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HARMONIC MAPS

Frédéric Hélein and John C. Wood

Introduction

The subject of harmonic maps is vast and has found many applications, and it would require a very long book to
cover all aspects, even superficially. Hence, we have made a choice; in particular, highlighting the key questions
of existence, uniqueness and regularity of harmonic maps between given manifolds. Thus we shall survey some of
the main methods of global analysis for answering these questions.

We first consider relevant aspects of harmonic functions on Euclidean space; then we give a general introduc-
tion to harmonic maps. The core of our work is in Chapters 3—6 where we present the analytical methods. We
round of the article by describing how twistor theory and integrable systems can be used to construct many more
harmonic maps. On the way, we mention harmonic morphisms: maps between Riemannian manifolds which pre-
serve Laplace’s equation; these turn out to be a particular class of harmonic maps and exhibit some properties dual
to those of harmonic maps.

More information on harmonic maps can be found in the following articles and books; for generalities: [61,
62, 63, 219], analytical aspects: [21, 88, 103, 118, 131, 133, 135, 189, 204, 194], integrable systems methods:
[73, 94, 117], applications to complex and Kéhler geometry: [63, 135], harmonic morphisms: [7], and other topics:
[64, 231].

1 Harmonic functions on Euclidean spaces

Harmonic functions on an open domain €2 of R™ are solutions of the Laplace equation
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Af =0, where A := ((xl,---,xm)eQ). (D

The operator A is called the Laplace operator or Laplacian after P.-S. Laplace. Equation (1) and the Poisson
equation' —Af = g play a fundamental role in mathematical physics: the Laplacian occurs in Newton’s law of

gravitation (the gravitational potential U obeys the law —AU = —4nGp, where p is the mass density), electro-
magnetism (the electric potential V' is a solution of —eg AV = p, where p is the electric charge distribution), fluid
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mechanics (the right hand side term in the Navier—Stokes system -
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of the viscosity), and the heat equation a—{ =Af.

The fundamental solution G = G, of the Laplacian is the solution of the Poisson equation —AG = § on R™,
where § is the Dirac mass at the origin, that has the mildest growth at infinity, i.e. Ga(z) = (27) 1 log(1/r) if
m =2and G, (x) = 1/{(m —2)|S™ | rm=2}if> m > 1 and m # 2.

1.1 The Dirichlet principle

The harmonic functions are critical points (also called extremals) of the Dirichlet functional

m 9 2
Fa(f) = /Q > (axﬂ(w)) ame = /Q df..|2d™z,
a=1

'We prefer to put a minus sign in front of A, since the operator —A has many positivity properties.
2Here |S™ 1| = 27™/2/T'(m/2) is the (m — 1)-dimensional Hausdorff measure of the unit sphere S™ 1.



where d™x := dz' - - - d=™. This comes from the fact that, for any smooth function g with compact support in €2,
the first variation (0Eq)¢(g) = lim._.o{Eq(f +cg) — Eq(f)}/c reads
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This variational formulation (G. Green, 1833; K.F. Gauss, 1837; W. Thomson, 1847; B. Riemann, 1853) reveals
that the Laplace operator depends on the (canonical) metric on R™, since |df,| is nothing but the Euclidean norm
of df, € (R™)*.

This leads to a strategy to solve the Dirichlet problem: given an open bounded subset 2 of R™ with smooth
boundary OS2 and a continuous function  : 9 — R, find a continuous function f : Q@ — R, smooth in €2, such
that

Af=0 inf2, and f=~ ondQ. 3)

The idea to solve (3), named the Dirichlet principle by Riemann or the direct method of the calculus of vari-
ations, is the following: we consider the class of functions D, (Q2) := {f € C2(2) NC°(Q)| f = v on IQ} and
we look for a map f € D, (€2) which minimizes E among all maps in D~ (2). If we can prove the existence of a
such a minimizer fin D, (), then by (2), f is a critical point of Eq and is a solution of the Dirichlet problem (3).
The difficulty was to prove the existence of a minimizer. Riemann was confident that there was such a minimizer,
although K. Weierstrass proved that the method proposed at that time had a gap and many people had given up with
this formal idea. Then D. Hilbert proposed in 1900 to replace D.,(€2) by a larger class and this led to a definitive
solution formulated by H. Weyl in 1940 [223].

1.2 Existence of solutions to the Dirichlet problem

Several methods may be used to solve the Dirichlet problem including the ‘balayage’ method by H. Poincaré [173],
and the use of sub- and super-solutions by O. Perron [166], see [90]. But the variational approach seems to be the
most robust one to generalize to finding harmonic maps between manifolds.

The modern variational proof for the existence of solutions to (3) uses the Sobolev space W12(): the set
of (classes of) functions f in L?(£2) whose derivatives 0f/dz7 in the distribution sense are in L?(2). When
endowed with the inner product (f, g)w1.2 == [,(fg+ (df,dg))d™x and norm || f|%,. > := (f, f)w.2, the space
WL2(Q) is a Hilbert space. An important technical point is that C*°(Q) is dense in W1:2(£2). Assuming that the
boundary 052 is smooth, there is a unique linear continuous operator defined on W2() which extends the trace
operator f — f|a from C*°(Q) to C> (). Its image is the Hilbert space W 2:2(9€2) of (classes of) functions
7 in L?(0%) such that [, [5, (v(z) — 7(y))2/|33 —y|™du(z)dp(y) < +oo, where du denotes the measure on
092. So the Dirichlet problem makes sense if the boundary data v belongs to W%Q(aQ), and if we look for f in
W12(€2). Inspired by the Dirichlet principle we define the class W2(Q) := {f € W'?(Q)| u|so = 7} and we
look for a map f € W;-*(2) which minimizes Eq: it will be a weak solution of the Dirichlet problem.

The solution of thls problem when €2 is bounded comes from the following. First one chooses a map f, €
W12(), so that V.f € W12(Q), f — f, € W, 2(£2). But since €2 is bounded, functions g in W, *(£2) obey the
Poincaré inequality ||g||w1.2 < Cpl|dg||r2. This implies the bound || f||w1.2 < ||fy||lwr2 + Cpy/2Eq(fy) for
any f € W12(). A consequence is that || f||y1.2 is bounded as soon as Eq(f) is bounded. Now we are ready
to study a mlmmlzmg sequence (fx);, ey 1-. a sequence in W-2(€) such that

lim EQ(fk) = %I%f EQ. (4)
koo wyH(@)

Because Eq(fx) is obviously bounded, || fx||w1.2 is also bounded, so that fk takes values in a compact subset of
W12(€2) for the weak W '2-topology. Hence, because of the compactness® of the embedding W*2(Q) C L?(12),
we can assume that, after extracting a subsequence if necessary, there exists f € VV1 2(Q) such that f — f

3By the Rellich—Kondrakov theorem, valid here because €2 is bounded.



weakly in W12, strongly in L? and a.e. on Q. We write f, = f + g, so that g, — 0 weakly in W2, and from
the identity Eq(fx) = Eo(f) + Ea(gr) + [o(df, dgr) we obtain

lim sup Eqo(fx) = Ea(f) + lim ksup Eq(gk). 5)

k—o0

Hence limsupy, ., Ea(fr) > Ea(f).i.e. Eq is lower semi-continuous. Comparing (4) and (5) we obtain

(EQ(f) - 1nf EQ) + lim sup Eq(gr) = 0.

- () k—o0
Both terms in this equation are non-negative, hence must vanish: this tells us that f is a minimizer of Eq in
W,}2(Q) and a posteriori that g, — 0 strongly in W12 ie. fi — [ strongly in w2,

Hence we have obtained a weak solution to the Dirichlet problem. It remains to show that this solution is
classical, i.e. that f is smooth in © and that, if -y is continuous, then f is continuous on ) and agrees with y on €.
This is the regularity problem. Several methods are possible: one may for instance deduce the interior regularity
from the identity f = f * x, which holds on {z € Q|B(x,p) C Q}, where x, € C*(R™) is rotationally
symmetric has squortTn B(0, p) and satisfies I]Rm Xp = 1 and * denotes the convolution operator given by

me x — y)g(y)d™y. This identity is actually a version of the mean value property (see the next
paragraph) valid for weak solutions.

1.3 The mean value property and the maximum principle

Let f be a harmonic function on an open subset Q, zp € Qand p > 0 such that B(xg, p) C 2. Stokes’ theorem
gives: Vr € (0,p], [5p(u.0 (0F/0r) du(z) = fB(M”)Afd z = 0, where r = |z — z|. It implies that
J%B(xw) f=1/(]Smrm=1) f()B(xw) fdu( ) is independent of r. Hence, since f is continuous at xg, we
have f(zo) = f; Blao.r) f. By averaging further over all spheres B(xg,r) with 0 < r < p, one deduces that

O) = JCB To,T f

A similai ;fg)ument works for superharmonic or subharmonic functions: a smooth function f :  — R is
superharmonic (resp. subharmonic) if and only if —Af > 0 (resp. —A f < 0). Then, if f superharmonic (resp.
subharmonic) and B(xg, p) C 2, we have f(xg) > JLB(’I‘O " f (resp. f(xo) JCB(’I‘() 2 .

The mean value property implies the maximum and minimum principles: assume that ) is open, bounded
and connected and that f is harmonic on €2, continuous on €2 and that o € € is an interior(!) point where f
is maximal, i.e., Vo € Q, f(z) < f(zp). Then we choose B(zg,p) C 2 and, by the mean value property,
F(@0) = i34y, f OF €quivalently, [ (f(zo) — f(x)) d™z = 0. But since f is maximal at z, the integrand
in this last integral is non-negative and hence must vanish. Thus f(x) = f(x¢) on B(zo, p). So we have shown
that (f|o) " t(supg, f) := {x € Q| f(x) = supg, f} is open. It is also closed because f is continuous. Hence since
() is connected, either (f|q)~!(supg f) = Q and f is constant, or (f|q) '(supg f) = (), which means that
supg, f is achieved on the boundary 9<2 (since €2 is compact). This is the (strong) maximum principle.

One sees that the preceding argument still works if we replace the property f(xq) JCB (20,p) foy f(zo) <

JCB (0,0 f,1.e. if we only assume that f is subharmonic. Similarly the minimum principle works for superharmonic
functions.

1.4 Uniqueness and minimality

The uniqueness of solutions to the Dirichlet problem can be obtained as a consequence of the maximum principle:
let f1 and f> be two solutions of the Dirichlet problem and let f := fo — f1. Since f7 agrees with f5 on 02, the
trace of f on O vanishes. But f is also harmonic, and hence satisfies the maximum principle: this implies that
supq f = supgq f = 0,s0 f < 0 on €. Similarly, the minimum principle implies f > 0 on (2. Hence f = 0,
which means that f; coincides with fs.

A straightforward consequence of this uniqueness result is that any solution f of (3) actually coincides with the
minimizer of Fq in WA}Q (€). One can recover this minimality property directly from the identity

Vg e WI2(Q), Ealg) = Falg - f) + /Q (df, dg) — Ealf).



On using Stokes’ theorem twice, A f = 0 and the fact that f|sq = g|aq, we obtain

/ (df, dg) = / div(gV f) = / o2 [ 49 [ (5o f) = 28a(f). ©)
Q Q Io)

Q on 50 on Q

Hence Eq(g) = Ea(g — f) + Eqa(f), which implies that f minimizes Eq in W2(£2).

1.5 Relation with holomorphic functions

In dimension 2, harmonic functions are closely linked with holomorphic functions. Throughout this article, we
shall use the identification R? ~ C, (x,y) — x + iy and the operators

o _1(o 0\ o _1(0 .0

0z 2\o0x ‘oy)’ o9z 2\ox oy)’
If  is an open subset of C, recall that a smooth function ¢ : Q@ — C is holomorphic (rep. antiholomorphic)
if and only if d¢/0z = 0 (resp. d¢/dz = 0). Then because of the identity 9%/920z = 0%/0z0z = (1/4)A

it is clear that, if ¢ : 2 — C is holomorphic or antiholomorphic, then Re ¢ and Im ¢ are harmonic functions.
Conversely, if we are given a harmonic function f :  — R, then 9 f /02 is holomorphic. Moreover if {2 is simply

=0 0 0
connected the holomorphic function ¢ defined by p(z) = 2 / a—f(c ) d( satisfies a—(p = 28—f and f = Reyp+C,
2 0% z z
where C' € R is a constant. The imaginary part of ¢ provi&es us with another harmonic function g := Im,
the harmonic conjugate function of f. Note that some representation formulas for harmonic functions in terms of
holomorphic data have been found in dimension three (E.T. Whitakker [224]) and in dimension four (H. Bateman

and R. Penrose [8, 165]).

2 Harmonic maps between Riemannian manifolds

2.1 Definition

Throughout the rest of this article, M = (M, g) and N' = (N, h) will denote smooth Riemannian manifolds,
without boundary unless otherwise indicated, of arbitrary (finite) dimensions m and n respectively. We denote
their Levi-Civita connnections by 9V and "V respectively. By an (open) domain of M we mean a non-empty
connected open subset of M; if a domain has compact closure, we shall call that closure a compact domain. We
use the Einstein summation convention where summation over repeated subscript-superscript pairs is understood.

We define harmonic maps as the solution to a variational problem which generalizes that in Chapter 1 as follows.
Let ¢ : (M, g) — (N, h) be a smooth map. Let 2 be a domain of M with a piecewise C' boundary 9f). The
energy or Dirichlet integral of ¢ over € is defined by

Faé) = 5 [ 146w, @

Here wy, is the volume measure on M defined by the metric g, and |d¢| is the Hilbert—Schmidt norm of d¢ given
at each point z € M by

|de|* = ho(a) (dw(ei), dx(e:)) ®)
i=1
where {e;} is an orthonormal basis for 7, M. In local coordinates (z,...,2™) on M, (y*,...,y") on NV,
|ds]? = g (2)hap(d(x)) 670  and  wy = +/|g|da’---da™; )

here ¢ denotes the partial derivative d¢®/dz* where ¢ := y® o ¢, (g;;) denotes the metric tensor on M with
determinant |g| and inverse (%), and (h,p) denotes the metric tensor on .

By a smooth (one-parameter) variation ® = {¢:} of ¢ we mean a smooth map ® : M x (—¢,e) — N,
®(x,t) = ¢¢(x), where € > 0 and ¢y = ¢. We say that it is supported in Q) if ¢, = ¢ V¢ on the complement of



the interior of Q. A smooth map ¢ : (M, g) — (N, h) is called harmonic if it is a critical point (or extremal) of
the energy integral, i.e., for all compact domains €2 and all smooth one-parameter variations {¢; } of ¢ supported

in 0, the first variation % Eq(¢:) ‘ +—o is zero. The first variation is given by

:,/ (r(6),v) w, - (10)
M

Here v denotes the variation vector field of {¢;} defined by v = 0¢+/Ot|¢—0, (-,-) denotes the inner product on
¢~ YT N induced from the metric on \V, and 7(¢) denotes the tension field of ¢ defined by

(3Ba)s(v) = 5 Ba(p)

t=0

m

7(¢) = Trace"Vdgp =) "Vdd(e;, e;) = Z{“’vei(dwei)) —d$(Ve,ei)} - (11)

i=1

Here ?V the pull-back of the Levi-Civita connection on A to the bundle ¢~ 'TN, and "V the tensor product
connection on the bundle W = T*M ® ¢~ 'TN induced from these connections. We see that the tension field
is the trace of the second fundamental form of ¢ defined by 3(¢) = "Vd¢, more explicitly, 3(4)(X,Y) =
N x(do(Y)) — de(V xY') for any vector fields X, Y on M. In local coordinates,

(6 96" 99 967
vy oo ij _ k. hpy
= Ag¢" + g(grad ¢, grad ¢”) T ;. (13)

Here gFfj and hf‘lﬁ denote the Christoffel symbols on (M, g) and (N, h), respectively, and A, denotes the
Laplace-Beltrami operator on functions f : M — R given by

Ayf = Trace WVdf = Z{ei (Bz‘(f)) - (gveiei)f}’ (14)
i=1

or, in local coordinates,
= — 1) _—J — qY _ kYY)

Note that 7(¢) can be interpreted as the negative of the gradient at ¢ of the energy functional E on a suitable
space of mappings, i.e., it points in the direction in which F decreases most rapidly [61, (3.5)]. In local coordinates,
the harmonic equation

m(¢) =0 (16)

is a semilinear second-order elliptic system of partial differential equations.

2.2 Examples

We list some important examples of harmonic maps. See, for example, [66, 61, 63, 7] for many more.

1. Constant maps ¢ : (M,g) — (N, h) and identity maps Id : (M,g) — (M,g) are clearly always
harmonic maps

2. Isometries are harmonic maps. Further, composing a harmonic map with an isometry on its domain or
codomain preserves harmonicity.

3. Harmonic maps between Euclidean spaces. A smooth map ¢ : A — R from an open subset A of R™ is
harmonic if and only if each component is a harmonic function, as discussed in the first Chapter.

4. Harmonic maps to a Euclidean space. A smooth map ¢ : (M, g) — R"™ is harmonic if and only if each of
its components is a harmonic function on (M, g), as in first chapter. See [46] for recent references.



5. Harmonic maps to the circle S! are given by integrating harmonic 1-forms with integral periods. Hence,
when the domain M is compact, there are non-constant harmonic maps to the circle if and only if the first Betti
number of M is non-zero. In fact, there is a harmonic map in every homotopy class (see, [7, Example 3.3.8]).

6. Geodesics. For a smooth curve, i.e. smooth map ¢ : A — N from an open subset A of R or from the
circle S, the tension field is just the acceleration vector of the curve; hence ¢ is harmonic if and only if it defines
a geodesic parametrized linearly (i.e., parametrized by a constant multiple of arc length). More generally, a map
¢ : M — N is called totally geodesic if it maps linearly parametrized geodesics of M to linearly parametrized
geodesics of N, such maps are characterized by the vanishing of their second fundamental form. Since (11)
exhibits the tension field as the trace of the second fundamental form, fotally geodesic maps are harmonic.

7. Isometric immersions Let ¢ : (M,h) — (P, k) be an isometric immersion. Then its second funda-
mental form 3(¢) of ¢ has values in the normal space and coincides with the usual second fundamental form
A € T(S*’T*N ® NN) of N as an (immersed) submanifold of P defined on vector fields X, Y on M by
A(X,Y) = — normal component of "VxY.* (Here, by S?T*/N we denote the symmetrized tensor product of
T*N with itself and N is the normal bundle of NV in P.) In particular, the tension field 7(¢) is m times the mean
curvature of M in AV so that ¢ is harmonic if and only if M is a minimal submanifold of N .

8. Compositions The composition of two harmonic maps is not, in general, harmonic. In fact, the tension field
of the composition of two smooth maps ¢ : (M, g) — (N, h) and f : (N, h) — (P, k) is given by

m

7(f 0 @) = df ((9)) + B(f)(de, do) = df (()) + Y Bf)(d(es), d(es)) 17

i=1

where {e;} is an orthonormal frame on A/. From this we see that if ¢ is harmonic and f totally geodesic, then
f o ¢ is harmonic.

9. Maps into submanifolds. Suppose that j : (N, h) — (P, k) is an isometric immersion. Then, as above,
its second fundamental form A has values in the normal space of N in P and so from the composition law just
discussed, ¢ : (M, g) — (N, h) is harmonic if and only if 7(j o ¢) is normal to M, and this holds if and only if

7(j o ¢) + Trace A(do,do) =0 (18)

10. Holomorphic maps. By writing the tension field in complex coordinates, it is easy to see that holomorphic
(or antiholomorphic) maps ¢ : (M, g, JM) — (N, h, JN) between Kihler manifolds are harmonic [66].

11. Maps between surfaces. Let M = (M? g) be a surface, i.e., two-dimensional Riemannian manifold.
Assume it is oriented and let J* be rotation by +7/2 on each tangent space. Then (M2, g, JM) defines a
complex structure on M so that it becomes a Riemann surface; this structure is automatically Kihler. Let N be
another oriented surface. Then from the last paragraph, we see that any holomorphic or antiholomorphic map from
M to N is harmonic.

A smooth map ¢ : (M, g) — (N, h) between Riemannian manifolds is called weakly conformal if its differ-
ential preserves angles at regular points—points where the differential is non-zero. Points where the differential is
zero are called branch points. In local coordinates, a smooth map ¢ is weakly conformal if and only if there exists
a function A : M — [0, 00) such that

hapd? ] = Ng;; (19)

Weakly conformal maps between surfaces are locally the same as holomorphic maps and so weakly conformal
maps of surfaces are harmonic.

12. Maps from surfaces. (i) Let M = (M?2, g) be a surface and let ¢ : M — N be a smooth map to an
arbitrary Riemannian manifold. Then the energy integral (7) is clearly invariant under conformal changes of the
metric, and thus so is harmonicity of ¢. To see this last invariance another way, let (z,y) be conformal local

4The minus sign is often omitted
5A. Lichnerowicz relaxes the conditions on M and N for which this is true; see, for example, [61] or [7, Chapter 8].



coordinates, i.e., coordinates on an open set of M in which g = p?(dx? + dy?) for some real-valued function .
Write z = x + dy. Then the harmonic equation reads

0 0
Wa/azaff = ¢Va/az£ =0 (20)

If M is oriented, then we may take (x,y) to be oriented; the the coordinates z = x + iy give M the complex
structure of the last paragraph. Hence, harmonicity of a map from a Riemann surface is well defined.
Alternatively, from (17) we obtain the slightly more general statement that the composition of a weakly confor-
mal map ¢ : M — N of surfaces with a harmonic map f : N' — P from a surface to an arbitrary Riemannian
manifold is harmonic.
For any smooth map ¢ : M? — (N, h) from an oriented surface, define the Hopf differential by

e e L B) 5 ) e e e

Here we use the complex eigenspace decomposition ¢*h = (¢*h) 29 4 (¢*h)(11) + (¢*h)(©2) under the action
of JM on quadratic forms on 7M. Note that (i) if ¢ is harmonic, then H is a holomorphic quadratic differential,
i.e., a holomorphic section of @217 (M5

(ii) ¢ is conformal if and only if H vanishes. It follows that any harmonic map from the 2-sphere is weakly
conformal [144, 88, 117]. Indeed, when M is the 2-sphere, ®2T1*,0M has negative degree so that any holomorphic
section of it is zero.

13. Minimal branched immersions. For a weakly conformal map from a surface (M2, g), comparing def-
initions shows that the tension field is a multiple of its mean curvature vector, so that a weakly conformal map
¢ : (M2, g9) — (N, h) is harmonic if and only if its image is minimal at regular points; such maps are called mini-
mal branched immersions. In suitable coordinates, the branch points have the form z — (2F +O(zF*1), O(2*11))
for some k € {2,3,...} [95].

Note also that (ii) the energy of a weakly conformal map ¢ : (M2, g) — (N, h) from a compact surface is
equal to its area:

A(p) = / |[do(e1) A do(ez)|wqy ({e1, e2} orthonormal frame). (22)
M
14. Harmonic morphisms are a special sort of harmonic map; we turn to those now.

2.3 Harmonic morphisms

A continuous map ¢ : (M, g) — (N, h) is called a harmonic morphism if, for every harmonic function f : V' — R
defined on an open subset V of A/ with ¢~1(V) non-empty, the composition f o ¢ is harmonic on ¢=*(V). It
follows that ¢ is smooth, since harmonic functions have that property, by a classical result of Schwartz [195,
Chapter VI, Théoreme XXIX]. Further, since any harmonic function on a real-analytic manifold is real analytic
[168], harmonic morphisms between real-analytic Riemannian manifolds are, in fact, real analytic.

The subject of harmonic morphisms began with a paper of C. G. J. Jacobi [125], published in 1848. Jacobi
investigated when complex-valued solutions to Laplace’s equation on domains of Euclidean 3-space remain solu-
tions under post-composition with holomorphic functions in the plane. It follows quickly that such solutions pull
back locally defined harmonic functions to harmonic functions, i.e., are harmonic morphisms. A hundred years
later came the axiomatic formulation of Brelot harmonic space. This is a topological space endowed with a sheaf
of ‘harmonic’ functions characterized by a number of axioms. The morphisms of such spaces, i.e. mappings which
pull back germs of harmonic functions to germs of harmonic functions, were confusingly called harmonic maps
[48]; the term harmonic morphisms was coined by B. Fuglede [77].

To keep the number of references manageable, in the sequel we shall often refer to the book [7] which gives a
systematic account of the subject, and which may be consulted for a list of original references.

