
International Journal of Research Publication and Reviews, Vol 5, no 1, pp 190-194 January 2024 
 

International Journal of Research Publication and Reviews 

 

Journal homepage: www.ijrpr.com  ISSN 2582-7421 

 

 

A Study on Graph-Based Affinity Aware VM Colocation Problems 

Debajit Sensarma a* 

a Dept. of Computer Science, Vivekananda Mission Mahavidyalaya, Chaitanyapur, Purba Medinipur, India 

DOI: https://doi.org/10.55248/gengpi.5.0124.0105  

A B S T R A C T 

The rapid growth of cloud computing has led to an unprecedented demand for efficient virtual machine (VM) allocation strategies in data centers. One critical 

challenge is the Affinity-Aware VM Colocation Problem, which aims to optimise the placement of virtual machines while considering the affinity relationships 

between co-located VMs. In this paper, a study on some existing approaches to cope with affinity-aware VM Colocation problems based on graph theory is given. 
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1. Introduction 

Cloud computing [1] has revolutionized the way computing resources are provisioned, allowing organizations to leverage virtualization technologies for 

cost-efficient and scalable IT infrastructures. VM colocation, the process of placing multiple VMs on the same physical server, is an important aspect of 

cloud resource management. The Affinity Aware VM Colocation Problem [2] aims to maximize resource utilization and minimize network latency by 

grouping VMs with affinity together on the same host. 

1. Affinity Aware VM Colocation Problem Formulation This section provides a formal definition of the Affinity Aware VM Colocation Problem, 

discussing the key elements and constraints involved. It explores different types of affinities that can influence colocation decisions, including 

inter-VM communication, VM-to-host affinity, and data affinity. 

2. Approaches and Techniques This section presents an overview of existing approaches and techniques proposed in the literature to address the 

Affinity Aware VM Colocation Problem. It covers heuristic-based algorithms, mathematical programming models, and machine learning-

based methods. Each approach's strengths, weaknesses, and applicability in different scenarios are discussed. 

3. Evaluation Metrics Measuring the effectiveness of VM colocation algorithms is essential for making informed decisions. This section presents 

commonly used evaluation metrics, such as resource utilization, network latency, energy consumption, and migration overhead. It highlights 

the challenges associated with evaluating affinity-aware VM colocation algorithms and discusses potential solutions. 

4. Challenges and Open Research Directions Despite the progress made in the field of affinity-aware VM colocation, several challenges remain. 

This section discusses the challenges related to scalability, dynamic workload conditions, heterogeneity of resources, and the trade-off between 

affinity-based colocation and load balancing. It also identifies promising research directions, such as leveraging machine learning and artificial 

intelligence techniques for improved colocation decision-making. 

5. Real-World Applications and Case Studies This section explores real-world applications of affinity-aware VM colocation, providing case 

studies from different domains such as e-commerce, social networking, and scientific computing. It showcases the benefits achieved by 

implementing affinity-aware colocation strategies, including improved performance, reduced network congestion, and enhanced user 

experience. 

2. Applications of Affinity-Aware VM Colocation: 

Affinity-aware VM colocation, which involves placing virtual machines (VMs) with affinity requirements on the same physical host, finds application in 

various domains where VM communication, performance, security, and resource utilization are crucial. Let's explore some key applications of affinity-

aware VM colocation: 

1. High-Performance Computing (HPC) Clusters: In HPC clusters, affinity-aware VM colocation is used to optimize the placement of VMs 

running computationally intensive tasks or parallel applications. By colocating VMs that communicate frequently or share data onto the same 

physical host, the latency of inter-VM communication is minimized. This enhances the overall performance of parallel computations, data 

processing, and scientific simulations, leading to faster execution times and improved efficiency in HPC environments. 
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2. Distributed Databases and Big Data Analytics: Affinity-aware VM colocation is valuable in distributed database systems and big data analytics 

platforms. In these scenarios, where data is distributed across multiple VMs, placing VMs with affinity requirements on the same physical 

host improves data locality and reduces network communication overhead. This leads to faster data processing, efficient data sharing, and 

improved query response times in distributed database queries, data-intensive analytics, and real-time processing applications. 

3. Content Delivery Networks (CDNs): CDNs rely on affinity-aware VM colocation to optimize the delivery of content to end-users. By placing 

VMs responsible for delivering content, such as caching servers or load balancers, in close proximity to each other on the same physical host, 

CDN providers can reduce network latency and improve content delivery performance. This enhances the user experience, reduces content 

retrieval times, and increases the efficiency of content distribution across geographically distributed nodes. 

