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Abstract

Computer graphics renderers for creating photo-realistic images
use mainly unidirectional path tracing, having good results for scenes
without caustics or hard cases. There are also few renderers with bi-
directional path tracing implementation, however due to the complexity
of the algorithm implementation, they almost exclusively target sequen-
tial CPUs.

The thesis proposes a way of implementation of bi-directional path
tracer on a parallel many-core architectures such as the GPU and
provides a working implementation. Further this implementation is
compared to a parallel implementation of the standard, unidirectional
path tracer, in terms of quality and speed.

Interactive frame rates have been achieved for parallel bi-directional
path tracing, proving the possibility of using such algorithm on GPUs.
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1 Introduction

Global illumination research currently focuses on two major areas:
unbiased methods and real time global illumination. Unbiased methods
are such methods, that under some assumption converge to a physically
based solution.

One of the major unbiased techniques is the path tracing, this
technique is used throughout many industries, like the movie industry,
as the rendering algorithm of choice. The bi-directional path tracing is
an extension of standard, unidirectional path tracing algorithm, with
better results for scenes with caustics or hard cases 1.

Bi-directional path tracing implementations are mostly done in a se-
quential manner on the CPU, although there exist few of the imple-
mentations on the GPU. Sadly they just use graphics hardware only
for part of the computation, or they are typically limited in some ways
(e.g. they do not support texturing, surface shading, allow only for sphere
rendering, etc.).

The presented work in the thesis focuses on the proposal of a method
to implement parallel bi-directional path tracing algorithm, and to pro-
vide working implementation that runs on graphics hardware.

Furthermore, other GPU-based renderers are compared against this
new renderer in terms of both, quality and performance.

1. Scene with hard case is such scene where most of the visible geometry is lit by
the light generated behind a occluder, typical example is room interior with only
indirect light passing through window.
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2 Theory

The following chapter provides description and derivation of a tech-
nique for image synthesis in form of the rendering equation, closely
resembling light behavior in the physics. Such equation can be used
for the computation and generation of an image from 3-dimensional
scene described using geometry, materials (and lights), viewed from
given virtual camera.

Further, the theory behind the scene description is provided, along
with proposed model for efficient computation of the rendering equation.

2.1 Rendering Equation

The goal of the computation is a synthesis of an image, describing
a view of defined scene by specific camera. Such computation requires
calculation of how much energy emitted by lights (surfaces that emit
light energy in a virtual scene) reaches the camera. This is actually
a simulation of light.

For the purpose of simplicity, following rules apply:

∙ The light moves along perfectly straight lines.

∙ The light moves at infinite speed.

Therefore several fundamental laws and definitions of radiometry
and geometry have to be defined.

2



2. Theory

2.1.1 Definitions

Radiant Energy

Denoted as: 𝑄𝑒

Units: 𝐽 (joule)
Describes the energy of electromagnetic radiation.

Radiant Flux

Denoted as: Φ𝑒

Units: 𝑊 (watt)

Φ𝑒 = 𝜕𝑄𝑒

𝜕𝑡
(2.1)

Describes the amount of energy passing through an area in given
time.

Irradiance

Denoted as: 𝐸𝑒

Units: 𝑊 ·𝑚−2 (watt per square metre)

𝐸𝑒 = 𝜕Φ𝑒

𝜕𝐴
(2.2)

Describes the amount of radiant flux arriving per unit of surface
area. In case of radiant flux leaving the surface, it is denoted as radiosity
(denoted as 𝐽𝑒). The radiant flux emitted by the surface is denoted as ra-
diant exitance (denoted as 𝑀𝑒), the radiant flux is emitted component
of radiosity.
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2. Theory

Solid Angle

Denoted as: Ω
Units: 𝑠𝑟 (steradian)

𝜕Ω = 𝜕𝐴 · 𝑐𝑜𝑠𝜃

𝑟2 (2.3)

The solid angle Ω subtended by the surface 𝐴 is defined as the surface
area of a unit sphere covered by the projection of the surface onto this
sphere, see 2.1.

Figure 2.1: This image graphically represents solid angle Ω, on a sphere
with radius 𝑟, subtending the area 𝐴.

Radiant Intensity

Denoted as: 𝐼𝑒,Ω

Units: 𝑊 · 𝑠𝑟−1 (watt per steradian)

𝐼𝑒,Ω = 𝜕Φ
𝜕Ω (2.4)

Describes the measure of radiant flux per unit solid angle.
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2. Theory

Radiance

Denoted as: 𝐿𝑒,Ω

Units: 𝑊 · 𝑠𝑟−1 ·𝑚−2 (watt per steradian per square metre)

𝐿𝑒,Ω = 𝜕2Φ𝑒

𝜕Ω · 𝜕𝐴 · 𝑐𝑜𝑠𝜃
(2.5)

Describes radiant flux emitted, reflected, transmitted or received
by a surface per unit solid angle per projected area. It closely resembles
color and does not change over distance, such properties make radiance
ideal for further computation.

2.1.2 Fundamental Law of Photometry

The following texts provides basics for the derivation and the actual
derivation of the rendering equation, similar to Kajiya [6].

Before the actual derivation of the rendering equation, the funda-
mental law of photometry has to be defined. For the following step,
let us assume the simpliest case:

Let there be two elements, denoted as 𝐴 and 𝐴′. The distance
between these two elements is equal to 𝑟. Therefore radiant flux leaving
the first element and reaching the second element - e.g. how much
of the emitted energy by one surface reaches the other surface is:

𝜕Φ = 𝐿𝑒,Ω · 𝜕𝐴 · 𝑐𝑜𝑠𝜃 · 𝜕Ω′ (2.6)

Solid angle in this equation can be expressed by projected area
of the element, therefore:

𝜕Φ = 𝐿𝑒,Ω · 𝜕𝐴 · 𝑐𝑜𝑠𝜃 · 𝜕𝐴′ · 𝑐𝑜𝑠𝜃′

𝑟2 (2.7)
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2. Theory

Which is also known as The fundamental law of photometry. Also note
that we know:

𝜕Ω′ = 𝜕𝐴 · 𝑐𝑜𝑠𝜃

𝑟2 (2.8)

Yields:

𝜕Φ = 𝐿𝑒,Ω · 𝜕𝐴′ · 𝑐𝑜𝑠𝜃 · 𝜕Ω′ (2.9)

Therefore, for receiving and emitting patches very similar formula
applies, for graphical representation see 2.2.

Figure 2.2: Fundamental law of photometry, image representation, 𝐴 and 𝐴′

are the surfaces positioned in distance of 𝑟.

2.1.3 The behavior of light

To construct an image, the computation of light reaching the camera
has to be performed. In case of real physics, the simulation should start
by emitting the light from light emitting surfaces. Followed by the light
scattering simulation and gathering the light arriving to the camera.

The problem here is, that most of the light will not scatter into
the camera, but ends up ’not’ hitting the camera at all. This is optimized
by flipping the direction.

The simulation starts in the camera point, light scatter into the scene
and the energy is contributed each time we hit the light.
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2. Theory

It is important to note, that light (upon hitting the surface) can
undergo either:

∙ Reflection

Light is reflected, obeying laws of reflection (see image 2.4):

– The incident ray, the reflected ray and the normal at the given
point lie in the same plane.

– The angle between incident ray and normal equals the angle
between reflected ray and normal.

– The incident ray and the reflected ray are on opposite sides
of normal.

Figure 2.3: Reflection of incident ray 𝑖 at surface with normal 𝑛 into ray
with direction 𝑟. Note that incident angle 𝜃𝑖 equals the reflected angle 𝜃𝑟.

In equation:

R = I− 2(I ·N)N (2.10)

Where:

– R is a vector representing direction of reflected ray.

– I is a vector representing direction of incident ray.

– N is surface normal at given point.

– operator · represent scalar inner product between vectors.

7



2. Theory

Note that for diffuse surfaces we often talk about diffuse reflection,
in reality this is a reflection on the surface of the object. Although,
the surface is not perfectly smooth but its surface is highly
irregular. The light reflection on such surface is diffuse reflection,
where reflected ray directions appear to be random.

∙ Refraction

Light is refracted, obeying Snell’s law of refraction (see 2.4).
In equation:

𝑠𝑖𝑛𝜃1

𝑠𝑖𝑛𝜃2
= 𝑛1

𝑛2
(2.11)

Where:

– 𝜃1 is an angle between incident ray and surface normal.

– 𝜃2 is an angle between refracted ray and opposite vector
to surface normal.

– 𝑛1 is refractive index in first medium.

– 𝑛2 is refractive index in second medium.