OThis is an example of a conservation law, see §3.1 for more details and the generalization to higher dimensions.



A smooth map ¢ : (M, g) — (N, h) is called horizontally (weakly) conformal (or semiconformal) if, for each
p € M, either, (i) dg, = 0, in which case we call p a critical point, or, (ii) d¢, maps the horizontal space
H, = {ker(dg,)}* conformally onto T}, N, i.e., dgy, is surjective and there exists a number A(p) # 0 such that

h(dgy(X),dop(Y)) = Mp)?g(X,Y)  (X,Y €H,),

in which case we call p a regular point. On setting A = 0 at critical points, we obtain a continuous function
A1 M — [0, 00) called the dilation of ¢ ; note that A\? is smooth since it equals |d$|?/n. In local coordinates, the
condition for horizontal weak conformality is

9768 = N2he? (23)

Note that this condition is dual to condition (19) weak conformality, see also [7]. We have the following character-
ization [77, 124]: a smooth map ¢ : M — N between Riemannian manifolds is a harmonic morphism if and only
if it is both harmonic and horizontally weakly conformal. This is proved by (i) showing that there is a harmonic
function f : N' O V — R with any prescribed (traceless) 2-jet; see [7, §4.2]; (ii) applying the formula (17) for
the tension field of the composition of ¢ with such harmonic functions f. It follows that a non-constant harmonic
morphism is (i) an open mapping, (ii) a submersion on a dense open set — in fact the complement of this, the set
of critical points, is a polar set.

Regarding the behaviour of a harmonic morphism at a critical point, the symbol, i.e. the first non-zero term of
the Taylor expansion is a harmonic morphism between Euclidean spaces given by homogeneous polynomials; by
studying these it follows that (i) if dim M < 2dim N — 2, the harmonic morphism has no critical points, i.e.,
is submersive; (i) if dim M = 2dim N — 2, the symbol is the cone on a Hopf map [7, Theorem 5.7.3]. When
dim M = 3 and dim N = 2, locally [7, Proposition 6.1.5], and often globally [7, Lemma 6.6.3], a harmonic
morphism looks like a submersion followed by a holomorphic map of surfaces; the critical set is the union of
geodesics. When dim M = 4 and dim A/ = 3, critical points are isolated and the harmonic morphism looks like
the cone on the Hopf map S — S2 [7, §12.1]. In both these cases, there are global factorization theorems. In
other cases, little is known about the critical points.

The system (16, 23) for a harmonic morphism is, in general, overdetermined, so there are no general existence
results. However, in many cases, we can establish existence or non-existence as we now detail.

1. When dim A = 1, the equation (23) is automatic, so that a harmonic morphism is exactly a harmonic map.
If A = R, it is thus a harmonic function; for A" = S, see Example 5 of §2.2.

2. When dim M = dim N = 2, the equation (16) is implied by the equation (23), so that the harmonic
morphisms are precisely the weakly conformal maps; see Example 9 of §2.2 for a discussion of such maps.

3. When dim N = 2 and dim M is arbitrary, we have a number of special properties which are dual to those
for (weakly conformal) harmonic maps from surfaces: (i) conformal invariance in the codomain: if we replace the
metric on the codomain by a conformally equivalent metric, or post-compose the map with a (weakly) conformal
map of surfaces, then it remains a harmonic morphism; (ii) a variational characterization: harmonic morphisms
are the critical points of the energy when both the map and the metric on the horizontal space are varied, see
[7, Corollary 4.3.14]; (iii) a non-constant map is a harmonic morphism if and only if it is horizontally weakly
conformal and, at regular points, its fibres are minimal [6], i.e., at regular points, the fibres form a conformal
foliation by minimal submanifolds.

4. When dim A = 2 and dim M = 3, if M has constant curvature, there are many harmonic morphisms
locally given by a sort of Weierstrass formula [7, Chapter 6]. Globally, there are few, for example, when M = R3,
only orthogonal projection from R? to R? followed by a weakly conformal map. If M does not have constant
curvature, the presence of a harmonic morphism implies some symmetry of the Ricci tensor and, locally, there
can be at most two non-constant harmonic morphisms (up to post-composition with weakly conformal maps), and,
none for most metrics including that of the Lie group Sol. As for global topological obstructions, a harmonic
morphism from a compact 3-manifold gives it the structure of a Seifert fibre space [7, §10.3].

5. When dim N = 2 and dim M = 4, if M is Einstein, there is a twistor correspondence between harmonic
morphisms to surfaces and Hermitian structures on M. There are curvature obstructions for the local existence of
such Hermitian structures. See [7, Chapter 7].



6. When dim AV = 2 and M is a symmetric space, by finding suitably orthogonal families of complex-valued
harmonic functions and composing these with holomorphic maps, Gudmundsson and collaborators construct har-
monic morphisms from many compact and non-compact classical symmetric spaces [93], see also [7, §8.2].

7. Riemannian submersions are harmonic, and so are harmonic morphisms, if and only if their fibres are
minimal. The Hopf maps from S% — S§2, §7 — &4, §15 — 68 G2+l _, Cpn, §4+3 — HP™ are examples
of such harmonic morphisms. See also [7, §4.5].

8. The natural projection of a warped product M = F' x ;2 N’ — N onto its second factor is a horizontally
conformal map with grad A vertical, totally geodesic fibres and integrable horizontal distribution; in particular is a
harmonic morphism. The radial projections R™ \ {0} — S™~! (m = 2,3,...), given by x — x/|x], are such
maps. See also [7, §12.4]

9. When dim M — dim N = 1, i.e., the map ¢ : M — A has one-dimensional fibres, R. Bryant [29] gives
the following normal form for the metric g on the domain of a submersive harmonic morphism ¢ in terms of the
pull-back ¢*h of the metric on the codomain and the dilation X of the map, namely,

g= )\_2¢*h + )\211—492

where € is a connection 1-form; thus locally such a harmonic morphism is a principal S*-bundle with S*-
connection; this holds globally if the fibres are all compact, see [7, §10.5].

10. It follows that given a Killing field V' (or isometric action) on (M, g), there are locally harmonic morphisms
with fibres tangent to V.

By analysing the overdetermined system (16, 23) using exterior differential systems, Bryant [29] shows that
there any harmonic morphism with one-dimensional fibres from a space form is of warped product type or comes
from a Killing field (this has been generalized to Einstein manifolds by R. Pantilie and Pantilie & Wood, see [7,
Chapter 12]). It follows that the only harmonic morphisms from Euclidean spheres with one-dimensional fibres are
the Hopf maps S*"*t1 — CP™.

11. There are topological restrictions on the existence of harmonic morphisms, for example, since harmonic
morphisms preserve the harmonicity of 1-forms, Eells and Lemare showed that the Betti number of the domain
cannot be less than that of the codomain, see [7, Proposition 4.3.11]. Pantilie and Wood show that the Euler
characteristic must vanish for a harmonic morphism with fibres of dimension one from a compact domain of
dimension not equal to 4. In particular there is no non-constant harmonic morphism from a sphere S*™ (n # 2)
to a Riemannian manifold of dimension 2n — 1, whatever the metrics. Further the Pontryagin numbers and the
signature vanish, see [7, §12.1].

12. When dim M = 4, the Euler characteristic is even and equals the the critical points of the harmonic
morphism, so that we cannot rule out the existence of a harmonic morphism from S*. By Bryant’s result in item
8 above, there is no harmonic morphism from the Euclidean 4-sphere with one-dimensional fibres; however, there
is one if the metric on S* is changed by a suitable conformal factor. This map is given by suspending the Hopf
map, first finding a suspension which is horizontally conformal, then changing the metric conformally on the
domain to ‘render’ it harmonic. At both stages, the problem is reduced to solving an ordinary differential equation
for the suspension function with suitable boundary values, and the method applies to find many more harmonic
morphisms, see [7, Chapter 13].

13. Finally note that J.-Y. Chen shows that stable harmonic maps from compact Riemannian manifolds to S*
are all harmonic morphisms. This is shown by calculating the second variation and showing that its non-negativity
forces the map to be horizontally weakly conformal, see [7, §8.7].

3 Weakly harmonic maps and Sobolev spaces between manifolds

3.1 Weakly harmonic maps

An extension of the Dirichlet principle or, more generally, the use of variational methods requires the introduction
of a class of distributional maps endowed with a topology which is sufficiently coarse to ensure the compactness
of sequences of maps which we hope will converge to a solution. On the other hand, the energy functional should



be defined on this class and we should be able to make sense of its Euler—Lagrange equation (16). These two
requirements are somewhat in conflict, and will lead us to model the class of maps on the Sobolev space W2 (M).
But that will force us to work with weak solutions of (16), i.e., weakly harmonic maps. However, as soon as
m = dim M > 2,amap f € WH%(M) is not continuous in general. Hence, even if W12(M, ') makes sense,
there is no reason for a map ¢ € W12(M, N) to take values in any open subset, in general. This makes it difficult
to study ¢ by using local charts on the target manifold N'. Today’ most authors avoid these difficulties by using
the Nash—Moser embedding theorem (see, for example, [91]) as follows. In the following we shall assume that
N is compact. Then there exist an isometric embbeding j : (N, g) — (R, (-,-)). And we define (temporarily),
for any open subset 2 C M,

WA (QN) = {ue WH(QRY)| u(z) € j(V) ae.}. (24)

On this set the energy or Dirichlet functional defined by (7) now reads

1 Iy ou Ou
Eq(u) == i/ﬂgj(l") <81:J"6xi>w9'

But, if we assume that M is also compact, then for any two isometric embeddings ji, j2, the spaces lel’Q (M,N)
and lef(./\/l,./\/) are homeomorphic and Eq(j 0 j; ' o u) = Fq(u). Hence we simply® write W"2(M,N) :=
W2 (M, N).

Weakly harmonic maps

In order to define weakly harmonic maps as extremals of E/n¢ we have to specify which infinitesimal deformations
of a map u € WH2(M, N) we will consider. Consider a neighbourhood V of A/ in R¥ such that the projection
map P : V — N which sends each y € V to the nearest point in N is well defined and smooth’. Now let
u € WH2(M,N). For any map v € W12(M,RN) N L>=°(M,RY) we observe that, for ¢ sufficiently small,
u+ev €V, sothatu! := P(u+ev) € WH2(M,N). We set 48 := lim._o (u? — u)/e = dP,(v) a.e. and

(5EM)u(U8) — hi% Em(ue) ; Epm(u) '

(What is important in this definition is that ¢ — u? is a differentiable curve into W12(M,R") such that
Ve, u? € WH2(M,N), dul/de € WH2(M,RY) and u§ = u.) And u is weakly harmonic if and only if
(6Epm)u(uy) = 0 forall v € WH2 N L°(M,RY). Equivalently u is a solution in the distribution sense of a
system of N coupled scalar elliptic PDEs, i.e. an RY -valued elliptic PDE

ou 8u)_0

Ozt OzI (25)

where A € T'(S?T*N ® NN) is the second fundamental form of the embedding j as in §2.2 (NN now denotes
the normal bundle of N in R™);'” one can check that this condition is independent of the embedding j [118].
Indeed, it is just the equation (18).

Example. (N = S™, the unit sphere) The n-dimensional sphere S™ is the submanifold {y € R"*!||y| = 1},
its metric is the pull-back of the standard Euclidean metric by the embedding j : S® — R™*!. The second

7In his 1948 paper [156], C. B. Morrey had to work without the Nash—-Moser theorem which was not yet proved.

8n the case where M is not compact, we may not have lel,Z (M,N) ~ Wj12‘2 (M, N) because the L2 norms of j1 0¢ and j2 0 ¢ may be
different (indeed, one of the two norms may be bounded whereas the other one may be infinite). This suggests that perhaps a more satisfactory
(but less used) definition of W].1’2(M,N ) would be: the set of measurable distributions on M with values in RN such that du € L?(M)
and u(z) € j(N) a.e.

‘We may use other projection maps, not necessarily Euclidean projections, see [118].

10An equivalent formula for A is, as follows: if for any y € A/, we denote by P;- RV — NyN the orthonormal projection, then A

can be defined by A, (X,Y) := (Dx Pj)(Y), VX,Y € I'(TN), where D is the (flat) Levi-Civita connection on RV .



fundamental form of j is given by A,(X,Y) = (X,Y)y, so that the weakly harmonic maps are the maps in
W12(M, S™) such that

Agu+ |dul*v =0 in a distribution sense. (26)

Remarks (i) In (25), Aju € W=L2(M,RY) is defined in the distribution sense, the coefficients of Ay(z) are in
L because N is compact and so g*/ () Ay () (Ou/0z", du/0x7) € L' (M,RN).

(i1) The system (25) is an example of a semilinear elliptic system with a nonlinearity which is quadratic in the
first derivatives, for which a general regularity theory has been developed (see [143, 229, 121, 83]). This nonlin-
earity is the reason why most of analytical properties valid for harmonic functions are lost: existence, regularity,
uniqueness and minimality may fail in general, unless some extra hypotheses are added.

(iii) A difficulty particular to this theory is that W2(M, N) is not a C!-manifold. One can only say that
WH2(M,N) is a Banach manifold, which is not separable if m > 2, and that C° N W12(M, N) is a closed
separable submanifold of W12(M, N) (see [31]). Moreover, W2(M, N) does not have the same topology as
Co(M, N) in general (see §3.2 and 3.3).

Minimizing maps

A map u € WH2(M,N) is called an energy minimizing map if any map v € W%(M, ) which coincides
with u outside a compact subset KX C M has an energy greater than or equal to that of u, i.e. Eaq(v) > Epq(u). A
weaker notion is that u € W12(M, N) is called locally energy minimizing if, for any point z € M, there exists
a neighbourhood U C M of x such that any map v € W12(M, N') which coincides with u outside a compact
subset K C U has an energy greater than or equal to that of .

Stationary maps

The family {u?| v € WH2(M,RY) N L>°(M,RYN)} of infinitesimal deformations used for the definition of a
weakly harmonic map u does not contain some significant deformations. For example, consider radial projection
ue € WH2(B3, 52) defined by'!

ue (@) = z/lz|; 27)

it seems natural to move the singularity of this map along some smooth path. For example we leta € C!((—1,1), B3)
parametrize such a path in B3 such that a(0) = 0 and we consider the family of maps u. € W12(B3,S?) de-
fined by u.(x) = (z — a(€))/|z — a(e)|. Then du./de is not in W2(B3 R3), and hence we cannot take this
infinitesimal variation of u, into account for weakly harmonic maps. This is the reason for considering a second
type of variation: we let (¢;)¢cs (where I C R is some open interval which contains 0) be a C! family of smooth
diffeomorphisms ¢; : M — M such that ¢y is the identity. Then for any u € W12(M, N), (u o ¢;)ier is a
C* family of maps in W12(M, N) such that u o ¢y = u. Following [189] we say that v is stationary if (i) u is
weakly harmonic, and (ii) for any family of diffeomorphisms (¢;):c; with oo = Id 4,

lim (Ep(uo @) = Epa(u)) /t = 0. (28)

Note that, without loss of generality, we can assume that the diffeomorphisms ¢; have of the form ¢; = e*X, where
X is a smooth tangent vector field with compact support on M. Maps u which satisfies (28) can be characterized by
the following local condition derived by P. Baird and J. Eells, and by A. 1. Pluzhnikov independently [6, 170, 118].
Let us stress temporarily the dependence of the Dirichlet energy on the metric g on M by writing Exq = E(a
Then we remark that, by the change of variable & = ¢! () in the Dirichlet integral, we have:

,9)"
E(M,g) (u o etX) = E(M)(e—tX)*g)(’u, o €tX o e_tX) = E(M}(e—tX)*g) (u),

where (e~*)*g is the pull-back of the metric g by e~**. But we compute:

B, (e-tx)g) (1) = B(pm,)(u) +1 /M (Lxg") Sij(u) wg + o(t),

"For a € R™ and r > 0 we write B™(a,r) := {z € R™| |z — a| < r}; also, for brevity write B™ := B™ (0, 1).



where
- _1 o gy Ly ou Ou o ou Ou
Sl](u) T zldu‘ggw (u h)m - 29 (x) <8$k7 8a:l 9ij 8$i7 oxI ’

where |dul? = g% (x) (Qu/dx", du/dx7), is called the stress-energy tensor. If u € W'?(M,N), then its
components are in L' (M). Hence condition (28) is equivalent to the fact that [, (Lxg") Si;(u) wy = 0, for all
smooth tangent vector fields X with compact support on M. Moreover, since the stress-energy tensor is symmetric
we have the identity (2¢"*V ;X7 4+ Lxg%) S;;(u) = 0, from which we can deduce by an integration by parts that
u satisfies (28) if and only if .S;; () is covariantly divergence-free, i.c.

V7, ViS; (u) = 0 in the distribution sense (where S;(u) = ¢"* S (u) and V; := Vo/owi)- (29)
Remarks (i) If the metric g on M is Euclidean, i.e. if we can write g;; = J;; in some coordinate system, then the
covariant conservation law (29) becomes a system of m conservations laws.

(ii) if m = 2 then \S;; is trace free. Furthermore we can use conformal local coordinates z = ' + iz? on M.
Then if we identify S;; with the quadratic form S := S;;dz'dz’, we easily compute:

ou |2 Ou |2 Ou Ou
cas—re{ (|2 - | 2 oo 2 00N )
© { ( Ox! Ox? Nzl 922 (dz)

where H is the Hopf differential of u as defined in (21). We note that: (i) u is conformal if and only if 7 or
equivalently S vanishes and (ii) the stress-energy tensor is divergence free, i.e. (29) holds, if and only if H is
holomorphic.
Relationship between the different notions of critical points
It is easy to prove the inclusions:

{minimizing maps} C {locally minimizing maps} C {stationary maps} C {weakly harmonic maps} ;

these inclusions are strict in general. For example, the identity map Id : S® — S is locally minimizing (see §6.2)
but not globally minimizing (see §3.3). The map u(?) € W2(B?, §?), defined by u(® (z) = P~' 0 Z%0 P(z/|z|),
where P : §? — CP = CU {00} = R? U {cc} defined by

Ply' v y’) = (v +iy?) /(L +y°) (30)

is the stereographic projection and Z2(z) = 22 is stationary but not locally minimizing (see §4.3 and [24]). The

map vy :€ W12(B3,5?), defined by vy (z) = P~ o Ao P(z/|z|), where ) is the multiplication by some A € C*

is weakly harmonic but not stationary if |\| # 1 (see [118], §1.4). However, smooth harmonic maps are stationary:

one can check by a direct computation that, if u is a map of class C2, (25) implies (29).

3.2 The density of smooth maps in W1?(M,N)

In this section and the following, it may clarify the discussion to consider the more general family of spaces
WEP(MN) = {u € WHP(M,RY)| u(z) € N ae.},

WLP(M) == {u € LP(M)| du € LP(M)} and WP (M,RY) := WLP(M) @ RV, where 1 < p < co. An
interesting functional on W1P (M, N) is the p-energy

1 g ou ou\Y/?
E/(\Z/)l)(u) ::p/M (g”(x)<a;,axu]>) wg- 3D

For any Riemannian manifold M of dimension m and for any compact manifold N of dimension n, let us
define

o H!IP(M,N):= the closure of C' (M, N) N WP (M, N) in the strong W'P-topology;



e HLP(M,N):= the closure of C}(M,N) N WEP(M, N) in the sequential weak'> W1P-topology: a map

u € WHP(M,N) belongs to HL?P(M,N) if and only if there exists a sequence (vy),y of maps in
CHM,N) N WLP(M, N) such that vy, converges weakly to u as k — oo.

Note that we have always the inclusions

HYP(M,N) C HEP(M,N) € WEP(M,N). (32)

The easy case m < p. We first observe that, if p > m, the Sobolev embedding theorem implies that
WhP(M,N) C C°(M,N), so that by a standard regularization in W!? (M, RY) followed by a projection onto
N, one can prove easily that H1'? (M, N) is dense in WP (M, N). This result has been extended in [191] to the
critical exponent p = m, by using the Poincaré inequality:'? Fom(ery 12 = Fomr @™ < C Jgm (. lde™.
In conclusion, if p € [m, 0o), all inclusions in (32) are equalities.

The hard case 1 < p < m. One of the more instructive example is radial projection ue : B™ — S™~1 given
by (27). This map has a point singularity at 0, but is in WP(B™ S™~1) if p < m. We shall see later that ug
cannot be approximated by smooth maps with values in S™~! for m — 1 < p < m. Variants of u, are the maps
ul : B™ — S™*~1 fors € Nsuchthat0 < s < m—1, defined by u$ (z,y) = z/|z|, for (z,y) € R™™* xR*:
this map is singular along the s-dimensional subspace x = 0.

Approximation by smooth maps with singularities. The following result by F. Bethuel [12, 102] shows that
the structure of the singularities of the maps u¢, is somehow generic. Let

RPE(M,N) :  the set of maps u € WP(M, N) such that 3%, C M with u € CF(M \ Z,,, N),
Y. = Ui_, X;, ¥; is a subset of a manifold of dimension m — [p] — 1, 9%, is C*

(note that, if m — 1 < p < m, each ¥; is a point). Then
ifl<p<m, then RP*(M,N)isdensein W"P(M,N). (33)

Moreover, F. B. Hang and F. H. Lin [102] proved that the singular set ¥, can be chosen as the (m — [p] —1)-skeleton
of a smooth rectilinear cell decomposition.

The case of maps into the sphere. The idea of the proof of (33) in the case where ' = S™ andn < p < n+1
is the following (see also [17, 88]). Let u € W1P(M, S™). Then by convolution with mollifiers we first produce a
sequence of smooth maps (u,), which converges strongly to u as p — 0, but has values in B"™*(0, 1). However,
for any ¢ > 0 the measure of V7 := u,'(B""'(0,1 — ¢)) tends to 0 as p — 0. The main task is to compose
the restriction (u,)|ve of u, to V7 with a projection map from B™1(0,1 — ¢) to its boundary in order to obtain
a map into B"*\ B"T1(0,1 — ). The naive projection z — (1 — ¢)x/|z| fails because u,/|u,| has infinite
W1P-norm in general. The trick, inspired by [107], consists of using a different projection map I, : = +——
(1 —¢)(z —a)/|z — al, where a € B"1(0, 1): by averaging over a € B"*1(0, ) and using Fubini’s theorem
one finds that there exists some a such that the W*?-norm of (I, o u,) |fo is bounded in terms of the W1?-norm

—1
p

of (u,)|ve. Moreover, Sard’s theorem ensures us that for a generic a, u
smooth submanifold of codimension n + 1 = [p] + 1.

The property (33) shows that questions of density rely on approximating maps in R?"*(M,A) by smooth
maps. Again it is instructive to look at the example of the map us € W1P(B™, S™~1): a way to approximate ¢,
is to move the topological singularity through a path joining the origin 0 to the boundary 0 B™. Consider such a

(a), i.e. the singular set of IT, o u, is a

12The space Hllu’p (M, N) plays an important role when using variational methods. For example, if we minimize the p-energy among
smooth maps, the minimizing sequence converges weakly. Hence the weak solution that we obtain is naturally in H. 110,p (M,N).

13 Note that similar arguments show that maps such that lim,_q E;.r(u) = 0 forall x € M can be approximated by smooth maps (see
§4.3 for a definition of E ;). This result is a key ingredient in the regularity theory for harmonic maps by R. Schoen and K. Uhlenbeck [190],
see again §4.3. All these results fit in the framework of a theory of maps into manifolds with vanishing mean oscillation, developed by H.
Brezis and L. Nirenberg [27]: for any locally integrable function f on R"*, for any x € R™ and any r > 0, set fz , := me(zﬂ f, then let

[IfllBrMoO = supgerm supr>0(me<Z’r) |f = fe,r|P)Y/P, for some p € [1,00). Then the space of functions of bounded mean oscillation

(BMO) on R™ is the set of locally integrable functions f on R™ such that || f|| aso is bounded and this definition does not depend on p [128].
The subspace of functions of vanishing mean oscillation (VMO) on R"" is composed of maps such that lim,_.o (me (2,7 [f=far \P)l/P =

0 for any x € R™ (see [128, 118])



path (for example, [—1,0] x {0}~ C R™), then by modifying u, inside a small tube around this path in such
a way that the topological degree on each sphere S™~! := 9B™(0,r) cancels, we obtain a continuous map into
the sphere. For instance, for ¢ > 0 sufficiently small, we construct a map u. by replacing, for any r € [0, 1], the
restriction g |gm-1 of ug to S~ by its left composition with the map T/\’(l’g) oUoTy\(re : S™71 — S,
where U(y) = (ly!|,y?, -+, y™) and Tx(y) = (cosh A + y*sinh \)~*(sinh A + y* cosh A, 9%, -+, y™) (A € R)
and we choose A(r, ) in such a way that u. coincides with ug outside the tubular neighbourhood of the path of
radius . Then, inside the small tube, |du.| < (C/e)|due| so that the extra cost in W1P-norm of this modification
is of order €™~ /&P (note that €™~ controls the volume of the tube). We see that

(1) if 1 < p < m — 1, this p-energy cost can be as small as we want;
(i) if p = m — 1, the p-energy costs does not tend to zero as € — 0 but is bounded;
@iii) if m — 1 < p < m, the cost tends to co as € — 0.

