek a tetraéder csúcsai A, B, C és O, ahol O az origó. Jelölje rendre az A-ba, B-be, C-be mutató vektorokat. A szög legyen a BOC szög, és defiiáljuk ehhez hasonlóan a szögeket. Jelölje az OAC és az OBC síkok által bezárt szöget, és definiáljuk a szögeket analóg módon. A tetraéder O-nál levő térszöge
Ez a gömbi felesleggel bizonyítható, és következményként egy olyan eredményt ad, ami megfelel a síkháromszög szögösszegéről szóló tételnek.
A tetraéder belső térszögeinek összege
ahol végigfut a hat lapszögön.
Oosterom and Strackee használható algoritmust adott a tetraéder O-nál levő térszögének kiszámítására.:[1] A fenti jelölésekkel
ahol
annak a mátrixnak a determinánsa, aminek sorai az vektorok. Ez megegyezik a három vektor vegyes szorzatával. A felülhúzás nélküli kisbetűk a vektorok hosszát, az egymás mellé írt vektorok a két vektor skaláris szorzatát jelölik.
Egy másik hasznos képlet a térszöget a szögek függvényében adja meg. Ez L' Huilier tételéből adódik:
ahol
Kúp, gömbsüveg, félgömb
[szerkesztés]A csúcsszögű kúp térszöge az egységgömbi gömbsüveg felszínével egyenlő:
Ez az eredmény a következő kettős integrállal számítható ki:
Arkhimédész bebizonyította az integrálszámítás használata nélkül, hogy a gömbsüveg felszíne megegyezik annak a körnek a területével, aminek ugyanakkora a sugara, mint a gömbsüveg peremének és annak a pontnak a távolsága, ahol a gömbsüveg szimmetriatengelye metszi a gömbsüveget. A diagramon ez a sugár:
Így az egységgömbi gömbsüveg térszöge:
Ha θ = π/2, akkor a gömbsüvegből félgömb lesz, aminek térszöge 2π.
Egy kúp komplementerének térszöge:
A Föld felszínén a szélességen álló csillagász az éggömbnek ekkora részét figyelheti meg (az éggömb forgásának beszámításával):
.
Az Egyenlítőről minden látszik, a sarkokról csak a fél éggömb.
Piramid
[szerkesztés]A téglalap alapú egyenes gúla térszöge
ahol a és b a szemben fekvő oldalak lapszöge.
Ha az alap oldalhosszai α és β, és a piramid magassága d, akkor a csúcsszög:
Szélességi-hosszúsági téglalap
[szerkesztés]Egy szélességi és hosszúsági körök által határolt gömbi téglalap középponti szöge
, ahol és a határoló északi és déli szélességi kör, és és a határoló keleti és a nyugati hosszúsági kör. A hosszúsági körök radiánban mért szöge kelet felé nő.[2]
Matematikailag ez egy hosszú körívet jelent, ami radiánt söpör végig. Ha a hosszúság eléri a 2π radiánt, vagy a szélesség a π radiánt, akkor a térszög az egész kört átfogja.
A szélességi-hosszúsági téglalap térszöge nem tévesztendő össze a piramid csúcsszögével. A piramid oldalai főkörívekben metszik a gömböt, és a szélességi körök nem főkörök.
A Nap és a Hold
[szerkesztés]A Nap és a Hold is az éggömb 0,001%-át foglalja el, vagyis úgy 6·10−5 szteradiánt.[2]
Jegyzetek
[szerkesztés]- ↑ Van Oosterom, A, Strackee, J (1983). „The Solid Angle of a Plane Triangle”. IEEE Trans. Biom. Eng. BME-30, 125-126. o. DOI:10.1109/TBME.1983.325207.
- ↑ [1]
Források
[szerkesztés]- Arthur P. Norton, A Star Atlas, Gall and Inglis, Edinburgh, 1969
- F. M. Jackson, Polytopes in Euclidean n-Space. Inst. Math. Appl. Bull. (UK) 29, 172-174, Nov./Dec. 1993.
- Eric W. Weisstein, Spherical Excess at MathWorld.
- Eric W. Weisstein, Solid Angle at MathWorld.