4. Real-Time Communication Systems: Affinity-aware VM colocation plays a vital role in real-time communication systems, including VoIP 

(Voice over IP), video conferencing, and online gaming platforms. By colocating VMs involved in real-time communication, such as media 

servers, signaling servers, or voice processing components, on the same physical host, the latency of communication between these 

components is minimized. This results in improved call quality, reduced audio/video delays, and enhanced real-time interaction in 

communication-intensive applications. 

5. Software-Defined Networking (SDN): SDN environments benefit from affinity-aware VM colocation to optimize network performance and 

resource utilization. By colocating VMs involved in network functions, such as switches, routers, or firewalls, on the same physical host, 

network traffic can be efficiently processed, reducing the overhead of inter-VM communication and improving network throughput. This 

enables better resource allocation, reduces network congestion, and enhances overall network performance and scalability in SDN 

architectures. 

6. Cloud Computing and Virtualization: Affinity-aware VM colocation is relevant in cloud computing and virtualization environments, where 

efficient VM placement and resource allocation are crucial. By colocating VMs with affinity requirements on the same physical host, cloud 

service providers can improve communication performance, reduce network latency, and enhance the overall quality of service for applications 

and services hosted in the cloud. Additionally, affinity-aware colocation contributes to better security isolation, resource sharing, and efficient 

utilization of computing resources in virtualized environments. 

3. Advantages of Graph Theory in Affinity-Aware VM Colocation: 

Graph theory is a mathematical framework that studies the properties and relationships of objects represented as nodes (vertices) and the connections 

between them, known as edges. In the context of affinity-aware virtual machine (VM) colocation, graph theory offers several advantages in modeling, 

analyzing, and optimizing the allocation of VMs to physical hosts based on their affinity relationships. Let's explore the advantages of graph theory in 

affinity-aware VM colocation: 

1. Improved Modeling and Representation: Graph theory provides a powerful and flexible framework for modeling the complex relationships 

and dependencies between VMs and physical hosts. By representing the VMs and hosts as nodes and their affinity relationships as edges, 

graph theory enables a comprehensive representation of the colocation problem. This allows for capturing diverse factors such as resource 

requirements, affinity constraints, and performance considerations in a structured and intuitive manner. 

2. Efficient Analysis and Optimization: Graph algorithms offer efficient techniques for analyzing and optimizing VM colocation decisions. 

Algorithms such as graph traversal, shortest path, and matching algorithms can be applied to identify optimal colocation configurations based 

on predefined objectives and constraints. These algorithms leverage the inherent structure of the graph representation to quickly explore the 

feasible solutions and make informed colocation decisions, leading to improved efficiency and reduced computational complexity. 

3. Enhanced Resource Allocation and Utilization: Graph theory enables the identification of affinity patterns and clusters among VMs and hosts. 

By analyzing the graph structure, it becomes possible to identify groups of VMs that exhibit high affinity or similar resource requirements. 

This knowledge can be leveraged to allocate VMs with affinity to the same host, thereby enhancing resource utilization and minimizing 

resource fragmentation. Graph-based approaches can optimize the allocation process, leading to improved performance, reduced resource 

waste, and better overall utilization of physical resources. 

4. Support for Dynamic and Real-Time Colocation Decisions: Graph theory provides a foundation for dynamic and real-time analysis in VM 

colocation scenarios. As affinity relationships change or new VMs are added, the graph representation can be updated and analyzed to adapt 

colocation decisions accordingly. Real-time analysis of the graph structure allows for rapid response to changing workloads, affinity 

preferences, and availability of resources. This flexibility enables efficient VM migration and colocation decisions, ensuring optimal resource 

allocation even in dynamic environments. 

5. Scalability and Adaptability in Large-Scale Environments: Graph theory offers scalability and adaptability advantages in large-scale VM 

colocation scenarios. As the number of VMs and hosts increases, the graph-based representation can handle the growing complexity of the 

affinity relationships. Graph algorithms can efficiently scale to large graphs, allowing for effective analysis and optimization even in highly 

distributed and complex environments. This scalability makes graph theory well-suited for cloud computing environments with a vast number 

of VMs and hosts. 
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4. Challenges of Graph Theory in Affinity-Aware VM Colocation: 

Graph theory has been widely adopted in affinity-aware virtual machine (VM) colocation to optimize resource allocation and enhance performance in 

cloud computing environments. While graph theory offers several advantages, it also presents challenges that need to be addressed for effective 

implementation. This article explores the challenges of graph theory in affinity-aware VM colocation and discusses areas such as scalability, complexity, 

dynamic environments, uncertainty, and privacy concerns. Understanding and addressing these challenges are essential to harness the full potential of 

graph theory in VM colocation. 

1. Scalability: One of the primary challenges is scalability, particularly in large-scale environments with a massive number of VMs and hosts. 

As the graph size increases, computational complexity grows, making it challenging to analyze and optimize colocation decisions efficiently. 