These heuristic considerations are behind a series of results proved by F. Bethuel [12] and summarized in the
following table:

Inclusions HIP(Bm™ Sm=1)y < HLP(B™,S™ 1) < whte(B™ Sm-1)
1<p<m-—-1 = =

p=m-—1 G =
m—1<p<m = -

In particular, we see that p = m — 1 is another critical exponent: u, can be approximated by smooth maps weakly
in W1 ™~1 but not strongly.

The fact that HL-P(B™, S™~1) £ WLP(B™ S™~1) for m — 1 < p < m can be checked by using a degree
argument. Here is a proof for m = 3 and 2 < p < 3. Let wg2 := j*(ytdy? A dy® + y2dy> A dy* + y>dyt A dy?)
be the volume form on S? (j is the embedding S? C R3). Let x € C°°(B?,R) be a function which depends only
on 7 = ||, such that x(1) = 0 (i.e. x = 0 on dB?) and x(0) = —1. Assume that there exists a sequence (ux ),y
of functions in C%(B3, S?) such that u;, — ug strongly in W2(B3,5?). Then since ujwsg> is quadratic in the
first derivatives of u, [, dx Aujwg> converges to [, dx Aubwg> = fol 47 (dx/dr)dr = 4. On the other hand,
since uy, is smooth, d (ujwg2) = uj(dwg2) = 0 and so

0:/ XUZWS2:/ d(quwsz):/ dx N ujwgz.
B3 B3 B3

Hence we also deduce that | ps AX A upws2 — 0, a contradiction. In §5.4 another proof is given for p = 2.

In fact, a nice characterization of H}?(B3,5?) was given by Bethuel [10] in terms of the pull-back of the
volume form wg2 on S?: a map u € W1H2(B3, 52) can be approximated by smooth maps in the strong 17 1:2-
topology if and only if d(u*ws2) = 0 (see also §5.4 for more results about u*wg2.) This may be generalized to
some situations (see [11]) but not all: indeed it is not clear whether such a cohomological criterion can be found
to recognize maps in H}3(B*, $%) — for example, the singular map defined by hS (z) = HC(z/|z|), where
HC . S3 — S? is the Hopf fibration, is in W13(B*, S?) but not in H1*(B*,5%) — see [110] for more details
on this delicate situation.

The role of the topology of M and N. We have seen that, when N' = S™, the topology of A/ may cause
obstructions to the density of smooth maps in W1 (M, A). The first general statement in this direction is due to
F. Bethuel and X. Zheng [17] and Bethuel [12] in terms of the [p]-th homotopy group of N; namely, for M = B™
we have

if 1 <p<m, then HN(B™ N)=W'"(B™ N) < T (N) = 0.

However, for an arbitrary manifold M, the condition that 7, (N") = 0is not sufficient to ensure that H}'? (M, N) =
WLP(M,N), in general. This was pointed out in [102]. An example is the map vy, € WH2(RP* RP3) de-
fined by vg[z?: xl: 2?: 2% 2% = [x': 22: 23 2%, with a singularity at [1 : 0 : 0 : 0 : 0]; there is no
way to remove this singularity'®, so, there is no sequence of smooth maps converging weakly to ve, . Hence

4In contrast with the map ug, € W12(B4, S3) where the topological singularity can be moved to the boundary with an arbitrary low
energy cost.



HL2(RPYRP3?) # WL2(RP* RP?), although mo(RP3) = 0. A result due to P. Hajtasz [96] is valid for an

w

arbitrary manifold M:
fl1<p<m,then mN)=-=mpN)=0 = HY?(M,N) = WhP(M,N).

The general result is due to F. B. Hang and F. H. Lin [102] and, in the case where M has no boundary, is the
following. First we say that M satisfies the k-extension property with respect to N if, for any CW complex
structure (X7);en on M and for any f € CO(X*+1 N), the restriction f|x+ of f on X* has a continuous
extension on M. Then, if 1 < p < m, we have [102]:

7] (N) = 0 and M satisfies

Lp —wlr
HyP(MN) =WHPMN) - = { the [p — 1]-extension property with respect to N'.

The case when p is not an integer. The identity between H!:P(B™, S™~1) and H.,P(B™,S™1) for p #
m — 1 is actually a particular case of a general phenomenon, as shown by Bethuel [12]: for any domain M C M
and for any compact manifold N,

if p > 1 is not an integer, then H*(M,N) = H:?(M,N).

The case when p is an integer. The question left open is, in cases where H}?(M,N) € WhP(M,N), to
characterize the intermediate space H.? (M, N). A first answer was given in [12] for maps into the sphere:

if p € N satisfies p < m, then HXP(B™,SP) C H-P(B™,SP) = W'P(B™, SP).
A generalization was proved by P. Hajtasz in [96]:

if p € Nsatisfiesp < m, then T (N)=---=mp 1(N)=0 = HLP(M,N)=W'PM,N).
And the following further result was obtained by M. R. Pakzad and T. Riviere [162]:

forp=2, mWN)=0 = HL*(M,N)=W"3(M,N).

For more general situations, assuming that M has no boundary, a necessary condition for a map to be in H,? (M, N)
was found by F. B. Hang and F. H. Lin in [102]: they proved thatif u € H;?(M,N) then uy [,;_1 (h) is extendible
to M with respect to V. The precise definition of uy )1 (h) is delicate: roughly speaking, by using ideas of
B. White (see [226, 227] and §3.3), it is possible to define the homotopy class uy 1 (h) of the restriction of a
map v € HLP(M,N) to a generic ([p] — 1)-skeleton of a rectilinear cell decomposition h of M. Furthermore
Hang and Lin in [102] conjectured" that this condition is also a sufficient one, i.e., that if u € WP (M, N)
and uy )1 (h) is extendible to M with respect to N, then v € H?(M,N). In [101] Hang proved that this
conjecture is true for p = 2.
Note that in the special case p = 1, Hang proved that H} (M, N) = HLY(M, N) [100].

3.3 The topology of WP (M, N)

The motivation for understanding the topology of W1?(M,N) is to adapt the direct method of the calculus of
variations to find a harmonic map in a homotopy class of maps between M and N, i.e., by minimizing the energy
in this homotopy class.

Some difficulties are illustrated by the following question'® [66]: What is the infimum of the energy in the
homotopy class of the identity map 1d : S™ — S™ ?

e if m = 1, Id is minimizing and all minimizers in its homotopy class are rotations.

o if m > 3, the infimum of the energy is 0. Indeed, consider, for example, the family of conformal
Mébius maps Ty : S™ — S™ for A € R defined by Ty(y) = (coshX + y!sinh \)~!(sinh A +
ylcosh \, 42, -+, y™); for all A € R, T} is homotopic to the identity (actually T} equals the identity map)
but as A goes to +00, Egm (T)) tends to zero and T converges strongly to a constant map.

15They proved this conjecture for maps in R (M, N).
16The displayed facts were noticed by C. B. Morrey.



e the intermediate case m = 2 corresponds to the critical dimension; then all the maps T have the same
energy, are conformal harmonic, and minimize the energy in their homotopy class, but T, converges weakly
to a constant map'’ as X\ — +o0o. One then speaks of a bubbling phenomenon, see §5.3.

Prescribing the action on the first homotopy group. The first positive result in these directions was in the
case m = dim M = 2 and M = () studied by R. Schoen and S.T. Yau [193]. Let -y be a smooth immersed path
in M and u € WH2(M, N); in general the ’restriction’” u o y of u to 7 is not continuous (just in W2-2) but one
can prove that, if we change ~y to a generic path 5 which is homotopic to ~, then u o 7 is continuous.

(i) First, we use the following observation!®: for any map f € W2(S! x (0,1),RY), the map (0, s) —
|df (6, 5)|? isin L'(S* x (0,1)); hence by using the Fubini-Study theorem on S* x (0, 1) one deduces that,
for a.e. s € (0,1), the map 6 — |df (6, s)|? belongs to L'(S*), so that the restriction of f to S* x {s} is
in W12(S1) c C(S'). We apply this result to f = wo I, where I' € C*(S* x (0,1), M) parametrizes a
strip composed of parallel paths 5 := T'(-, s) homotopic to the same path .

(i) Second, if s < so are two values in (0, 1) such that u o s, and u o s, are continuous, then we can
use the existence theorem of Morrey [156] to prove that there exists a smooth minimizing harmonic map
U : S' x (s1,82) — N which agree with u o I on 95T x (s1,82) = (S! x {s2}) U (S* x {s1}). We
deduce that u o v5, and u o s, are homotopic.

This leads to the definition of the image by w of the homotopy class of v: it is the homotopy class of u o 5, where
vs 18 a path in the same homotopy class as ~y, which is generic in the above sense. We can thus define the induced
conjugacy class of homorphisms

U Z7T1(M) i Wl(J\/).

One can check, moreover, that this homomorphism is preserved by weak convergence in WY2(M,N), i.e., if
vy, converges weakly to u in W12 when k — +o0, and Vk € N, (vg)y1 = vy for some v € CO(M,N),
then uy; = wvy1. Eventually this leads to the following existence result of Schoen and Yau [193]: assume that
M is surface without boundary. Then, for any family 71, - - -,V of loops in M and for any continuous map
v @ M — M, there exists a locally energy-minimizing harmonic map in the class of maps v € W12(M,N)
such that ug1 ([vi]) = vy ([7i]), ¥i = 1, - - -, k. This result has been generalized to the case where the dimension of
M is arbitrary by F. Burstall [30] and B. White [225].

Remarks (i) Note that, if 7;(N) = 0 for j > 2, then the homotopy class of a continuous map u from M to N
is completely characterized by the induced conjugacy class of homomorphisms wuy; : 7 (M) — 71 (N); thus,
when m = 2, the existence result of Schoen and Yau amounts to minimizing the energy in a given homotopy class
of continuous maps between M and A (recall that continuous maps are then dense in W2(M, N)).

(ii) The definition of uy; : m (M) — m1(N) does not make sense if u € W?(M,N) for1 < p < 2.
Indeed, as in step (i), we still have that uwoy, is continuous for a generic s, but step (ii) does not work: the homotopy
class of u o 4 can vary as s changes (see B. White [227] or J. Rubinstein and P. Sternberg [186]).

Defining the d-homotopy class. For any d € N, we say that two maps u,v € CO(M,N) are d-homotopic
and we write u ~q v if their restrictions to the d-skeleton of a triangulation of M are homotopic. For any map
u € C°(M,N) we thus can define the d-homotopy class [u]q := {v € CO*(M,N)| u ~4 v}. Observe that if
u ~q v then the induced homomorphisms wuy;, vy; : 7;(M) — m;(N) coincide for each 1 < j < d, so that
this notion extends the previous one. Actually A.L. Pluzhnikov [171] and B. White [227] showed that it is possible
to define the d-homotopy class of a map v in H?, HLP or WLP(M, N) for certain ranges of values of d and p.
The following table summarizes the results proved in [227]. It gives, for each space H1'?, HL? or W17, the values

17This is a consequence of the following observations: on the one hand by using the standard compactness arguments we can extract a
subsequence of (vg ),y Which converges weakly in W12 and a.e. to some limit v, but on the other hand it is clear that vy, converges a.e.
(and more precisely pointwise on S™ \ {(—1,0,---,0)}) to (1,0,---,0), so that v = (1,0,---,0). Since this argument works for any
subsequence the full sequence (v )y converges weakly to this constant.

I8Which itself is the key ingredient of the classical Courant-Lebesgue lemma, see, for example, [88, 3.3.1]



of d for which one can define the d-homotopy class of a map w in this space, and it specifies natural topologies
which preserve this d-homotopy class:

Spaces HIP(M,N) | HLP(M,N) [ WEP(M,N)
Values of d for which [u]q makes sense: | NN [, p] NN[l,p) |NN[l,p—1]
Topology which preserves [u]4 : strong WP [ weak WP weak WP

The definition of [u], for u € HLP(M,N) when d < p follows from the following result [171, 226]: if d €
Nand d < p, then VK > 0, 3¢ > 0, such that if uy and uy are two Lipschitz continuous maps such that
lutllwie, ||uz|lwie < K and ||ur — us||zr < €, then uy ~g uz. Hence one can define the d-homotopy class of
a given u € H?(M,N) by using any sequence of Lipschitz continuous maps (v ), <y Which converges weakly
to w in WP and setting [u]q := [vg]q for k large enough. For u € H}?(M,N), the previous argument applies
also when defining [u]q if d < p; if d = p we must use a further approximation argument.

In constrast, the definition of [u]; for u € W1P(M,N') and d < p — 1 cannot be obtained by using approxi-
mations by smooth maps, but must be done directly. Here the idea consists of proving that the restriction of u on
a generic d-skeleton is continuous and that the homotopy class of this restriction is independent of the d-skeleton,
following a strategy similar to the result of Schoen and Yau. The details of the proof are, however, more involved.

The k-homotopy type helps to characterize the topology of the spaces H? and WP (M, N), as follows.

Connected components of 7;?(M,N). For any u € H}*(M,N) denote by [u] ;1.» its connected compo-
nentin H? (M, N) for the strong W -topology. The classes [u] p1» have been characterized by A.IL Pluzhnikov
[171] and B. White [226] as follows: the connected components of HYP(M,N) are exactly the [p]-homotopy
classes inside H}? (M, N'). In other words, for any u € H}?(M, N), [u] y1.» = [u]pp).

This has the following important consequence: for any smooth map v € C (M, N'), the infimum of the p-energy
among smooth maps in the homotopy class of v depends uniquely on the [p]-homotopy type of v. A further result
is: for a smooth map v, v ~,) C (where C'is a constant map) if and only if the infimum of the p-energy in [v](
is 0 [171, 226]. Note that the limit of a minimizing sequence of the p-energy in a [p]-homotopy class [v](,) may
not be in [v][,], but only in its closure for the sequential weak topology of WP in general. See the example with
M =N = 8™, v = Id discussed at the beginning of this section.

Connected components of W7 (M, N). For u € WHP(M, N) denote by [u]y1.» its connected component.
The study of the connected components of WP (M, N') was initiated by H. Brezis and Y. Li [25]. Complete
answers were obtained by F. B. Hang and F. H. Lin [102] as follows:

(i) The connected components of W1P(M,N) are path-connected. This is a consequence of the follow-

ing: Vu € WHP(M,N), Je > 0 such that Vo € WIP(M,N), if ||u — v||[pr» < €, then there exists
U € CY([0,1], WtP(M, N)) such that U (0, ) = wand U(1,-) = v. We write u ~yy1.» v for this property.

(ii) the connected components of 1W1:?(M, \) are exactly the ([p]—1)-homotopy classes inside W1? (M, N),
ie. Yu,v,€ W'P(M,N), u ~y1p vif and only if u ~p_q v.

(ili) as p varies, the quotient space WP (M, N)/~w1,» changes only for integer values of p, i.e. if [p1] =
[p2] < p1 < pa2 < [p1] + 1, the map tp, p, : WEP2(M,N) froppriny —> WEPLH (M, N) fopip, induced by
the inclusion W12 (M, N') C WP (M, N) is a bijection (this was conjectured in [25]).

Result (ii) has the following corollary: a map u € W'P(M,N) is connected to a smooth map by a path if and
only if uy p)—1 is extendible to M with respect to N'. This implies, in particular, the results (also proved in [25]):

e if Vj € Nsuch that 1 < j < [p] — 1 we have 7;(N') = 0, then WP (M, N) is path-connected;
e if p < m, then WHP(S™ N) is path-connected.

Concerning (iii), the change in the number of connected components of W1? (M, N') when p varies can occur in
two ways. Indeed, as p decreases, either connected components coalesce together — this is, for example, the case
for W1P(S™ S™): this space has different connected components classified by the topological degree if p > m
and is connected if p < m; or, contradicting a conjecture in [25], new connected components can appear — this
is the case for W1P(RP3 RP?): for p € (2,3) connected components appear, forming a subset of maps which



cannot be connected by a path to a smooth map (and which hence cannot be approximated by smooth maps), see
[21, 102].

The degree. If dim M = dim N/, the homotopy classes of maps M — A can sometimes be classified by
the topological degree. This is the case if, for instance, M is connected, oriented"® and without boundary and
if N' = S™ (by a theorem of H. Hopf)**. The degree for a map u € C*(M, S™) is then given by the formula
degu = (1/1S™[) [\, det(du)wrr = (1/|S™]) [gm u*wsm. We give this formula explicitly for the case p = 2:

de; u—i/ uwrw 1 u@x@ dx d
g _47T M S2_47T M 7833 ay y7

where (z,y) are local conformal coordinates on M. This functional, being quadratic in the first derivatives of u,
has the following continuity properties:

(i) it is continuous on C' (M, S?) for the strong and the weak W' topology for all p > 2, hence for p > 2 we
can extend deg on H}?(M, S?) = W1P(M,5?);

(ii) it is continuous on C'(M, S?) for the strong but not for the weak WP topology for p = 2, hence since
HM?(M, S8?) = WH2(M, S?) we can extend deg on W2(M, S?), but this functional is not continuous
with respect to the weak topology;

(iii) it is not continuous on C* (M, S?) for the strong or the weak WP topology for all p < 2.

In cases (i) and (ii) (p > 2), the degree functional takes integer values and, Vk € N, deg_l(kz) is a connected
component of WP (M, S?) for its strong topology. In case (i), the continuity for the weak topology follows
from the fact that, on the one hand, for a sequence (uy),, .y Which converges weakly to some u in Whr(M, S?),
fr := (Opuy) x (O,uy) converges weakly in LP/? to f := (0,u)x (J,u), because of a phenomenon of compensated
compactness, based on writing fi, = 0, (ux(9yur)) — Oy (ur(dzus)) (see [159, 211]). On the other hand, by the
Rellich-Kondrakov theorem, we can assume that uj, — u strongly in L?*/?=2 and hence in L?/?=2 = (L»/?)".
It follows that the integral [, (ug, fx)wa converges to [, (u, flwre. This delicate argument breaks down?!
for p = 2: we still have that f;, converges in the weak-% topology of L', but we cannot find, in general, a
subsequence of u;, which converges strongly in L> (otherwise we would have an embedding of W2(M) in
C'(M) C L*(M) !). Indeed, in the case where M = S2, the family of (degree 1) Mdbius maps (1), cp
converges weakly to a constant map in W12(S2,5%) as A\ — oo (a bubbling phenomenon, see §5.3). Lastly (iii)
can seen by considering the family of maps (u),o ;) from S? to S* defined by u;(z) = (x —ta)/|z — tal, where
a € R3 has |a| = 2; for 1 < p < 2, this defines a continuous path in W1?(S2 S52), which connects the smooth
map ue = ug of degree 1 to the smooth map u; of degree O (see [27, 21]).

Lastly, in [26] H. Brezis, Y. Li, P. Mironescu and L. Nirenberg defined a notion of degree for maps u €
WLP(S™ x Am="_ S™), where m > n and A™~ " is an open connected subset of R™ ™", assuming that p > n + 1
(note that, in the special case m = n, the condition p > n is enough). In the case n = 1, we recover from this
result the conclusions of [30, 227, 186]. Furthermore, two maps u and v in Wl’p(S” x A™" S™) are in the
same connected component if and only if deg f = deg g (see [26, 21]). See [27] for further results concerning the
degree.

3.4 The trace of Sobolev maps

For any domain 2 C R™ with smooth boundary and for any p € [1, +00), the trace operator tr: C1(Q,RY) —
C1(09, RY) can be extended to a continuous and surjective operator tr : W1P(Q RN) —s Wi-oP (0Q,RN) :=

19Tf M is connected, without boundary but not oriented, the homotopy classes are classified by the degree mod 2.

20But if M and N are spheres with different dimensions, this is not so, for example, maps from S3 to S2 are classified according to their
Hopf degree, see [110].

21 A rich interplay between cohomology and compensated compactness theory occurs here: for any smooth function 1) € C1(M) and any
2-form 3 on S? which is exact, i.e., 3 = da for some 1-form «, the functional u — fM ) u* 3 is continuous for the weak W12 topology
because of the relation u*3 = d(u*«), so that a compensated compactness argument is possible; however, if (3 is closed but not exact, this
argument does not work. See [98] for a detailed study of these phenomena.



{g € LP(09, RN)| ||| < 4oo} if p > 1, where:

_1
w'T PP (90)

|p 1/p
P + dx d .
19llyy1-3.0 5, = llllzeom </£m /asz Ix—yI"*’” 2 y)

(If p = 1, the image of the trace operator is Ll(GQ,RN ).) This definition can be extended to the case of a
manifold M with a smooth boundary, by using local charts to define WP (OM,RY) and the trace operator
r: WIWP(M,RY) — W'"5P(OM,RY). Similarly the trace tru of a map u € WhP(M,N) is always
contained in:

W5 P(OM,N) = {g € W5 P(OM,RY)| g(z) € N, forae. x € IM}.

However, the map tr: WP (M, N) — Wlfi’p(a/\/hj\/') is not onto in general, i.e., it is not true in general that
any map g € W'~ 5?(OM,N) is the trace of a map in W?(M, A). Obstructions occur even for continuous
maps: for instance, the trace operator tr : C'(B™,N') — C}(B™, N) is onto if and only if 7,,—1 (N) = 0. In
the following we define 77 (M, N) := {g € W5 P(OM,N)| Fu € WP (M, N) such that u|opg = g}. The
question whether TP(OM, N') = W'~ »?(9M, N') for given M, A and p is largely open. Here are some results:

e If p > m, F. Bethuel and F. Demengel [16] proved that T?(OM,N) = Wlfi’p(a/\/l,/\/) if and only if
any continuous map g € C°(OM, N) can be extended to a map u € C°(M,N).

e For 1 < p < m,R. Hardt and F. H. Lin [107] proved that
if mN) = =7 (M) =0, then TP(OM,N) =W 5P(OM,N).

e Conversely Bethuel and Demengel [16] proved that, if 1 < p < m, then mp,—1(N) = 0 is a necessary

condition for having TP(OM,N) = W'wP (OM, N'). Moreover, they proved that, if 1 < p < m, then,
for any N such that wj(N') # 0 for some integer j < [p] — 1, one can construct a manifold with boundary
M such that TP(OM,N) # W'~ 5P (OM,N).

Furthermore it is proved in [16] that, in the case where M = B™ and N' = St if 3 < p < m then

TP(9B™,S') # W'~ »?(9B™,S'). For more results on fractional Sobolev spaces into S, see the report of
P. Mironescu [155] or the papers [20, 183].

4 Regularity

4.1 Regularity of continuous weakly harmonic maps

Note that as soon as we know that a (weakly) harmonic map ¢ is continuous, then we can localize its image, i.e. by
restricting ¢ to a sufficiently small ball in M we can assume that the image of ¢ is contained in an arbitrary small
subset of N with good convexity properties or with a convenient coordinate system. Thus the main results concern
the higher regularity of continuous weakly harmonic maps. The hard step here is to prove that the weak solution
¢ is Lischiptz continuous, i.e. that d¢ is bounded a.e.??. This was proved by O. Ladyzhenskaya, N. Ural’tseva in
[143] in a more general context, by using contributions of C. B. Morrey [157], a proof can be found in [135]. In
[189], a proof is given in the case when the weakly harmonic map is Holder continuous. Estimates of the Holder
norms of higher derivatives of ¢ in terms of |d¢| were obtained by J. Jost and H. Karcher [136] for harmonic maps
with values in a geodesically convex ball: on such balls they construct and use almost linear functions (which
are based on harmonic coordinates, in which the Holder norm of Christoffel symbols are bounded in terms of the
curvature).

