

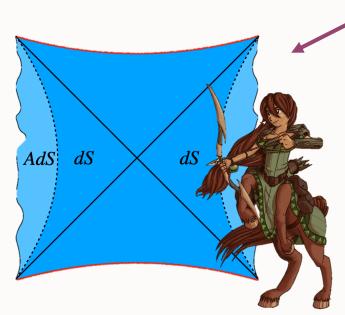
Holographic Complexity and de Sitter Space

Shira Chapman
Ben-Gurion University of the Negev

JHEP 02 (2022) 198 - with E.D. Kramer, D.A. Galante Work in progress with S. Baiguera, R. Berman

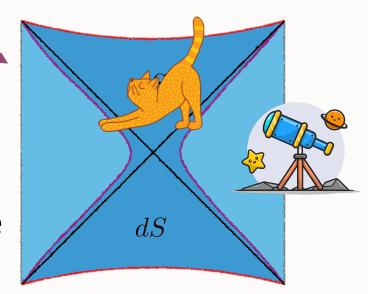
. Goal and Outline

Can we use holography to probe the de-sitter horizon?

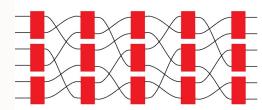


Centaur geometries – embedding dS in AdS

Holography at the stretched horizon

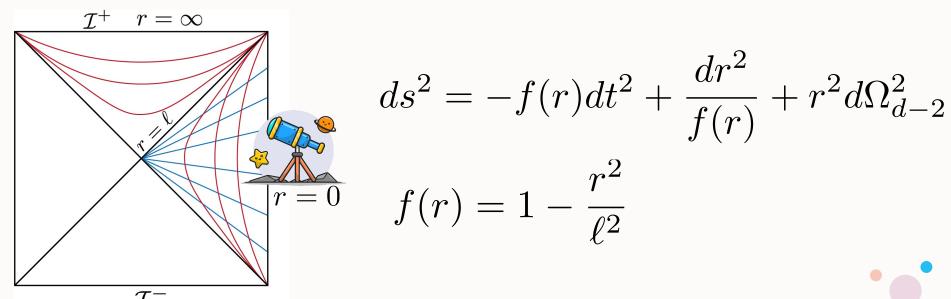


What does holographic complexity tell us about the dual theory?



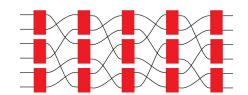
. Quick Recap of de Sitter Space

- Maximally symmetric solution to Einstein's equations with positive cosmological constant $\Lambda = \frac{(d-1)(d-2)}{2\ell^2} > 0$
- Describes early universe (inflation) and its far future.



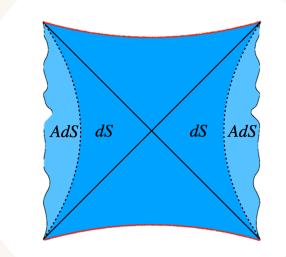
Holography in dS Space

- Why holography in dS space? We hope to extend the success it had in AdS! (hydrodynamics, entanglement, thermalization and chaos, quantum computation, BH evaporation and the Page curve)
- Why is this hard? No asymptotic timelike boundary within the static patch where we can put the field theory.
- Different approaches:
 - dS-CFT at future infinity [Strominger; Witten; Maldacena;]
 - Embed dS inside AdS [Anninos, Galante, Hofman; Freivogel, Hubeny, Maloney, Myers, Rangamani, Shenker;...]
 - Holography at the stretched horizon? [Banks, Fischler, Fiol, Morisse; Susskind, Shaghoulian, Lin; Jørstada, Myers, Ruan, ...]
 - QM models with finite degrees of freedom
 [Banks, Fischler, Fiol, Morisse; Parikh, Verlinde; Bousso; Balasubramanian, Horava, Minic; ...)
 - dS/dS correspondence and $T\bar{T} + \Lambda_2$ deformation [Alishahiha, Karch, Silverstein, Tong; Dong, Horn, Silverstein, Torroba; Gorbenko, Silverstein, Torroba; Lewkowycz, Liu, Silverstein, Torroba; Shyam; Coleman, Mazenc, Shyam, Silverstein, Soni, Torroba, Yang, ...]
 - And Many others...