Developing scalable algorithms and techniques to handle large graphs is crucial for practical implementations. 

2. Complexity: The complexity of affinity relationships and their impact on resource allocation introduce challenges in graph theory-based VM 

colocation. Determining optimal colocation configurations becomes increasingly complex as the number of affinity relationships and 

constraints grows. Managing this complexity requires sophisticated algorithms and heuristics to navigate the graph and identify feasible 

solutions within reasonable time frames. 

3. Dynamic Environments: Graph theory assumes a static network structure, which may not be suitable for dynamic VM colocation 

environments. In real-world scenarios, affinity relationships between VMs may change over time due to workload variations, VM migrations, 

or other factors. Adapting the graph representation and updating colocation decisions in real-time pose challenges that require dynamic graph 

algorithms and efficient update mechanisms. 

4. Uncertainty: Uncertainty in affinity relationships and resource availability presents challenges in graph-based VM colocation. Affinity 

relationships may be probabilistic or uncertain, requiring techniques to handle uncertain graph structures. Moreover, availability and 

characteristics of physical resources may change dynamically, necessitating adaptive and robust approaches to cope with uncertainty in the 

graph representation. 

5. Privacy Concerns: Graph-based colocation approaches rely on collecting and analyzing data about affinity relationships, which raises privacy 

concerns. Sharing sensitive information about VMs' affinity or resource requirements may compromise privacy and security. Developing 

privacy-preserving techniques, such as anonymization or encryption, is crucial to address these concerns and ensure the confidentiality of 

sensitive data. 

6. Interoperability and Standardization: Interoperability and standardization are challenges in graph-based VM colocation. Different systems 

may employ diverse graph representations, leading to incompatibilities and difficulties in exchanging information between different 

environments. Establishing common graph models, data formats, and standard protocols can promote interoperability and facilitate the 

adoption of graph-based colocation techniques. 

7. Evaluation and Performance Metrics: Evaluating the performance and effectiveness of graph-based VM colocation approaches is essential. 

Selecting appropriate performance metrics, benchmark datasets, and evaluation methodologies is challenging. Comparative studies with 

existing approaches and real-world deployment scenarios are necessary to validate the benefits and assess the practical implications of graph 

theory in VM colocation. 

Graph theory has immense potential in affinity-aware VM colocation, but it also poses several challenges that need to be addressed. Scalability, 

complexity, dynamic environments, uncertainty, privacy concerns, interoperability, and evaluation metrics are key areas that require attention. 

Overcoming these challenges will unlock the full capabilities of graph theory and enable organizations to optimize resource allocation, enhance 

performance, and achieve efficient VM colocation in cloud computing environments. Future research should focus on developing scalable algorithms, 

addressing dynamic and uncertain environments, and ensuring privacy-preserving mechanisms to advance the application of graph theory in VM 

colocation. 

5. Related Works: 

This section depicts some related works on graph-based affinity-aware VM colocation. In [3] the authors firstly introduce affinity of VMs to identify 

affinity relationships to VMs which are required to be placed with a special VM placement pattern, such as colocation or disperse placement, and formulate 

the AAP problem. Then, they propose an affinity-aware resource scheduling framework, and provide methods to obtain and identify the affinity 

relationships between VMs, and the JAGBP method. Lastly, they present holistic evaluation experiments to validate the feasibility and evaluate the 

performance of the proposed methods. By representing the VM placement challenge as the minimal weight K-vertex-connected induced subgraph, the 

authors of [4] examine the issue. They present a unique two-phase technique for setting up virtual machines on hosts and demonstrate the NP-Hardness 

of the problem. During the first phase, we rate every rack using a fuzzy inference system and choose the best ones using a linear programming model in 

order to balance traffic and workload between racks. In the second stage, they provide a brand-new greedy algorithm that assigns each virtual machine 

to a host based on a suggested communication cost parameter. A traffic-dependency-based approach for virtual machine placement in software-defined 

data centers (SDDCs) is put out by the authors in [5]. Principal component analysis is used to examine the traffic relationships between the virtual 



International Journal of Research Publication and Reviews, Vol 5, no 1, pp 190-194 January 2024                                     193

 

 

machines (VMs), and gravity-based clustering is used to classify highly dependent VMs. A suitable PM is assigned to each set of highly dependent VMs 

using the Hungarian matching approach. Because the highly dependent virtual machines are grouped under one PM, this dependency-based VM placement 

method helps lower the volume of data traffic in the data center. To accomplish energy optimization, the authors of [6] describe GPVMP, a virtual 

machine placement technique based on graph partitioning. We utilize the revised multilevel k-way partitioning method to partition the virtual machine 

(VM) group that the user-supplied, reconstructing the VM-related graph based on the traffic and load correlation between VMs. By expanding PM 

clusters, the two-layer mapping link between virtual machines (VMs) and physical machines (PMs) is established in conjunction with the data center 

structure. The distribution and connectivity of data and computational nodes were modeled using a bipartite graph by Wei et al. [7] to reduce the maximum 

and total data transmission delays. Initially, they separated virtual machines (VMs) based on their latency to the data nodes into pre-map and other 

categories. Then, to reduce both the maximum and total latency for data transmission during the map phase, they suggested two placement optimization 

strategies. Lastly, the reduced-phase virtual machines were positioned according to the data communication latency between the map and reduced phases. 