220nce we know that d¢ € Lye , it then follows from (25) that A¢ € LjS , which 1mp11es by standard estimates on the inverse of the

Laplacian (see [157], 6.2.5) that ¢ € W p , for all p < oco. Hence we deduce that Ap € W, ? and hence that ¢ € W3 P for all p > 0. We

can then repeat this argument to show that ¢> [Sn% loc , Vr and so the smoothness of the solution follows (it is called a bootstrap argument).



4.2 Regularity results in dimension two

If dim M = 2 and AV can be embedded isometrically in some Euclidean space, all weakly harmonic maps in
W12(M, N) are continuous and hence, by the results of §4.1, smooth. This was proved first for minimizing maps
by C. B. Morrey [156] (see also [88, p. 304] for an exposition of the original proof of Morrey).

This was extended to conformal weakly harmonic maps by M. Griiter [92] (see also [133]). Griiter’s proof
works also for conformal weak solutions of the H-system Agu + A(u)(du, du) = 2H (u)(0u/dz' x du/0z?)
in an oriented 3-dimensional manifold N/, where H(u) is a L bounded function on A/. Conformal solutions
to this problem parametrize surfaces with prescribed mean curvature H. The proof in [92] uses the conformality
assumption in an essential way. Then R. Schoen [189] proved that all stationary maps on a surface are smooth.
The proof is based on the following trick. Let u € W12(M, \) be a stationary map; since the Hopf differential H
is holomorphic (see §3.1), either it vanishes everywhere and then u is conformal and we apply directly the result
of Griiter, or H = h(dz)? vanishes only at isolated points. If so, outside the zeros of h we can locally define the
harmonic function f(z) := Re(2i f; V/h(¢)d¢). Then the map U := (u, f) with values in N x R is weakly
harmonic and conformal and hence is smooth. Thus w« is smooth outside the zeros of h, and hence is smooth
everywhere by the result of J. Sacks and K. Uhlenbeck [188] (see §5.3).

The regularity of weakly harmonic maps on a surface in the general case was proved by F. Hélein, first in the
special case where A/ = S™ [113], and then in the case where N is an arbitrary compact Riemannian manifold
without boundary [116]. The proof for N' = S™ is simpler and relies on a previous work by H. Wente [221] on the
solutions X € W12(B2 R3) on the unit ball?® of R? of the H-system

0X 0X
AX =2H o X ay (34)
for a constant H # 0. Wente proved that any weak solution of this system is continuous and hence, thanks again to
the general theory of quasilinear elliptic systems, smooth. It is based on the special structure of (34) which reads,
for example for the first component of X, AX! = 2H{X? X3}, where we introduce the notation

da db  da O

{a,b} = 529y Oyn fora,b € WH2(Q), where Q C R?.

Since {a, b} is quadratic in the first derivatives of a and b, it sits naturally in L'(B?). Also, we know from the
standard theory of singular integrals that, for any function f € L!(B?), a solution ¢ of —At) = f is necessarily
in all spaces L} (B?), for 1 < p < oo, but fails to be in L>(B?). Here the key result is that a solution ¢ of the
equation —Ay = {a, b} on B is slightly more regular; in particular, we can locally estimate the L>° norm of ¢ in
terms of ||a||y-1.2 and ||b||y1.2. This is due to the special structure of {a, b}, which is a Jacobian determinant, and
is connected to the theory of compensated compactness [159, 211]. These properties were expressed by H. Brezis

and J.-M. Coron [23] as a Wente inequality,
llelloe + [ldepll2 < Cllallwr2lal w2, (35)

valid for any solution ¢ of —A¢ = {a,b} on B? which satisfies ¢ = 0 on B2. This inequality was subsequently
extended to arbitrary surfaces and the best constants for estimating ||¢|| L~ or ||dy||r2 were found, see [118]. The
point here is that, once we have (35), we can easily deduce, by approximating by smooth maps, that solutions to
—Agp = {a, b} are continuous. Hence the result of Wente follows.

For harmonic maps the key observation is that a u is weakly harmonic if and only if the following conservation
laws hold

d (x(u'du’ —w/du’)) =0  Vi,j suchthat 1<i,j<n-+1, (36)

where x is the Hodge operator on B2, This was remarked and exploited for evolution problems [41, 197]. One can
either check (36) directly by using (26) or derive it as a consequence of Noether’s theorem, due to the invariance
of the Dirichlet functional under the action of SO(n + 1) on W12(Q, S™) [118]. From (36) we deduce that there

23Since the regularity problem is local, and every ball in a Riemannian surface is conformally equivalent to the Euclidean ball B2, there is
no loss of generality in working on B2.



exist maps b5 € WH?(Q) such that db = — % (u’du’ — u/du’). Then we note that Abldx A dy = d(x(db})) =
d(u'dw’ —wdu') = 2{u’,w’ }dz A dy so that, by a Hodge decomposition of db} and by using Wente inequality,
we can deduce the continuity of u. This was the approach in [113]. A more direct proof>* is the following: since
2(u, du) = d(|u|?) = 0, we can rewrite the harmonic map equation (26) as

; ; ;0uj our\ ou’ ;Ou;j our\ o’ o
AU = ddul? = (S . A R QW gy g
u' = u'|dul (u o W 8;16) o (u oy U 3y) 9y {b%,u’}, (37)

where, as usual we sum over repeated indices, u; := d;;u’ and we have used the relation db; = —x(u'du? —u’ dut).
Note that an alternative way to write (37) is

d(xdu') + db; A du’ = 0. (38)

We deduce that u is continuous. This method can be extended without difficulty if we replace the target S™ by
any homogeneous manifold A/, since then Noether’s theorem provides us with the conservations laws that we need
[114].

In the case where A/ has no symmetry we need to refine the results on the quantities {a, b}. In [45] R. Coifman,
P-L. Lions, Y. Meyer and S. Semmes proved that, if a,b € W12(R?) then {a,b} belongs to the generalized
Hardy space 7' (R?). We do not give here the various and slightly complicated definitions of the Hardy space
H!(R™), which was introduced by E. Stein and G. Weiss [206], but just list useful properties of it:

a) H!(R™) is a strict subspace of L!(R™);

b) any function ¢ on 2 C R™ such that Ap = f on €2, where f € H!(R™), belongs to W21(Q), i.e. its
second partial derivatives are integrable [205];

c) let « € WH2(R™) and (3 be a closed (in the distribution sense) (m — 1)-form on R™ with coeffi-
cients in L?(R™); then da A 3 = fdx' A--- A dz™, where f belongs to H!(R™) [45]. In particular, if
a,b € W12(R?) then {a, b} € H!(R?);

d) by a theorem of C. Fefferman [72], H!(R™) is the dual space of VMO(R™) and the dual space of 7! (R™)
is BMO(RR™) (see footnote 13).

Now we come back to the regularity problem. We now assume that there exists a smooth section € := (€1,...,¢,)
of the bundle F of orthonormal tangent frames on . Although there are topological obstructions, there are ways
to reduce to this situation, see [118]. For any map u € W12(B?, N), consider the pull-back bundle u*F. To any
R € WH2(B2,50(n)) we associate the section e := €ou- R of u*F defined by e, := (€y0u) R, and we minimize
over all gauge transformations R € W12(B?,SO(n)) the functional F(e) := § [o 2210 e lWh[?da! da?,
where wZ := (deg, ep). It is easy to show that the infimum is achieved for some harmonic section e of u*F [118,
Lemma 4.1.3]. The Euler-Lagrange equation satisfied by e can be written as a system of conservation laws (again
a consequence of Noether’s theorem):

d(*x%) =0 onQ and W’ (9,)=0 onoQ, (39)
which is satisfied by its Maurer—Cartan form w® := (de,,e;). Thanks to (39), we can construct maps A% €
WL2(B2) such that dA® = xw® on B? and A® = 0 on 9B2. Then the key observation is that

Adb = (% O\ [0 Do\ i{ei ¢ (40)

@\ oz’ dy oy’ Ox [ sar=bly

=1

where (¢, (z))1<i<n are the coordinates of e, (z) € TN C RY in a fixed orthonormal basis of R”Y. Hence
the right hand side of (40) coincides locally with some function in 7! (R?), thanks to property c) of Hardy spaces
above. Hence by property b), the second derivatives of A’ are locally integrable. This property implies that the
components of dA® are in the Lorentz space L**, a slight improvement on L2 [118]. But since dA? = xw? , this
improvement is valid also for the connection w”

a-

24This was pointed out by P.-L Lions.



Lastly, consider a weakly harmonic map u € W'2(B2 ) and write its Euler-Lagrange equation (25) in the
moving frame e: if we set a® := (Ju/0z, e,) and 6 := w’(9/0%), we obtain da®/9z = O¢a’. In this equation,
a® is in L? whereas, thanks to the choice of a Coulomb moving frame e, the function 6 is in L?!. This slight
improvement turns out to be enough to conclude that « is Lipschitz continuous.

Recently T. Riviere [184] proved the regularity of all maps u € W2(B2 A) which are critical points of
the functional F(u) := 3 [4. |du|?dzdy + [4. u*w, where w is a C! differential 2-form on N such that the
coefficients of dw are in L°°(A/). This answers positively conjectures of E. Heinz and S. Hildebrandt. The method
provides, in particular, an alternative proof of the regularity of weakly harmonic maps with values in an arbitrary
manifold without Coulomb moving frames. Instead, it relies on constructing conservation laws, as for maps into
the sphere, but without symmetry. First, let us try to imitate equation (38) for a weakly harmonic map into an
arbitrary compact manifold N'. We let A € T'(S?T*N ® NN) be the second fundamental form of the embedding
M C R¥. For y € N denote by Aék(y) the components of A, in a fixed orthonormal basis (1, - - -, ex) of RY,

ie, A4,(X,Y) = Aék(y)Xijei (X,Y € T,N). Then we can write the Euler—Lagrange equation (25) for u as
d(*dui) — (*A};j (u) du’f) Adu’ = 0.

But since A takes values in the normal bundle, we have Z;\f:l Aii(u)duj = 0, so that we can transform the
previous equation into

d(xdu’) — (*Q;) Adu? =0 where Q; = A};j(u) du® — Af”(u) du®. (41)

If we compare with (38), which can also be written d(xdu’) — (x(u’du; — ujdu®)) Adu? = 0, we see that (38) is a
particular case of (41), where Q = u*du; — u;du’. The difference is that we do not have d(x€2) = 0 in general.
But both forms are skew-symmetric in (i, 7). And that property is actually enough. The idea is to substitute for
xdu® another quantity, of the form Aé (xdut), where Al e WL2(B2%). A computation using (41) shows that

d (A% (xdu')) = — % (dA} — ALQF) A du.

Hence if we assume that we can find maps A := (4%)1<i j<n, B = (Bi)i<ij<n € W"?(B? M(N,R)) such
that A is invertible with a bounded inverse and

* (dAL — ALQF) = dB] 42)
then we obtain an equation similar to (38), i.e.,
d (xAl(xdu?)) + dB} A du’ = d (Al (xdu’) + Bjdu?) = 0. (43)

Then formulation (43) allows us to prove the continuity of u easily: we use the Hodge decomposition: A; duw/ =
dD% — dEj for some functions D}, Bt € W'?(B?), then we deduce d(xdE}) = —dA} A du/, i.e. —AE} =
{Aj,uw’ } from the definition of £} and so we obtain d(xdDj}) = —dB; A du’,i.e. —~AD} = { B}, u’} from (43).
Hence, from properties b) and c) of Hardy spaces, we deduce that the first derivatives of D} and E7 are in the
Lorentz space L?!; since A has a bounded inverse, it follows that the first derivatives of u are also in L?!. Thus u
is continuous. To complete the proof one needs to prove the existence of A and B solving (42). For that purpose
Riviere adapts a result of K. Uhlenbeck [217] to first prove the existence of some gauge transformation map
P € W12(B2,SO(N)) such that QF := P~1dP + P~1QP satisfies the Coulomb gauge condition d(xQ2") = 0.
This implies, in particular, that P~*dP + P~1QP = xd¢, for some map £ € W12(B?,s0(N)). Then by putting
A := AP, equation (42) reduces to dA — A(xd€) + (xdB)P = 0, a linear elliptic system in A and B, which
can be solved by a fixed point argument.

4.3 Regularity results in dimension greater than two

Preliminary facts

If m := dim M > 3, weakly harmonic maps in W?(M, N') will not be regular in general and may even be
completely discontinuous as shown by the result of T. Riviere (see §5.4), unless A/ has some convexity properties



(see §6.3). But partial regularity results hold for minimizing or stationary maps. Indeed we are able, in general,
to prove that such maps are smooth outside a closed subset X that we will call the singular set. The size of X is
estimated in terms of some Hausdorff dimension and corresponding Hausdorff measure. Fix some s € [0, m]. For
any covering of 3 by a countable union of balls (B}") jes of radius 7, consider the quantity H*((B}") e, ¥) :=
a(s) X ey 75, where a(s) = 2m2 /sT'(£): this measures approximately the s-dimensional volume of . The
s-dimensional Hausdorff measure of ¥ is:

HE(X) := sup inf(S H*((B}")jes,%) (in the infimum, (B}*) ¢ is such that ¥ C Uje s BY").
6>0 Ti<

Then there exists some d € [0, m] such that Vs € [0,d), H*(X) = 0 and Vs € (d, m], H*(Z) = +oo. If H4(X) is
finite, d is called the Hausdorff dimension of 3. In the special case when ¥ is a smooth submanifold of dimension
k, then d = k and H?%(X) coincides with the d-dimensional volume of X.

Furthermore it is useful to analyze the first consequences of the Euler—Lagrange equation (25) and the conserva-
tion law for the stress-energy tensor (29) concerning the regularity of a weak solution u € W2(M, N). Equation
(25) implies that the components of Aju are in L' (M), from which one can deduce that the first derivatives of u

are locally in L? for 1 < p < m/(m — 1), which has no interest. However, the conservation law (29) immediately
provides the following strong improvement to the regularity of w.

The monotonicity formula. Given a map u € W2(M, N); to each x € M and r > 0 such that the geodesic
ball B(z, ) is contained in M, we associate the quantity

1 2
Ez,T(u) = Tm,Q L(z,r) ‘du|gw9'

Now let B(a,r) C M be a geodesic ball centred at a and of radius r > 0 such that the distance from a to its cut
locus and to OM is greated than r. Then there exist constants C' (depending on m) and A (depending on a bound
of the curvature on B(a,r)) such that, if u € W2(M, N) satisfies the relation (29), then for all x € B(a,r/2)
the function (0,7/2] 3 p — e“*E, ,(u) is non-decreasing [231]. If the metric on M is flat this holds with
A = 0 and this can be proved by integrating over B™ (o, ) the relation (0/0z)((z" — xg)Sg (u) = S%(u) =
1(m = 2)|du

527 , a consequence of (29). We then get an identity from which we derive:

2

2 dmz >0, (44)

,r.m—2

ou

for0 <m <7y, Epr,(u) — Egpp (u) =
n

/Bm(m,rz)\Bm(a:,rl)

where Ou/On denotes the normal derivative of w. The monotonicity formula has strong consequences; for sim-
plicity, we expound these in the case where (M, g) is flat®. First, elementary geometric reasoning shows that, for
v € (0,1), By, »(u) controls E; ~(u) for x € B™(xg, (1 — «)r) and hence, by (44), E,, »(u) controls E, ,(u)
for x € B™(x0,(1 — )r) and p < r. Then, by a Poincaré—Sobolev inequality:

1 1

— |u — g, |2 de < CE, ,(u), withuy,:=——— u dz,
pm B™(r,p) “r “r “r ‘BT’L($> p)| B™(z,p)

we deduce a bound on sup{p~"™ Jom (e py [ =t ,p* dz |z € B™ (20, (1=7)r),p < 7}, i.e., roughly speaking,
on the local BMO-norm of w on B™(xq, (1 — 7)r). The BMO space (see footnote 13) contains all the spaces L?,
for 1 < p < oo, and hence is very close to L°°. Thus this is an important gain of regularity.

The e-regularity. Our task is to put together consequences of (25) and (29) in order to improve the preceding
observations. The (continuous) main step in most regularity results consists of showing that there exists some
€o > 0 such that for any weak solution u (for a suitable notion of ‘weak’), if E, (u) < €o, then, for0 < o < p
such that p/r is sufficiently small and for x € M close to a,

Epo(u) < C (g)a Eq ,(u) (45)

25Since in the regularity theory we are interested in the local properties of weak solutions, the effect of the curvature of M can be neglected.



for some constants C' > 0 and o > (. If this is true, we are in a position to apply the Dirichlet growth the-
orem of Morrey (see [157, 83]), which implies that u is Holder continuous with exponent «/2 in a neighbour-
hood of a. This method is the reason for the partial regularity: a covering argument shows that, if ¥ := {a €
M| lim, g inf E, ,(u) > €0} had a non-vanishing (m — 2)-dimensional measure, u would have infinite energy,
hence H™~2(X) = 0 by contradiction. The continuous main step itself can be achieved by proving a discrete
version of it: there exists some £9 > 0 and some T € (0, 1) such that, for any weak solution u (here again we stay
vague), if Ey (u) < €o, then

Eyrr(u) < -Egr(u). (46)

Indeed, by using this result at several scales and concatenating them, one easily deduces (45).

A first attempt. We now describe in a naive way an attempt to prove the discrete main step (46). First, we
observe that, if u is defined on B™(a,r), then the map T, ,u defined by T, ,u(z) := u(rz + a) is defined on
B™ := B™(0,1) and, furthermore, Ey (7T, u) = E,.(u), which shows that one can work without loss of
generality with a map u € W'2(B™, \). So our aim is to prove that Ey - (u) < 3 Ey 1 (u) for some 7 > 0 under
some smallness assumption on Ey 1 (u). We split u = v + w, where v agrees with  on 9B" and is harmonic with
values in RY > N, and w vanishes on 9B™ and has Aw = Au = —A(u)(du, du). Then, for 7 € (0, 1),

1 2 2
Eor(u) = —— / |dul*d™z < —— / |dvPd™r + —— / |dw|?d™x.
T2 Bmo,r) T2 JBmo,r) TS JBm(o,r)
We now estimate separately each term on the right hand side. On the one hand, since v is harmonic, |dv|? is a
subharmonic function (see Chapter 1) and hence
2 2 m 2 m 2 m 2
— |dv|*d"'s < ——T |dv|*d™z < 27°Ey 1 (u). 47)
T Bm(o,r) Tm Bm(0,1)

On the other hand, we have

/ |dw|*d™x < / |dw|*d™z = / <w, 87w> d™x — / (w, Aw)d™z,
m(0,7) B™(0,1) aBm(0,1) " On B™(0,1)

which implies, since w = 0 on 0B™,

2 2
— / |dw|*d™z < — / (u—v, A(u)(du, du)) d"z. (48)
T B™(0,7) T B™(0,1)

We see from (47) that, by choosing 7 sufficiently small, the contribution of v in Ey - (u) can be as small as we want
in comparison to Ej 1 (u). Hence the difficulty in proving (46) lies in estimating the right-hand side of (48). We
may write me(0,1)<u — v, A(u)(du, du))d™z < C'suppm (g 1) |u — vl me(o,l) |du?d™z = C'supgm g1y lu —
v|Eo,1(u) and, by using the maximum principle for v we can estimate supgm (o,1) |[u — v| in terms of a bound
0SCpm (0,1)U = SUP, e pm(0,1) [4(z) — u(y)| on the oscillation of u on B™ (0, 1). However, we have no estimate
on these oscillations but only on the mean oscillation, hence our attempt failed. Anyway, we see that we are in
a borderline situation since, again, an estimate in BMO space is close to an L> estimate. The following partial
regularity results can be obtained by filling this gap between BMO and L*°.

Regularity of minimizing maps in dimension greater than two

For minimizing maps, partial regularity results were obtained by R. Schoen and K. Uhlenbeck [190] (and also by
M. Giaquinta and E. Giusti [84, 85] under the assumption that the image is contained a a single coordinate chart):
let u € W12(M, N') be a minimizing weakly harmonic map, then there exists a closed singular set > C M
such that v is Holder continuous on M \ ¥ and H™3(X) < oc. This is proved in two steps:

(i) first, one shows that a minimizing map u is smooth outside a singular set 3 such that H™~2(%) = 0;



(ii) then, one shows that, near a point xy € 3, the minimizing map v behaves asymptotically like a homogeneous
map, so that, in particular, the singular set looks asymptotically like a cone centred at xy. This forces a
reduction of the dimension of X.

Step (i) [190, 84] relies on the ideas expounded in the previous paragraph, since a minimizing map is automat-
ically stationary. A key observation is that, if we have a local BMO bound on a stationary map u, then we can
approximate v locally by a smooth map u(" (where h > 0 is small) with values in RY > A/, and the estimate
on the mean oscillation of u becomes an estimate on the oscillations of (™. Thus the previous attempt works if
we replace u by u") (with suitable adaptations), leading to an estimate of E (")) in terms of Ep ;(u). Since,
again, u has small local mean oscillation, we can compose u(") with a projection onto A/ to get a smooth map wy,
with values in N" which approximates u, and then deduce an estimate for Eg ,(uyp,) in terms of Eg 1 (u). But we
are interested in estimating Ey - (u), and here we use the fact that u is a minimizer: by a delicate gluing process
we construct a test function Uy, which agrees with u on 9B™ (0, 27) and coincides with uy, in B™(0, 7), and we
obtain (46) by comparing the energy of v and the energy of U}, on suitable balls.

Step (ii) [190, 85] is inspired by a similar work by H. Federer [71]. It is based on the analysis of a blow-up
sequence (uy)ren of minimizing maps centred at a point @ in the singular set ¥. Each u, € W12(B™ N)
is defined by ug(z) := u(a + rizx), for some decreasing sequence (ry)gen Which converges to 0. It is not
difficult to prove that, after extraction of a subsequence if necessary, (uy)ren converges weakly in W12 to a
map u, € WH2(B3, N), called the tangent map at a. However, one can prove that, actually, (ux)ren converges
strongly in W12 to u,, and that u, is weakly harmonic?®. Hence we can pass to the limit in (44) and deduce that
du, /On = 0, i.e., u, is homogeneous.

Remarks (i) A variant of the proof of step (i) has been proposed by S. Luckhaus [151], with applications to
a much larger class of functionals on maps with values in manifolds. Also, in the special case N' = S2, simpler
proofs are available: by R. Hardt, D. Kinderlehrer and F. H. Lin [105], and by Y. Chen and Lin [42].

(i1) In step (ii) it is not clear a priori whether the tangent map u,, at a singularity a depends on the choice of
the blow-up sequence (ux)gen . It is actually a deep and difficult question. L. Simon [198] (see also [199] for
simplifications) proved that if N is real analytic, for any map v € W12(M, N') which is a minimizer and is sin-
gular at a € M, if the tangent map u,, is smooth outside 0, then this tangent map is unique. In constrast, B. White
[228] constructed a harmonic map into a smooth non-analytic Riemannian manifold with a one-parameter family
of tangent maps having an isolated singularity at the same point, hence proving that the analyticity assumption in
the result of Simon is crucial. See the survey by Hardt [103] for a discussion of these questions.

Reduction of the singular set. These results can be improved if we assume some further conditions on A: for
instance, if A/ is non-negatively curved or if the image of a minimizing map is contained in a geodesically convex
ball, then minimizing maps are smooth (see §6.3). Optimal examples of such convex targets are the compact
subsets of S := {y € R"™!| y"*! > 0}. These examples are close to the borderline case where the target is
@ = {y € Ryt > 0}, since minimizing maps into Si_’f_ may not be smooth (see §6.2). In order to estimate
the size of the critical set outside these situations, one possible approach is to try to classify the minimizing tangent
maps u € W12(B™ N, i.e. maps of the form u(z) = ¥ (x/|z|), where ¢ : S™~1 — N/ This relies on proving
kinds of Bernstein theorems for minimizing tangent maps into N'. These questions have been investigated by R.
Schoen and K. Uhlenbeck [192] and M. Giaquinta and J. Soucek [89] in two cases:

(i) in the limit case, where N’ = S7: a minimizing map v € W'2(M, S7) is smooth if n < 6 and has a
closed singular set of Hausdorff dimension less or equal to n — 7 for n > 7 [192, 89]. This is based on
results in [120, 126] (see also §6.3).

(ii) beyond the limit case, if N' = S™: a minimizing map v € W12(M, S") is smooth if m := dim M <
m(n), where m(n) is given by the following table [192]:

n |2[3[4[5]6]7]8]9]]10,00)
mn) |2]3|3|3|4|4]5]|5] 6

26y, is actually minimizing, as shown by S. Luckhaus [152].