Note that for computing refracted direction the vector form
of this equation is used:

R = 𝑛1

𝑛2
[N× (−N× I)]−N

√︃
1−

(︂
𝑛1

𝑛2

)︂
(N× I) · (N× I)

(2.12)

Where:

– N represents surface normal.

– I represents incident direction.

– 𝑛1 is refractive index in first medium.
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2. Theory

– 𝑛2 is refractive index in second medium.

Further, to describe the behavior of light when crossing be-
tween two media with different refractive index, Fresnel equations
have to be introduced. In the following approach Fresnel factor
in the specular reflection of light is used, for which there exists
Shlick’s approximation [9].

𝑅 = 𝑅0 + (1−𝑅0)(1−H ·V)5 (2.13)

Where:

– 𝑅0 is reflection coefficient for incoming light that is parallel
to normal at given position. Defined as (𝑛1 and 𝑛2 represents
index of refraction for given media):

Figure 2.4: Refraction of incident ray 𝑖 at surface with normal 𝑛 obeys
Snell’s law of refraction.

𝑅0 =
(︂

𝑛1 − 𝑛2

𝑛1 + 𝑛2

)︂2
(2.14)

– H represents half angle vector - halfway between viewing
vector and incident light vector.

– V represents viewing vector.

9



2. Theory

∙ Absorption

Light stops at the surface and the light does not reflects or re-
fracts.

The search for each incoming light particle directed towards the cam-
era is therefore straight forward for perfectly reflective and refractive
surfaces (as they have to obey laws of reflection and Snell’s law of re-
fraction), although for diffusely reflective surfaces, as mentioned, is
non-trivial due to random behavior of the particle. Such random be-
havior is modeled by means of probability theory, defining the density
function as:

𝑟(𝑥, Ω′, Ω) · 𝜕Ω = 𝑝 (2.15)

Where:

∙ 𝑥 represents given point in space where light particle arrives.

∙ Ω′ represents the direction from which the light particle arrives.

∙ Ω represents the direction into which the particle is scattered.

∙ 𝑝 determines the probability of scattering the particle from direc-
tion Ω′ into direction Ω.

Note that for perfectly reflective or refractive surfaces such func-
tion can also be constructed (resulting in probability equal to 1 under
single direction obeying the laws of reflection, respectively Snell’s law
of refraction, and 0 otherwise).

2.1.4 The derivation

The energy reaching the camera is, for given surface, described by its light
emission (the direct component) and light scattered into the camera
(the indirect component).

10



2. Theory

The indirect component is calculated as following:

Φ𝑜 = Φ𝑒 +
∫︁ ∫︁

Ω
(𝑟(𝑥, 𝜔′, 𝜔)𝑑𝜔)Φ𝑖𝑑𝜔′ (2.16)

Using specular radiance instead of flux yields:

𝐿(𝑥, 𝜔) = 𝐿𝑒(𝑥, 𝜔) +
∫︁

Ω
𝐿𝑖(𝑥, 𝜔′)𝑟(𝑥, 𝜔′, 𝜔)

𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜃𝜔′𝑑𝜔′ (2.17)

Where:

∙ 𝐿(𝑥, 𝜔) Represents spectral radiance arriving into the camera
from given position 𝑥.

∙ 𝐿𝑒(𝑥, 𝜔) Is emitted light at given point 𝑥 into the camera.

∙ 𝐿𝑖(𝑥, 𝜔′) Is incoming light to given point 𝑥 from direction 𝜔′.

∙ 𝑟(𝑥,𝜔′,𝜔)
𝑐𝑜𝑠𝜃

Represents Bidirectional Scattering Distribution Func-
tion - BSDF (the basic one is BRDF - Bidirectional Reflectance
Distribution Function)1.

This equation is also known as the rendering equation, by solving
this equation for each visible point an image is produced.

2.2 Monte-Carlo Integration

Equations, like the rendering equation, tend to be very hard for an-
alytic solving, due to high order integrals of large functions. For com-
puting such equation it is crucial to use generic technique for integral
computation, like Monte-Carlo integration.

Monte-Carlo integration is one of the Monte-Carlo methods (more
precisely random walk Monte-Carlo method), that repeatedly run

1. BRDF describes how the light behaves (reflects/refracts) when reaching the sur-
face.

11



2. Theory

the simulation with random samples, obtaining numerical results. Monte-
Carlo integration is a strong tool for solving definite integrals.

Given one dimensional integral equation:

𝐼 =
𝑏∫︁

𝑎

𝑓(𝑥)d𝑥 (2.18)

Due to the law of large numbers, it is well known that this integral
equation can be estimated using:

𝑄𝑁 = 𝑏− 𝑎

𝑁

𝑁∑︁
𝑖=1

𝑓(𝑋𝑖)𝑝(𝑋𝑖) (2.19)

Where:

∙ 𝑁 Represents the total number of samples taken by Monte-Carlo
estimator

∙ 𝑋𝑖 Represents 𝑖-th randomly generated value in range [𝑎, 𝑏].
The random number generator needs to have probability dis-
tribution function 𝑝.

By examining the previously derived rendering equation, it is possible
to determine that on the right part the integration is performed also
over the same function we’re searching for on the left (yet with different
arguments). Such equations are known to be Fredholm’s equations
of the second kind.

Solving such equation leads to expansion into Neumann’s series:

𝐿 =
𝑛∑︁

𝑖=0
Γ𝑖𝐿𝑒 + Γ𝑛+1𝐿 (2.20)

Where:

∙ Γ𝑖𝐿𝑒 represents the light arriving into camera gathered from emis-
sive surfaces using 𝑖-th bounce (0-th bounce represents directly
emitted light into camera -> e.g. visible light source); going up
for 𝑛 bounces.

12



2. Theory

∙ Γ𝑛+1𝐿 represents the rest of the light arriving into camera, gath-
ered after 𝑛 bounces.

Due to contractive property of the equation (as it is known that
with each bounce the energy decreases):

lim
𝑛−>∞

Γ𝑛+1𝐿 = 0 (2.21)

And so, it can be rewritten as Liouville-Neumann’s series:

𝐿 =
∞∑︁

𝑖=0
Γ𝑖𝐿𝑒 (2.22)

This leads to high dimensional integral equations. These equations
can be effectively solved using random walk method, such as Monte-
Carlo integration.

For high dimensional integral equations, Monte-Carlo integration is
defined as:

𝑎1∫︁
𝑎0

𝑏1∫︁
𝑏0

𝑓(𝑎, 𝑏)𝑑𝑎𝑑𝑏 = (𝑎1 − 𝑎0)(𝑏1 − 𝑏0)
𝑁

𝑁∑︁
𝑖=1

𝑓(𝑋𝑖); 𝑋𝑖 ∈ ([𝑎0, 𝑎1], [𝑏0, 𝑏1])

(2.23)

𝑎1∫︁
𝑎0

𝑏1∫︁
𝑏0

...

𝑧1∫︁
𝑧0

𝑓(𝑎, 𝑏, ..., 𝑧)𝑑𝑎𝑑𝑏...d𝑧 =

= (𝑎1 − 𝑎0)(𝑏1 − 𝑏0)...(𝑧1 − 𝑧0)
𝑁

𝑁∑︁
𝑖=1

𝑓(𝑋𝑖); 𝑋𝑖 ∈ ([𝑎0, 𝑎1], [𝑏0, 𝑏1], ..., [𝑧0, 𝑧1])

(2.24)

The last problem remaining in this technique is the fact, that the com-
putation of Liouville-Neumann series needs infinite number of steps. As
the simulation is computing the light, each bounce of the light the energy

13



2. Theory

decreases, so after some bounces the remaining energy will be of lit-
tle consequence. As a result it is necessary to determine means for
terminating this light path.

A simple method (that still keeps system energy conserving and thus
physically correct), is that after the energy of the path drops below some
certain level, there is a chance of 𝑝 ∈ [0, 1] proportional to the energy
of the path to terminate this path, by generating a random value with
uniform probability distribution function in interval [0, 1] and comparing
to 𝑝 it is decided whether the current path is terminated or not. This
method is also known as Russian Roulette.

2.3 Ray Tracing

The assumption of light traveling at infinite speed along straight
lines leads to calculating intersections between such lines and scene
in general.

Calculating traversal of the ray, originating in camera with given
direction, through the 3-dimensional scene determines the first visible
point from camera in such direction.

Upon intersection, the ray can be either reflected (according to laws of re-
flection, note that also diffuse reflection is possible), refracted (according
to Snell’s law of refraction) or terminated.

2.3.1 Ray-Primitive Intersection

It is critical to correctly determine visibility between two points
(e.g. whether there is a primitive blocking line between two points) or
to calculate whether there is any primitive along the ray, that is hit by
the ray. Such tests are nothing more than solving an equation of ray
against an equation of given primitive.

