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Abstract

This thesis is about the fast InvSqrt function found in the public domain,

or more notably, the C source code for Quake III: Arena. The function uses

some clever bit hacking to approximate the inverse (or reciprocal) square

root of a 32-bit floating point number quickly. The original author of the

function is still unknown; and the exact mechanics of how the function was

derived is still unknown. In fact, the exact mechanics of how it even works

was still not completely known, until now. This thesis will take a quick look

at the history of the function, interpret the function, analyze the benefits of

the function, and mathematically optimize the function even further.
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Chapter 1

Introduction

Some unknown master bit hacker has released an amazing function into the

public domain. This function, commonly called InvSqrt, approximates the

inverse (or reciprocal) square root of a 32-bit floating point number very

quickly. It can be found in many open source libraries and games on the

Internet, such as the C source code for Quake III: Arena. This raises many

questions. Why is it needed? Who wrote it? How does it work? How well

does it work? Is it still useful with modern processors today? And finally,

can it be improved to work better? This thesis will examine those questions

and give a unique interpretation and optimization of the function itself.
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1.1 Motivation

Games like Quake III: Arena were pretty impressive for their time. Their

graphics required a lot of real time calculations in an age of slower processors

than today. A common calculation was to normalize a vector, or calculate

its unit vector v̂ by

v̂ =
~v

||~v||

where ||~v|| is the Euclidean norm of ~v

||~v|| =
√

(vi)2 + (vj)2 + (vk)2.

So clearly there was a need to calculate the reciprocal square root of floating

point numbers quickly.

1.2 History

The fast InvSqrt function received a lot of attention on Slashdot in August

of 2005 following the release of the Quake III: Arena source code. Calling it

“one of the more famous snippets of graphics code in recent years,” [8] they

question how it works and who the author was. Originally, they credited it,

with good reason, to John Carmack, the head developer of Quake; however

he quickly denied it in an e-mail [8]. One can look through the article on

Slashdot and quickly see how confusing the function was, and how baffled it

left many people in the community.
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Further digging revealed the function, in its current form, first appeared on

the newsgroup comp.graphics.algorithms in January 2002. However Quake

III: Arena had already been released, without source, in 1999. Pieces of the

source code may have been leaked before it was officially released under the

GNU Public License.

An interesting paper from 1997 called Floating-Point Tricks [1] contains a

more general, less refined method to approximate log2 (x) and xn. in general.

The author, James F. Blinn, proposed several tricks, or hacks, to do with

floating point numbers. It is possible his version of the function was the

original, and had been refined and specialized specifically for the reciprocal

square root by other people.

Other papers written about this subject also have had no success identify-

ing the author of the function [2] [4]. It is possible there is no single author,

and that explains why he has not revealed himself yet. The function may

have just evolved into its present form by passing though several different

programmers’ keyboards.

Copies of this function floating around in the public domain often incor-

rectly call it InvSqrt meaning Inverse Square Root. The inverse square root

function would just be the squared function. The function this thesis con-

siders is, more precisely, a reciprocal square root function.

3



1.3 The Function

The C function in Figure 1.1, as given in the Quake III: Arena source code,1

uses bit hacking to estimate the reciprocal square root of a given float. Then,

it proceeds to use the Newton-Raphson method to better the estimation [3].

float Q_rsqrt(float number) {
long i;
float x2, y;
const float threehalfs = 1.5F;

x2 = number * 0.5F;
y = number;
i = *(long *) &y;
i = 0x5f3759df - (i >> 1);
y = *(float *) &i;
y = y * (threehalfs - (x2 * y * y));

// y = y * (threehalfs - (x2 * y * y));

return y;
}

Figure 1.1: Q rsqrt() as found in Quake III: Arena.

Researchers should probably be scratching their heads right about now.

There is no obvious reason one would think this code could approximate

the reciprocal square root of a number so well that the Newton step only has

to be done once. Notice the Newton iteration is commented out the second

time, which shows how well it works!

1C preprocessor directives and comments removed.
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1.4 Accuracy

The first thing one might wonder is, “How good is this approximation?” The

graph shown in Figure 1.2 shows the function y = 1/
√
x and points taken

from the Q rsqrt() function at random points across all floats.

Figure 1.2: Graph of y = 1/
√
x against sample data.

Clearly, the function is very accurate. In fact, it has a maximum relative

error of 0.0017522874, that is less than 0.2%, given by2

max
(√

f ·Q rsqrt(f)− 1
)

for every positive normalized float f .

2See Appendix A.1 and A.2 for C code.
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The accuracy of this function drops off for very small denormalized floats.

Such numbers are very close to 0, so the reciprocal square root of denormal-

ized floats approaches ∞. A very small number can be considered 0 and a

very large number can be considered ∞, so the accuracy is less important in

this case.
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Chapter 2

Background

The fast reciprocal square root function relies on a couple big concepts such

as the Newton-Raphson method and IEEE 754 floating point representation.

2.1 Newton-Raphson Method

The Newton-Raphson method is a method for approximating solutions of

f(x) = 0. It takes a current approximation, or guess, xn and returns some

(hopefully) better approximation xn+1 as follows

xn+1 = xn −
f(xn)

f ′(xn)
. (2.1)

where f ′(x) is the derivative of f(x) with respect to x [7].