See also §6.2. Lastly, extra results on reduction of the singular set were proved for stationary maps by F. H. Lin
and, in particular, are valid for minimizing maps, see below.

The structure of the singular set. The singular set X has a simple structure in dimension 3, since then it
is composed of isolated point. However, in higher dimensions, > has a positive Hausdorff dimension in general
and the analysis of its regularity requires the use of techniques from geometric measure theory. For maps u in
W12(B*, 8?) R. Hardt and F. H. Lin [108] proved that the singular set ¥ of a minimizer in W'2(B*, S?) with
a smooth trace on OB* is the union of a finite set and of finitely many Holder continous closed curves with only
finitely many crossings. For more general situations L. Simon [200] proved that if N is compact and real analytic,
for any minimizer v € W12(M, N') with singular set 3 and any ball B C M, ¥ N B is the union of a finite
pairwise disjoint collection of locally (m — 3)-rectifiable locally compact sets.*” See [103] for a survey; see also
the book of Simon [201].

Minimizing maps from the unit ball B3 to S2. H. Brezis, J.-M. Coron et E. H. Lieb [24] found further
results in the special case M = B3 C R?® and N' = S2%. They prove that a minimizing harmonic map can
only have singularities of degree +1; more precisely, the only homogeneous minimizing maps B> > = ——
Y(z/|z]) € S? are of the form (x/|z|) = £Rx/|z|, where R € SO(3) is a rotation (similar results holds for
N = RP?). The minimality of the radial projection uq (x) = /|z| is obtained by establishing the lower bound
Eps(u) > Eys(ug) = 4 for any minimizing map u € W, *(B?,5?), by using the following idea. By the
partial regularity result [190] any such map w is smooth outside a finite singular set {a1, - - -, a,} with respective
degrees {dy, -, d,}. Then, from the local inequality %|du|? > |u*wg2|, which holds a.e., one deduces that

Epgs(u) > / |u*wge| detdr?da® > / d¢ N (u*wgz) :/ Cutwge —/ Cd(u*wgz)
B3 B3 aB3 B3

for all ¢ € Lip(Q) such that |[V(|r~ < 1. But the condition: u = ug on dB? implies that [, ., (u*wg> =
J5 s Cwsz. Furthermore, by using d(u*wg2) = >_7_, d;da, (see also §5.4 and (53)), we finally get

CELip(),|V(lLoo <1

p
Eps(u) > sup ( - Cwgz — Z d; C(ai))-
i=1

Then the proof can be reduced to an optimization problem on the set of configurations of the type {(a1,d1), - -, (ap, dp)}.
which can be solved by adapting a theorem of Birkhoff.
Still for the case of minimizing harmonic maps u from B3 to S2, F. Almgren and E. H. Lieb [4] found a bound
on the number N (u) of singularities of u: N (u) is certainly not bounded in terms of its energy Egs(u), but it is
in terms of the energy of its trace on 9B3. Indeed, there exists a universal constant C' > 0 such that, for any
o € WH3(0B3,S?),

for any u € Wé’z(B?’, S?) which is a minimizer of Ezs , we have N (u) < CEyps ().

The precise value of C is not known but examples constructed in [4] show that we must have C' > 1/(4x). Itis
also shown that a similar result where the energy Eyps (i) is replaced by the area covered by ¢ cannot hold.

Minimizers of the relaxed energy. The regularity of the minimizers in W'2(B3, 52) of the functional E; =
Eps + 4\wL (see §5.4) has been investigated by H. Brezis and F. Bethuel [14] who proved that, if A € [0, 1), any
minimizer of £ is smooth on B*\ ¥, where H°(X) < oo, i.e. ¥ is a finite collection of points. The case A = 1
corresponds to the relaxed energy Ege:;l = Eps + 4w L, which is harder to deal with: the only partial regularity
result that we know is due to M. Giaquinta, G. Modica and J. Soucek [87, 88] who showed that minimizers of
Eg%l are smooth on B3\ 3, where H(X) < oco. It is a paradox that the regularity theory for minimizers of the
relaxed energy, which was designed for producing continuous harmonic maps, is less understood than the theory

of minimizers of the standard energy functional.

Minimizers of the p-energy. The previous results have been extended to minimizers of the p-energy in various
cases by S. Luckhaus [151], R. Hardt and F. H. Lin [107], M. Fuchs [75, 76], and by F. H. Lin in the important
paper [148].

2"More can be said when all Jacobi fields along (i.e., infinitesimal deformations of) the harmonic maps are integrable, i.e., come from
genuine deformations through harmonic maps, see [200, 201, 145].



Regularity of stationary maps in dimension greater than two

For stationary maps, we have the following partial regularity result: let u € W12(M, N') be a stationary map;
then there exists a closed singular set ¥ C M such that v is Holder continuous on M \ ¥ and H™2(%) = 0.
This was proved by L. C. Evans [70] in the case where N' = S™ and by F. Bethuel [13] in the general case.

The proof of Evans [70, 118, 88] is based on the discovery that the attempt expounded above really works for
maps into a sphere S™. Recall that the difficulty was to estimate a quantity of the type [, (u—v, A(u)(du, du)) d"z
and that only the mean oscillation of u — v can be estimated in terms of Ey ;(u). However we can use the same
observations as in dimension two, i.e. write the harmonic map equation in the form d(xdu®) 4+ du’/ A x(u'du; —
u;du’) = 0, and use the conservation law d((u'duj — ujdu®)) = 0. This implies, by using the property c) of
Hardy spaces, that A’ (u)(du, du)d™x = u'|du|?d™z = du? N*(u'du; —ujdu®) coincides locally with a function
in the Hardy space ' (R™). Thus, by property d) of Hardy spaces, we can estimate [, (u— v, A(u)(du, du))d™z
as a duality product between the (local) BMO norm of u — v and the (local) Hardy norm of A(u)(du,du), and
hence complete the proof.

The proof of F. Bethuel [13, 118] uses a Coulomb moving frame (eq,---,e,,) as in [116]. The strategy is
somewhat parallel to the proof of Evans, but the realization is much more delicate. The idea for estimating |du|
on a small ball consists of using a Hodge decomposition (d ({(u — uo,1)),¢e,) = dw® + *xdv®, where up 1 :=
|B™(a,r)| ™t me(a’r) wand ¢ € C(B™(a,r)) is a cut-off function. Then both terms in the decomposition
are estimated separately. However, because the system is not as simple as in the case treated by Evans, we need
to replace Morrey’s rescaled energy Eq,(u) by Mo, (u) := sup{p' ™™ [5m(, , ldul | B"(z,p) C B™(a,r)}
(which also controls the local bounded mean oscillation of u).

Remarks (i) Several variants of the proof by Evans exist: one can avoid the use of the Fefferman—Stein theorem
on the duality between H' and BMO, as done by S. Chanillo [40], or even avoid the use of the Hardy space, as
done by S.-Y. A. Chang, L. Wang and P. C. Yang [39].

(i1) Using the conservation laws discovered by T. Riviere in [184], Riviere and M. Struwe [185] derived a
simplified proof of the result of Bethuel, without using Coulomb moving frames.

Reduction of the singular set. The question of whether H™~3(X) is finite is still open. The reason is that the
blow-up technique used by Schoen and Uhlenbeck does not work here, since we are not able to prove that, after
extracting a subsequence if necessary, a blow-up sequence uy(z) = u(a + rgx) at a point a converges strongly
when 7, — 0. Indeed we can only prove that it converges weakly. This leads to the more general question of
understanding a sequence (vi)ren of stationary maps which converges weakly fo some limit v: after extracting
a subsequence is necessary, we can assume that the energy density |dvy|?d™x converges weakly in the sense of
Radon measures to a non-negative Radon measure 2 which can be decomposed as j1 = |dv|? + v; the measure v
detects the defect of strong convergence, i.e. the sequence converges strongly if and only if v = 0. By a careful
analysis of such sequences, F. H. Lin [147] proved that the singular support®® T of w is a rectifiable subset with
a finite (m — 2)-dimensional Hausdor{f measure. Moreover v is supported by I" and, more precisely, is equal to
the (m — 2)-dimensional measure supported by I times an H™~2-measurable density ©(z). This result is optimal
as shown by the following example: assume that there exists a non-trivial harmonic map ¢ : S? — A and, for
any \ € R, let uy € C>®°(B? x B™=2, N) be defined by uy(z,y) = ¢ o P~1(\x), where P : S? — R? is the
stereographic projection (30). Then each u, is stationary and |duy|? d™x converges weakly to a Radon measure
v supported by {0} x B™~2 when A — +oco. Moreover Lin and Riviere [149] proved that, in the case where
N = S, for a.e. point x € T (in the sense of (m — 2)-dimensional measure) the density ©(x) is a finite sum of
energies of harmonic maps from S to S™ (this result generalizes the identity (49) for maps of surfaces) and, in
particular, if V" = S2, ©(x) is a integer multiple of 87. For a general target manifold, a further result by Lin [147]
is that, for a given NV, any sequence of weakly converging stationary maps converges strongly (i.e. satisfies v = 0)
if and only if there is no smooth non-constant harmonic map from S* to N'. Applying his results to a blow-up
sequence of stationary maps, Lin [147] proved that if A does not carry any harmonic 52, then the singular set
Y of a stationary map with values in A" has Hausdorff dimension s < m — 4. If, furthermore, N is real
analytic, then X is s-rectifiable. On the other hand a consequence of the work by Lin and Riviere [149] is that,
for a stationary map u into S?, if liminfy_, o E, . (u) < 8, then w is continuous at x.

28The singular set I also coincides with N-s.0{x € B™| liminfy_, o E r(ug) > o}



Stationary critical points of the p-energy. A notion similar to the notion of stationary maps for critical points
of the p-energy makes sense, and the previous regularity results has been extended to this case by L. Mou and P.
Yang [158].

5 Existence methods

5.1 Ecxistence of harmonic maps by the direct method

The general strategy for proving existence of harmonic maps consists of choosing a non-empty class £ C WP (M, N)
of maps which is defined, for example, by some Dirichlet boundary conditions or some topological constraints, and
then to consider a sequence (uy), oy minimizing the energy Exq in £. Here we assume for simplicity that M is
compact. One can repeat the arguments given in Chapter 1 for the solution to the classical Dirichlet problem: since
£ is non-empty it contains maps of finite energy and so, in particular, the minimizing sequence has bounded en-
ergy. Thus, there is a subsequence (¢ (k)),cn C (k) such that (U‘P(k))keN converges weakly in WP (M, RY)
to some map u € WHP(M,RYN). An extra task is to check that u(z) € A ae. This is a consequence of
the fact that, because of the Rellich—-Kondrakov theorem, the subsequence (¢ (k)), oy converges strongly to u in
LP(M,RY) forall p < 2m/(m — 2). Hence we can extract a further subsequence (1 (k)),cy C (¢(k)) ey Such
that (%1(1@)) pen converges a.e. on M to u, by a standard result of Lebesgue theory. This implies u(x) € N a.e.
on M. Hence u € W12(M, N'). Then two cases can occur:

(i) & is closed with respect to the weak topology of W'2(M,N). Then we know that u € £ and, using
the fact that E 4 is lower semi-continuous for the weak W1:2-topology as in the classical case (see §1), we
prove that w is actually an energy minimizing map in £, and so is weakly harmonic. In the special case when
M is two-dimensional, the classical regularity result of C. B. Morrey [156] ensures that w is smooth. In
higher dimensions, the minimizers are only partially regular, as shown by the regularity theory of R. Schoen
and K. Uhlenbeck [190] (see §4.3).

(ii) & is not closed with respect to the weak topology of W1:2(M, N). Then no general argument guarantees
that w € £ or that u is an energy minimizer.

5.2 The direct method in a class of maps closed for the weak topology

The class £ is closed with respect to the weak topology of W2(M, N) in the following situations:

1. € is defined through Dirichlet boundary conditions, because the trace operator given by tr : W12(M,RN)
— W2 (OM,RY) is continuous for the weak topologies?®. The first application was the solution of the Plateau
problem for a surface in a Riemannian manifold by C. B. Morrey [156].

2. & is defined by prescribing the action of maps in W12(M,A') on 71 (M) (see also §3.3). The first
application was the following result by L. Lemaire [144]: let M and N be two Riemannian manifolds of
dimension 2, with ON = (), and assume that genus M > 1 and genus N’ > 1. Then any homotopy class
of maps between M and A contains a minimizing harmonic representative. In the proof of this result, the
fundamental groups 71 (M) and 71 (V) are seen as the automorphisms groups of the universal covers M and N
of M and N, respectively. Tl:c/n, to any homotopy class represented by a map ¢ : M — N/, we associate the
class of equivariant maps @ : M — A such that Vy € (M), Toy = @41(7) o u, and we minimize the energy
integral over a fundamental domain of M in this class. This result was subsequentely generalized by R. Schoen

and S. T. Yau [193] to the case when the dimension of the target A\ is arbitrary, and then to higher dimensions in
[30, 225].

3. £ is a family of maps which are equivariant with respect to a symmetry group. This means that we are
given a group G which acts by isometries z — g-zandy — g -y, (t € M, y € N, g € G) on M and
N, respectively, and then £ := {u : M — N|Vg € G,Vo € M,u(g-z) = g-u(z)}. That a critical point
under such a symmetry constraint (assuming some extra hypotheses) is also a critical point without the symmetry

29 Any linear operator between Banach spaces continuous for the strong topologies is continuous for the weak topologies.



constraint is the content of a general principle by R. Palais [163]. For a discrete group this approach was used, for
example, by L. Lemaire [144] to prove the existence of harmonic maps between a surface M without boundary
of genus g > 2 and the sphere S? which are equivariant with respect to a finite group spanned by reflections with
respect to planes in R3. For continuous groups, this principle is expounded in [64] and the regularity of equivariant
minimizing maps is studied by A. Gastel [78]. Many applications concern the reduction of the harmonic map
problem to an ODE [55, 64] or to a system in two variables [79, 80], see §5.5.

4. N is a manifold with non-positive curvature. This improves strongly the behaviour of minimizing se-
quences (see §6.3). One instance is the following result [189, Theorem 2.12]: assume that £ is a homotopy class
of maps between two compact manifolds M and N of arbitrary dimensions and that N has non-positive curvature
and let v € C3(M,N'). Then there exists a harmonic map u € C*(M,N') such that u = v on OM and u is
homotopic to v through maps with fixed values on OM.

5. £ is a class of diffeomorphisms between two Riemannian surfaces M and A: a result by J. Jost and R.
Schoen [137, 131] asserts that if M = AN = 0, if M and N have the same genus and if ¢ : M — N isa
diffeomorphism, then there exists a harmonic diffeomorphism u homotopic to ¢ which has the least energy among
all diffeomorphisms homotopic to . Actually, the difficulty here is not to get the existence of the minimizer u, but
rather to prove that u is weakly harmonic, as not all first variations are allowed.

6. The target has non-empty boundary. Again this condition does not cause particular problems when finding
a minimizer, but does when proving that this minimizer satisfies, at least weakly, the harmonic maps equation,
since, as in the previous example, we are not allowed to use all first variations. However, if 13 is a HIW-convex ball
of N (see §6.3 for the definition), and if, for example, OM # @) and we fix a Dirichlet boundary condition with
values in B, then S. Hildebrandt, W. Jager and K.-O. Widman [120] prove the existence of a minimizing solution
ot the Dirichlet problem with values in I3 which is weakly harmonic (in particular the image of the minimizing
map does not meet 013). A variant of this result was proved by J. Jost [132] in the case dim M = 2: if we fix a
boundary condition with values in a sufficiently small ball B C A and we minimize the energy with this Dirichlet
boundary condition among those maps with values in N, then the minimizer takes values in 5.

In the results [156] in 1. and [193] in 2., by further minimizing over all Dirichlet boundary conditions which
parametrizes a Jordan curve in NV in the case of [156], or the conformal structures of M in the case of [193], the
minimizing harmonic map becomes a minimal branched immersion in the sense of §2.2.

5.3 The direct method in a class of maps not closed for the weak topology: case dim M = 2

This case holds in situations where the definition of &£ relies partially or completely on the action of maps u :
M — N on 2 (M) or on the degree of maps between two surfaces. See also §3.2 and 3.3.

e For example, consider the case when M is the 2-dimensional ball B2 and A/ any manifold such that 75 (N
is non-trivial, and choose a smooth map ¢ : B> — A which is constant on dB? and covers a (non-zero)
generator of m2(AN). Then, as observed in [144], there is no minimizer in the class of maps homotopic to ¢
which shares the same Dirichlet boundary condition. This is a consequence of the more general result that
any harmonic maps on a ball B™ which agrees with a constant on the boundary is a constant map, proved>’
by L. Lemaire [144] for m = 2.

e J. Eells and J. C. Wood [67] proved that any harmonic map of a given degree d between two Riemannian
surfaces M and N is holomorphic or antiholomorphic if genus M + |d genus /| > 0. This implies, for
example, that there is no harmonic map of degree 1 from a 2-torus to a 2-sphere whatever metrics they are
given, since there is no holomorphic map of degree 1 from a torus to CP! = S$2. Hence in particular the
minimum of the energy among degree 1 (or —1) maps between a torus and a sphere is not achieved. This
last conclusion remains true if we replace the torus by a higher genus surface, as shown by Lemaire [144]
and K. Uhlenbeck independently: a minimizing sequence necessarily converges weakly to a constant map.
Furthermore Y. Ge [82] showed that, after extracting a subsequence if necessary, the energy density of such
a sequence concentrates at one point.

30For m > 3 this result was extended by J. C. Wood [230] and by H. Karcher and Wood [141].



Bubbles

The first general analysis of the situation when dim M = 2 was done by J. Sacks and K. Uhlenbeck [188] who
addressed the question of finding harmonic maps inside a homotopy class £ of maps between a surface M without
boundary and an arbitrary compact manifold NV. One of the reasons why & is not closed with respect to the weak
topology, in general, is the conformal invariance of the Dirichlet energy and of the harmonic maps problem in two
dimensions (see §2.2). For example, when M = S2, the group of conformal transformations of S? is the group of
homographies [Z—s] : 2 — (az +b)/(cz + d) acting on S? through the stereographic projection (30). Using the
action of this group, it is easy to produce minimizing sequences in a homotopy class £ of maps S? — N whose
weak limit escapes from the homotopy class (see §3.3). This instability of minimizing sequences can be cured as in
[188] by working with the perturbed functional E(u) := [, (1 + |du|?)*p, for a > 1 which is not conformally
invariant anymore (here p1 := wy/ [}, wy is an area 2-form of total integral 1), and then letting o — 1. However a
more serious difficulty is the following: imagine that 7o (') has at least two generators -1, 2 and that, for instance,
we know that there exist minimizing harmonic maps w1, uo : S2 — N where u; (resp. us) is a representative of
~1 (resp. 72). Then it may happen that there is no minimizer in the class y; + 72: indeed maps in a minimizing
sequence could look asymptotically like a map covering the image of u; in a neighbourhood of some point p; € S?
and the image of uy in a neighbourhood of another point p; € S? (two bubbles), all the other points of S? (inside
a domain conformally equivalent to a long cylinder) being mapped harmonically to a geodesic connecting a point
of u1(S?) to a point uy(S?) (a neck). Then the limit may be either u; or uy (up to the composition with some
conformal map of S?) or a constant map (mapping S? to a point of the geodesic), depending how randomly the
instability effects of the conformal group acts. Again by replacing an arbitrary minimizing sequence by a sequence
(u®) 4~ of minimizers of %, in £ we can possibly avoid the instability effects of the conformal group, but we
cannot avoid the possible bubblings, i.e. prevent the limit u of (u®),~ as o — 1 escaping from & in general.

J. Sacks and K. Uhlenbeck prove the following results [188]. They first establish that, if o > 1, the functional
E%, achieves its minimum in each connected component of Wh2o( M, N) at a smooth map u,, which satisfies
the (elliptic) Euler-Lagrange equation of £/%,. Then they prove three basic results:

(i) The main estimate. There exists ¢ > 0 and g > 1 such that, for any geodesic ball 5 C M, any map
u: B — N with E3(u) < e which is a smooth critical point of E$, for some a € [1, ), we have a
uniform family of estimates ||du||y1.r5y < C(p, B')||dul| 2y for any p € (1,00) and any smaller disk
B CB.

(i) The removability of isolated singularities for weakly harmonic maps. This says that, for any map
u € WH2(M,N), and any finite family of points {z;,---,2,} C M such that u is smooth and har-
monic on M \ {z1,---, 2y}, there exists a smooth extension of u to M which is harmonic.

(iii) An energy gap. 3¢ > 0, 3o > 1 such that for any map u € W12(M, N') which is a critical point of E%,
for some a € [1, o), if Epq(u) < €, then w is constant.

Note that the proofs of (ii) and (iii) use (i). Thanks to the main estimate and a covering argument, Sacks and
Uhlenbeck prove that a subsequence of the family of E{-minimizers (uq),., converges to some map u €
Wh2(M,N) in the weak W12 topology and in C*(M\ {21, - - -, zx }, N), where {21, - - -, 21 } is a finite collection
of points of M where possible bubblings occur. Then, by the result of removability of isolated singularities (ii),
we deduce that u extends to a smooth harmonic map. However nothing guarantees that this map is non-constant.
On the other hand, an analysis of the behaviour of u, near the bubbling points z; reveals that, if |du,| is not
bounded in a neighbourhood of z;, then we can find a subsequence of maps v, : B(0, R,) — N (where
limg 1 Ry = +00), defined by v o(2) = ua(exp,, (Aax)), where (z,) is a sequence of points of M which
converges to z; and lim,—1 Ao = 0, such that for any ball B%(0, R) C R2, the restriction of v; , to B%(0, R)
converges in C'(B2(0, R)) to the restriction to B%(0, R) of some map v; as &« — 1, and v; : R? — Nisa
harmonic map of finite energy. Since R? is conformally equivalent to 52 minus a point and thanks again to the
removability of isolated singularities result, we can extend v; to a harmonic map S? — N (moreover we know
that any harmonic map on S? is conformal, i.e. holomorphic or antiholomorphic, see §2.2). Hence we can picture
the limit of wu,, as the collection of harmonic maps v : M — N and v 52 — N, for 1 < j < k, with the



extra (lost) information that the image of each map v, is connected by a geodesic to the point u(z;) (a so-called
bubble tree). We have moreover>':

k
Ep(u) + Y Egz(v;) = lim sup E(ua). (49)

j=1

By using this analysis and the energy gap property, Sacks and Uhlenbeck deduce the following results:

e if m3(N') = 0, or if we minimize in a conjugacy class of homomorphisms 71 (M) — 71 (N), the maps u,
converge strongly to u, hence v is a minimizer of the energy in the same class as u,. We thus recover the
results of L. Lemaire [144] or R. Schoen and S. T. Yau [193]. Here the conclusion is achieved by construct-
ing test maps u, which coincide with u,, away from the bubbling points and with the weak limit « near the
bubbling points: because of the topological hypotheses, ., is in the same topological class as u,, and hence
we can exploit the inequality E, (us) < Eo(Uq).

o if my(N) # 0, choose M = S? and a non-trivial free 2-homotopy class T of N/, i.e. a connected component
of C1(S%, N') which does not contain the constant maps. Then either v contains a minimizing harmonic
map or, for all 6 > 0, there exists non-trivial free 2-homotopy classes I'y and I'; such that I" C 'y + T’
and inf,cp, Epq(v) + infyer, Eam(v) < infyer Eaq(v) + 9.

o if mo(\) # 0 and M = S2, there exist a set of free homotopy classes A = {I';| i € I} C moC*(S?,N)
which forms a generating set for 72 (\) under the action®? of 1 (\) such that each I'; € A contains a
minimizing harmonic map.

Note that the last result implies that there exists a non-trivial harmonic map S? — A as soon as 72 (N) # 0.
The second result can be translated into the following: if mo(N) # 0, M = S? and T is a non-trivial free 2-
homotopy class of N, then if there exists 6 > 0 such that, for any non-trivial free 2-homotopy classes I'y and T's
withT' C T'1 + T'y we have

inf £ < inf E inf -6 50
inf Ex(v) < inf By (0) + inf Eni(0) =3, (50)
then the minimum of E a4 is achieved in I'. This important property is connected with a similar observation made
previously by T. Aubin for the Yamabe problem [5] and with further subsequent developments like the results by
C. Taubes [212] for the Yang—Mills connections on a 4-dimensional manifold or the concentration compactness
principle of P.-L. Lions [150].