Such intersection test can be computed using either numerical estima-
tion and numeric method (in case of primitives composed of high-order

14



2. Theory

functions), or by direct analytic solution (preferred, as the scenes are
mostly composed of simple primitives like spheres, triangles, axis-aligned
bounding boxes, etc.).

One of the goals, when taking also the final algorithm performance
into account, is to decrease the number of kinds of geometric primitives
defining the scene. Each primitive can be well described using triangular
geometry, and divided into sections using axis aligned bounding boxes.
No more primitive types are needed and so the provided theory is only
for intersection between ray and these two.

Primitive Definitions

Before the actual description of intersection algorithms, a definition
of all the primitives has to be provided.

Ray

A ray is infinite half-line beginning in given point, pointing into
specific direction. The equation of ray is:

x = o + 𝑡 · d; 𝑡 ∈ [0, inf] (2.25)

Where:

∙ o is a 3-dimensional point holding the coordinates of ray origin.

∙ d is a 3-dimensional unit vector defining the ray direction.

∙ 𝑡 is a parameter belonging to interval [0, inf] and thus defining
the bounds of the given ray.

15



2. Theory

Triangle

A triangle is basic geometric primitive typically defined by 3 points
and 3 barycentric coordinates (See 2.5).

x = a · 𝛼 + b · 𝛽 + c · 𝛾 (2.26)

Where:

∙ 𝑎, 𝑏, 𝑐 are the points defining the triangle.

∙ 𝛼, 𝛽, 𝛾 are barycentric coordinates, for which: 𝛼 ∈ [0, 1], 𝛽 ∈ [0, 1],
𝛾 ∈ [0, 1] and 𝛼 + 𝛽 + 𝛾 = 1.

Figure 2.5: Shows barycentric coordinates at various points on an equilateral
triangle and a right triangle.
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2. Theory

Axis-Aligned Bounding Box

Axis-Aligned Bounding Box is defined as a volume enclosed by 6
planes (2 planes per axis) in a space. As these planes are axis-aligned
they can be defined by using just a single value. The definition is thus:

n = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧), f = (𝑓𝑥, 𝑓𝑦, 𝑓𝑧); 𝑛𝑥 < 𝑓𝑥, 𝑛𝑦 < 𝑓𝑦, 𝑛𝑧 < 𝑓𝑧 (2.27)

Where the volume lies between 𝑛𝑥 and 𝑓𝑥 on 𝑥 axis, 𝑛𝑦 and 𝑓𝑦 on 𝑦

axis, 𝑛𝑧 and 𝑓𝑧 on 𝑧 axis.

2.3.2 Intersection Algorithms

Ray-Triangle Intersection

The intersection is defined as the solution of system described by a ray
equation and a triangle equation. By solving for barycentric coordinates
it is possible to compute the hit point of the intersection, see image 2.6.

As the performance of such test has major impact on solving the
rendering equation, it is critical to decrease the resources used during
the computation, the following modification is used (as in Woop et. al.
[13]).

For every non-degenerate triangle it is possible to find a transforma-
tion that transforms this triangle into a unit triangle 2 (note that such
transformation is preserving points, lines, planes and ratios of distances,
e.g. it is affine transformation.).

For triangle 𝑇 , defined by three points a, b, c, with normal defined
as:

𝑁 = (a − c)× (b− c)
|(a − c)× (b− c)| (2.28)

2. A unit triangle is a triangle of size equal to one, that is lying on X and Y plane
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Figure 2.6: Shows a solution of ray-triangle intersection, intersection hap-
pens in point 𝐷 with barycentric coordinates 𝛼, 𝛽, 𝛾.

The inverse transformation for the wanted one is defined as:

𝑀−1(𝑇𝑢𝑛𝑖𝑡) =

⎛⎜⎜⎜⎜⎜⎝
𝑎𝑥 − 𝑐𝑥 𝑏𝑥 − 𝑐𝑥 𝑁𝑥 𝑐𝑥

𝑎𝑦 − 𝑐𝑦 𝑏𝑦 − 𝑐𝑦 𝑁𝑦 𝑐𝑦

𝑎𝑧 − 𝑐𝑧 𝑏𝑧 − 𝑐𝑧 𝑁𝑧 𝑐𝑧

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ (2.29)

The wanted matrix 𝑀 can be thus computed by inversion of this
matrix.

The intersection is performed by transforming the ray into the space
of such unit triangle and performing the test there. As the transformation
is affine, the barycentric coordinates are equivalent (for the case before
and after transformation). The computation is:

𝑡 = 𝑀1,4 − 𝑜𝑥𝑀1,1 − 𝑜𝑦𝑀1,2 − 𝑜𝑧𝑀1,3

𝑑𝑥𝑀1,1 + 𝑑𝑦𝑀1,2 + 𝑑𝑧𝑀1,3
(2.30)

𝛼 = 𝑀2,4 + 𝑜𝑥𝑀2,1 + 𝑜𝑦𝑀2,2 + 𝑜𝑧𝑀2,3 + 𝑡 · (𝑑𝑥𝑀2,1 + 𝑑𝑦𝑀2,2 + 𝑑𝑧𝑀2,3)
(2.31)

𝛽 = 𝑀3,4+𝑜𝑥𝑀3,1+𝑜𝑦𝑀3,2+𝑜𝑧𝑀3,3+𝑡·(𝑑𝑥𝑀3,1+𝑑𝑦𝑀3,2+𝑑𝑧𝑀3,3) (2.32)
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Where:

∙ o = (𝑜𝑥, 𝑜𝑦, 𝑜𝑧) represents non-transformed origin of ray.

∙ d = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) represents non-transformed direction of ray.

∙ 𝑡 is a distance from ray origin towards the hit point along ray
direction.

∙ 𝛼, 𝛽 are barycentric coordinates.

The intersection occurs, when all of the following statements are
true for given intersection test:

1. 𝑡 > 0 distance 𝑡 towards the intersection is non-negative.

2. 𝛼 ≥ 0 ∧ 𝛼 ≤ 1 and 𝛽 ≥ 0 ∧ 𝛽 ≤ 1 both computed barycentric
coordinates are in respective bounds.

3. 𝛼 + 𝛽 ≤ 1 both barycentric coordinates summed together are less
than 1 (meaning 𝛾 >= 0 ∧ 𝛾 <= 1).

The first statement defines whether there is an intersection between
ray and triangle plane at distance 𝑡. Followed by two statements deter-
mining whether the hit point lies inside triangle bounds.

This test is highly efficient when the matrix can be pre-computed,
as the number of operations that need to be performed for single
intersection test is minimal compared to other intersection tests.

Ray-Axis Aligned Bounding Box Intersection

As in previous case, the intersection occurs whenever there is a
solution for system of equation composed of both, ray and axis-aligned
bounding box equation. It uses so called slab test (Simplified 2D equiv-
alent in image 2.7).
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Figure 2.7: 2D Intersection of ray (defined by 𝑂 and direction vector) and
Axis-Aligned Bounding Box (defined by 𝐴, 𝐵, 𝐶, 𝐷) calculates hit points
(𝐺, 𝐻, 𝐺′, 𝐻 ′) using slab test, which determines whether there is any inter-
section.

A slab is an interval defined between 2 values, and undefined else-
where. Transforming the definition of axis-aligned bounding box from 6
planes to 3 slabs, 3 value ranges where the box is defined are obtained,
each for separate axis. Each of such slabs is defined by 2 planes - mini-
mum and maximum bounding plane. For the purpose of high efficiency
intersection, the slab test is performed, the following text describes its
derivation according to Ericson et. al. [5].

For each slab two intersections points with the ray can be computed
- the entry point and the exit point, as:

𝑡1 = 𝑛𝑘 − 𝑜𝑘

𝑑𝑘

, 𝑡2 = 𝑓𝑘 − 𝑜𝑘

𝑑𝑘

(2.33)

Where:

∙ 𝑖 = 𝑚𝑖𝑛(𝑡1, 𝑡2) represents the entry point.

∙ 𝑜 = 𝑚𝑎𝑥(𝑡1, 𝑡2) represents the exit point.
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Finding both, entry and exit points, for all slabs is then:

𝑡𝑒𝑛𝑡𝑒𝑟 = 𝑚𝑎𝑥(𝑖0, 𝑖1, ...𝑖𝑘), 𝑡𝑒𝑥𝑖𝑡 = 𝑚𝑖𝑛(𝑜0, 𝑜1, ...𝑜𝑘) (2.34)

Where 𝑘 represents 𝑘-th dimension of computation, for the bounding
box case 𝑘 = 3.