According to the simulation findings, using this strategy as opposed to alternative ways reduced the average latency of data transfer by as much as 26.3%. 

In addition to improving the runtime performance of individual tasks, the authors of [8] show how this locality awareness throughout both the map and 

reduce stages of the job has the added benefit of lowering network traffic generated in the cloud data center. This is achieved by using a unique linkage 

of data and VM placement stages that would otherwise be separate. We carry out an extensive assessment of Purlieus and show notable reductions in 

network traffic and over 50% shorter task execution times across a range of workloads. Besides this, the other related works have been given in [9-12].  

6. Overall Strengths and Weaknesses of the Existing Methods of Graph-based Affinity-Aware VM Colocation 

Problems: 

Several graph-based methods have been proposed for affinity-aware VM colocation. Here's a comparative overview of some prominent ones: 

6.1 Spectral Clustering: This method treats VMs as nodes in a graph, and edges represent affinity between VMs. VMs are grouped into clusters based 

on their spectral properties, maximizing intra-cluster affinity and minimizing inter-cluster affinity.  

This method works by: 

o Representing VMs as nodes in a graph: Edges between nodes represent the affinity between VMs, with higher weights indicating 

stronger affinity. This affinity can be based on various factors like network traffic, shared storage access, or resource utilization patterns. 

o Constructing a similarity matrix: This matrix captures the pairwise affinities between all VMs. 

o Performing spectral decomposition: This technique involves applying mathematical operations to the similarity matrix to obtain its 

eigenvalues and eigenvectors. The eigenvectors capture the dominant patterns of affinity in the graph. 

o Clustering based on eigenvectors: VMs with similar eigenvectors are grouped into clusters, assuming they have high affinity for each 

other. These clusters represent suitable candidates for colocation on the same physical server. 

6.2 Community Detection Algorithms: Algorithms like Louvain Modularity Maximization and Label Propagation are used to identify communities 

of VMs with high internal affinity. VMs within a community are then colocated on the same server. 

6.3 Metric Embedding: High-dimensional affinity vectors for VMs are projected onto a low-dimensional space using techniques like Multi-

Dimensional Scaling (MDS). VMs with similar projections are then colocated. 

6.4 Integer Linear Programming (ILP): This method formulates the colocation problem as an ILP model, where variables represent VM placement 

decisions and constraints capture affinity requirements. Solving the ILP model provides an optimal colocation solution. 

6.5 Heuristics and Metaheuristics: Various heuristics and metaheuristics, like genetic algorithms and simulated annealing, have been developed to 

find near-optimal colocation solutions within reasonable time constraints. 

Comparison: 

Method Advantages Disadvantages 

Spectral Clustering Easy to implement, efficient for large 

graphs 

Sensitive to noise in affinity data, may not 

find well-defined clusters 

Community Detection 

Algorithms 

Efficiently identifies communities, 

flexible for different affinity metrics 

Performance can degrade with complex 

affinity relationships 

Metric Embedding Efficient dimensionality reduction, 

preserves affinity relationships 

May not capture all aspects of affinity, 

sensitive to parameter tuning 

ILP Guarantees optimal solution, handles 

complex constraints 

Computationally expensive, may not scale 

well for large problems 

Heuristics & 

Metaheuristics 

Efficient, often find good solutions, 

adaptable to different scenarios 

No guarantee of optimality, performance 

can vary depending on parameters 
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7. Future Directions: 

o Incorporating dynamic VM workloads: Existing methods often assume static workloads, but real-world workloads are dynamic. Future 

research should focus on dynamic colocation strategies. 

o Integrating with containerization technologies: The rise of containerization adds another layer of complexity to colocation. Methods need to 

adapt to efficiently colocate containers, considering both VM and container affinities. 

o Machine learning for affinity prediction: Machine learning techniques can be used to predict affinity between VMs based on historical 

data, potentially leading to more accurate colocation decisions. 

8. Conclusion: 

Graph-based methods offer a promising approach for affinity-aware VM colocation. Understanding the strengths and weaknesses of different methods is 

crucial for selecting the most suitable one for a specific scenario. Further research is needed to address the challenges of dynamic workloads, 

containerization, and affinity prediction to make colocation even more efficient and effective in cloud environments. 
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