Remarks (i) An alternative analysis with improvements to the understanding of the bubbling phenomenon have
been obtained by J. Jost [130, 131, 133] by using a method reminiscent of the balayage technique of H. Poincaré.

(ii) Further refinements to the analysis of bubbling were made by T. H. Parker [164] by using the notion of
bubble tree, which was introduced previously by Parker and J. Wolfson in the study of pseudo-holomorphic curves,
and by W. Y. Ding and G. Tian [58]. The heat flow equation also provides another approach, which was used by
M. Struwe to recover the theory of Sacks and Uhlenbeck (see below).

(iii) The influence of bubbling phenomena is not confined to harmonic maps of surfaces, but plays a major role
in the existence theory of harmonic maps in higher dimensions, as expounded in §5.4, and in regularity theory (see
the results on reduction of the singular set of stationary maps in §4.3).

Applications of the theory of bubbling

In some cases a precise analysis to decide whether (50) holds is possible: this was done first by H. Brezis and
J.-M. Coron [22] and J. Jost [131] independently. We set M = B2, the unit ball in R2, and N’ = S? and
we let v € T?(0B?,S?) := the set of maps v : 9B? — S? such that there exists u € W12(B2, 5?) with
ulpp> = 7. Then the class £ := W.*(B?,5%) := {u € W"?(B?,5?)| u|lpp> = 7} is non-empty and closed

31Sacks and Uhlenbeck just proved the inequality < in (49); the equality in (49) was established by J. Jost [132] and T. H. Parker [164]
3The set moC (S2, N) of free homotopy classes can be identified with the set of orbits of the natural action of 71 (N) on 72 (N).



for the weak W12 topology. Hence application of the direct method provides us with a smooth harmonic map u
which minimizes Fg2 in £. We now consider the functional on W%Q(B 2. 5?) defined by

1 ou Ou\ , 1 .
Q(U) —E/BZ<U,%X@>d .T—47T B2U wg2.

We observe that ( takes discrete values on W.»?(B?, 5?), more precisely: for all u € W}-*(B?,5%), Q(u) —
Q(u) € Z. The geometric interpretation of this is that, if we consider the map ufu : S? — S? defined via the
identification C U {oo} ~ S? by setting ufu = u on B? and (ufu)(z) = u(z/|z|?) on C\ B2, then Q(u) — Q(u)
is the degree of uffu. Then for any k € Z, the classes & := {u € &| Q(u) — Q(u) = k} are the connected
components of £ for the strong W2 topology. So they are the free 2-homotopy classes of S2. But they are not
closed for the weak topology; hence it is not clear whether infg, E'g= is achieved. However, one can prove that, if y
is not constant, then there exists some v € £ such that |Q(v) — Q(u)| = 1 and Eg2(v) < Epg2(u) + 47. But since
the minimum of the energy in any non-trivial homotopy class of maps S?> — S? is greater or equal to 4, this
shows that (50) holds, hence it follows that there is a harmonic map © which minimizes £ z> in its homotopy
class, the latter being either £ or £_; . Moreover, as proved in [22], in the case when ~ is the restriction of
the inverse P~1 : R? — S? of stereographic projection (30) to B2 C R?, the constructed solutions u and %
(which here are restrictions to B? of stereographic projections) are the only miminizers in their respective class
and moreover there are no minimizers in the other classes.

The following generalization was obtained partially by A. Soyeur [203] and later completed by E. Kuwert [142]
and J. Qing [174] independently, see also [88] for an exposition. We first associate two degrees d~ and d™ to the
boundary data v € T?(0B2, 5?): if v has a holomorphic (resp. antiholomorphic) extension u™ (resp. u™) inside
B? with values in S? ~ CP we let d* := Q(u) — Q(u) (resp. d~ := Q(u~) — Q(w)), if v has no holomorphic
(resp. no antiholomorphic) extension inside B2, set d* := +oo (resp. d~ := —o0). Note that we always have
d~ < dT, with equality if and only if «y is a constant. Then

(i) for k € 7Z which satisfies k¥ € (—oco,d™) U (d,00), the minimum of Ep- is never achieved in &;.
Furthermore if k € (—oco,d”] U [dt,00), infe, Ep> = infg , Ege + 4|k — d*|, where dt = d~ if
k <d~ and d* = dt if k > d* (so that, in particular, (50) does not hold);

(ii) for all k € Z such that d— < k < dT, the minimum of E - is achieved in &, .

Similar results have been obtained by Qing [176] for maps with values in a Kihler manifold.

The heat flow

Observe that, in the method of J. Sacks and K. Uhlenbeck, the family of minimizers (uoé)ob1 of £, produces
particular minimizing sequences for Erq as « — 1. One of the advantages of this is that, not only does it help
to balance the instability due to the action of the conformal group, but it also gives us some control of the tension
field (25). Another natural way to control the tension field for a minimizing sequence is to consider the heat flow
equation:

ou y ou Ou

U _ A ”Au(—,,—,) 0,T) x M. 51
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The study of this equation was initiated in [66, 1, 99] in the case when the curvature of the target manifold A/
is non-positive (see §6.3). If we remove this hypothesis, the first results*> were obtained by M. Struwe [207],

3Following the result of Struwe [207], further results on the heat flow when dim M > 3 and with no assumption on the curvature of A
were obtained: the first existence results were obtained by Y. M. Chen [41] for M arbitrary and N' = S™, and by Struwe [208] for M = R™
and N an arbitrary compact manifold. By putting together their ideas, Chen and Struwe [43] obtained the following existence result: for any
map ug € WH2(M, N), there exists a weak solution to the heat flow equation defined for all time and with Cauchy data uo, i.e. coinciding
with ug at t = 0. This solution is regular outside a singular set which has locally finite m-dimensional Hausdorff measure with respect to the
parabolic metric. Then J.-M. Coron and J.-M. Ghidaglia [50] produced the first examples of weak solutions which blow up at finite time, hence
proving that there are no classical solutions in general and Coron [49] built an example of Cauchy data for which there are infinitely many weak
solutions to the heat flow equation (actually the Cauchy data is a weakly harmonic map). Later on, similar blow-up and non-uniqueness results
were proved for the heat flow on surfaces (see the next paragraph).



for the case when dim M = 2 and M = (: for any ug € W12(M, N), there exists a global weak solution
w: [0,00) X M — N of the heat equation (51) which satisfies the energy decay estimate:

T ou |2
EM(u(T,~))+/ / ‘—‘ wedt < Ep(ug), VT >0 (52)
o Sl 0t

and which is smooth outside finitely many singular points (t;,T;)1<j<k. The solution is unique in this class. More-
over, at each singularity (t;,T;), a harmonic sphere v; bubbles off, i.e. there exists a sequence (t; ;,x¢ ;)een which
converges to (t;,T;) (with tj < t;) such that ug j(x) == u(te,;, exp,, (Ae,;z)) converges to v; in Wi’f(RQ,N),
where (A, ;) e IS a sequence of positive numbers such that limy—,oc A¢j = 0. The map v; can then be extended
to a smooth harmonic map S*> — N'. Lastly, there exists a sequence (T4)een of times such that limy_, o, Ty = 0o
and u(Ty, -) converges weakly in W12 to a smooth harmonic map us, : M — N as { — oco. This result was
extended to the case when OM # () by K. C. Chang [37]. These results can be used to recover similar results to
those of Sacks and Uhlenbeck, see for example the last chapter of the book of Struwe [209].

The question of whether the solutions to the heat flow equation in two dimensions really develop singularities
remained open for some time until K. C. Chang, W. Ding, R. Ye [38] constructed an example of an initial condition
up : S2 — 8?2 for which the heat flow does blow up in finite time. Note that the inequality in the estimate (52)
would be straighforward if the solution were smooth (just multiply the heat equation by v and integrate). Actually
the left-hand side of (52) is smooth outside the singular points (fj,fj)lgjgk. In [177] J. Qing proved that, at
these bubbling points, the discontinuity of this left-hand side is just equal to minus the sum of the energies of the
harmonic spheres v; which separate, i.e., there is no energy loss in the necks connecting u, (the ‘body’ map) to the
v;’s (the ‘bubble’ maps). He further proved that, if at some time £ there are p harmonic spheres v;, , - - - v;, bubbling
off, then Mg/ Ae.j + Aej/Aesi + |Te; — 2ei|*/(Meide,j) — o0 as £ — oo fori,j € {j1,- -, jp} such that i # j;
roughly speaking, this means that each bubble decouples from the other ones in distance or in scale. The analysis of
what is happening in the necks was further refined in [178, 215]. In [213] P. Topping proved that if M = N = S?
and if one assumes the hypothesis (H): us, and the v;’s are either all holomorphic or all antiholomorphic, then
u(t, -) converges uniformly in time as t — oo strongly in LP(S? R3) and in W12(S? \ {Z1,---,Tx}). The latter
result depends strongly on the fact that the target is S2 (see [213]).

The uniqueness of weak solutions to (51) was proved by A. Freire [74], under the further assumption that
E(ul(t,)) is a non-increasing function of t. But, in [214], P. Topping constructed solutions of the heat flow from
a surface to S? which are different from Struwe’s solution, hence proving the non-uniqueness of weak solutions
to equation (51), in general. The point, however, is that Topping’s solutions are obtained by attaching bubbles,
i.e. have the reverse behaviour of Struwe’s solutions, so that the energy Faq(u(t,-)) increases by a jump of 47
each time a bubble is attached.

Lastly, in [215], P. Topping performed a very fine analysis of almost-harmonic maps from S? to S?, i.e. maps
u € WH2(S52,5%) such that the L? norm of the tension field 7(u) = Agzu + |du|*u is small. Recall that, if
7(u) = 0, then u is harmonic and hence either holomorphic or antiholomorphic, so that its energy is 47 times
its degree in Z. P. Topping proved that this quantization of the energy remains true for almost-harmonic maps
and more precisely establishes the estimate: |Egz2(u) — 4mk| < C’||T(u)||2L2(S2) (for some k € Z), for all u in

W12(82,5%) except for some exceptional special cases. This allows him to recover the same conclusions as in
[213] concerning the convergence in time and the uniqueness of the location of the singularities of the heat flow,
but without assuming the hypothesis (H) above. These results are strong in the sense that an almost-harmonic map
u may have, for example, a holomorphic body with anti-holomorphic bubbles attached, and then w is not close to
a harmonic map in the W1:2(52) topology. To deal with such cases, Topping established an estimate asserting the
existence of a repulsive effect between holomorphic and antiholomorphic components of a bubble tree.

5.4 The direct method in a class of maps not closed for the weak topology: case dim M > 3

Some cases where the class £ € W2(M,N) chosen for the minimization of E is not weakly closed have
already been described in §3.3. We will here mainly discuss other situations, starting from the work of H. Brezis,
J.-M. Coron and E. H. Lieb [24].



Prescribing singularities

We begin with an example. Let Q C R3 and a € ; we will choose a subset £ of C*(Q\ {a}, S?) N W12(Q, S?).
Note that C1 (2 \ {a}, S%) N W12(£2, S?) is not empty since it contains the map u, defined by u,(z) = (z —
a)/|z — al (which is even weakly harmonic). Moreover, for each sphere S7 . = dB?(a,r) centred on a which is
contained in ), the restriction of u, to Sir has degree 1. Let us fix

E:={uec (Q\{a},5*) N W2, S?) | deg ulgz =1, for Sz, CQ}.

Then, in some sense, the minimization of Eq in £ extends the problem of minimizing the energy among maps
between surfaces of a given degree (see §5.3). Indeed, as shown in [24], after the extraction of a subsequence if
necessary, a minimizing sequence (uy)rxen of Fq in € converges weakly to a constant map c, in all cases except
if Q is a ball centred at a. If we assume, for simplicity, that there exists an unique line segment [a, b] which joins
a to the nearest point in 92 (i.e., such that b € 9 and d(a, 0?) = |b — a|) then u;, converges strongly to ¢ on
Q\ Vz[a, b], where V.[a, b] is a neighbourhood of [a, b]. Furthermore, the restriction of uy, to a sphere S2 . will be
almost constant outside the intersection of 53,, with V_[a, b], whereas it will almost conformally cover the target
52 on S2,. N V.[a,b]. Hence a line of bubbles separates from uy, along [a, b]. Lastly, the infimum of the energy,
inf,ce Eq(u), is precisely 47|b — al, i.e. the area of S? times the length of the line segment. A similar situation,
arises if we have a dipole as introduced in [24]. Here we assume that

E:={uec (Q\{p,n},S*) N W"*(Q,5?)| deg ulgz =1,degulsz = —1for S2 S,QM c Q},

p,T?

where p,n € B? are two distinct points. Then, a minimizing sequence in the class £ converges to a constant
outside a neighbourhood of the line segment [p, n], and its energy concentrates along [p, n].

Actually, a more general situation was considered in [24]: let {aq,- -, ap} C Q C R3bean arbitrary finite
collection of points of 2 C R3 and dy, - -, d, € Z. Then set

E={uel(Q\{ar,--,a,},S*) NW"(Q,8%) | Vi=1,---,p, degulsz = d;, forS;  CQ}.

In order to describe the behaviour of a minimizing sequence in £ we need to define the notion of a minimal
connection as introduced in [24]. For simplicity, we will assume that 2 = B3 := B3(0,1) and that the total
degree @ := Zle d; is zero. First, call the points a; such that d; > 0 (resp. d; < 0) positive (resp. negative)
(points a; such that d; = 0 do not play any role in the following, hence we can forget about them without loss of
generality). We list the positive points with each a; repeated d; times and write this list as py, - - -, p,. Likewise
we list the negative points as n1,---,n,.. Note that k — ' = @Q = 0. A connection C is then a pairing of the
two lists (p1,70(1)), - - 5 (Pr» Mo (x))» Where o is a permutation of {1,...,x}. The length of the connection C'is
L(C) := >F  d(pi,no(;)). Lastly, the length of the minimal connection is: L := ming L(C) and a minimal
connection is a connection C (which may not be unique) such that L(C) = L. Then the infimum?** of Es on £
is 47 L and, if we exclude the case when {a1,---,a,} = 0 or {0}, we have:

o this infimum is never achieved and, after extraction of a subsequence if necessary, a minimizing sequence
(ug)ren of Egs in € converges weakly to a constant map;

e again, after extraction of a subsequence if necessary, lines of bubbles separate from wuj along a minimal
connection C. More precisely, the energy density %|duk|2 converges weakly in Radon measures to a measure
w supported by a minimal connection: for all measurable A C B3, ju(A) = 47H'(A N C), where H* is the
1-dimensional Hausdorff measure (see §4.3 for the definition).

Moreover, the locations and degrees of the singularities of a map u € W2(2, S2)NCY(Q\ {a1,- -, ap}, S?) can
be detected by computing the differential of the 2-form u*wg= (see §3.2), because of the relation:

P
d(u*wg2) = (Z didai)dxl Adx® Adx®,  where d,, is the Dirac mass at a; . (53)
i=1

34 An alternative proof of the inequality inf,cgs F g3(u) > 4wL was given by F. Almgren, W. Browder and E. H. Lieb [3] by using
the coarea formula [g5 (Jou)(z)ds!da?de® = fyesg HY (w1 (y))dH?(y), valid for a smooth map u : B3 — S2. Here H? is the
2-dimensional Hausdorff measure on S2, H! is the 1-dimensional Hausdorff measure on a generic fibre ™! (w) of u and (Jou)(x) denotes
the 2-dimensional Jacobian of w at z. Note that the coarea formula has been extended to Sobolev mappings between manifolds by P. Hajtasz
[97], leading to another variant of the proof of the Brezis, Coron and Lieb result.



Note that the coefficients of u*wge are in L' (£2) and equation (53) holds in the distribution sense, i.e., |, ap: C(u*wg2)—
fB3 d¢ ANu*wge = Y0 di¢(a;), V¢ € C(Q). In fact, the latter relation makes sense even if ¢ belongs to the set
Lip(£2) of Lipschitz continuous functions on €. This leads to an alternative (dual) formula®® for the length of the
minimal connection:

P
L(u) = max d;C(a;) = max { wrw —/ dC ANu*w } 54
@) CGLiP(Q)v‘VQLO@Sl; ¢las) CELip(R),[V¢|L=<1{Jyps ((wwse) B3 ¢ 5 Gd

But the right-hand side of (54) makes sense for an arbitrary map u € W}*(B?,5%), and can be used to
extend the definition of Z(u) to the whole of 1! *(B?, 5%) if the degree of ga is zero. Moreover, it was proved
by Bethuel, Brezis and Coron [15] that the funcnonal L:W}2(B3,5%) — R is continuous for the strong W2
topology. Lastly, a result of Brezis and P. Mironescu [20, 21] asserts that, for any v € W12(B3,52) such that
u|sps is a smooth map of degree 0, there exist two sequences (p1,pa, - ..) and (n1, na, ...) of points of B3 such
that

d(u*wg») _4WZ b — On,) (55)

and >_:° | |p; — n;| < co. Then L(u) is equal to the infimum of all sums »_.° | |p; — n;| such that (55) holds.

Generalizations. Similar situations occur, for instance, if we work in W™ (M, S™), where dim M > n + 1,
and we try to minimize the n-energy among maps which are smooth outside a codimension n + 1 submanifold
> and which have prescribed degree around each connected componen of 3. This case was first considered by F.
Almgren, W. Browder and E. H. Lieb [3], who pointed out that the minimal connection has to be replaced by an
n-area minimizing integral current. We refer to [88, Chapter 5] for subsequent developments.

The gap phenomenon

An important and surprising observation was made by R. Hardt and F. H. Lin [106] at about the same time: we
still assume that M = B3 and N/ = S? and we let ¢ : B3> — S? be a smooth map of degree 0. Then
C,(B? 8%) :={u e C'(B* 5%)|u=pondB*} is not empty and we may consider its closure H}, ,(B*,5?) in
the strong W1 * topology. Another natural class is W)*(B?,5?) := {u € W"?(B*,5%)| u = ¢ on 833} Then
it is proved in [106] that we can choose the boundary COIldlthIlS  such that:

inf E = inf E inf E . 56
uECi,l(IlB3,S2) BS(U) ueHvlg‘lsn(B‘%,SQ) Bs(u) >uewi;,l2n(33752) Bg(u) (56)

This implies that the inclusion H!(B3,5%) ¢ W12(B3, 5?) is strict, as discussed in §3.2. The construction of ¢
relies on ideas close to the preceding discussion: imagine that we fix two dipoles of length £ > 0, i.e. pairs of points
(p1,n1) and (p2, n2) with opposite degrees £1, such that |[p; — n1| = |pa — na| = £. Place the points p; and n,
very close to the north pole (0,0, 1) of 9B3, with p; outside B3 but n; inside B3, specifically, p; = (0,0,1+¢/2)
and n; = (0,0,1 — ¢/2). Similarly, place ps and ng very close to the south pole: p; = (0,0, —1 + 6/2) and
ng = (0,0, —1 — £/2). This is all embedded in, say, B3(0,2). Now consider how a sequence of maps (vx)ken in
W12(B3(0,2), 5?) which minimizes F g2 (g 2) in the class of maps v such that d(v*wg2) = &, + 6p, — Ony — On,
would look: vy is almost constant outside neighbourhoods of the line segments [p1,n1] and [ps, ns), and the
restriction of vy, to a piece of surface cutting one of these segments transversally covers S? almost conformally.
Then we take ¢ = (vy)|gp2 for k large enough. We observe that

(i) the degree of ¢ is equal to the sum of the degrees of the singularities n; and py enclosed by 9B, i.e., 0;
(i) infuewé,z(Bs)SQ) Eps(u) is certainly smaller than Egs (vy), which is of order 474 ;

(iii) infuec;(B3,32) Eps(u) is of order 8.

35Note that Q = 0 implies that faBg u*wg2 = 0, so that the maximum in (54) is finite.



Hence, (56) follows by choosing ¢ sufficiently small. To prove (iii), we estimate the energy of any map ¢ €
CL(B?,5?) from below as follows. For any h € (—1,1), consider the disk D, which is the intersection of B?
w1th the plane {z® = h} and the domain Hj, := B?> N {23 < h}: its boundary OH), is the union of Dj, and the
spherical cap Sj, := (0B?) N {z* < h}. On the one hand, the restriction of ¢ to S}, is almost constant except
in a small neighbourhood of the south pole, where 1)|s, covers almost all of S? with degree 1, and on 9D,
the map ¢ is nearly constant. On the other hand, since 1) is continuous inside H}, the degree of its restriction
to OHp, is 0. These two facts imply that the restriction 1| p, should almost cover S? with degree —1. Hence
Ip, sldvPd®z > | [, ¥*ws:| = 4m. By integrating this inequality on h € (—1,1) we obtain (ii).

The relaxed energy

Exploiting the fact that H} ,(B*,5%) = Wl?(B?,5?) (see §3.2), i.e. that Vu € W1?(B?,5?) there exists a
sequence (vy)xen of maps ncl +(B?,S?) which converges weakly in W12 to u, we can define the relaxed energy
Egton W12(B?, S?) by

Bl = inf{klim inf |dup,|?dazt da?dx® | vy, € C:O(BB7 5?), vk — u weakly in W2},
—0Q B:3

The following expression for Eg%,l, valid when the degree of ¢ is zero, was given by F. Bethuel, H. Brezis and
J.-M. Coron [15]:

E(u) = Egs(u) + 4w L(u),

where L(u) is length of the the minimal connection associated to u defined by (54). A nice theory was built by M.
Giaquinta, G. Modica and J. Soucek [88] in order to picture geometrically the relaxed energy and, more generally
many bubbling phenomena®. The relaxed energy satisfies the properties (i) Vu € W1?(B?,5?), Ef(u) >
Egs(u), with equality if u € C;(B3, S2); (ii) infueWé.z(Bg’Sg) Er(u) = infuecs (p2,52) Eps (u).

Other interesting functionals provided by interpolating between the Dirichlet energy F s and the relaxed energy
Er¢l were considered in [15]: for A € R consider E};(u) = Eps(u) 4+ 4AnwL(u). Then first of all, VA € R, the
crmcal points of E33 on Wh 2(B3 52) are weakly harmonic. Second, for 0 < \ < 1, Egg is lower semi-
continuous. This implies that, for 0 < )\ < 1, the direct method can be used successfully in order to minimize Egg
in, say, W)-*(B?,5?) in order to obtain a family of weakly harmonic maps with the same boundary conditions
(see the §4.3 for partial regularity results). This shows the strong non-uniqueness of solutions for the Dirichlet
problem for harmonic maps in dimensions larger than three.

Minimizing the energy among continuous maps

In view of properties (i) and (ii) of the relaxed energy functional Eg%l, it is tempting to use it in order to answer the
following question: given smooth boundary data ¢ : 0B> — S? of degree 0, is there a smooth harmonic map
B3 — S? extending ¢ ? One strategy might be to minimize E7;f over W1 ?(B?, S?): if we think, for example, of
boundary data ¢ leading to a gap phenomenon described before, and we compare the values of the relaxed energy
for the smooth and for the singular maps that we can construct, we realize that the gain in energy from allowing
singularities is exactly cancelled by the cost due to the length of the minimal connection. But these considerations
are only heuristic up to now: for the moment the question of whether minimizers of the relaxed energy are smooth
is completely open (see §4.3).

On the other hand a direct approach to the problem of minimizing the energy functional Eq in a class € of
smooth maps in a given homotopy class between two arbitrary compact manifolds without boundary M and N has
been addressed by F. H. Lin [148]. He proved that if (ux)xen is a minimizing sequence in &, then, after extracting
a subsequence if necessary, uy converges weakly in W12(M, N') to a weakly harmonic map v € W12(M, N)
and |duy|?>d™x converges weakly to the Radon measure p = |du|? +v. Moreover, u is smooth away from a closed,

36The basic idea is to represent a map u between manifolds by its graph, which, in the case that u is in a Sobolev space but not continuous,
is a Cartesian current, i.e. a current in the sense of geometric measure theory which satisfies some special conditions. In the enlarged class
of Cartesian currents, we can describe precisely what the weak limit of a minimizing sequence is, keeping track of the necks connecting the
bubbles in two dimensions, or the minimal connection in three dimensions. See [88] for a complete exposition.



rectifiable set > and H™ 2(X) is bounded. The non-negative Radon measure v measures the defect of strong
convergence: it is the product of the (m — 2)-dimensional Hausdorff measure supported by X times a function
O on ¥ which is measurable with respect to the (m — 2)-dimensional Hausdorff measure. Lastly, for almost all
xr € X, O(z) is equal to a finite sum of energies of harmonic non-constant maps from S? to N/, so that he
obtain a higher-dimensional analogue of the results of Sacks and Uhlenbeck discussed in §5.3. Compare also with
the results on the reduction of the singular set of a stationary map by Lin and Riviere presented in §4.3.