7



2.2 IEEE 754 Floating Point

A 32-bit floating point number is represented in memory as

w =
s E M

bit 31 30← bits→ 23 22← bits→ 0

where w is a word (or integer) in memory [7]. These fields can be interpreted

as integers such that s is the sign bit, 1 means negative, E is the exponent

field, bias b = 127 and finally, M is the fractional part of the normalized

mantissa. So the float φ(w) is given by

φ(w) = (−1)s
(

1 +
M

223

)
2E−b. (2.2)

For convenience, this is often expressed as

φ(w) = (−1)s (1 +m) 2E−b m ∈ [0, 1) (2.3)

where m = M/223. This will easily translate to other floating point rep-

resentations such as double or quadruple precision; and it will more closely

resemble the mathematics later on in this thesis.

8



Chapter 3

Interpretation

Interpreting this function may be a little difficult because of the bit hacking

and lack of proper documentation. However it can be broken down into

the following sections and interpreted. The casting between (long∗) and

(float∗) is one detail. The formula y = y ∗ (threehalfs− (x2 ∗ y ∗ y)) is

another detail. But these are simple compared to the line that should jump

out; i = 0x5f3759df − (i >> 1).

3.1 Casting Pointers

The function contains two explicit castings between (long∗) and (float∗); for

example, the line i = ∗(long∗)&y. This line takes the address of y, which is

of type float, and casts it to a pointer of type long integer, then stores the

value at that address in i. This is basically interpreting the float bits as an

9



integer without converting it with any intelligence. The other casting works

similarly but from integer back to float. This concept relies on how floats are

stored in memory as explained in Section 2.2. So the integer interpretation

of a float’s bits, ι(w), can be expressed as

ι(w) = w = 231s+ 223E +M (3.1)

where s is the sign bit, 1 means negative, E is the exponent field, bias 127

and finally, M is the fractional part of the normalized mantissa.

For example, let wπ be the closest approximation of π in single precision

floating point. Then the word wπ is represented in memory as

wπ =
0 128 4788187

bit 31 30← bits→ 23 22← bits→ 0

and the float φ(wπ) is given by

φ(wπ) = (−1)0
(

1 +
4788187

223

)
2128−127 .

= 3.14159

and the integer ι(wπ) is given by

ι(wπ) = wπ = 231 · 0 + 223 · 128 + 4788187 = 1078530011.

10



3.2 Bit Shift a Float

Normally, a bit shift is an illegal operation on a float. But though the

magic of casting pointers, this can be done indirectly. The line of code

i = 0x5f3759df − (i >> 1) contains a bit shift on i, the integer interpreta-

tion of the bits from a float f . This effectively divides i by 2 and cuts off the

trailing bit, or floors it. Imagine this as dividing each field in f by 2. But

notice if E is odd, then its least significant bit will fall into M as the most

significant bit! (Well, if E is even this will happen too, but it will have no

effect.) This indirect bit shifting of a float can be viewed as

Field: s E M
i s0 E7E6...E1E0 M22M21...M1M0

(i >> 1) 0 s0E7...E2E1 E0M22...M2M1

Range: bit 31 30← bits→ 23 22← bits→ 0

where s0 is 0. The M0 bit will be lost, but is the least significant bit in the

entire thing, so it will not be missed. However, the E0 bit will not be lost,

instead it will fall into the mantissa field. If the bit E0 is a 1, then it will

add 222 to the mantissa field and a theoretical 21/2 will be lost. Therefore

the word j = (i >> 1) can be expressed in exponent mantissa form as

j = bE/2c 222E0 + bM/2c (3.2)

11



3.3 Iteration Step

The function contains the formula y = y ∗ (threehalfs− (x2 ∗ y ∗ y)). This

comes from the Newton-Raphson method on

f(x) =
1

x2
− h (3.3)

which, from Equation 2.1, yields an xn+1 of

xn+1 =
xn
2

(
3− hx2n

)
. (3.4)

This can be rearranged to more closely resemble the code as

xn+1 = xn

(
3

2
− h

2
x2n

)
(3.5)

where xn is y and h/2 is x2. This step refines the answer, and can be

repeated. Notice in the Quake III: Arena source code it is commented out

the second time.

12



3.4 The Magic Constant

Well, the constant is not really magic! The line of code previously considered

also contains the constant R. Let R = 0x5f3759df , which breaks down into

exponent and mantissa form as

R = S T = 190 3627487 .

This particular value for R is what leads to the good initial guess when j is

subtracted from it as an integer. Let G = (R− j) be represented as

G = 190 3627487 − bE/2c 222E0 + bM/2c . (3.6)

The following interpretation of the magic constant loosely follows that of

Lomont [4] and Eberly [2]. There has been a history of slightly flawed in-

terpretations, so this interpretation is followed by a proof of correctness and

then Chapter 5 will explain the previous interpretations. One major dif-

ference is this interpretation will show there are only three valid cases to

consider, whereas the other papers consider a fourth impossible case.

