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Homotopic Hopf-Galois extensions:
Foundations and examples

KATHRYN HESS

Hopf-Galois extensions of rings generalize Galois extensions, with the coaction of
a Hopf algebra replacing the action of a group. Galois extensions with respect to a
group G are the Hopf—Galois extensions with respect to the dual of the group algebra
of G. Rognes recently defined an analogous notion of Hopf—Galois extensions in the
category of structured ring spectra, motivated by the fundamental example of the unit
map from the sphere spectrum to MU .

This article introduces a theory of homotopic Hopf—Galois extensions in a monoidal
category with compatible model category structure that generalizes the case of
structured ring spectra. In particular, we provide explicit examples of homotopic
Hopf-Galois extensions in various categories of interest to topologists, showing
that, for example, a principal fibration of simplicial monoids is a homotopic Hopf—
Galois extension in the category of simplicial sets. We also investigate the relation of
homotopic Hopf—Galois extensions to descent.

16W30, 55U35; 13B05, 55P42, 57T05, 57T30

Introduction

The goal of this paper is to lay the foundations of a theory of Hopf—Galois extensions
in monoidal model categories, generalizing both the classical case of rings (see Mont-
gomery [10] and Schauenberg [12]) and its extension to “brave new rings,” ie, ring
spectra (see Rognes [11]). We begin by recalling the classical notion.

Definition 0.1 Let k be a commutative ring, and let B be a k—algebra, endowed with
an augmentation &: B — k. Let ¢: B — A be a homomorphism of k—algebras. Let
H be a bialgebra, considered as a B—algebra with trivial B—action, ie, the action is
determined by the composite BS>k->H , where 7 is the unit of H.

The homomorphism ¢ is an H—-Hopf-Galois extension if A admits a right H—coaction
p: A—> A® H, which is a morphism of B-algebras such that
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(1) the composite

A® ®H
ARp A 222 4opde HEED A0 H,

where 1 denotes the multiplication map of 4 as a B-algebra, and

(2) the induced map
B—)ACOH::ADHk:{aEA|p(a):a®1}

are both isomorphisms.

Notation 0.2 The composite in (1) is usually denoted 8: A @ p A - A ® H and
called the Galois map, while the induced map in (2) is usually denoted i: B — A% .

Example 0.3 Let G be a group. If ¢: B— A is a G—Galois extension of commutative
rings, then it is a Hom(Z[G], Z)—Hopf—Galois extension.

Example 0.4 Let k be a commutative ring. Let H be a Hopf algebra over k that
is flat as k—module, and let A be a flat k—algebra. Then the trivial extension 4 —
AQ H:a+—a® 1 is an H-Hopf-Galois extension.

For further discussion of the classical theory of Hopf—Galois extensions, we refer the
reader to the article [10] by Montgomery in these proceedings.

In his monograph on Galois extensions of structured ring spectra [11], Rognes observed
that the unit map from the sphere spectrum S to MU was a S[BU]-Hopf—Galois
extension in a homotopical sense, where

e the comultiplication S[BU] — S[BU] A S[BU] is induced by the diagonal
A: BU — BU x BU;

¢ the Thom diagonal MU — MU A BU  gives rise to the coaction of S[BU] on
MU ; and

e B:MUAMU = MU A S[BU] is the Thom equivalence.

This article is motivated by the desire to provide a general framework in which to study
such homotopic Hopf—Galois extensions.

The generalization of Hopf—Galois extensions to categories with compatible mon-
oidal and model structures (Definition 3.2) proceeds essentially by asking that the
maps B and i be weak equivalences rather than isomorphisms and by taking the
homotopy coinvariants of the coaction of H, rather than ordinary coinvariants. In

Geometry & Topology Monographs, Volume 16 (2009)



Homotopic Hopf-Galois extensions 81

fact we “categorify” condition (2) of Definition 0.1, promoting it to a condition on
homotopy categories of modules. As we explain in Remark 4.22, we speculate that the
“correct” definition of homotopic Hopf—Galois extensions may require categorification
of condition (1) of Definition 0.1 as well. For the purposes of this paper, we have
chosen not to do so, but further experience with this notion may lead to the consensus
that one should.

The key problem that we must solve before defining homotopic Hopf-Galois extensions
is to determine how to compute the homotopy coinvariants of a coaction, in particular
when taking multiplicative structure into account. Our discussion of this problem forms
the heart of this paper.

We begin in Section 1 by developing a framework for studying the homotopy theory of
comodules. In particular, we provide conditions under which a category of comodules
in a monoidal model category admits a reasonable model structure. In Section 2 we
explain how to define homotopy coinvariants of a coaction, in terms of the homotopy
theory defined in Section 1 and apply the theory to a number of specific categories. We
show in particular that there is a reasonable model category structure on the category
of comodules over a fixed comonoid, when the underlying category is that of simplicial
sets, simplicial monoids, chain complexes over a field or chain algebras over a field.
We then give explicit formulas for the homotopy coinvariants of a coaction in each of
these cases.