Towards completely discontinuous weakly harmonic maps

A notion of relative relaxed energy was introduced by F. Bethuel, H. Brezis and J.-M. Coron [15] as follows. Again,

we fix smooth boundary data ¢ : 9B* — S? of degree zero and we first define our functional on R%*(B?, 5?),

the set of maps u € W1?(B?, §%) which are C' outside a finite number of points (see §3.2). For a palr (u,v) of
maps in RZ'(B?, S?) we define the length L(u,v) of the minimal connection of u relative to v to be the length
of the minimal connection connecting the singularities of u and the singularities of v, where the singularities of
v are counted with opposite degrees. By using the definition of the length of a minimal connection given by the
right-hand side of (54), L(u,v) can be expressed as

L(u,v) = max dC N (Wwge —viwge2) . (57)
(w,v) CELip(Q), [V(|pee <1 6B3< ( 5 s2)

Thanks to (57), the functional L : R%'(B?,5%) x R%'(B?,5%) — R can be extended to a functional L :
W12(B?, 5%) x W2 2(B?,5%) — R. It is shown in [15] that this functional is continuous on W)-?(B?, §?) x
W1 2(B3,5?) and that for any fixed v € W}?(B?,5%), the functional

Fps ,(u) := Eps(u) + 47 L(u,v)

is lower semi-continuous on W1 ?(B?, $%). Moreover, the critical points of Figs ,, are weakly harmonic. This has
turned out to be a powerful tool for constructing singular weakly harmonic maps.

First, R. Hardt, F. H. Lin and C. Poon [109] constructed weakly harmonic maps with a finite, but arbitrary,
number of prescribed singularities located on a line. In their construction, they first fix a map v € R%'(B?, 5?)
which is invariant by rotations around some axis and which has dipoles of singularities along the axis of sym-
metry. Then they minimize the relative relaxed energy F'gs ,, among all maps u € W;’Q(B 3.5%) which are also
rotationally symmetric, and they show that the singular set of the minimizer is the same as the singular set of v.
This result was improved by F. Riviere [181] who considered a sequence (v )gen+ of rotationally symmetric maps
in W1 2(B3, 5%) having more and more singularities along the axis of symmetry and the corresponding sequence
(uk)keN* of minimizers for Fps ,, among rotationally symmetric maps in W}-*(B?, 5%). He was able to prove
that (ug)gen+ converges to a weakly harmonic map having a line of smgulanty Lastly Riviere [182] proved that,
for any non-constant map ¢ : B> — S, there exists a weakly harmonic map in W }-*(B?, S?) which is
discontinuous everywhere in B3. This result rests on the construction of a dipole lemma: for any smooth map
w : B3(a,r) — S? such that dw(a) # 0 and for any p € (0, ) there exists a pair of points (p, n) inside B3(a, p)
and a map w € WH2(B3(a,r), S?) which is smooth outside {p,n}, has a degree 1 singularity at p and a degree
—1 singularity at n, coincides with w in B3(a, ) \ B3(a, p), and which satisfies

Eps(a,r) (W) < Epsqr(w) +4m|p —nl. (58)

That the inequality in (58) is strict’’ is crucial, as in the 2-dimensional theory (see §5.3). A second main ingredient
in the proof of Riviere is the construction of a sequence (vj)ren~ of maps in R?p’l (B3, 5%) having more and more
singularities. Each map vy is constructed from vy by adding a dipole and using the construction of a dipole
lemma in order to control the extra cost of energy by (58). The sequence (v )xen+ also converges strongly to some
completely discontinuous map v € Wl?(B?,S?). The last task is then to show that any minimizer of Fis , is
completely discontinuous.

3 Note that a weaker, non-strict, analogous inequality was already obtained in [10].



5.5 Other analytical methods for existence
Morse and Lusternik—Schnirelman theories

A general reference for the ideas in this paragraph is the book of M. Struwe [209]. One of the first applications of
these variational methods, devoted to existence proofs of non-minimal critical points is the work by G. D. Birkhoff
[18] which establishes the existence of closed geodesics on a surface of genus 0, i.e. the image of a harmonic map
of a circle, see §2.2. Extensions to higher-dimensional harmonic maps is rather difficult and most of the known
results concern the case m = 2.

In [188] J. Sacks and K. Uhlenbeck addressed the study of both minimizing (see §5.3) and non-minimizing
harmonic maps from a surface without boundary M to a compact manifold without boundary A. As for mini-
mizing maps, they first establish the existence of non-minimizing critical points of the functional £}, (see §5.3)
for @« > 1, and then study the behaviour of these critical points when & — 1. The Morse theory for critical
points of E%, has better properties when a > 1, since this functional then satisfies the Palais—Smale condition™.
Let Q(M, ) be the space of base point preserving (continuous) maps from M to N (i.e. we fix some points
z9g € M and yo € N and we consider maps which send zq to 7). First, Sacks and Uhlenbeck proved that
if QM,N) is not contractible, then there exist non-trivial critical points of E%, between M and N. This
critical point is non-minimizing if C°(M, ) is connected. They noticed that the hypothesis that Q(M, N) is
not contractible is satisfied, in particular, if M = S? and if the universal cover of N is not contractible, since
Thao(N) = 1 (2(S?%, N)). Second, they considered a sequence of maps from S? to N which are critical points
of £, for o > 1, and study its convergence as o — 1. The analysis is similar to the case of minimizing maps, see
§5.3. They concluded that, if the universal cover of A\ is not contractible, there exists a non-trivial harmonic
map from 52 to \. These results were extended by J. Jost in [133] using a different approach. Similar results
have been obtained by Jost and Struwe [138], with applications to the Plateau problem for surfaces of arbitrary
genus. See [134] for a survey and the papers by G. F. Wang [220] and Y. Ge [82] for recent applications to maps
on a surface of genus greater than one with values in S2.

These methods can also be applied on surfaces with boundary to construct non-minimizing harmonic maps with
prescribed Dirichlet boundary condition. An example is the construction of saddle-point harmonic maps from the
unit disc to the sphere S™ for n > 3 by V. Benci and J.-M. Coron [9]. This was extended to maps from a planar
domain bounded by several disks by W. Y. Ding [54]. Similar results has been obtained by J. Qing [175] for maps
from the unit disc to S2.

Gauss maps of constant mean curvature surfaces

An important motivation for studying harmonic maps into spheres or, more generally, into a Grassmannian, is the
result by E. A. Ruh and J. Vilms [187] on a submanifold ¥ of dimension 7 immersed in the Euclidean space R"**P
and its Gauss map f : ¥ — Gy, (m + p) to the Grassmannian of oriented m-dimensional subspaces of R™?;
this asserts that the covariant derivative of the mean curvature vector field is equal to the tension field of its Gauss
map. In particular, an immersion in R™P has parallel mean curvature if and only if its Gauss map is harmonic.
Note that, if m = 2 and m + p = 3, then G»(3) ~ S2. The consequences of this fact are numerous®. For
example, any construction of a mean curvature surface in R? provides us with a harmonic map from that surfaces
to S2: constant mean curvature surfaces of genus 1 (tori) were first constructed by H. Wente [222] by using a
delicate analysis of the sinh-Gordon equation*’, later on N. Kapouleas [139] constructed higher-genus surfaces.
The method here relies on gluing together pieces of explicitly known constant mean curvature surfaces (actually,
segments of Delaunay surfaces) to produce, first, an approximate solution and then, by a careful use of a fixed point
theorem, an exact solution near the approximate one. Since the work of Kapouleas, a huge variety of constructions
has been done by following this strategy, see for example [140, 153].

3The Palais—Smale condition reads: for any sequence of maps (u)xen such that ES(ug) is bounded and (5Ej'\‘4)uk converges to 0,
there is a subsequence which converges strongly, see [209].

31n particular, the structure of the completely integrable system for harmonic maps from a surface to S2 and for constant mean curvature
surfaces in R3 coincide locally, see Chapter 7.

40Since the work by Wente, a full classification of constant mean curvature tori has been obtained by using methods of completely integrable
systems, see Chapter 7.



A recent related result is the construction by P. Collin and H. Rosenberg [47] of a harmonic diffeomorphism
from the plane R? onto the hyperbolic disc H?. Note that E. Heinz proved in 1952 that there is no harmonic
diffeomorphism from the hyperbolic disc H? onto the Euclidean plane R?, and it was conjectured by R. Schoen
that symmetrically there is should be no harmonic diffeomorphism from R? to H2 — the result of Collin and
Rosenberg contradicts this conjecture. The proof relies on constructing an entire minimal graph in the product
H? x R which has the same conformal structure as R2. Hence, the harmonic diffeomorphism is the restriction to
this graph of the projection mapping H? x R — H?.

Ordinary differential equations

Many interesting examples of harmonic maps can be constructed by using reduction techniques. One powerful
construction is the join of two eigenmaps of spheres introduced by R. T. Smith [202]: a map v : S™ — S™
is called an eigenmap if and only if it is a harmonic map with a constant energy density; given two eigenmaps
up : 8™ — S™ and uy : S™2 — S"2, and a function « : [0,7/2] — [0,7/2] such that «(0) = 0
and o(m/2) = /2, the a-join of uy and ugy is the map uy *, ug — S™itmz2tl — gnitna+l defined by
(uy *q uz)(z18ins, xocoss) = (ug(xy)sina(s), ug(we) cosa(s)). The harmonic map equation on uy *4 Uz
reduces to an ordinary differential equation for av which can be solved in many cases [202, 64, 167]. A similar
ansatz is the a-Hopf construction [179] ¢ : S™+m2+1 . §n+1 on 4 harmonic bi-eigenmap f : S™! x S™2 —
S™: o defined by ¢(z1sins, x9coss) = (f(x1,x2)sina(s), cosa(s)). This construction leads also to a family
of new examples [64, 56, 57, 81]. Similar reductions to systems of equations in more variables have been done
[79, 80]*'.

6 Other analytical properties

6.1 Uniqueness of and restrictions on harmonic maps

Uniqueness of harmonic maps in a given class of maps does not hold in general. The main case where uniqueness
holds, with general methods to prove it, is when the target manifold satisfies strong convexity properties (see
§6.3). An example of a result outside this situation requires the smallness of the scaled energy E, , (see §4.3)
for maps from B? C R3 to a compact manifold \: There exist some g9 > 0 and a constant C = C(N') such
that, for any boundary data g € W2(0B3, N) such that Epps(g) < €0, there is a unique weakly harmonic map
u € Wp2(B?,N) such that sup,, ¢ gs ,~ofr ™" B3 (20.mB5 |du|?d3z} < Ceg. This was proved by M. Struwe
[210] by using the regularity techniques for stationary maps in dimension greater than 2 (see §4.3).

Other restrictions on harmonic maps occur in the case where M is a surface without boundary and rely on
methods of complex analysis (as in the result of Eells and Wood [67], see §5.3) or on the use of twistor theory
for maps from the 2-sphere and integrable systems theory for maps from tori (see Chapter 7). See also the non-
existence results for harmonic maps on a manifold with a non-empty boundary which are constant on the boundary
[144, 230, 141] in §5.3.

6.2 Minimality of harmonic maps

A natural question is the following. Consider a weakly harmonic map v € WY2(M,N); then is u an energy
minimizer? If the answer is yes, one of the most efficient methods to prove it is to combine results on existence,
regularity and uniqueness. Many such results are available if V" has good convexity properties; these are expounded
in §6.3. Here is an example by R. Schoen and K. Uhlenbeck [192] of a result which can be proved without
these convexity assumptions. Let St := {y € S* C R"*|y"*!1 > 0} and v : M — S7 be a smooth
harmonic map, then u is an energy minimizer among maps from M to S™. The proof proceeds as follows: let
) C M be any bounded domain with smooth boundary and apply the existence theorem of S. Hildebrandt, W.
Jager and K.-O. Widman [120] which asserts that there exists a smooth least energy map u from (2 to S7 which
agrees with u in 9. Then, by the uniqueness result of W. Jiger and H. Kaul [126], we actually have u = u

4IHarmonic morphisms can also be found by this method, see [7, Chapter 13].



on (2. Hence, v is energy minimizing among maps with values in S?. Now let v € W12(Q,S™) be a map
which agrees with u on 9 and let vy := (v',---, 0™, [v"T!]). We observe that v, € W2(Q, S™), vy agrees
with u on 0Q and En(v4) = Eaq(v). Actually vy takes values in the closure S7 of S7, but it is easy to
produce a continuous family (R.).<o of retraction maps R, : Sifﬁ — ?ﬁ such that Ry = Id, the image of R,
is contained in S% if € > 0, and lim._¢ Eq(R. o v}) = Eq(vy). Moreover since u(f2) is compact in S, we
can construct R, in such a way that R. o v, agrees with w on 9f). Hence, Ve > 0, Fq(R. o vy) > Eq(u)
which gives Eq(v) = Eq(vy) > Eq(u) on letting e — 0; the result follows. By similar reasoning, Jiger and
Kaul [127] proved also that, if ug € W2(B™, S™) is the map defined by us (z) = (x/|z/,0), the minimum in
W}l é2 (B™, S™) is achieved by (i) a smooth rotationally symmetric diffeomorphism from B to ST if 1 < m < 6,
(ii) ug if 7 < m.

Another favorable circumstance for proving the minimality of a harmonic map is if the harmonic map is a dif-
feomorphism. In dimension two the following result was proved by J.-M. Coron and F. Hélein [52]. Let (M, g) and
(N, h) be two Riemannian surfaces, then any harmonic diffeomorphism u between (M, g) and (N, h) is an energy
minimizer among maps in the same homotopy class and (if OM # () with the same boundary conditions. The idea
is that, thanks to the Hopf differential of u, one can construct an isometric embedding (N, h) C (M, h1)x (M, hs)
with two natural projections 7, : (N, h) — (M, h,) (for a = 1,2) such that 7; o u is harmonic conformal and
hence a minimizer and 7 o u is harmonic into (M, hy). However the curvature of (M, hz) is non-positive*?.
Thus 75 o u is also a minimizer thanks to results in [2, 111] (see §6.3). Moreover u is the unique minimizer if
there exists a metric go on M of negative curvature which is conformal to g [52]. Coron and Hélein also proved
the minimality of some rotationally symmetric harmonic diffeomorphisms in dimension greater than two. These

results were extended by Hélein [112, 115], by using null Lagrangians®.

Because of the partial regularity theory of R. Schoen and K. Uhlenbeck [190] (see §4.3), it is important to
identify the homogeneous maps u in W'2(B™  N') which are minimizing (recall that u is homogeneous if it is
of the form u(x) = ¥ (z/|x|)), since the minimizing tangent maps, which model the behaviour of a minimizing
map near a singularity, are homogenous. Most known results concern the map ué, € Wh2(Bm, §m=s=1) defined
by uf (z,y) = z/|z|, for (x,y) € R™™* x R* (having an s-dimensional singular set) and, in particular, radial
projection ug = ud € WH#(B™, 5™~ 1): for any m > 3 and for any s > 0, u{, is a minimizer. Various proofs
exist, depending on the values of m and s:

e for s = 0 and m > 7 by Jiger and Kaul [127], as a corollary of the previous results on ug ;

e for s = 0 and m = 3 by H. Brezis, J.-M. Coron and E. H. Lieb [24] (see §4.3) and ug, is the unique mini-
mizer;

e for s = 0and m > 3 by F. H. Lin [146];

e for s > 0and m > 3 by J.-M. Coron and R. Gulliver [51] (the general case).

The method of Lin is very short and uses a comparison of the energy functional Egm (u), foru € W} 02 (B™, 8™,
with another functional F'(u) := [4,, u*(dB) = [4.. d(u*3), where 3 is the (m — 1)-form on B™ x R? defined

by B := Y cicjem ()TN y'dy! — yidy’) Adxt A A dai A -+ Adxi A ---dz™. Write u*(dp) =

A(du) dxt A -+ A dx™. First, from the fact that u takes values in S™ ! a.e., we show that A\(du) < (m — 2)|dul|?

a.e., with equality if © = ug. Second, we obtain from Stokes’ theorem,

2(m —2)Egm(u) > / d(u*p) = /aBm u'f = -~ uyf = /Bm d(usB) = 2(m — 2)Epm (ug).

The functional | pm w(df) is an example of a null Lagrangian. Lin’s method is similar to the use of calibrations
for minimal surfaces and to the argument used in equation (6) for harmonic functions. The proof of Coron and
Gulliver uses two ingredients: (i) a representation of the energy of a map u by an integral over the Grassmannian
manifold G5(R™ %) of 3-planes Y in R™~* of the energies of my ou € W12(B™, S2), where my : S5 —

42This argument does not work if M ~ N ~ S2 but in this case any harmonic map is conformal and hence minimizing.
43The results by Coron and Hélein [52] use methods inspired from the work of Coron and R. Gulliver [51], whereas the use of null
Lagrangians for harmonic maps was introduced by F. H. Lin [146], see below.



Sm=s=1 Y := SZ is the natural ‘radial’ projection and (ii) the coarea formula **. They also studied the maps
RS € Wh2(B*, 5?) and b2 € W12(B8, $*) defined by h§ (z) = H®(z/|z|) and hE (z) = H™(z/|z|), where
HC®: 83 - §?and H™ : 7 — 5% are the complex and quaternionic Hopf fibrations (see §2.3), respectively, and
they proved by similar methods that A5, and h{ are minimizing.

6.3 Analytic properties according to the geometric structure of \/
The target manifold (', 1) has non-positive Riemannian curvature

In this case, the harmonic map problem has many good convexity properties.

Existence. The first existence result was obtained by J. Eells and J. Sampson [66], and S.I. Al’ber [1] indepen-
dently through the study of the heat equation d¢/0t = 7(¢) for a map ¢ : [0,00) x M — N, where OM = 0§,
with the Cauchy condition ¢(0,-) = ¢o where ¢9 : M — N is a smooth map: if M and N are compact
there always exists a finite time solution (i.e. defined on [0, 7] x M), but if (N, h) has non-positive curvature,
this solution can be extended for all time. Moreover the solution ¢(t, ) converges® to a smooth harmonic map
¢ when t — 400, which is homotopic to ¢yo. When the boundary M is non-empty and a Dirichlet condition
¢(t,-) = g on M is imposed, these results were extended by R. Hamilton [99]. The existence conclusion can
be recovered by using the Leray—Schauder degree theory [119], the maximum principle [130] or the direct method
(see [216, 189] and §5.2).

Regularity. Weakly harmonic maps into a non-positively curved manifold are smooth and, moreover, the
existence of convex functions on N allows higher regularity estimates: these are consequences of more general
results, see §4.1 and below.

Minimality. The harmonic map ¢ constructed in [66, 1] or [99] is actually energy minimizing [2, 111]. This
follows by using the first and the second variation formulae for £ given in [66]; this implies, in particular, the
following identity [2]: let ¢, 9 : M — N be two smooth maps, and let ® : [0,1] x M — N be a geodesic
homotopy between ¢ and ¢, i.e. a smooth homotopy such that ®(0, ) = ¢¢ and ®(1,-) = ¢ and, for each fixed
x € M, s — ®(s,x) is a geodesic; then, if ¢ is harmonic we have

! 7 . 9> 50
En(©) = Bxaoo) = [ o [ s [ {190 dof? =9 "Rars(0) 0 8 Yoy, 59)

Hence if "R is non-positive the right hand side is nonnegative and this implies that any harmonic map is the
minimizer in its homotopy class.

Uniqueness. Actually, each homotopy class contains, in most cases,*® only one harmonic map: this was
shown by P. Hartman [111] and S.I. Al’ber [2] independently and can be deduced from (59), see also [189]. An
alternative method is possible if OM # (): if N is simply connected*’ we can use the squared distance function
d? : N x N'— [0, 00), which is a strictly convex function [135], see below.

Other properties. The Bochner identity for harmonic maps proved in [66],
1 i i s
iAg|d¢|2 = |Vdg¢|* - g” g™ hRaﬂw5(¢)¢?¢§¢;¢? + g" 9Ric(¢i, d;) (60)
is particularly useful if "R is non-positive and M is compact, since it then implies [66]:
—A,|do|* < C|do|?, so, in particular |d¢|? is subharmonic. (61)

This inequality can be used to prove: (i) Liouville-type theorems [66]; (ii) the compactness in the C*-topology of
the set H of maps v € C°° (M, N) such that u is harmonic and Ex(u) < A (see [189]).

44See footnote 34. A similar method was used by Hélein in his thesis for proving: let ¢» : D — A be a submersive harmonic morphism
with connected fibres from a compact domain of R3 with smooth boundary to a Riemann surface, then ¢ is the unique energy minimizer
amongst maps with the same boundary values. See also [52].

43Eells and Sampson [66] established that ¢(t, -) subconverges to ¢, but Hartman [111] proved that it actually converges.

461f M = () non uniqueness can occur in two cases: we may have two different constant harmonic maps or two different harmonic maps
which parametrize the same geodesic.

4TThen any pair of points p, g € N can be joined by a unique geodesic [135], and so (N, h) is convex.



The target manifold has weaker convexity properties

The case when there exists a convex function on N. Such functions are abundant on simply connected non-
positively curved manifolds, but they also exist on any sufficiently small geodesic ball in A/. The basic observation
is that the composition of any harmonic map with a convex function is subharmonic and hence obeys the maximum
principle [124]. For instance, if the squared distance function d? : N' x AN/ — [0, 00) exists and is convex, we
can compose it with a pair (ug,u1) : M — N X N of harmonic maps which agree on M # () to prove the
uniqueness result that u; = us, see, for example, [135]. Even more [86], if g : N' — [0, 00) is bounded and
strictly convex, then for any C2 harmonic map ¢ : M — N, we have

c1ldgpl? < A(go @), wherec; > 0. (62)

Use of inequality (62) together with the monotonicity inequality (see §4.3) leads to the local estimate sup 5 (a,r/2) |dop|? <
Cr—m fB(a " |d¢)\2, see [86, 189]. This can be used as the starting point for higher order estimates, see [86, 135].

The case when the image of ¢ is contained in a geodesically convex ball. The optimal regularity result for
weakly harmonic maps with this kind of hypothesis is due to S. Hildebrandt, W. Jdger and K.-O. Widman [120].
We will say that a domain B C N is an H/W-convex ball (after Hildebrandt, Jiger and Widman) if B is a geodesic
ball B(po, R) C N (where pg € N) such that

(i) ¥p € B(po, R), the cut-locus of p does not intersect B(po, R);
(i) R < 2m/+\/K, where k > 0 is an upper bound of the Riemannian curvature on B(pg, R).

Then Hildebrandt, Jager and Widman proved the existence of a solution to the Dirichlet problem with values in
a HIW-convex ball (see §5.2, f) and §6.2) and that any weakly harmonic map ¢ with values in a HJW-convex
ball is Holder continuous [120]. This result is optimal because of the following example: consider the map
ug € WH2(B™, ST), where ST := {y € S™| y™*! > 0}, defined by ug (z) = (z/|z],0), then, if m > 3 this
maps has finite energy and is weakly harmonic. However ug is clearly singular, but the hypothesis (i) of the above
theorem is not satisfied.

With exactly the same hypothesis on the target, W. Jager and H. Kaul in [126] found the following uniqueness
result: assume that M is connected and OM # ) and let ¢1, ¢2 : M — B be two smooth harmonic maps which
agree on O M; then, if B is a HKW-convex ball, ¢; = ¢». Again this result is optimal since, on the one hand, for
3 < m, Wh2 (B™, Si_’ﬁ) contains the weakly harmonic map wug; on the other hand, for 3 < m < 6, the minimum
in W,.2(B™, ST') is achieved by a smooth diffeomorphism onto S", hence providing us with another harmonic
map [127] (see [129] for improvements).

Influence of the topology of /. Beyond more or less local assumptions on the curvature or the convexity of the
target manifolds, many existence and regularity results are improved if one assumes that there is no non-constant
harmonic map from S* to N. This is related to the bubbling phenomenon which was discussed at length in §5.3
and 5.4.

7 Twistor theory and completely integrable systems

This is a rapid review of the development of the application of twistor theory and integrable systems to the study
of harmonic maps. For further details, see, for example, [63, 94, 117, 73].