The intersection occurs when 𝑡𝑒𝑥𝑖𝑡 > 0 and 𝑡𝑒𝑛𝑡𝑒𝑟 < 𝑡𝑒𝑥𝑖𝑡.

2.3.3 Acceleration Structure

Even though the previously defined intersections are efficient, it
would mean a lot of intersection tests when using naively computed
ray tracing. For a simple scene with 100 000 triangles and standard
FullHD resolution, this would effectively mean performing 207 360 000
000 intersection tests in total for single bounce, which is way too large
number, while most triangles are not even near the part of the scene
through which the ray travels.

The idea of acceleration structure is following, by creating a struc-
ture for the scene, keep small groups of primitives in nodes (where
all primitives in a node are close to each other in terms of position).
When searching for intersections between the ray and triangles, we first
determine the nodes in acceleration structure that intersect our ray and
then intersect the triangles in these nodes.

Also note that as the search is only for the closest hit, this can be
even further sped up by searching the hierarchy and thus the scene along
the ray direction, beginning at the origin, going forwards in direction.

The performance of acceleration structure can be further increased
by creating a hierarchical structure (most common is tree hierarchy) of
nodes, where interior nodes contain other nodes (smaller) and leaves
contain actual geometry.
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Bounding Volume Hierarchy

The bounding volume hierarchy (BVH) is N-ary tree structure. The
most common is a binary tree structure, although for some hardware,
using the tetrary tree structure (also denoted as QBVH) was also found
to be efficient, like Dammertz et. al. [4]. For the following text, I refer to
BVH as to a binary tree structure (For example of BVH see figure 2.8).

Figure 2.8: Bounding volume hierarchy built on 4 triangle primitives
(𝑇1, 𝑇2, 𝑇3, 𝑇4), spatial representation on the left and tree representation
of the data on the right. 𝑁1, 𝑁2, 𝑁3 are the bounding volumes of three nodes.

For BVH there are two important parts, the part where the accel-
eration structure is built and where it is traversed by a ray. As the
implementation in this thesis focuses mainly on run time performance,
the time spent building the hierarchy is not further considered.

Build
Building of BVH is often recursive algorithm similar to any other tree
building algorithms (recursively builds the leaf nodes first, later creating
interior nodes):

1. Compute the extents of the scene and create bounding box of
whole scene.

2. Recursively: If the primitive set currently processed is small
enough, create a leaf node, compute its bounding box and return.
Otherwise, find a position where the primitive set is divided

22



2. Theory

into two subsets (using some heuristics) and create interior node,
with two child nodes, both created by recursively applying this
algorithm on both subsets, the bounding box of such node is a
bounding box around of both child nodes bounding boxes.

The division into two subsets determines what will be the quality of
the resulting BVH. There are multiple approaches, like:

∙ Surface area heuristics is an approach, where in general for
each interior node there is a cost computed (based on the surface
areas of the objects) that is heuristically minimized. Effective
algorithm is described in Pharr et. al. [8].

∙ Bounding Volume Hierarchy with Spatial Splits is a hier-
archy, that was build in a similar way to surface area heuristics
based one. Although instead of considering just the start point
and the end point of each primitive, some possible splits of each
primitive are also considered, as in Stich et. al. [10]. It produces
one of the best quality trees.

Traversal
Traversal through any BVH can be done in a generic way, using standard
tree searching algorithm, an example in pseudo-code is provided in
algorithm 1.

These stack-based traversals first search for leaf nodes, those contain
triangles. Once we find a leaf node, the intersection against all triangles
in leaf node is performed. Later, pop next node from stack and continue
with traversal.

23



2. Theory

Algorithm 1 BVH traversal
1: procedure Traverse
2: 𝑛𝑜𝑑𝑒← 𝑟𝑜𝑜𝑡

3: 𝑠𝑡𝑎𝑐𝑘 ← empty stack
4: while 𝑛𝑜𝑑𝑒 ̸= 𝑛𝑢𝑙𝑙 do
5: while node is interior do
6: test ray with both child AABBs
7: if ray hits single child node then
8: 𝑛𝑜𝑑𝑒← intersecting child
9: else

10: if ray hits both child nodes then
11: 𝑛𝑜𝑑𝑒← closer child
12: 𝑠𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ(further child)
13: else
14: 𝑛𝑜𝑑𝑒← 𝑛𝑢𝑙𝑙

15: if 𝑛𝑜𝑑𝑒 = 𝑛𝑢𝑙𝑙 then
16: 𝑛𝑜𝑑𝑒 = 𝑠𝑡𝑎𝑐𝑘.𝑝𝑜𝑝()
17: for all items in leaf node do
18: intersect ray vs triangles, store closest result
19: 𝑛𝑜𝑑𝑒 = 𝑠𝑡𝑎𝑐𝑘.𝑝𝑜𝑝()

2.3.4 Image Plane

The results of the computation are stored in an image plane. The
image plane is a matrix of 𝑊 ×𝐻 size, each item in this matrix is a
three component vector 𝐶 = (𝑅, 𝐺, 𝐵).

These components shows red, green and blue color of given item,
each of this item therefore represents a pixel. The value of each single
component represents the intensity in range [0, 1].

For each of the pixels it is possible to compute a ray direction from
the camera point into the scene, passing through the pixel, this direction
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represents the first direction cast from camera viewpoint into the scene.

2.4 Path Tracing

Having all the pre-requisites defined, the following section describes
proof-of-concept algorithm on solving the rendering equation. The fol-
lowing text gives brief overview of the approach.

First of all there is an assumption of having the scene and data
structure (BVH) prepared, this means that there is a virtual camera
defined in the scene, from this camera position an image will be generated.
The computation itself generates 𝑁 samples per each pixel, this means
that the rendering equation is sampled 𝑁 times and the results are
appropriately weighted.

Algorithm 2 Path Tracing
1: procedure Pathtrace
2: for each path:
3: ray← setup primary ray
4: while ray.terminated = false do
5: result← raycast(ray)
6: if result.hit = false then
7: Accumulate background color
8: ray.terminated← true
9: else

10: Compute and Accumulate surface emission
11: if Russian roulette terminates path then
12: ray.terminated← true
13: else
14: ray← Get B*DF Sample
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∙ For each pixel in image plane 𝐼 do:

∙ For 1...𝑁 :

1. Generate a ray from camera in direction of currently pro-
cessed pixel.

2. Recursively (note that each recursive step computes single
bounce of the light):
Compute closest intersection on given ray with the scene.
In case of no intersection, return black (zero intensity).
Compute the light emission 𝑥 at the hit point.
If the contribution of current bounce (𝑖-th bounce) is smaller
than pre-defined constant 𝑘 (this constant determines when
we start applying Russian roulette), perform Russian roulette
and possibly terminate the light path.
Determine the direction of next bounce (reflect, diffusely
reflect or refract), and recursively compute it into value 𝑥′.
Return the light emission at current hit point (e.g. 𝑥)
summed with 𝑥′. 3

∙ The resulting color is accumulated for single pixel and at this
point divided by the number of samples (e.g. 𝑁), producing
𝑁 -sample approximation of the rendering equation.

For completeness, see also pseudo-code for the algorithm 2 and the
reference image 2.9.

As for the correctness of this algorithm, the recursive part of the
computation calculates single sample of the Monte-Carlo integration
of the rendering equation. These samples are summed and divided by
number of samples, resulting in an approximation of the rendering
equation.

3. This is nothing more than the actual single sample from Monte Carlo integration
of the rendering equation.
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Another question is whether this algorithm finishes. All steps, with
exception for the recursive part clearly finish. As for recursive part,
each next bounce, the light contribution decreases, hence the Russian
roulette terminates the path sooner or later.

The convergence rate with pseudo-random number generator (simu-
lating real random number generator) is: 1√

𝑁
.

Figure 2.9: From camera 𝐶 two paths, 𝑎 and 𝑏 are traced into the scene
with one light 𝐿. The path 𝑎 has zero contribution as it does not hit any
emissive surface, while the path 𝑏 has non-zero contribution, hitting the 𝐿

after two bounces.

2.5 Improvements of Path Tracing

While the previous code indeed computes the image according to
the rendering equation it is highly ineffective due to light paths getting
terminated before they actually hit any surface with emission energy.
Therefore the energy contribution of such light paths is zero.

Also, when uniformly choosing directions, a direction direction with
almost 0 effect on the resulting energy is selected (e.g. selecting the
directions that are almost zeroed out by BSDF).

Thus, rendering direct and indirect caustics along with hard case
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scenarios takes too many samples with standard path tracing approach.