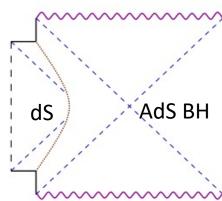
First Approach

Holographic Complexity in Centaur Geometries



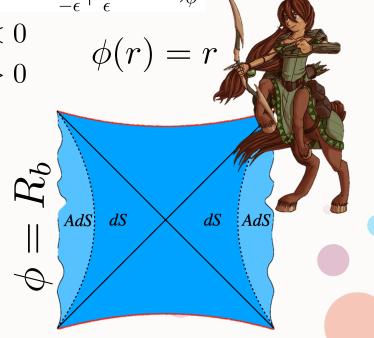
. Centaur (Flow) Geometries

- Embed a portion of dS inside AdS.
- Attempted in the past, but inflating region (and dS horizon) always hidden behind a black hole horizon from the AdS boundary. [Freivogel, Hubeny, Maloney, Myers, Rangamani, Shenker, '05]
- Obstruction: Null energy+Raychaudhuri's equation congruence of null geodesics leaving the AdS boundary cannot converge and then diverge.
- Loopholes!
 - 2d geometries no sphere! (Centaur: dS_2 in AdS_2) [Anninos, Hofman; Anninos, Galante, Hofman]
 - Embedding dS_4 in $AdS_2 \times S_2$ [Anninos, Galante, Mühlmann]



. Centaur (Flow) Geometries

- Solutions to 2d dilaton-gravity $S = \frac{1}{16\pi G} \int d^2x \sqrt{-g} (\phi R + \ell^{-2} U(\phi)) + \frac{\text{topological/boundary}}{\text{terms}}$
- With a piecewise potential $U(\phi) = \begin{cases} 2\phi & \phi \gg \epsilon \\ -2\phi & \phi \ll -\epsilon \end{cases}$
- Metric $ds^2=-f(r)dt^2+rac{dr^2}{f(r)}$ $\qquad f(r)=egin{cases} 1-r^2 & r<0 \ 1+r^2 & r>0 \end{cases}$ $\qquad \phi(r)=0$
- Interpolates from a UV AdS₂ boundary to a dS₂ spacetime in the IR.
- AdS₂ Caps off at $\phi = R_b$.
- For our calculation use a sharp transition.

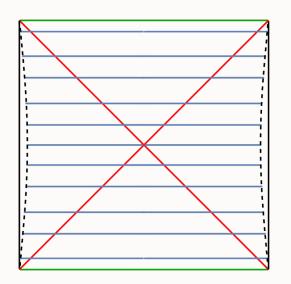


(from now on $\ell=1$)

. Complexity in Centaur Geometries

- Complexity minimal number of operations to construct a state.
- Here we use the complexity=volume conjecture

 AdS_2 BH



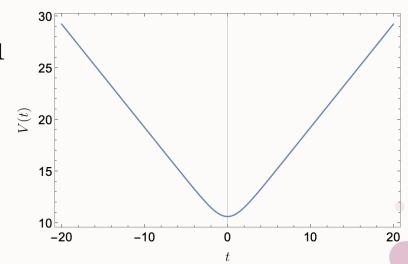
Inverse temperature

$$\beta = \frac{1}{T} = 2\pi\ell$$

 $L(t) \cong 2\log\left(2R_b\cosh\frac{t}{2B}\right)$ valid for: $R_b \gg \ell = 1$

at late times:

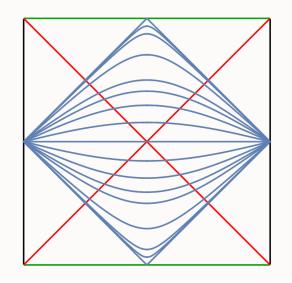
$$L(t) \sim 2\log R_b + |t|/\beta + \cdots$$



Late time growth – chaos?