13



3.4.1 The Reciprocal Square Root

For some float f , from Equation 2.3, f = (1 + m)2E−127. The reciprocal

square root of f can be expressed as

1√
f

=
1√

1 +m

1√
2E−127

=
1√

1 +m
2−E/2+63.5

=
1√

1 +m
2−bE/2c−E0/2+63+1/2

=

(
1√
2

)E0
√

2√
1 +m

2−bE/2c+63

=

(√
2
)1−E0

√
1 +m

2−bE/2c+63

This can be broken down into two factors as

1√
f

=

(√
2
)1−E0

√
1 +m︸ ︷︷ ︸

mantissa

263−bE/2c︸ ︷︷ ︸
exponent

. (3.7)

The exponent and mantissa fields of G given in Equation 3.6 approximate

the exponent and mantissa factors of 1/
√
f given in Equation 3.7. Notice

the mantissa field compensates for the flooring of E in the exponent field, so

the exponent field can be kept constant and the mantissa field manipulated

accordingly.

14



3.4.2 The Exponent

Consider only the exponent factor of Equation 3.7 given by 2e = 263−bE/2c.

When this is interpreted as a float there will be a bias applied. Compensate

to get 2e+127 = 2190−bE/2c. Now G can be partly represented as

G = 190− bE/2c ??? (3.8)

where bE/2c can never be greater than 190, so there are no underflow issues.

Figure 3.1: Exponent Factors

Notice the exponent factor corresponds perfectly to the exponents in Equa-

tion 3.6. The graph shown on Figure 3.1 shows the exponent part of the

true reciprocal square root of f , as given in Equation 3.7, and the exponent

part of the initial guess, over a small range of exponents. Clearly it fits quite

nicely. So G is of the same order of magnitude as 1/
√
f . The mantissa factor

will compensate for the floored exponents to create a nearly perfect fit.

15



3.4.3 The Mantissa

Consider only the mantissa factor of Equation 3.7 given by

zE0 =

(√
2
)1−E0

√
1 +m

. (3.9)

This factor is much more complicated. Whether E is even or odd affects the

mantissa, and also there is the possibility of underflow due to the subtraction

G = (R−j), which can cause the mantissa to borrow a bit from the exponent.

So there are different cases to consider. When E is even means E0 = 0.

z0 =

√
2√

1 +m
. (3.10)

This means no bit falls into the mantissa field of j = (i >> 1). However,

there is the possibility of underflow when bM/2c > T , where T = 3627487 is

the mantissa field of the magic constant.

M Small, E Even When M is small, such that bM/2c ≤ T , no underflow

occurs so no bit is borrowed from the exponent field. Thus G is simply

G = 190− bE/2c T − bM/2c (3.11)

or as a float this is interpreted as

φ(G) =

(
1 +

T − bM/2c
223

)
2190−bE/2c−127. (3.12)

16



Consider the mantissa field of φ(G), y1, for graphing as

y1(x) = 1 + t− x

2
, x ∈ [0, 2t). (3.13)

where x ∈ [0, 1) and t = T/223.

M Large, E Even When M is large, such that bM/2c > T , underflow

does occur, so a bit is borrowed from the exponent field of i, subtracting 1

from the exponent field and adding 223 to the mantissa field. Thus G is given

by

G = 190− 1− bE/2c 223 + T − bM/2c (3.14)

or as a float, this is interpreted as

φ(G) =

(
1 +

223 + T − bM/2c
223

)
2189−bE/2c−127. (3.15)

Borrowing a bit from the exponent field effectively cuts G in half. Because

the exponent field of G is already fixed, divide the mantissa factor in half to

compensate. So consider the line y2 for graphing in Figure 3.2 as

y2(x) = 1 +
t

2
− x

4
, x ∈ [2t, 1). (3.16)

where x ∈ [0, 1) and t = T/223.

17



E Odd Consider the case that E is odd means E0 = 1.

z1 =
1√

1 +m
. (3.17)

This means a 1 bit falls into the mantissa field of j. There is guaranteed

underflow in the subtraction G = (R− j) because the mantissa field of R is

less than the smallest possible value for j, 222. So a bit is borrowed from the

exponent field and G can be represented as

G = 190− 1− bE/2c 223 + T − (222 + bM/2c) . (3.18)

Similar to y2, a bit is borrowed from the exponent field effectively dividing

G by 2. So consider y3 for graphing in Figure 3.3 as

y3(x) =
3

4
+
t

2
− x

4
, x ∈ [0, 1). (3.19)

where x ∈ [0, 1) and t = T/223.

Figure 3.2: Graph of z0, y1, y2. Figure 3.3: Graph of z1, y3.
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The accuracy of the initial guess is a result of all of the previous cases to-

gether. The exponent field is shown in Figure 3.1 and the mantissa field is

shown in Figures 3.2 and 3.3. Notice there are the same number of even

exponents as odd exponents, so the two cases of E0 are equally important.

Consider, for Figure 3.4, the line y4 =
√

2y3, to scale to z0. Now all cases

can be graphed against z0 and compared fairly.

Figure 3.4: Graph of z0, y1, y2, y4

Notice at the point x = 2t, the line y2 takes over from y1 to be more accurate.

When both the mantissa factor and exponent factor are accurate, overall the

initial guess G will be accurate. Also notice the yn(x) functions and t are size

neutral, they can easily be used to represent any precision floating point.

19



The pointer casting allows for the bit shifting on a float, then subtracting

that from the magic constant allows for a very good initial guess. This initial

guess is fed into the Newton-Raphson method to refine the initial guess to

become a very good approximation of the reciprocal square root of a floating

point number. Now the questions remain, “How was this magic constant

derived?” and “Is there a better one?”