2.5.1 Explicit Sampling

A typical problem with standard path tracing are small light sources.
The probability of hitting infinitely small light sources (e.g. point lights)
is equal to 0.

When examining the rendering equation, it is clearly visible that the
integration goes over the whole hemisphere above the hit point. If there
is any directly visible light in the hemisphere, there is a way to add its
contribution to the path without breaking the unbiased nature of the
algorithm.

Given the rendering equation (recall its derivation in Section 2.1.4):

𝐿(𝑥, 𝜔) = 𝐿𝑒(𝑥, 𝜔) +
∫︁

Ω
𝐿𝑖(𝑥, 𝜔′)𝑟(𝑥, 𝜔′, 𝜔)

𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜃𝜔′𝑑𝜔′ (2.35)

It is possible to calculate direct emissive light from the hemisphere
above the hit point as:

𝐿′
𝑒(𝑥, 𝜔) =

∫︁
Ω

𝑉 (𝑥, 𝜔′)𝑟(𝑥, 𝜔′, 𝜔)
𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃𝜔′𝑑𝜔′ (2.36)

Where:

∙ 𝑉 (𝑥, 𝜔′) represents visibility function between 𝑥 and first hit in
direction of 𝜔′. Such function returns 0 when non-light surface is
hit, otherwise yields the color of the light.

This contribution can be directly added into the rendering equation,
yet as the emission is sampled explicitly inside the integral part of
the equation, the emission energy must not be added when hitting
the surface with some light emission (so that we do not add the same
contribution twice), hence removing original 𝐿𝑒 from the equation is a
must.
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As for the implementation, this modification is straight forward. Dur-
ing the recursive light path computation the light emission contribution
is not added, instead:

1. Select random surface with non-zero light emission, and generate
a random position on this surface (this is the light position that
is explicitly sampled)

2. Calculate visibility function and weight it according to the equa-
tion 2.36 - calculating 𝐿′

𝑒

3. Instead of returning the emission on current iteration, return
explicitly computed light emission summed with results of the
next iteration.

While this modification is straight forward, it has large impact on
scenes with direct light (or easy-to access light sources). For reference,
see image 2.10.

Figure 2.10: Both paths, 𝑎 and 𝑏 explicitly sample light each step. Dashed
explicit samples directly hit light and therefore add energy to light contribu-
tion of the path (1, 2, 3, 5), one dotted path does not have direct visibility to
the light and therefore at that step, there is zero contribution (4).
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2.5.2 Importance Sampling

Another improvement with large impact on the result is related to a
way how reflected rays and refracted rays are generated.

Selecting random ray directions (with uniform probability distri-
bution function) most likely ends up also selecting directions that are
almost orthogonal to a surface normal, the light contribution of such
paths tends to have small impact on resulting energy.

Instead of generating rays with uniform probability, they should
be generated in a weighted manner (Monte-Carlo integration allows
for that, as described previously). The correct weighting for perfectly
diffuse surfaces is cosine-weighting (See 2.11). With cosine-weighted ray
generation the rendering equation is modified to:

𝐿(𝑥, 𝜔) = 𝐿𝑒(𝑥, 𝜔) +
∫︁

Ω
𝐿𝑖(𝑥, 𝜔′)𝑟(𝑥, 𝜔′, 𝜔)

𝑐𝑜𝑠𝜃
𝑑𝜔′ (2.37)

Note that the importance sampling is actually already done for
perfect reflection and perfect refraction, as they are always selecting
the only direction that can generate energy contribution (any other
direction would end up with contribution equal to zero).

Figure 2.11: Vectors generated with uniform weighting on the left, with
cosine-weighting on the right.

2.5.3 Bi-Directional Path Tracing

While the previously presented modifications improve convergence
rate and thus the performance of the algorithm, they still do not solve
the actual problem with caustics and hard cases.
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The idea behind bi-directional path tracing builds on explicit sam-
pling, further extending it according to Veach et. al. [11]. Bi-directional
path tracing is a two-pass algorithm:

1. Light path generation

First phase starts by generating a random point on any of the
light sources in the scene. From this point a path into the scene
is created, storing all the hit points with energy information. So
after 𝑁 bounces, there is 𝑁 + 1 vertices (one more vertex for
first, generated point on light).

Figure 2.12: The generated light path, stored vertices on the light path are
marked with black dot.

2. Camera path generation and path join

Second phase follows similar pattern as standard path tracing.
Starting off from camera position, a path is traced into the scene.
Each hit point there is a possibility to calculate visibility to zero-
or-more vertices on the light path, adding energy contribution to
the camera path (See 2.13).

The connection of both paths (e.g. the part where we compute
visibility between single vertex on camera path to zero-or-more
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Figure 2.13: The camera path 𝑎 in a full join with light path. Connections
1, 2 have non-zero contribution for the camera path, connections 3, 4, 5 have
zero contribution. Note that the scene represents typical hard case for path
tracing.

vertices on the light path) is also called path join. There are
multiple ways to perform path join:

∙ Full join
The most intuitive solution is: For each point on the camera
path the join is performed against all the points on the light
path.
While this approach improves the quality in a single sample
computation the most, it also needs the most resources.

∙ Single-step join
Performance wise the most interesting approach, the join
is performed only one-to-one on the endpoint of the light
path to the endpoint of the camera path.
While this provides even worse convergence rate than explicit
sampling, it does not need any more memory or computation
power compared to standard path tracing (without explicit
sampling).
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∙ 𝑘-step join
On each vertex on the camera path the algorithm selects
𝑘 random vertices on the light path. The visibility test is
performed against these vertices.
This approach provides convergence rates comparable to full
join, while the number of actual visibility computations is
smaller.

The first approach can be computed interactively per each computa-
tion of the second pass (e.g. single sample computes single light path
and single camera path), it can also be computed once per multiple
computations of the second pass. Also it is possible to pre-compute the
first pass and re-compute on demand.

For the comparison, the image 2.14 shows the difference between the
path tracing with explicit sampling and bi-directional path tracing, both
images took the same computation time. Also, for the comparison, the
pseudo code for bi-directional path tracing is provided in algorithm 3.
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Algorithm 3 Bidirectional Path Tracing
1: procedure Bidirpathtrace
2: for each path:
3: // Generate light path
4: Generate vertex on random light
5: Push this vertex to light path
6: ray← setup light ray
7: while ray.terminated = false do
8: result← raycast(ray)
9: if result.hit = false then

10: ray.terminated← true
11: else
12: Push this hitpoint to light path
13: if Russian roulette terminates path then
14: ray.terminated← true
15: // Trace camera path
16: ray← setup primary ray
17: while ray.terminated = false do
18: result← raycast(ray)
19: if result.hit = false then
20: Accumulate background color
21: ray.terminated← true
22: else
23: Compute contribution by joining light path
24: with this vertex of camera path
25: if Russian roulette terminates path then
26: ray.terminated← true
27: else
28: ray← Get B*DF Sample
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Figure 2.14: Top row of the images shows the comparison between path
tracing with explicit sampling and bi-directional path tracing for approxi-
mately same time. Bottom row of the images shows the same comparison
with 4-times magnification of the area inside the black rectangle. Notice the
quality difference in caustics.
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3 Massively Parallel Hardware Architec-
ture

The following chapter provides information about target massively
parallel hardware architecture (e.g. the graphics processing unit) with
detailed description of it from low-level and high-level point of view.

The graphics processing unit is a high-latency high-throughput
compute device used for executing large number of threads in parallel.
The graphics processing unit (also named the device in this context)
should work as another processor working next to main central processing
unit (also named the host in this context).

In general, data-parallel and compute intensive parts of the appli-
cation can be off-loaded from the host to the device. Such functions
(that are data-parallel and executed many times) can be isolated into a
function (kernel function, such function is applied to each element in
the stream), which can be executed on the graphics processor unit.

3.1 Hardware Architecture

3.1.1 Stream Multiprocessor

Modern graphics processing unit micro-architecture is built around
an array of Streaming Multiprocessors (also denoted as SM). The stream-
ing multiprocessor performs the actual computation, it has its own
control unit, registers, execution pipelines and caches, see 3.1.

Streaming multiprocessor is composed of (details are given according
to Fermi architecture, described in Witterbrink et. al. [12], GPUs based
on this architecture were used to measure results in this thesis):
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∙ CUDA Cores

These cores perform the actual computation for single thread.
These are composed of the Floating Point Unit (IEEE 754-2008
floating point standard), the Integer Unit, the Logic Unit and
the Branch Unit. Note that they also contain Fused Multiply-
And-add (FMA) for single and double-precision operations.