. Complexity in Centaur Geometries

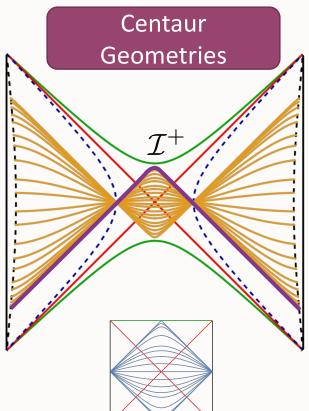
dS₂ volume/length (no complexity interpretation)



$$L(t) = \pi$$

. Complexity in Centaur Geometries

Complexity=volume conjecture



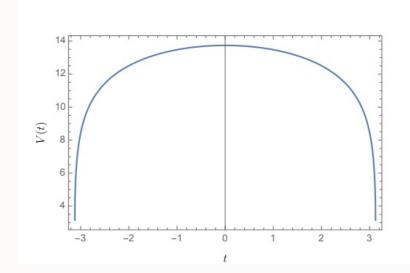
$$L(t) \cong \pi + 2\log\left(2R_b\cos\frac{t}{2\beta}\right)$$

Inverse temperature

$$\beta = \frac{1}{T} = 2\pi\ell$$

valid for:

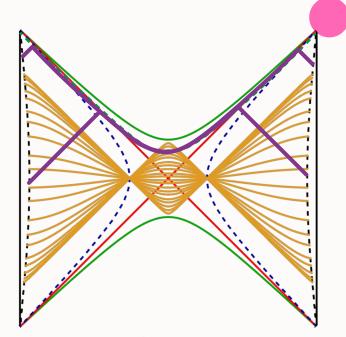
$$R_b \gg \tan \frac{|t|}{2}$$



- 1. Geodesics do not grow linearly with time. In fact, they decrease in time!
- 2. Geodesics only exist for $|t/\beta| \le \pi$.

Questions and Speculations

- What happens aftertime $t_c = \pi \beta$?
- One option place a cutoff at \mathcal{I}^+ and consider also piecewise geodesics along this cutoff [Jørstad, Myers, Ruan]
- Complexity will grow linearly with time at a rate dictated by the cutoff hyperfast scrambling ideas of [Susskind et al.]. What is this cutoff at \mathcal{I}^+ cutoff for Euclidean CFT?



- Upon analytic continuation, the length becomes complex. In the context of complexity, not clear what it means.
 - A proposal that the Centaur geometries consistent with SYK with complex deformation appears in [Anninos, Galante]
- Another option take it seriously?
 The decrease in complexity seems to indicate that the dual theory is not Chaotic.
 Additional indications:
 - OTOC does not display the exponential Lyapunov behavior but rather oscillates. [Anninos, Galante, Hofman]
 - Quasi normal modes have a large real part less efficient dissipation. [Anninos, Hofman]

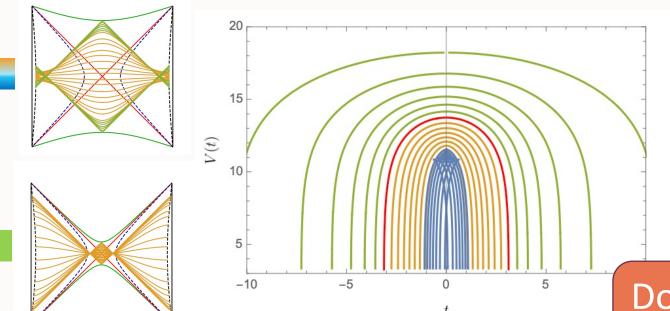
•

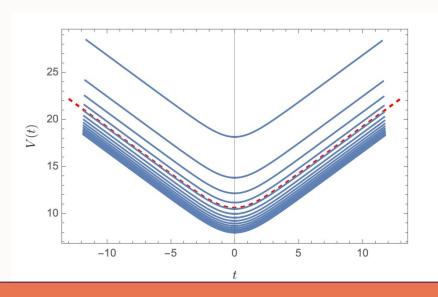
. Further Tests

• Is this due to the sharp gluing? Not really.