3.5 Proof of Correctness

Other papers have had mistakes in their interpretation of the line of code

i = 0x5f3759df − (i >> 1) [2] [4]. So it is important to prove this interpre-

tation is correct for all positive floats. Because there are only a finite number

of positive floats, it is possible to test them all by asserting

G(i) == 0x5f3759df − (i >> 1) (3.20)

for every integer (or word) i, corresponding to every positive float f . For the

C function G(), representing precisely the cases previously given as G, this

assertion does confirm1.

1See Appendix A.3 for C code.
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3.6 Benchmarks

In 2003, the function was considered to be about four times faster than

the native libm 1.0/sqrt() [4]. A test on a few different CPUs can demon-

strate this. Table 3.1 shows the ratio of time to compute 1.0f/sqrtf() over

Q rsqrt() across all normalized floats on different CPUs compiled with high

optimization2.

CPU Minimum Average Maximum

Intel R© CoreTM2 Duo E8400 3.00GHz 3.348315 3.352887 3.358521
Intel R© CoreTM i5-2415M 2.30GHz 3.960945 4.033596 4.079792
Intel R© CoreTM2 Duo T9300 2.50GHz 3.102804 3.126771 3.153846
AMD V120 Processor 3.011129 3.014891 3.017516
AMD SempronTM Processor 3200+ 3.085374 3.096781 3.100399
Intel R© CoreTM i5-430M 2.27GHz 4.087017 4.098945 4.126741
Intel R© CoreTM i7-2640M 2.80GHz 4.081911 4.099887 4.111876

Table 3.1: Time ratio comparisons across different CPUs

On modern desktop computers it appears to be between three and four times

faster. This means the function is still practical today! Running the bench-

mark test with the second Newton iteration enabled confirms that, as ex-

pected, adding the second iteration decreases the time by about one half. So

a more accurate, two iteration version is also practical; however the great

speed boost by having only one iteration may make it more attractive, even

though significantly less accurate.

2All results compiled using the 4.x series of gcc with -O3.
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Chapter 4

Analysis

It is important to generalize Section 3.4 for any magic constant and work for

any sized floating point representation. So consider the conditional equation

G =


S − bE/2c T − bM/2c E even M small

S − 1− bE/2c 2U + T − bM/2c E even M large

S − 1− bE/2c 2U−1 + T − bM/2c E odd

(4.1)

where E being even or odd is defined by E0 being 0 or 1, M being small or

large is defined by (bM/2c ≤ T ) or (bM/2c > T ) and U is the size of the

mantissa field.
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4.1 Exponent Field

The exponent field of R is trivial to find. Similar to the method shown in

Section 3.4.2, S can be expressed as S = bb/2c+ b or

S = b3b/2c (4.2)

where b is the bias.

4.2 Mantissa Field

The mantissa field is, again, more complicated. The formula for the mantissa

fraction of G can be expressed as the conditional equation combining the

functions y1(x), y2(x) and y4(x),

y(x) =


1 + t− x/2 E0 = 0, x ≤ 2t

1 + t/2− x/4 E0 = 0, x > 2t√
2(3/4 + t/2− x/4) E0 = 1

(4.3)

where x ∈ [0, 1) is the mantissa fraction of the input value and t is the

mantissa fraction of the new magic constant. Minimizing the error of y(x)

compared to z0(x), from Section 3.4.3, will yield a new magic constant.
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4.3 First Minimization

A natural way to make a good magic constant is to minimize the maximum

relative error of y(x). Consider the relative errors given by

w(x) =

∣∣∣∣ y(x)

z0(x)
− 1

∣∣∣∣ . (4.4)

Notice w(x) is piecewise differentiable on the previously defined domains.

The maximum value must occur at one of the following critical or end points

Figure 4.1: Graph of w(x) with all critical and end points marked.

The critical points showing in Figure 4.1 can be expressed and labelled alge-

braically as

x = 0,︸ ︷︷ ︸
end point

x =
2t

3
,︸ ︷︷ ︸

maximum

x =
2t+ 1

3
,︸ ︷︷ ︸

maximum

x = 2t,︸ ︷︷ ︸
maximum

x =
2(t+ 1)

3
,︸ ︷︷ ︸

minimum

x = 1−.︸ ︷︷ ︸
end point
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Taking w(x) at these critical x values yields the maximum relative errors in

terms of t as shown in Figure 4.1. This is a very delicate balancing act. To

change t even slightly can cause one of the errors to become quite large very

fast. The goal is to find the t value with the smallest maximum relative error

value. Figure 4.2 shows the relative errors at the critical points resulting

from different values of t.

Figure 4.2: Graph of maximum relative errors against t.

Looking at Figure 3.4, it is clear that there is only a specific range t can

belong to. That range is t ∈ (
√

2 − 1, 1/2) because outside of this range,

the even and odd exponents no longer balance each other. They both move

away from the true value in the same direction. So only constants that have

a mantissa field that corresponds to this range must be considered.
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The optimal mantissa fraction t must be in the range t ∈ (
√

2− 1, 1/2). So

consider the graph in Figure 4.3 zoomed into this range.

Figure 4.3: Maximum relative errors against t within the bounding lines.