In case of Fermi, there are 32 CUDA cores per single SM, allowing
for 32 32-bit floating point (single precision) operations per clock,
16 64-bit floating point (double precision) operations per clock
or 32 32-bit integer operations per clock.

∙ Warp Schedulers

These allows for instruction level parallelism. At every instruction
issue time, each warp scheduler selects a warp of threads and
issues multiple instructions for this warp on cores.

Fermi has two warp schedulers and issues two instructions per
each warp at every instruction issue time.

∙ Special Function Units

Special Function Units are used for computing some of the func-
tions like 𝑐𝑜𝑠, 𝑠𝑖𝑛, 𝑙𝑜𝑔, 𝑒𝑥𝑝, etc. These units operate as single-
precision only (double-precision functions are emulated using
multiple instructions), some accuracy loss might be introduced
by their usage.

∙ L1 Cache and Shared Memory

Per each SM there is 64 KiB of memory dedicated for shared
memory and L1 cache.

L1 cache memory is hardware managed, for Fermi architecture
either 16 KiB or 48 KiB can be chosen (by the application).
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Aggregate bandwidth per graphics processor unit is 1.03 TiB/s
(Fermi).

Shared memory is user managed. Fermi allows to select either 16
KiB or 48 KiB, aggregate bandwith per graphics processor unit
is 1.03 TiB/s (Fermi).

∙ Registers

Fermi architecture has 32768 32-bit registers per single streaming
multiprocessor.

3.1.2 Global Memory

The global memory for graphics processor unit is an equivalent of
what is the random access memory (RAM) for central processor unit.

This memory is accessible by both, the central processor unit and
the graphics processor unit.

Central processor unit can access this memory by copying from its
memory into global memory of given graphics processor unit, or reading
back. The data are transferred through PCI-E (PCI-Express) socket -
the peak bandwidth is thus approximately 16 GiB/s in each (read and
write) direction, this counts for PCI-E version 3.

The size of global memory is in range of 2 GiB to 16 GiB, where
bandwidth for the access from graphics processor unit is up to 150
GiB/s (NVidia Quadro series - Fermi based).

Accessing the memory from the graphics processor unit is cached
through L2 cache (512 KiB for Fermi). Further operations are cached
either through L1 cache (for read and write operations), or texture
caches (for read-only operations).
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Figure 3.1: Simplified graphical representation of the device and stream
multiprocessor.

3.2 Low-level Model

The following section describes further detail about low-level execu-
tion of parallel code.
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3.2.1 Thread Hierarchy

Threads that are currently executing a kernel are organized in a batch.
These batches are further organized as a grid of cooperative thread
arrays. These cooperative thread arrays implement CUDA thread blocks.

Threads inside cooperative thread arrays execute in Single-Instruction,
Multiple-Thread fashion (SIMT) in groups. These groups are designated
as warps.

Single threads inside warp are numbered in sequential order, the
number of threads inside warp, also designated as warp size, is hardware
dependent constant (typically 32 threads in single warp).

The communication inside cooperative thread arrays can be per-
formed using synchronization points, where threads wait until all threads
in a specific cooperative thread array arrive at this point.

The thread identifier is a 3 element vector 𝑡𝑖𝑑 (elements are 𝑡𝑖𝑑𝑥, 𝑡𝑖𝑑𝑦

and 𝑡𝑖𝑑𝑧), these specify the position of the thread inside 1D, 2D or 3D
cooperative thread array. Typically thread identifier is used to determine
role of the thread, the data are assigned to the thread based on this
value and also the output is written to respective memory location based
on the identifier.

Single cooperative thread array can contain just limited number
of threads. This limitation is overcome as cooperative thread arrays
executing the same kernel can be batched into the grid of cooperative
thread arrays, each cooperative thread array in such grid has its ID in
terms of the grid, denoted as 𝑐𝑡𝑎𝑖𝑑. Threads in one cooperative thread
array are not able to communicate with threads in another cooperative
thread array inside the same grid.

Kernel is executed as a batch of threads organized as a grid of coop-
erative thread arrays. Single cooperative thread array can be executed
sequentially or in parallel, depending on the platform.
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3.2.2 Memory Hierarchy

There are multiple distinguished memory levels forming a hierarchy
(See 3.2), these are:

∙ Per-thread

Each thread has assigned private memory for its own operations.
This memory is hidden for other threads that are being executed.

The private memory is assigned once thread execution starts and
is released once it finishes.

∙ Per-block

Shared memory is assigned per each cooperative thread array, all
threads in this block can read and write into this memory.

The lifetime of the shared memory also starts with block assign-
ment and ends when last warp of the block finishes.

∙ Global memory

All threads from all cooperative thread arrays can access global
memory.

In the global memory there are multiple memory spaces available:
global, constant, texture and surface. Each of them is optimized
for different memory usage.

The global, constant and texture memory spaces are persistent
across different kernel launches in a context of single application.

3.3 Compute Unified Device Architecture

Compute Unified Device Architecture (also CUDA) is a parallel
computing platform with its own programming model created by NVidia
Corporation.
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Figure 3.2: Memory hierarchy, showing from where each distinct memory
spaces can be reached.

CUDA is implemented by graphics processor units designed and
produced also by NVidia Corporation. The computations are performed
(on low-level and hardware level) as per description in previous two
sections.

It gives the programmers direct access to the instruction set and
memory on the CUDA graphics processor units (note that this instruc-
tion set is just virtual). Using these, graphics processors can be used
for general purpose computations (also denoted as GPGPU - General
purpose computing on graphics processor units).
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CUDA platform is accessible through extensions to standard pro-
gramming languages, including C/C++ (the actual compilation of
CUDA source code is done through 𝑛𝑣𝑐𝑐 compiler, the language is often
designated as C for CUDA). There are also other interface implemen-
tations in CUDA platform for: OpenCL (Khronos), DirectCompute
(Microsoft), OpenGL Compute Shaders (Khronos) and C++ AMP.

It is possible to inter-operate between CUDA and OpenGL, respec-
tively CUDA and Direct3D, allowing for fast output to the display. The
bi-directional path tracer implementation takes advantage of this and
allows for real time progressive rendering of scenes.
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4 Parallel Bi-directional Path Tracing

The provided implementation is built on top of Timo Aila framework
[1], providing a good start point for implementation of complex ray
tracing renderers. The following sections gives summary about how the
structures to hold the scene data are composed in the implementation
and an overview about the actual algorithm implementation on the
GPU.

4.1 Data Representation

First of all, a detailed description about how the data are stored
in the memory is provided, these information are critical for actual
rendering and they have to be available for reading on the GPU during
the actual rendering.

A virtual scene is composed of triangles, each triangle has a material
assigned to it, all the materials are stored inside a separate buffer.
Materials are also connected with textures, which are stored inside
single texture atlas. Note that light emissive surfaces are those triangles,
whose material has non-zero emissive component. Apart from these
data, a virtual camera has to be defined.

Geometry and Materials

The geometry is stored in an indexed manner, e.g. each triangle has
3 vertex indices, thus mapping vertices to the triangles. So in general
there are data stored per-vertex and per-triangle.

Per-vertex data:

∙ Vertex positions

Storing 𝑋, 𝑌 and 𝑍 coordinate of each vertex. This information
is used for generating random positions on triangles (e.g. for
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creating starting points of light paths).

∙ Vertex normal vectors

Also storing 𝑋, 𝑌 and 𝑍 coordinate of the vector, each normal
vector is stored as a unit vector. Used in shading, generating light
path directions and also importance sampling.

∙ Vertex texture coordinates

Storing 𝑈 and 𝑉 coordinates. They are bound in interval (𝑈, 𝑉 ) ∈
([0, 1], [0, 1]).

Per-triangle data:

∙ Vertex indexes

Three vertex indices, the vertices at these locations in vertex
buffer represent single triangle.

∙ Texture atlas data

Holds offset where texture inside the texture atlas begins and
its size. Therefore connects single texture stored in atlas with
triangle.

∙ Material ID

Determines which material is assigned to given triangle.

∙ Color

Storing the color for each triangle is important especially for
emissive triangles, as the color defines the actual light color. Also
for triangles with no texture, the color is used instead.

For each material there is just a 4-component value stored, describing
the reflectivity, the refractivity, the index-of-refraction and the emissivity.

There are two reasons why materials are stored separately:
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∙ Data redundancy

By definition of material properties per primitive, there would
be redundant data per each primitive. Furthermore, most of the
definitions would be just a copy of single material properties.

∙ Storage

In computer graphics field it is common that artists assign ma-
terial per whole object. Tools and software for creating models,
texturing and animating of the computer graphics scenes follow
this pattern and store the data in this fashion.