Gluing to larger/smaller portion of dS₂

AdS₂/AdS₂ transitions

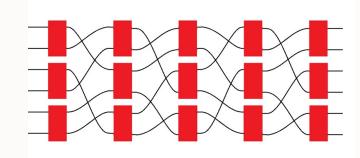


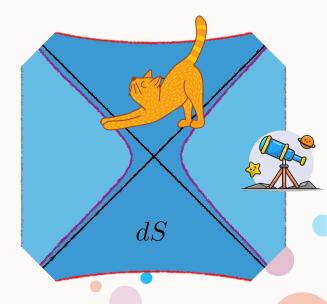


Do those results persist for dS_4 flow geometries?

Second Approach

Holographic Complexity on the Stretched Horizon





Holography on the Stretched Horizon

 Holographic theory with finite number of degrees of freedom (perhaps double scaled SYK) can be associated to a holographic screen at the stretched horizon.
 This is the surface of maximal area within the region we have access to. [Susskind, Shaghoulian, Lin; ...]

dS

dS

- Gravity does not decouple maybe SYK coupled to gravity.
- Suggested that the theory at the stretched horizon is hyperfast scrambling (SYK with hamiltonian terms that act on many fermions at a time $q \sim N^{\alpha}$, $0 < \alpha < 1$).
 - complexity diverges at finite critical time and then regularized by a cutoff at \mathcal{I}^+ .

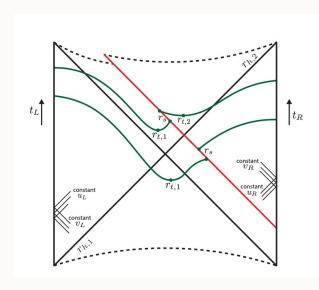
[Susskind et al.; Jørstada, Myers, Ruan;...]

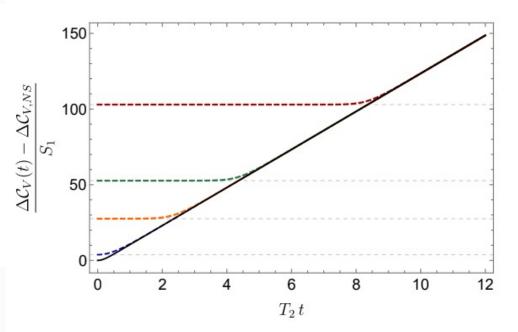
- How can we test if the theory at the stretched horizon is hyperfast scrambling?
- In the context of holographic complexity reaction to perturbations, e.g., shockwaves in black holes [SC, Marrochio, Myers]

. Complexity in Fast Scrabling Systems

$$|TFD(t_{\text{L}}, t_{\text{R}})\rangle_{pert} = U_{\text{R}}(t_{\text{R}} + t_w) \mathcal{O}_{\text{R}} U_{\text{R}}(t_{\text{L}} - t_w) |TFD\rangle$$
. $t_{\text{L}} = t_{\text{R}} = t/2$

• The complexity starts growing linearly, but only after a long plateau of size $\Delta t = 4(t_w - t_{scr}^*)$ where $t_{scr}^* = \frac{1}{2\pi T}\log(1/\epsilon)$





T – temperature

 $\epsilon \ll 1$ - relative size of the perturbation (energy of the shock)

 $-t_w$ - time of perturbation.

Sockwaves in dS Geometries

- Positive Energy Shockwaves push the horizon away and make more space available to the observer. [Gao, Wald, 2000]
- This is very different from what happens for AdS black holes where this
 is only possible for negative energy shockwaves.