It is clear that the optimal value of t is bounded only by the top two curves1.

Therefore the t which gives the minimal maximum relative error is the inter-

section between the two curves w(2t/3) and w(2t) when E is even,

∣∣∣∣∣
√

6(2t+ 3)3/2

18
− 1

∣∣∣∣∣ =

∣∣∣∣∣
√

2
√

2t+ 1

2
− 1

∣∣∣∣∣
where t ∈ (

√
2− 1, 1/2).

Which simplifies to be

4t6 + 36t5 + 81t4 − 216t3 − 972t2 − 2916t+ 1458 = 0

which yields

t
.
= 0.4327448899594431954685215869960103736198

1See Appendix B.1 for Derive code.
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This t differs from the t used in the original R, it also differs from the t cal-

culated by Chris Lomont, in his paper Fast Inverse Square Root [4], where

he uses a similar approach. The difference is only after the 26th digit, so its

effect will not be seen until quadruple precision floating point. The difference

is only significant because of how the t was obtained. Lomont used a numer-

ical method to compute it, whereas this thesis used an algebraic and then

numerical method to calculate it.

4.4 Testing

The R value corresponding to this calculated t value can be obtained by

R =
⌊
(190 + t)223

⌋
(4.5)

which yields an R value of 0x5f37642f for floats. However, as also noted by

Lomont [4], this constant yields a maximum relative error of 0.0017758484,

which is actually worse then the original Q rsqrt() function. The original has

a maximum relative error of 0.0017522874. However, the new constant will

yield a better result before the Newton-Raphson iteration at 0.0342128389

when the original is 0.0343757719. So the natural question asked by Lomont

was, “Why [is] the best initial approximation to the answer not the best after

one Newton iteration?”
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4.5 Newton Issue

All of the other explanations mentioned have made the same mistake; they

find a constant that will give the closest initial guess to the real answer, but

they don’t care if they are smaller or larger than the answer. Because of the

shape of the graph of y = 1/
√
x, after an iteration of the Newton-Raphson

method from any good guess xn, it will result in an xn+1 that is less than the

answer. So an initial guess that is larger than the answer will not converge

as fast as an initial guess that is smaller than the answer. So optimizing

the magic constant before the iteration will not optimize the constant after.

This can be demonstrated mathematically by considering the initial guess

xn = (1/
√
h− ε). So from Equation 3.4

xn+1 =
(1/
√
h− ε)
2

(
3− h(1/

√
h− ε)2

)

which can be rearranged to a more useful form as

xn+1 =
1√
h
−

[
ε2
√
h

2
(3− ε

√
h)

]
︸ ︷︷ ︸
distance from root

. (4.6)

So clearly a small positive ε will have a smaller distance from the root, thus

it is better to take an initial guess that is a little bit too small instead of a

little bit too big. This also means the results of the Q rsqrt() function will

always give an estimate that is slightly too small.
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4.6 Solution

The solution is to apply the optimization after the Newton iteration. The

problem is it is hard to predict exactly how the Newton iteration will affect

the float. Consider y(x) from Equation 4.3 which approximates the mantissa

field of
√

2/
√

1 + x. Simply apply a transformation of q(x) = y(x − 1)/
√

2

to approximate the mantissa field of 1/
√
x. So q(x) is given by

q(x) =


√

2(3/4 + t/2− x/4) E0 = 0, x ≤ 1 + 2t√
2(5/8 + t/4− x/8) E0 = 0, x > 1 + 2t

1 + t/2− x/4 E0 = 1

(4.7)

where x ∈ [1, 2). Because the approximation works for all valid exponents,

it works for the exponents E = 126 and E = 127 specifically, that makes the

exponent field in Equation 3.7 equal 1. Therefore q(x) can be considered an

approximation for 1/
√
x without worrying about the mantissa or exponent

fields of the float. Now the iteration step described in Section 3.3 can be

applied where xn = q(x) to give2

p(x) = q(x)

(
3

2
− x

2
q2(x)

)
(4.8)

where x ∈ [1, 2).

2See Appendix B.2 for Derive code.
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Clearly, from Figure 4.4, p(x) is a very good approximation of 1/
√
x.

Figure 4.4: Graph 1/
√
x and p(x)

By a similar process to Section 4.3, the maximum relative error, v(x), can

be minimized where v(x) is given by

v(x) =

∣∣∣∣ p(x)

1/
√
x
− 1

∣∣∣∣ . (4.9)

The maximum value of v(x) must occur at one of the following critical points

x = 1,︸ ︷︷ ︸
end point

x =
2t+ 3

3
,︸ ︷︷ ︸

maximum

x =
2t+ 4

3
,︸ ︷︷ ︸

maximum

x = 2t+ 1,︸ ︷︷ ︸
maximum

x =
2t+ 5

3
,︸ ︷︷ ︸

minimum

x = 2−︸ ︷︷ ︸
end point
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Taking v(x) at these critical x values yields results in terms of t as shown

in Figure 4.5. Similar to Section 4.3, the goal is to find the t value with the

smallest maximum relative error value. Figure 4.6 shows the relative error

at the critical points resulting from different values of t.

Figure 4.5: v(x) with critical and end
points marked.

Figure 4.6: v(x) taken at critical
points across large range of t.

Figure 4.7 shows the maximum relative error zoomed into the optimal range.