The input format for the implementation followed this fashion
and the implemented loading software loads all the necessary data
from two files - geometry file in ’OBJ’ file format and material
file in ’MTL’ file format:

newmtl F loorMater ia l
Ns 0 .0000
Ni 1 .5000
d 1.0000
Tr 0 .0000
Tf 1 .0000 1 .0000 1 .0000
i l l um 2
Ka 0.0000 0 .0000 0 .0000
Kd 0.6000 0 .6000 0 .6000
Ks 0.9000 0 .9000 0 .9000
Ke 0.0000 0 .0000 0 .0000
map_Ka f loor_d . tga
map_Kd f loor_d . tga
e m i s s i v i t y 0 .0
r e f l e c t i v i t y 0 .0
r e f r a c t i v i t y 0 .0
IOR 1 .0
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Where the added properties are emissivity, reflectivity, refractivity
and the IOR (index-of-refraction). Note that map parameters
represent which texture image is used (defined by the file path).

There is one more buffer related to the scene which is used, it is a
buffer holding indices to all emissive triangles. This buffer is later used
for randomly choosing the starting primitive of the light path.

Note that for intersection routines there is also a buffer for trian-
gles (non-indexed) stored in form of Woop triangles, so two triangle
representations are stored. Along with Woop triangles, the intersection
routines need acceleration structure. The bounding volume hierarchy
stores due to performance reasons both child nodes bounding boxes in
parent node. These are stored as three 4-component buffers, e.g.:

∙ The 𝑚𝑖𝑛𝑥, 𝑚𝑎𝑥𝑥, 𝑚𝑖𝑛𝑦, 𝑚𝑎𝑥𝑦 of the first child node bounding
box.

∙ Stores 𝑚𝑖𝑛𝑥, 𝑚𝑎𝑥𝑥, 𝑚𝑖𝑛𝑦, 𝑚𝑎𝑥𝑦 of the second child node bound-
ing box.

∙ Stores 𝑚𝑖𝑛𝑧, 𝑚𝑎𝑥𝑧, 𝑚𝑖𝑛𝑧, 𝑚𝑎𝑥𝑧 of both child nodes bounding
boxes.

Note that the node data, describing whether the node is a leaf or
interior node, along with child node indices (for interior node) or triangle
offset and triangle count (for leaf node), are stored in another single
4-component buffer.

4.2 Algorithm Implementation

After the data storage is defined, the algorithmic side of implemen-
tation can be described. First of all, as bi-directional path tracing is a
multi-pass algorithm which is intended (in this work) to be implemented
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fully on the GPU, it is important to describe a way how to execute
large functions on the GPU.

Following the definition the actual bi-directional path tracing kernel
and its sub-routines are described. As a last section, implementing pro-
gressive rendering, allowing for user interaction and real time rendering
using bi-directional path tracing.

4.2.1 Mega Kernels

Due to the nature of bi-directional path tracing, there was a need to
perform a lot of computations inside single GPU kernel.

In ideal world, the GPU kernel should:

∙ Generate light path

∙ Generate camera path, computing the final color and joining
against light path

∙ Do all the post-processing and directly store the results in texture
drawn onto screen

Such kernels needed a modification of the framework to allow for
doing all the work in a large single kernel, such kernels are also called
mega kernels.

Even though the mega kernel approach is not the most efficient way
(especially for unidirectional path tracers, as mentioned in Laine et. al.
[7]), the amount of data generated in the first phase of bi-directional
path tracer required in the second phase is too large to be transferred
into another kernel and computed there (in sequential nature the work
is performed per single pixel, yet here the work has to be done in parallel
for whole screen resolution, hence large amounts of data).

The data of the scene are of course stored inside global memory,
local data (the light path) should ideally be held privately per-thread
inside cache for fast access. Note that for faster computation, some of
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the data are transferred through the texture cache (the texture atlas,
triangle representation for intersection).

4.2.2 Traversal

The implementation of acceleration structure allows to use various
algorithms of Bounding Volume Hierarchy computation, the traversal
algorithm is independent of which of the BVH creation algorithms we
use as long as the same layout of the BVH is used, although as the focus
was mainly on the performance during the run time, the selected BVH
for testing was the Bounding Volume Hierarchy with Spatial Splits.

The actual traversal algorithm is performed according to Aila et.
al. [2], in speculative while-while manner. Where each GPU thread
performs full traversal for a single ray. Threads in a warp post-pone
leaves until all threads found a leaf, then they test intersections against
the data in leaves, this guarantees lower execution divergence and thus
higher performance.

4.2.3 Bi-directional Kernel

Bi-directional kernel is a mega kernel with input of primary rays
and scene description (note that primary rays are generated separately,
with stochastic sampling, resulting in anti-aliasing effect), calculating
the resulting color after computing 𝑁 samples per pixel. To keep the
description more simple, let assume that only single sample is computed
in one execution of the kernel.

The overall structure of mega kernel is as following:

I n i t i a l i z e _ l i g h t _ p a t h ( ) ;
Calculate_l ight_path ( ) ;
Calculate_camera_path_with_join ( ) ;
S to r e_re su l t s ( ) ;
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So there are actually four functions, for the last function the detailed
description is provided in the following subsection 4.2.4. For the rest of
the functions:

∙ Initialization of the Light Path

The kernel has input parameters for light path length, the light
path generation using Russian roulette would end up in a re-
quirement of dynamic memory allocation which would end up
in performance decrease. The path still uses Russian roulette for
path termination (although if a low number for maximum path
length is selected this property can be broken).

First, the initialization phase selects a random emissive triangle
and a random point on this triangle. Both generated with uniform
probability distribution function. This is followed by a generation
of initial ray direction, which is done according to importance
sampling.

The resulting data are stored as first vertex of the light path (the
position and sampled emissivity, with color of the primitive, of
the selected triangle).

At the end of this section the first vertex of the light path is
known, along with ray direction for the next iteration of the light
path.

∙ Calculating Light Path

Following the initialization, it is possible to calculate the light
path in iterative manner. First of all, if the light path energy is
too small it is possible to terminate (using Russian roulette).

In case the path is not terminated, the hit point from the previous
vertex and ray direction is calculated, used for computing the
emissivity and color at this point. These are stored along with
hit point as new vertex in the light path.

50



4. Parallel Bi-directional Path Tracing

Further, the next ray direction is created (using importance
sampling) and the next iteration of the light path computation
can be computed.

Once the loop ends, e.g. the light path is terminated, all ver-
tices on the light path are stored with all the data needed for
performing a join with camera path.

∙ Calculating Camera path with Join

Use primary ray origin and direction to calculate the hit point,
thus calculating the first step of the camera path. On this hit
point a path join with the light path has to be performed, the
following case describes the full path join.

For each vertex on the light path, determine visibility between
the hit point and the light path vertex. For computing a visibility
a ray is casted from the hit point to the light path vertex, in case
it intersects a triangle prior to intersecting the light path vertex
there is no visibility, otherwise there is. Each of the visible light
path vertices adds contribution to the total energy of the camera
path.

A new ray direction is created (using importance sampling) using
the previous hit point as new origin for the next iteration of the
camera path. The camera path can be terminated using Russian
roulette at the beginning of each iteration.

Note that for perfectly reflective and refractive surfaces, the path
join does not need to be computed as the weight for the energy
contribution is equal to zero.

The resulting value represents single sample per pixel of the
computation.

51



4. Parallel Bi-directional Path Tracing

4.2.4 Progressive Rendering

To allow for user interaction and real time experience the progressive
rendering mode has been added into the implementation. This mode
always calculates just a single sample per pixel and merges it with the
data that are currently in the buffer (this buffer is drawn into the view
port on the screen).

The merge works as following: Given the average of 𝑁 samples stored
in the output buffer as 𝑥, the new value 𝑥′ is added as: 𝑥·𝑁+𝑥′

𝑁+1 . Then the
number of samples stored in the output buffer is incremented. While
such computation is not as precise as holding a sum separately, there is
no need for floating-point precision in the output buffer and also there
is no need to perform the division by number of samples separately.

Upon camera movement or rotation, the output buffer is cleared to
zero and the number of samples set to zero.
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5 Results

The created implementation was tested on some of the common
scenes in the computer graphics industry. For the purpose of comparison
these scenes were rendered using other software, namely NVidia iRay
and LuxRender.

While LuxRender is one of the largest renderers available, supporting
subsurface materials, participating media and lots of other effects - it was
one of the best candidates to compare, as implementation of LuxRays
is GPU-based (built on OpenCL).

NVidia iRay does some of computations on GPU and is built on
CUDA, yet it the used version does not support some of the effects the
provided implementation does, like texturing for example.

