본문으로 이동

질량껍질

위키백과, 우리 모두의 백과사전.
강주 학생 (토론 | 기여)님의 2020년 11월 11일 (수) 18:11 판

특수 상대성 이론에서, 강주(質量-, mass shell) 또는 질량 쌍곡면(質量雙曲面, mass hyperboloid)은 주어진 질량을 가진 입자가 가질 수 있는 4차원 운동량의 집합이다. 상대론에서는 4차원 운동량 k와 질량 m과는 라는 관계가 성립하기 때문에, 질량껍질은 이다.

양자장론에서는 실재(實在) 입자는 질량껍질 위에 있어야 하지만, 불확정성 원리에 따라 단시간에만 존재하는 가상 입자는 질량껍질 위에 있을 필요는 없다. 즉 경로적분에서는 질량껍질 위의 운동량뿐만 아니라, 모든 임의의 4차원 운동량을 걸쳐 적분한다. 마찬가지로 파인먼 도형에서는 바깥다리(external leg)의 입자는 질량껍질 위에 있어야만 하지만, 도형 안에만 존재하는 가상입자는 임의의 운동량을 가질 수 있다. 다만 전파인자에 따라 운동량이 질량껍질에서 멀어질수록 그 가상 입자의 확률도 작아진다.

자유도

양자장의 껍질 위 자유도(on-shell degrees of freedom)는 질량껍질 위에 존재하는 고전적인 진동 모드의 수이고, 껍질 밖 자유도(off-shell degrees of freedom)는 질량껍질 밖에 존재하는 (고전적 운동 방정식을 만족하지 않는) 성분도 포함한다. 즉,

껍질 위 자유도 = 장의 성분 수 − 게이지 변환 성분 수 − 운동 방정식에 의한 제약의 수
껍질 밖 자유도 = 장의 성분 수 − 게이지 변환 성분 수

이다. 예를 들어, 광자의 경우 4차원 벡터로 나타내므로 그 장은 4개의 성분을 가지고, 또한 하나의 게이지 변환을 가지므로 껍질 밖 자유도는 세 개이다. 여기에 맥스웰 방정식에 의한 제약을 빼면 두 개의 껍질 위 자유도를 가지는 것을 알 수 있다. 이는 전자기파의 두 개의 편광 모드에 해당한다.

마찬가지로, 중력자의 경우 4×4 대칭 텐서로 나타내므로 총 10개의 성분을 가진다. 그러나 중력자는 미분동형사상을 게이지 변환으로 가지므로 껍질 밖 자유도는 6개이다. 여기에 아인슈타인 방정식에 의한 제약을 빼면 두 개의 껍질 위 자유도를 가진다.

일반적으로, 차원 시공간에서 각종 장들의 자유도는 다음과 같다.[1]

입자 종류 껍질 밖 자유도 껍질 위 자유도
실수 스칼라 1 1
복소 스칼라 2 2
디랙 스피너
바일 또는 마요라나 스피너
마요라나-바일 스피너
게이지 보손
미분형식 게이지장
유질량 벡터 보손
그래비티노 스피너 자유도 스피너 자유도
중력자

차원에 존재하는 p차 미분형식 퍼텐셜의 경우, 과 같은 조건을 부여할 수 있다. (예를 들어, IIB형 초중력의 4차 미분형식 라몽-라몽 장이 이와 같다.) 이 경우 자유도는 위 표의 값의 절반이 된다.

참고 문헌

  1. Brandt, Friedemann (2002년 10월). “Lectures on supergravity”. 《Fortschritte der Physik》 (영어) 50 (10–11): 1126–1172. arXiv:hep-th/0204035. Bibcode:2002ForPh..50.1126B. doi:10.1002/1521-3978(200210)50:10/11%3C1126::AID-PROP1126%3E3.0.CO;2-B.