Figure 4.7: v(x) taken at critical points across t bounded
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The optimal t value is bounded by the top two curves3 in Figure 4.7. There-

fore the t which gives the minimal maximum relative error is the intersection

between the two curves v(2t/3 + 1) and v(2t+ 1) when E is even,

∣∣∣∣∣−
√

6(2t+ 3)3/2(8t3 + 36t2 + 54t− 135)

1944
− 1

∣∣∣∣∣ =

∣∣∣∣∣
√

2(2t− 5)
√

2t+ 1

8

∣∣∣∣∣
where t ∈ (

√
2− 1, 1/2).

Which simplifies to be

64t6 + 576t5 + 2592t4 + 3888t3 − 26244t+ 10935 = 0

which yields an optimal t of about

t0
.
= 0.4324500847901426421787829374967964668614

and a maximum relative error of about

0.0017511836712202133521251742467001545368

An interesting point to mention here is that the accuracy of this method does

not depend of the size of the floating point representation. So this method

applied to a double or quadruple precision floating point would give the same

maximum relative error to the precision of the floating point representation.

3See Appendix B.2 for Derive code.
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4.7 Results

This optimal t value corresponds to an R value of 0x5f375a86. This value of

R has a measured maximum relative error of 0.0017512378 (and 0.0343654640

before the iteration step). The difference between this measured and the

theoretical maximum relative error is due to the precision of the floating

point representation. A higher precision floating point representation should

have a measured maximum relative error closer to the theoretical value. This

constant is better than the original for both the initial guess and after the

iteration step!

4.8 Extension

On a final note, the magic constant can be extended into higher precision

floating point such as double and quadruple precision using

R =

⌊(⌊
3b

2

⌋
+ t0

)
2U
⌋
. (4.10)

A double has a mantissa field of size U = 52 and a bias of b = 1023. Using

Equation 4.10 this yields an optimal constant of R = 0x5fe6eb50c7b537a9

with maximum relative error of 0.0017511837. Similarly, for quadruple preci-

sion, this yields a constant of R = 0x5ffe6eb50c7b537a9cd9f02e504fcfbf

with a maximum relative error even closer to the theoretical. A similar

method could be used to find optimal constants for two Newton iterations.
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Chapter 5

Previous Explanations

As mentioned earlier, there have been previous explanations of the fast re-

ciprocal square root function. The following authors have their own versions

of the function, or their own explanations of how it works.

5.1 James Blinn

A early version of the fast reciprocal square root function is given by James

F. Blinn in 1997 in his paper Floating-Point Tricks [1, 6]. His version of

the function is derived from floating point approximations of log2(x) and 2n.

These functions can be combined to give x−1/2 = 2−1/2 log2 (x). Blinn has his

own code to do this, but Figure 5.1 shows equivalent code in the same format

as the Quake III: Arena version.
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#define OneAsInteger 0x3F800000

float rsqrteq(float x) {
uint32_t i;
float y;

y = x;
i = *(uint32_t *) &y;
i = (OneAsInteger + (OneAsInteger >> 1)) - (i >> 1);
y = *(float *) &i;

y = y * (1.47F - (0.47F * x * y * y));

return y;
}

Figure 5.1: Reciprocal square root function equivalent to Blinn’s version.

The first thing to note is that in place of a magic constant is the code,

(OneAsInteger + (OneAsInteger >> 1)), which evaluates to 0x5f40000.

This is slightly larger than the optimized magic constant, but it is incredible

how close it is. In fact, this magic constant is equivalent to a t value of

0.5; the point where the y2(x) case from Section 4.2 becomes impossible.

The next thing to note is the modification on the Newton Iteration step;

y ∗ (1.47F− (0.47F ∗ x ∗ y ∗ y)). This reduces the maximum relative error

from about 1.2% using the normal Newton iteration, to about 0.6% using

Blinn’s mysterious modified version of the iteration step. This version of the

fast reciprocal square root function is just a special case of a more generic

xn function that could be analysed and optimized in another paper.
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5.2 David Eberly

A very tempting and very simple explanation is given by David Eberly in the

2002 version of his paper Fast Inverse Square Root [2] claiming the mantissa

part of (R >> 1) was simply a linear line approximating

y =
1√

1 + x
x ∈ [0, 1)

where S is some y-intercept and m = −1/2. Now this would be very nice if

it was that simple, however there are two issues. Such a line is accurate close

to x = 0 but not close to x = 1 because of the shape of the y function. Also

this completely ignores the issues of the E0 bit falling into the mantissa. The

slope of y is given by

dy

dx
= −1

2
(1 + x)−3/2

so clearly at x = 0 the slope is −1/2 however as x→ 1 the slope → −
√

2/8.

To compensate for this, Eberly said take a slope of −1/4 by dividing the

entire float in half, or subtract one from the exponent. Given the y-intercept

0.966215, this will yield a good initial guess. However this does not consider

any the cases of a bit falling into the mantissa field or borrowing a bit from

the exponent field. What Eberly did represents the case when E is odd, set-

ting the foundation for future interpretations. However Eberly ignored the

other two possible cases of E being even and M being small or large.
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Eberly updated his paper in 2010 to include more cases after Chris Lomont

provided a paper on the same subject.