7.1 Twistor theory for harmonic maps

The genesis of the twistor theory for harmonic maps can be considered to be the following well-known result:*® Let
¢ : M? — R3 be a conformal immersion from a Riemann surface (M?, J™). Then its Gauss map v : M? — S?
is antiholomorphic if and only if ¢ is harmonic (equivalently, minimal).

48This result is related to the Weierstrass—Enneper representation formula for a conformal parametrization X : Q@ C C — R3 of a
minimal surface in R3, which reads X (2) = X(z0) + Re(f;0 (i(w? — 1), w? + 1, 2iw)(h/2) d¢), where w and h are respectively a
meromorphic and a holomorphic function. Indeed, here w represents the Gauss map through an orientation reversing stereographic projection.



The result was generalized to R™ by S.-S. Chern [44]. Indeed, let ¢ : M? — R” be a weakly conformal map.
On identifying the Grassmannian G$"(R™) of oriented 2-planes in R™ with the complex quadric Q,,—2 = {[z1 :

i 2p) € CP™ 22 4+ ...+ 22 = 0}, its Gauss map v : M? — G$*(R") = Q,,_» is given by the projective
class of ¢ /0%, where z is any local complex coordinate on M?2, If ¢ is harmonic, v is antiholomorphic by the
harmonic equation, see (20). Note further that this antiholomorphicity implies that the Gauss map of a weakly
conformal map extends smoothly across the set of branch points. Conversely, if v is antiholomorphic, 8%¢/920%
is a multiple of the vector O¢/9z, which is tangential; but it is also a multiple of the mean curvature vector which
is normal, thus it must vanish, hence ¢ is harmonic.

Now let ' = N™ be a general Riemannian manifold of dimension n > 2. Let 7 : GS"(N) — A be the
Grassmann bundle whose fibre at a point g of N is the Grassmannian of all oriented 2-dimensional subspaces of
T,N. This is an associated bundle of the frame bundle O(N') of V. Using the Levi-Civita connection, we may
decompose the tangent bundle of G3*(N) into vertical and horizontal subbundles: TGS (N) = H & V; we denote
the projections onto those subbundles by the same letters. Given any conformal immersion ¢ : M? — N™, we
define its Gauss lift v : M? — G$*(N) by v(p) = the image of d¢, . Let JY be the complex structure on the
Grassmannian fibres of 7. Say that v is vertically antiholomorphic if

VodyoJM=—-JVoVody. (63)

Then Chern’s result extends to: v is vertically antiholomorphic if and only if ¢ is harmonic. Further, the Gauss lift
of a weakly conformal harmonic map extends smoothly over the branch points.

Maps into 4-dimensional manifolds. Suppose that " = N* is an oriented 4-dimensional Riemannian mani-
fold. Then each w € GS"(N*) defines an almost Hermitian structure J,, on Ty, A%, Further, if ¢ : M? — N*
is a conformal immersion, then for any p € M?2, d¢, intertwines J;Vt and J,(p). Equivalently, lift J,, to an almost
complex structure J/f on H,,; then ~ is horizontally holomorphic in the sense that

HodyoJM =J"oHody. (64)

We now define two almost complex structures J! and J2 on the manifold G§*(N*) by setting JL (resp. J2)
equal to Jf on H,, and J), (resp. —JY) on V,,. Then the results above translate into: the Gauss lift of a smooth
immersion is holomorphic with respect to J? if and only if the map is conformal and harmonic.

In fact, the projection of a J2-holomorphic map into G$*(N/) is always harmonic. More generally, let (Z, J%)
be an almost complex manifold. A submersion 7 : Z — N is called a twistor fibration (for harmonic maps, with
twistor space Z ) if the projection 7 o f of any holomorphic map f from a Riemann surface to (Z, J#) is harmonic.
The Grassmann bundle provides such a twistor fibration; we now find other twistor fibrations.

The Grassmann bundle GS*(N*) can be written as the product of two other bundles as follows. For any even-
dimensional Riemannian manifold %", let J(N') — N be the bundle of almost Hermitian structures on . This
is an associated bundle of O(N); indeed J(N) = O(N) Xo(2,) J(R?™) where J(R*™) = O(2n)/U(n) is the
space of orthogonal complex structures on R?". When N is oriented, J(N) is the disjoint union of J*(A\) and
J~(N), the bundles of positive and negative almost Hermitian structures on N'*, respectively. Give these bundles
almost complex structures J! and J? in the same way as for GS*(N*). Then, when  is 4-dimensional, we have a
bundle isomorphism G$' (N*) — JT(N*) x J=(N*) given by w +— (J}, J., ) where J; (resp. J,;) is the unique
almost Hermitian structure which is rotation by + /2 on w. This isomorphism preserves J!, J? and the horizontal
spaces. The Gauss lift of an immersion ¢ : M? — N thus decomposes into two twistor lifts 14 : M? — JEN2,
Both natural projections J*N* — A are twistor fibrations; in fact we have the following result of J. Eells and S.
Salamon [65]: There is a bijective correspondence between non-constant weakly conformal harmonic maps
¢ : M? — N* and non-vertical .J>-holomorphic maps 1. : M? — J*N* given by setting 1/ equal to the
twistor lift of ¢. For some related results in higher dimensions, see [180].

The problem with using this to find harmonic maps is that J? is never integrable. However, J' is integrable
if and only if the Riemannian manifold N'** is anti-selfdual. Now a J?-holomorphic map M? — (Z, J?) is also
J*-holomorphic if and only if it is horizontal, i.e., its differential has image in the horizontal subbundle 7, and
horizontal holomorphic maps project to harmonic maps which are real isotropic in a sense that we now explain.



Real isotropic harmonic maps. A map ¢ : M? — A/™ from a Riemann surface to an arbitrary Riemannian
manifold is called real isotropic if, for any complex coordinate z, all the derivatives V%(0¢/dz) lie in some
isotropic subspace of Tf(z)/\/' ,l.e.

Nas = (V3(0/02),V5(36/82)) =0 foralla, B € {0,1,2,...}. (65)

Here, Z = 0/0z and {, ) denotes the inner product on 7'\ extended to T\ by complex bilinearity. For example,
a holomorphic map to a Kéhler manifold is real isotropic with the isotropic subspace being the (1, 0)-tangent space.
Now, in an extension to the argument showing that all harmonic maps from S? are weakly conformal (see §2.2), we
show inductively on k = o + 3 that the inner products define holomorphic differentials 7, sdz* on S2; since all
holomorphic differentials on S? vanish for topological reasons, all harmonic maps from S? to S™ are real isotropic,
and hence are obtained as projections of horizontal holomorphic maps into the twistor space. Such maps are easy
to construct from ‘totally isotropic’ holomorphic maps into CP"™ giving E. Calabi’s theorem [36], as follows. Say
that a map to a sphere or complex projective space is full if its image does not lie in a totally geodesic subsphere
or projective subspace. Then there is a 2 : 1 correspondence between full harmonic maps +¢ : S — 52" and
full totally isotropic holomorphic maps from S? to CP".

For an arbitrary oriented Riemannian manifold A/ of even dimension 2n greater than four, J' is integrable on
J*(N) if and only if AV is conformally flat. In order to apply twistor theory to more general manifolds, we need
to find reduced twistor spaces on which J! is integrable. To do this, let K € O(2n) be the holonomy group of
N and P — N the corresponding holonomy bundle given by reducing the structure group of O(N) to K. Then
J(N) = P x i J(R?*"). The holonomy group K acts on J(R?") by conjugation, decomposing it into orbits O; ; it
thus acts on J(A/), decomposing it into the union of subbundles associated to PP and having fibre one of the orbits
O; . These subbundles are the candidates for our reduced twistor spaces.

For example, if AV is a generic Kdhler n-manifold, KX = U(n) and we find that the complex U (n)-orbits of
J(N) can be identified with the Grassmann bundles G,.(T*°N) — N (r = 0,...,n). These are thus twistor
fibrations for harmonic maps. Note that, for 0 < r < n, J* is integrable on G.(T*°N') if and only if the Bochner
tensor of N vanishes.

Complex isotropic harmonic maps. Horizontal holomorphic maps into the Grassmann bundle project to
harmonic maps which are complex isotropic in the sense that all the covariant derivatives V%(0':°¢/9z) are
orthogonal in qub(z)'/\/ to all the covariant derivatives V%(@l'fo(b /0Z%) with respect to the Hermitian inner product on
T'N. In particular, when A/ = CP™, an argument again involving the holomorphicity of differentials constructed
from the above inner products shows that all harmonic maps from S? — CP" are complex isotropic, and so given
by such projections. In this case we can explicitly identify the Grassmann bundles and construct all holomorphic
horizontal maps into it from holomorphic maps S — CP™ by considering their iterated derivatives. This leads to
the result [68]: There is a one-to-one correspondence between pairs (f, ) where f is a full holomorphic map
from S? to CP™ and r € {0,1,...,n} and full harmonic maps from S? to CP".

Maps into symmetric spaces. Now let G be a compact Lie group and V2" = G/ K an irreducible Riemannian
symmetric space. Then the natural projection G — G/K = N is a reduction of the frame bundle with structure
group K. As above, K acts on J(R?") and thence on J(N) = G xx J(R?"). Any orbit in J(R?") is of the
form K/H for some closed subgroup H; the corresponding orbit in J(N') is the subbundle 7 : G xx K/H =
G/H — G/K where 7 is the natural projection. This subbundle can alternatively be thought of an orbit of the
action of G on J(N). F. E. Burstall and J. H. Rawnsley [35] showed that such an orbit is almost complex manifold
on which J* is integrable if and only if is contained in the zero set of the Nijenhuis tensor of J*, They go on to
prove that, if A" = G/K is an inner symmetric space** of compact type, that zero set consists of finitely many
orbits of G with each orbit G/ H a flag manifold of G and that every flag manifold of G occurs for some inner
symmetric space G /K. Further, any flag manifold G/H can be written alternatively as G®/ P for some suitable
parabolic subgroup of the complexified group G, and so has a natural complex structure J'. On replacing J'
by —J' on the fibres, we obtain a non-integrable almost complex structure J? and then the natural projection
(G/H,J?) — G/K = N is a twistor fibration for harmonic maps. Further every harmonic map from S? to A" is
the projection of some .J2-holomorphic map into a suitable flag manifold. Moreover Burstall and Rawnsley exhibit

49 An inner symmetric space is a Riemannian symmetric space whose involution is inner.



holomorphic differentials;if these vanish then the .J2-holomorphic curve is in fact holomorphic for the complex
structure .J1. For the special case of isotropic harmonic maps, see below.

7.2 Loop group formulations

Again let G be a compact Lie group, and let w be its (left) Maurer—Cartan form; this is a 1-form with values in
the Lie algebra g of G which satisfies the Maurer—Cartan equation dw + [w A w] = 0 where [w A w](X,Y) =
2w(X),w(Y)] (X,Y € TG, v € G). Note that w gives an explicit trivialization TG = G x g of the tangent
bundle; the Maurer—Cartan equation expresses the condition that the connection d 4+ w on this bundle is flat.

Maps into Lie groups. Now let ¢ : M"™ — G be a smooth map from a Riemannian manifold to G. Let A
be the g-valued 1-form given by the pull-back ¢*w. Then A represents the differential d¢; indeed, if G is a matrix
group, A = ¢~ 1d¢. Pulling back the Maurer—Cartan equation shows that A satisfies

dAJr%[A/\A] ~0. (66)

This equation is an integrability condition: given a g-valued 1-form, we can find a smooth map ¢ : M — G with
A = ¢~ 'd¢ if and only if (66) is satisfied. Further, it is easy to see that ¢ is harmonic if and only if

d*A=0. (67)

Now let M? be a simply connected Riemann surface and let (U, z) be a complex chart. Writing A = A.dz +
A;dZz we may add and subtract the equations (66,67) to obtain the equivalent pair of equations:

0A, 1 0A, 1 -
oE +§[A5,Az]_0, R +§[AZ,A5]_O. (68)

We now introduce a parameter A € S* := {\ € C*| |\| = 1} (called the spectral parameter), and consider the

loop of 1-forms:
1 1
Ay = 5(1—)\_1)Azdz+ 5(1—)\)A5d2. (69)

K. Uhlenbeck noticed’! [218] that A satisfies the pair (66,67) if and only if

dAy + %[AA AAN =0 forall e S (70)

this equation is a zero curvature equation: it says that for each A, d+ A, is a flat connection on M x g. If satisfied,
there is a loop of maps E\ on M satisfying F5(w) = Ay, since M is simply connected; equivalently, a map
£ : M — QG into the (based) loop group of G: QG = {v: St — G | (1) = identity of G} (where the loops v
satisfy some regularity assumption such as C'*°).

The map £ : M — QG is called the extended solution corresponding to ¢. Now suppose that G is a matrix
group, i.e., G C GL(RN ) C RN >N 1t can be written as Fourier series

E(z): A— Ex\(z) = Z NE;(2) (zeM)

i=—00

for some maps Ej, : M — G. If this is a finite series, we say that ¢ has finite uniton number. Uhlenbeck showed
that all harmonic maps from S? to the unitary group (and so to all compact groups) have finite uniton number.
She also gave a Bdcklund-type transform which gives new harmonic maps from old ones by multiplying their
extended solution by a suitable linear factor called unifon, and showed that the extended solution of a harmonic
map ¢ : S? — U(n) can be factorized as the product of unitons, so that ¢ can be obtained from a constant map by
adding a uniton no more than n times. Another proof was given by G. Segal [196] using a Grassmannian model

50These differentials vanish for harmonic maps from S2 to S2", CP™ and S* ~ HP?, so that one recovers the previous classification
results for such maps [36, 28, 68].
51Uhlenbeck’s discovery was known previously to several physicists, see for example [172].



of U(n). An extension of the factorization theorem to maps into most other compact groups G was proved by
Burstall and Rawnsley [35].

We can also consider the ‘free’ loop group AG = {7 : S' — G} and we may define loop groups QG®
and AG® for the complexified group G* in the same way. Let ATG® be the subgroup of loops which extend
holomorphically to the disk D? := {\ € C| |\| < 1}, i.e., have Fourier coefficients 7; zero for negative i. Then,
we have an Iwasawa decomposition A\G® = QG - AT G so that we can write QG as AGC /At GC; this gives QG a
complex structure. Now (69) tells us that the partial derivative £ lies in AT g® which means that £ is holomorphic.
Further &, lies in the subspace of Ag® where all Fourier coefficients other than A_; and Ay are zero; we say that
& is superhorizontal. Thus we can interpret the fibration 7 : QG — G given by £ — &£|y—_; as a twistor
fibration, since any harmonic map from M to G is the image by 7 of a holomorphic horizontal curve in QG.

Maps into Riemannian symmetric spaces. We can apply the above to harmonic maps into symmetric spaces
G/ K by including G/ K by the totally geodesic Cartan embedding ¢ : G/K — G defined by 1(g-K) = 7(g9)g 1,
where 7 : G — G is the Cartan involution® such that (G7)y C K C G7; here GT := {g € G| 7(g9) = g}
and (G7)g is the connected component of G™ which contains the identity. However, there is an alternative more
geometrical method which we now describe. For any map ¢ : M — G/K choose a lift f : M — G of it
and consider its Maurer—Cartan form o = f*w ~ f~1df. The Cartan involution 7 induces a linear involution
on the Lie algebra g ~ TiyG that we denote also by 7. The eigenvalues of 7 are =1 and we have the eigenspace
decomposition g = go @ g1, where, for a = 0, 1, g, is the (—1)®-eigenspace. Note that go = £ is the Lie algebra of
K. Now we can split & = a + 1 according to the eigenspace decomposition of g and further split «; = o} + o,
where o) 1= «1(0/0z)dz and of := a1(0/0Z)dz. Then ¢ : M — G/K is harmonic if and only if, for all
A € St we have day + (1/2)[an A ar] = 0, where

ay:=A"ta] +ap+ ) forall A € St (71)

This relation allows us to construct a family of maps f) : M —— G by integrating the relation oy = fiw ~
f5 'df. Each map f, lifts a harmonic map ¢ : M — G /K given by 5 (z) = f1(z)K, hence (¢»)rest is an
associated family of harmonic maps. Alternatively we can view the family 7' = (f)),es: as a single map from
M to the twisted loop group AG, = {y : ST — G| y(=)\) = 7(y()\))} and the family ® = (¢))rcs1 as a
map into (AG,)/K. Given a harmonic map ¢, the map ® is unique if we assume for instance the extra condition
fa(zo) = Id, for some zy € M. The representation of a harmonic map into G/K using twisted loop groups is
related to the one using based loop groups through the relations E = fyf~!and «(¢r) = 7(fr) fy ' = E_rE "

A ‘Weierstrass’ representation. We denote the complexification of AG., by AGE. We also define ATGE as
the subgroup of loops v € AGE which have a holomorphic extension (that we still denote by +) in the disk D?
and, if B C GC is a solvable Borel subgroup such that the Iwasawa decomposition G& = G - B holds, we let
A% GE be the subgroup of loops v € ATGE such that v(0) € B. Now J. Dorfmeister, F. Pedit and H. Y. Wu
[60] proved that an Iwasawa decomposition AG(T: =AG; - A% G(E holds, so that we can define a natural fibration
T AGE — AGE/ALGE = AG,. They show also that if H : M — AGE is a holomorphic curve which
satisfies the superhorizontality condition \H*w ~ NH~'dH € A*tg®, then F = 7, o H (i.e., the unique map F
into AGS such that H = FB, for some map B : M — AL GY) lifts an associated family of harmonic maps.
Conversely Dorfmeister, Pedit and Wu proved that any harmonic map from a simply connected surface to N arises
that way. The superhorizontal holomorphic maps H which covers a given F’ are not unique. However we can use
another Birkhoff decomposition A\GE O C = Ay GE - ATGE, where A GC is the subset of loops 7 € AGE which
have a holomorphic extension to CP! \ D? := {\ € C U {co}| |A\| > 1} and such that v(cc) = Id. Here C is
the big cell, a dense subset of the connected component of Id in AG‘S. Further Dorfmeister, Pedit and Wu showed
that for any lift F* of an associated family of harmonic maps into N, there exist finitely many points {a1, - - -, ax}
such that F' takes values in C outside {a1, - - -, ax }. We can hence decompose F' = F~F* on M\ {a1,---,ax},
where F'~ (respectively F') takes values in A7 GC (respectively AT G’E), and then F'~ extends to a meromorphic
superhorizontal curve on M with poles at ay, - - -, ax. Then the Maurer—Cartan form of ', y = (F'~)*w, reads
px = A"1édz, where ¢ : M — g% is a meromorhic potential called the meromorphic potential of F. This
provides Weierstrass data for the harmonic map and is known as the ‘DPW’ method [60].

521 (g) = sogsg * where s, is the point reflection in the base point of V.



Pluriharmonic maps. This can be extended to the more general case of ‘pluriharmonic’ maps: a smooth map
from a complex manifold is called pluriharmonic if its restriction to every complex one-dimensional submanifold is
harmonic. Let ¢ : (M, JM) — A be a smooth map from a simply connected complex manifold to a Riemannian
symmetric space N = G/ K. For A = e~ € S, define an endomorphism of T M by Ry = (cos )1 + (sin6).J.
Extending this by complex-linearity to the complexified tangent bundle 7CM, we have that Ry = A~'I on the
(1,0)-tangent bundle 7’ M and Ry = AI onthe (0, 1)-tangent bundle 7"/ M. Note that, if M is a Riemann surface,
R, is rotation through 6. J. Dorfmeister and J.-H. Eschenburg [59] show that ¢ is pluriharmonic if and only if there
is a parallel bundle isometry Ry : ¢*TN — ¢3TN preserving the curvature such that Ry o d¢ o Ry = d¢) for
some smooth family of maps ¢, (A € S'), and that the maps ¢, are all pluriharmonic; thus pluriharmonic maps
again come in associated S*-families. Then with similar definitions of superhorizontal and holomorphic to those
above, we obtain the result: there is a one-to-one correspondence between pluriharmonic maps ¢ : M — G/K
and superhorizontal holomorphic maps ® : M — A,G /K with ¢ = w0 ®.

The twistor theory revisited. Twistor theory appears as a special case: a map is called isotropic if the asso-
ciated family ¢, is trivial, i.e. ¢ = ¢ up to congruence for all A\ € S'. Then, for each z € M, the Ry (z) are
automorphisms of Ty )N/, representing these by elements of G, they define a homomorphism R(z) : S - @,
A — MR (z). By parallelity of the R (2) as z varies, these homomorphisms are all conjugate, so that the JR, define
a map into the congugacy class of a circle subgroup ¢ : S' — G, A — ¢ with ¢_; = s,; this congugacy class is a
flag manifold of the form G /C; where Cj; is the centralizer of ¢, and the 9 define a twistor lift into that manifold.
Note that Cj is contained in K. Also a necessary condition for the existence of a circle subgroup ¢ with g_; = s,
is that A/ be inner, i.e., s, lies in the identity component of . We thus obtain [69]: Let ¢ : M — N be a smooth
map into an inner symmetric space N = G /K of compact type which is full, i.e., does not have image in a totally
geodesic proper subspace of N'. Then ¢ is isotropic if and only if there is a flag manifold Z = G /H with H C K
and a holomorphic superhorizontal map ® : M — Z such that w o ® = ¢ where 1 : G/H — G /K is the natural
projection. In this setting, pluriharmonic maps into Lie groups G appear naturally by treating G as the symmetric
space G x G/G.

F. Burstall and M. A. Guest [34] take all this much further by showing that to every extended solution can be
associated a homomorphism ¢ : A — ¢, by flowing down the gradient lines of the energy of loops in G. The
extended solution can be recovered from ¢ by multiplication by a suitable holomorphic map into a loop group.
The conditions (69) translate into conditions on the coefficients of the Fourier series of this map related to the
eigenspace decomposition of Ad g,. This leads to equations in the meromorphic parameters which can be solved
by successive integrations leading to the theorem: Every harmonic map S* — G arises from an extended solution
which may be obtained explicitly by choosing a finite number of rational functions and then performing a finite
number of algebraic operations and integrations. They show how the work of Dorfmeister, Pedit and Wu [60] fits
into this scheme, as well as Uhlenbeck’s factorization.

Finite type solutions. An alternative way of finding harmonic maps into symmetric spaces, especially when
the domain is a (2-)torus, is to integrate a pair of commuting Hamiltonian fields on the finite-dimensional subspace
Qg = {€ € Qg| &, = 3¢, & (1 — A¥)} of the based® loop algebra g, for some d € N*. Indeed the vector
fields X; and X, defined on Q9g by X; (&) — iXo(€) = 2[¢, 2i(1 — \)&4] are tangent to Q%g and commute. Thus
we can integrate the Lax type equation d¢ = [€, 2i(1 — \)&udz — 2i(1 — A=1)€_ydz], where £ : R — Qdg (for
a formulation of the harmonic map equations as a Lax pair, see the article by Wood in [73] or [53, 94]). Then, for
any solution of this equation, the loop of 1-forms Ay := 2i(1 — )\)aidz —2i(1 — A‘l)g,ddz satisfies the relation
(70) and hence provides an extended harmonic map by integrating the relation E{w = Aj; the resulting harmonic
maps are said to be of finite type.

A nontrivial result is that, for all n € N*, all non-isotropic harmonic maps from the torus to 5™ or CP"
are of finite type. This was proved by N. Hitchin [122] for tori in S3, by U. Pinkall and 1. Sterling [169] for
constant mean curvature tori in R? and by Burstall, D. Ferus, Pedit and Pinkall [33] for non-conformal tori in
rank one symmetric spaces ([122] and [33] propose a different approach, see [123] for a comparison). The case of
conformal but non-isotropic tori in S™ or CP™ requires the notion of primitive maps introduced by Burstall [32],
i.e. maps with values in a k-symmetric space fibred over the target. See [160, 161] for further developments. To
each finite type harmonic map of a torus can be associated a compact Riemann surface called its spectral curve,

33 A similar formulation using twisted loops exists, see the paper by Burstall and Pedit in [73] or [117].



together with some data on it called spectral data. This leads to a representation using techniques from algebraic
geometry, done by A. Bobenko [19] for constant mean curvature tori and by I. McIntosh [154] for harmonic tori in
complex projective spaces.

Harmonic maps from a higher genus surface M. They can, in principle, be found by the DPW method
by investigating harmonic maps on the universal cover of M, but this is hard to implement. Another possible
approach investigated by Y. Ohnita and S. Udagawa [160] is to look for (finite type) pluriharmonic maps on the
Jacobian variety .J(M) of M and compose them with the Abel map M — J(M).
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