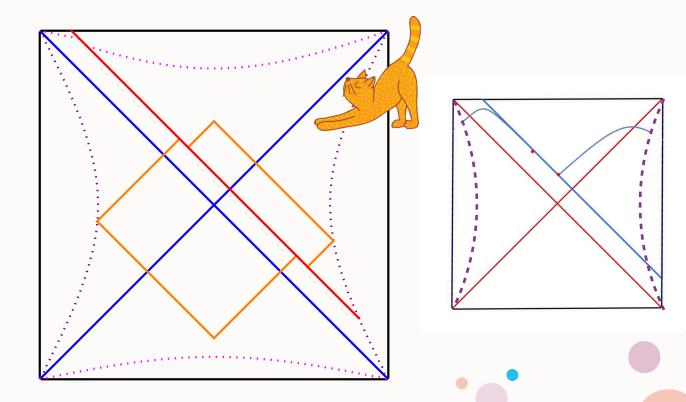
$$ds^2 = -F(r,u)du^2 - 2dr\,du + r^2d\varphi^2$$

$$F(r,u) = 1 - \frac{r^2}{L^2} - 8G_N\mathcal{E}(1-\Theta(u-u_s))$$

. Complexity for dS shockwaves

- How does complexity of the theory at the stretched horizon reacts to the shockwave?
- Anchor complexity quantities there. [Jørstada, Myers, Ruan]
- Use a cutoff at \mathcal{I}^+ .
- Complexity=spacetime volume of the Wheeler-DeWitt patch.
- Preliminary results in 3d.
 Similar behavior in higher dimensions too.

(Here the diagrams discontinuous in the radial direction)



· Results so Far

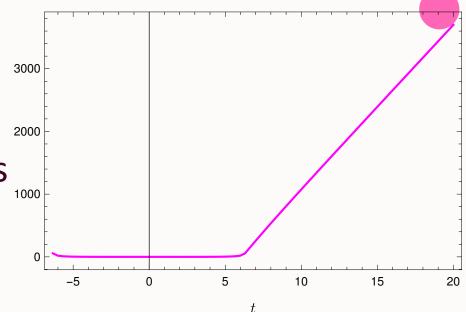
- Similarly to black holes: the complexity grows linearly after an initial plateau!
- Linear growth governned by the cutoff at \mathcal{I}^+ $\frac{dC}{dt} = \frac{2\pi}{G_N L^2 d} (r_{max})^{d-1}$
- The size of the plateau depends on the size of the perturbation

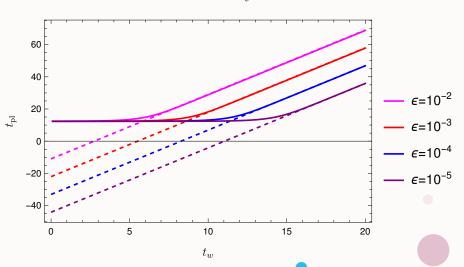
 Scrambling time

$$\Delta t = 4(t_w - \log(1/\epsilon) + \mathcal{G}(\rho))$$

 ϵ is the relative size of the perturbation.

 ρL is the location of the stretched horizon





[work in progress Baiguera, Berman, SC; related results: Aalsma, Shiu]

Exploring the Plateau

- Usual scrambling time for fast scrambling systems.
- In higher dimensions and with other types of shocks (SdS to SdS)
 similar results.
- Universal geometric property of horizons? Can we prove this?
- Word of caution: very dependent on notion of time. Here, we used metric time in the static patch. Using proper time ($\tau_p = \sqrt{1-\rho^2}L\ t$) would perhaps add some blue shift factors which could reduce the scrambling time.

Summary

- Revival of dS holography different approaches on the market.
- Interesting to explore with quantum information lens.
- Centaur geometries access to a timelike boundary!
- Complexity (=volume) intially decreased and stopped existing after a certain time. Interpretations?
 - Theory is not chaotic?
 - Complex geodesics?
 - UV cutoff?
- Complexity (=spacetime volume) at the stretched horizon with shockwaves.
 - Scrambling time indicates chaotic behavior.

Outlook and Open Questions

Flow geometries.

What can we say in higher dimensions?

What is the QFT interpretation (complex couplings?)

• Stretched horizon approach:

 What is the QFT interpretation of the stretched horizon (SYK/matrix model coupled to gravity?)

Is the theory dual to de-sitter space chaotic?

 Can we use these holographic setups to answer basic questions about quantum gravity in dS?

What are good observables?

What is the origin of the dS entropy?