5.3 Chris Lomont

In 2003, Chris Lomont, in his paper Fast Inverse Square Root [4], came to the

same optimal magic constant for floats as this thesis, 0x5f375a86. However,

his constant was computed by brute force. He used mostly algebraic methods

to come to the optimal pre-Newton iteration solution, but then resorted to

brute force for the final optimal magic constant. He, as well as Eberly,

considered an impossible case, when the exponent field is odd and no bit is

borrowed during the subtraction from the magic constant. No such optimal

constant exists that would cause that to happen. When the exponent field

is odd, a bit falls into the most significant bit of the mantissa field, meaning

the mantissa field is much larger than the largest possible mantissa field of

an optimized magic constant.
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Chapter 6

Conclusion

The magic constant can now be optimized mathematically, using the method

described in this thesis, for any sized floating point representation. Figures

6.1 and 6.2 show optimized single and double precision versions of the func-

tion. The fast reciprocal square root function still receives a lot of attention

from curious programmers, bit hackers, mathematicians and hobbyist; there

is even a website named after the original magic constant [5]. May it inspire

somebody in the future.

The fast reciprocal square root function still has room for improvement.

More iterations of Newton’s method will improve the accuracy dramatically;

and the magic constant can be optimized again using a method similar to

Section 4.6. On top of that, a very small offset constant can be added to the

result to compensate for the fact that the Newton iteration(s) will always
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give an estimate that is slightly too small. Now that there is a mathematical

description of the function, even after Newton’s iteration, the optimal offset

constant could be calculated by considering the average distance distance

between 1/
√
x and p(x) given by

∫ 2

1
(1/
√
x− p(x)) dx. Also, the Newton

iteration could be slightly modified to yield better results. There is potential

for many other improvements as well. Such a highly accurate function could

be useful for processors that have only basic arithmetic operations for double,

quadruple, or any other precision floating point representation.
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float rsqrt32(float number) {
uint32_t i;
float x2, y;

x2 = number * 0.5F;
y = number;
i = *(uint32_t *) &y;
i = 0x5f375a86 - (i >> 1);
y = *(float *) &i;
y = y * (1.5F - (x2 * y * y));

return y;
}

Figure 6.1: Optimized reciprocal square root function in 32 bit.

double rsqrt64(double number) {
uint64_t i;
double x2, y;

x2 = number * 0.5;
y = number;
i = *(uint64_t *) &y;
i = 0x5fe6eb50c7b537a9 - (i >> 1);
y = *(double *) &i;
y = y * (1.5 - (x2 * y * y));

return y;
}

Figure 6.2: Optimized reciprocal square root function in 64 bit.

40



Bibliography

[1] Jim Blinn, Floating-point tricks, IEEE Computer Graphics and Applica-
tions 17 (1997), no. 4.

[2] David Eberly, Fast inverse square root, Geometric Tools, LLC
(2010), http://geometrictools.com/Documentation/
FastInverseSqrt.pdf.

[3] id Software, Quake III Arena, https://github.com/
id-Software/Quake-III-Arena.

[4] Chris Lomont, Fast inverse square root, Indiana: Purdue Uni-
versity (2003), http://www.lomont.org/Math/Papers/2003/
InvSqrt.pdf.

[5] Chris Miller, 0x5f3759df.org code faster code, http://0x5f3759df.
org/.

[6] Robert Munafo, personal communication, April 18 2011, http://
mrob.com/pub/math/numbers-16.html#le009_16.

[7] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery, Numerical recipes in C: The art of scientific computing, 2nd ed.,
Cambridge University Press, New York, NY, USA, 1992.

[8] Slashdot, Quake 3: Arena source GPL’ed, http://
games.slashdot.org/story/05/08/20/1329236/
Quake-3-Arena-Source-GPLed.

All web references last accessed April 24, 2012

41



Appendix A

C Code

A.1 samples.c

int i, j;
float f, g;
for (i = 0x00800000; i < 0x7f800000; i += 1<<15) {

j = i | rand() & 0x7fff;
f = *(float *) &j;
g = Q_rsqrt(f);
printf("%20.20f,%20.20f\n", f, g);

}

A.2 accuracy.c

int i;
float f;
double e, max = 0.0;
for (i = 0x00800000; i < 0x7f800000; i++) {

f = *(float *) &i;
e = fabs(sqrt(f) * Q_rsqrt(f) - 1);
if (e > max)

max = e;
}
printf("%f\n%e\n", max, max);
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A.3 assert.c

#define S 190
#define T 3627487

int G(int w) {
int E = (w >> 23) & 0xff; // extract E field
int M = w & 0x7fffff; // extract M field

int a, b; // the fields of the return float

if ((E & 1) == 1) { // E Odd
a = S - 1 - (E>>1);
b = (1<<23) + T - (1<<22) - (M>>1);

} else if ((M>>1) <= T) { // E Even M Small
a = S - (E>>1);
b = T - (M>>1);

} else { // E Even M Large
a = S - 1 - (E>>1);
b = (1<<23) + T - (M>>1);

}

assert(a == (a & 0xff));
assert(b == (b & 0x7fffff));

// put new fields back in word
return (a << 23) | b;