5.1 Settings

All of the following scenes were rendered with the following settings:

∙ Unbiased rendering was used (the camera path length was un-
limited, the maximum length of light path was defined to high
value so that russian roulette most likely terminated it before
reaching such length).

∙ Bounding Volume Hierarchy with Spatial Split was selected as
an acceleration structure for all the scenes.

∙ Primary ray directions were generated in stochastic manner, so
that resulting image is anti- aliased.

Further compared in terms of quality and speed. The quality com-
parisons are done in terms of root-mean-square error (further RMSE).
Such comparison is used to measure the differences between estimated
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values and actually observed values. In case of images the comparison
is between the computed image and the ground truth1.

5.2 Scenes

The following sections contain a brief description of each scene along
with results in terms of quality and/or time. Note that for the Sponza
atrium scene a comparison against NVidia iRay and LuxRender is
provided.

5.2.1 Cornell Box

The Cornell box is a common scene for testing the quality of the
global illumination algorithm. The scene is often composed of: a green
wall, a red wall, white walls, a reflective object and a refractive object
and also a light source.

Two resulting images after of computation on NVidia GeForce GT
720M (Kepler) and NVidia GeForce GTX 580 (Fermi) are provided, see
5.1. For simple scene like the Cornell box both of the GPUs generate
perfect image almost instantly.

5.2.2 Modified Sponza

Sponza Atrium is a model originally created by Marko Dabrovic,
further modified by Frank Meinl (his version is also known as Crytek
Sponza). For the purpose of testing, further modifications were done.
The following three tests compare:

1. The RMSE after 4 samples per pixel and 16 samples per pixel in
computation. This scene is is modified, adds large cube-shaped

1. The ground truth is generated by unbiased algorithm that runs long enough to
generate an image without any visible noise, such image is often considered as a
correct solution, hence the ground truth.
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Figure 5.1: Both of the images are compared against the ground truth in
terms of RMSE. On the left side an image generated by NVidia GeForce GT
720M in 0.1 second, having 𝑅𝑀𝑆𝐸 = 0.0628. On the right side an image
generated by NVidia GeForce GTX 580 in 0.1 second, having 𝑅𝑀𝑆𝐸 =
0.0456.

light source and an object with glass material, see 5.2.

Figure 5.2: The left image has 4 sample per pixel with 𝑅𝑀𝑆𝐸 = 0.0701.
The right image has 16 samples per pixel with 𝑅𝑀𝑆𝐸 = 0.0095.

2. The quality of progressive computation with multiple lights. The
scene is modified with high intensity large source simulating sun
and large low intensity light source with blue tint, simulating the
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"skylight", see 5.3.

Figure 5.3: The following image shows part of Crytek Sponza with alpha
tested plant inside stone object, the scene is lit using the sun and skylight.
Image was taken after approximately a second of progressive computation on
GeForce GeForce GT 720M.

3. The comparison between path tracing with explicit sampling
and bi-directional path tracing. The scene contains a skylight
simulating overcast weather. This is one of the hardest cases for
path tracing with explicit sampling, bi-directional path tracing
handles the case, see 5.4.

5.2.3 Sponza Atrium

The following scene is non-modified Crytek Sponza model by Marko
Dabrovic and Frank Meinl. They are used for comparison of quality
between the implemented renderer, Nvidia iRay and LuxRender. It is
important to note, that each of these renderers have different set of
features, hence the scene setup is not exactly the same for each image.

For the comparison with iRay similar conditions are used, iRay
does not directly support lights defined by geometry so their scene uses
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Figure 5.4: The top image was taken using standard path tracing with
explicit sampling algorithm, the bottom image was taken using bi-directional
path tracing algorithm. Both images took 15 seconds to render on NVidia
GeForce GT 720M.

directional light, hence the shadow has a different shape. Also as both
of the renderers use different post-processing, and thus the contrast in
images is slightly different. For comparison, see 5.5.

The comparison between LuxRender and the implemented renderer
is done also from similar view position. The setup for lighting is the
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Figure 5.5: The comparison between iRay (left) and the implemented
renderer (right). Both images took similar rendering time, approximately 60
seconds on NVidia GeForce GT 720M.

same, yet the camera position slightly differs.
Note that LuxRender results in slightly less noisy images as it does

not use bi-directional path tracing algorithm, but the LuxRays algorithm
(LuxRays is also unbiased rendering algorithm).

Figure 5.6: The comparison between LuxRender (left) and the implemented
renderer (right). Both images took similar rendering time, approximately 15
seconds on NVidia GeForce GT 720M.
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6 Conclusion

Bi-directional path tracing is one of the most robust rendering algo-
rithms. The thesis proposed a way to implement parallel bi-directional
path tracing and provides accompanying implementation which is a full
bi-directional path tracing renderer. The implementation runs fully on
the GPU, in terms of speed it achieves real time frame rates on high
end graphics hardware, also note that even mobile hardware is able to
achieve interactive frame rates.

It features advanced effects like lights specified using geometry, reflec-
tive and refractive materials and textures, thus allowing for rendering of
real-world scenarios. The implementation is compared against standard
path tracing solutions and production tools using GPU-based path
tracing algorithms, the comparsion is done in terms of quality and
speed.

The following short sections describe what could be done as possible
future improvements of given implementation and therefore proposes
possible future application on real world scenarios.

6.1 Real Time Rendering

One of the main challenges in ray tracing world is making a real
time ray tracer, or ideally making a path tracer to run in real time with
close to no noise.

The main goal of such software would be a simplification of rendering
pipelines in current game engines and real time rendering software,
which tends to hack the effects like reflections and global illumination,
producing large and heavy rendering pipelines.

While there already are some implementations, like Brigade by J.
Bikker [3], none of them is unbiased and physically based (these tend
to heavily reduce the complexity of rendering pipelines).
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6.2 Physically Based Rendering

A real challenge in bi-directional path tracing is physically based
rendering, even though the created implementation allows for physically
based rendering, it still supports only limited types of materials. The
real challenge would be to implement fast, physically based renderer,
supporting features including subsurface scattering and participation
media, as these effects are still mostly hacked due to performance
reasons.
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scene with one light 𝐿. The path 𝑎 has zero contribution
as it does not hit any emissive surface, while the path 𝑏

has non-zero contribution, hitting the 𝐿 after two
bounces. 27
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2.10 Both paths, 𝑎 and 𝑏 explicitly sample light each step.
Dashed explicit samples directly hit light and therefore
add energy to light contribution of the path (1, 2, 3, 5),
one dotted path does not have direct visibility to the light
and therefore at that step, there is zero contribution
(4). 29

2.11 Vectors generated with uniform weighting on the left,
with cosine-weighting on the right. 30

2.12 The generated light path, stored vertices on the light
path are marked with black dot. 31

2.13 The camera path 𝑎 in a full join with light path.
Connections 1, 2 have non-zero contribution for the
camera path, connections 3, 4, 5 have zero contribution.
Note that the scene represents typical hard case for path
tracing. 32

2.14 Top row of the images shows the comparison between
path tracing with explicit sampling and bi-directional
path tracing for approximately same time. Bottom row of
the images shows the same comparison with 4-times
magnification of the area inside the black rectangle.
Notice the quality difference in caustics. 35

3.1 Simplified graphical representation of the device and
stream multiprocessor. 39

3.2 Memory hierarchy, showing from where each distinct
memory spaces can be reached. 42

5.1 Both of the images are compared against the ground
truth in terms of RMSE. On the left side an image
generated by NVidia GeForce GT 720M in 0.1 second,
having 𝑅𝑀𝑆𝐸 = 0.0628. On the right side an image
generated by NVidia GeForce GTX 580 in 0.1 second,
having 𝑅𝑀𝑆𝐸 = 0.0456. 55
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5.2 The left image has 4 sample per pixel with
𝑅𝑀𝑆𝐸 = 0.0701. The right image has 16 samples per
pixel with 𝑅𝑀𝑆𝐸 = 0.0095. 55

5.3 The following image shows part of Crytek Sponza with
alpha tested plant inside stone object, the scene is lit
using the sun and skylight. Image was taken after
approximately a second of progressive computation on
GeForce GeForce GT 720M. 56

5.4 The top image was taken using standard path tracing
with explicit sampling algorithm, the bottom image was
taken using bi-directional path tracing algorithm. Both
images took 15 seconds to render on NVidia GeForce GT
720M. 57

5.5 The comparison between iRay (left) and the implemented
renderer (right). Both images took similar rendering time,
approximately 60 seconds on NVidia GeForce GT
720M. 58

5.6 The comparison between LuxRender (left) and the
implemented renderer (right). Both images took similar
rendering time, approximately 15 seconds on NVidia
GeForce GT 720M. 58
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