}

void checkDiscrepancies() {
int i;
// test all positive floats
for (i = 0x00000001; i < 0x80000000; i++)

assert(G(i) == 0x5f3759df - (i >> 1));
}
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A.4 timer.c

double testQ_rsqrt() {
time_t start = clock();
int i;
float f, g;
for (i = 0x00800000; i < 0x7f800000; i++) {

f = *(float *) &i;
g = Q_rsqrt(f);

}
return (double) (clock() - start) / CLOCKS_PER_SEC;

}

double testSqrtf() {
time_t start = clock();
int i;
float f, g;
for (i = 0x00800000; i < 0x7f800000; i++) {

f = *(float *) &i;
g = 1.0f / sqrtf(f);

}
return (double) (clock() - start) / CLOCKS_PER_SEC;

}

void doTest() {
int i;
float a, b, d;
for (i = 0; i < TESTS; i++) {

a = testQ_rsqrt();
printf("%f", a);
b = testSqrtf();
printf("\t%f", b);
d = b / a;
printf("\t%f\n", d);

}
}
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Appendix B

Derive 6 Files

B.1 firstmin.mth

PrecisionDigits:=100
NotationDigits:=100
z0(x):=SQRT(2)/SQRT(1+x)
z1(x):=1/SQRT(1+x)
y1(x):=1+t-x/2
y2(x):=1+t/2-x/4
y3(x):=3/4+t/2-x/4
y4(x):=SQRT(2)*y3(x)
w1(x):=y1(x)/z0(x)-1
w2(x):=y2(x)/z0(x)-1
w3(x):=y3(x)/z1(x)-1
SOLVE(DIF(w1(x),x)=0,x,Real)

x=2*t/3
SOLVE(DIF(w2(x),x)=0,x,Real)

x=2*(t+1)/3
SOLVE(DIF(w3(x),x)=0,x,Real)

x=(2*t+1)/3
w1(2*t/3)
SQRT(6)*(2*t+3)ˆ(3/2)/18-1

w2(2*(t+1)/3)
SQRT(6)*(2*t+5)ˆ(3/2)/36-1

w3((2*t+1)/3)
SQRT(6)*(t+2)ˆ(3/2)/9-1
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w1(2*t)
SQRT(2)*SQRT(2*t+1)/2-1

w2(1)
t/2-1/4

w3(0)
t/2-1/4

w1(0)
SQRT(2)*t/2+SQRT(2)/2-1

SOLVE(ABS(w1(2*t/3))=ABS(w1(2*t)),t,Real)
4*tˆ6+36*tˆ5+81*tˆ4-216*tˆ3-972*tˆ2-2916*t+1458=0

NSOLVE(4*tˆ6+36*tˆ5+81*tˆ4-216*tˆ3-972*tˆ2-2916*t+1458=0,t,0.414,0.5)
t=0.43274488995944319546852158699601037361978240783813049944493004104317

FLOOR((190+t)*2ˆ23)
1597465647

OutputBase:=Hexadecimal
5f37642f

B.2 solution.mth

PrecisionDigits:=100
NotationDigits:=100
z0(x):=SQRT(2)/SQRT(1+x)
z1(x):=1/SQRT(1+x)
y1(x):=1+t-x/2
y2(x):=1+t/2-x/4
y3(x):=3/4+t/2-x/4
y4(x):=SQRT(2)*y3(x)
q1(x):=y1(x-1)/SQRT(2)

q1(x):=-SQRT(2)*(x-2*t-3)/4
q2(x):=y2(x-1)/SQRT(2)

q2(x):=-SQRT(2)*(x-2*t-5)/8
q3(x):=y3(x-1)

q3(x):=(2*(t+2)-x)/4
p1(x):=q1(x)*(3/2-x/2*q1(x)ˆ2)
p2(x):=q2(x)*(3/2-x/2*q2(x)ˆ2)
p3(x):=q3(x)*(3/2-x/2*q3(x)ˆ2)
v1(x):=p1(x)*SQRT(x)-1
v2(x):=p2(x)*SQRT(x)-1
v3(x):=p3(x)*SQRT(x)-1
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SOLVE(DIF(v1(x)=0,x),x,Real)
x=(2*t+3)/3

SOLVE(DIF(v2(x)=0,x),x,Real)
x=(2*t+5)/3

SOLVE(DIF(v3(x)=0,x),x,Real)
x=2*(t+2)/3

SOLVE(v1(2*t/3+1)=v2(2*t+1),t,Real)
64*tˆ6+576*tˆ5+2592*tˆ4+3888*tˆ3-26244*t+10935=0

NSOLVE(64*tˆ6+576*tˆ5+2592*tˆ4+3888*tˆ3-26244*t+10935=0,t,0.414,0.5)
t=0.43245008479014264217878293749679646686135774283014672468921204774818

ABS(v1(2*t/3+1))
0.0017511836712202133521251742467001545367542482963752688636992756660704

FLOOR((190+t)*2ˆ23)
1597463174

OutputBase:=Hexadecimal
0x5f375a86

FLOOR((FLOOR(3*1023/2)+t)*2ˆ52)
6910469410427058089

OutputBase:=Hexadecimal
0x5fe6eb50c7b537a9

FLOOR((FLOOR(3*16383/2)+t)*2ˆ112)
127597748410851583120992079631224917951

OutputBase:=Hexadecimal
0x5ffe6eb50c7b537a9cd9f02e504fcfbf
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