The definition of homotopic Hopf—Galois extensions is formulated in Section 3. We
show that trivial extensions are indeed homotopic Hopf—Galois extensions under rea-
sonable conditions and provide examples of homotopic Hopf—Galois extensions in the
categories of simplicial monoids and of chain algebras. Finally, in Section 4 we initiate
a study of the theory of homotopic Hopf—Galois extensions, exploring their relation to
notions of (homotopic) faithful flatness and descent, within the general framework of
the homotopy theory of comonoids over co-rings.

Essential definitions and terminology concerning model categories are recalled in the
appendix, Section 5, where we also prove useful existence results (Theorem 5.11 and
Corollary 5.15) for model structures induced from right to left across adjunctions. Our
discussion of the homotopy theory of comodules and of comodules over co-rings is
based on these existence results.

In a follow-up to this paper, the theory of homotopic Hopf—Galois extensions, including
the behavior of extensions under cobase change, extensions of commutative monoids
and the proof of one direction of the Hopf—Galois correspondence, will be developed
in greater depth. Further examples, such as the categories of rational, commutative
cochain algebras and of symmetric spectra, will also be treated.
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Notation 0.5 Let M be a category, and let A, B € ObM. In these notes, the class of
morphisms from A to B is denoted M(4, B). The identity morphisms on an object 4
will often be denoted A as well.
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1 Homotopy theory of comodules

We recall the definition of comonoids and of their comodules in a monoidal category. We
then provide conditions under which the category of comodules over a fixed comonoid
admits a reasonable model category structure, inherited from that of the underlying
category.

1.1 Comonoids and their comodules

Throughout this section (M, ®, /) denotes any monoidal category.
The following definition dualizes the familiar notion of monoids in a monoidal category.
Definition 1.1 A comonoid in M is an object C in M, together with two morphisms

in M: a comultiplication map A: C — C ® C and a counit map &: C — [ such that
A is coassociative and counital, ie, the diagrams

A

C cCC cCC
AJ/ A®Cl i / \ J{
coc %2 C cel 1®C

must commute, where the isomorphisms are the natural isomorphisms of the monoidal
structure on M.
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Homotopic Hopf-Galois extensions 83

A comonoid (C, A, ¢) that is endowed with a comonoid map n: I — C, where the
comultiplication on 7 is the natural isomorphism /=1 ® I, is said to be coaugmented.

Let (C,A,¢) and (C’, A’,¢’) be comonoids in a monoidal category (M, ®, ). A
morphism of comonoids from (C, A, ¢) to (C', A’,¢') is a morphism f € M(C, C’)
such that the diagrams

C C’ C

s S
Al A/l \ /
f®f & 8/
Il

CRC——=C"xC’

commute.

Notation 1.2 We often abuse terminology slightly and refer to a (co)monoid simply by
its underlying object in the category M, just as we sometimes write only the underlying
category when naming a monoidal category.

Remark 1.3 If M is a symmetric monoidal category, the category Alg of monoids
in M is itself a monoidal category, where the multiplication on a tensor product of
monoids (A4, ) and (A4’, 1) is given by the composite

®/
(AR A)@ARA) = (AR A)® (A e4) 5 A 4.

A comonoid in Alg is called a bimonoid and consists of an object H in M, together
with a multiplication u: H ® H — H, a comultiplication A: H — H ® H, a unit
n: I — H and a counit &: H — I, which are appropriately compatible. Note that any
bimonoid is automatically coaugmented as a comonoid, via the unit 7.

Definition 1.4 Let (C, A, €) be a comonoid in a monoidal category (M, ®, I). A right
C —comodule in M is an object M in M together with a morphism p: M - M @ C
in M, called the coaction map, such that the diagrams

M P M&C M—LsMmMecC
PJ/ p®CJ/ zl /
MoA MQe
M&C M&C®C Ml

commute, where the isomorphism is the natural isomorphism of the monoidal structure
on M.
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Let (M, p) and (M, p’) be right C —comodules. A morphism of right C —comodules
from (M, p) to (M, p’) is a morphism g € M(M, M’) such that the diagram

M g M
(1-1) pi p/l
®C
M®C £ M ®C

commutes. The category of right C —comodules and their morphisms is denoted
Comod .

Remark 1.5 The forgetful functor Uc: Comodc — M admits a right adjoint — ® C :
M — Comodc, where the action map on X ® C is given by

XRQA:XQRC—->XRCRC.
We call X ® C the cofree right C —comodule generated by X .

Remark 1.6 It is an easy exercise to show that a morphism p: M — M ® C in M is
aright C—coaction if and only if p is a morphism of right C —comodules, with respect
to the cofree coactionon M & C.

Remark 1.7 If —® C commutes with colimits, eg, if M is a closed monoidal category,
then all colimits exist in Comod¢ . On the other hand, limits do not exist in general in
Comod¢ . Since model categories have all finite limits, in order to study the homotopy
theory of comodules, we must restrict ourselves to cases in which at least finite limits
exist in Comod .

The category ¢ Comod of left comodules over a comonoid C and their morphisms is
defined analogously, in terms of coaction maps A: M — C ® M . For any object X
of M, the cofree left C —module generated by X is C ® X, endowed with the action
mpARX: CRIX—->CRCRX.

Definition 1.8 Suppose that M admits equalizers. Let (M, p) and (N, L) be a right
and a left C —comodule, respectively. The cotensor product M O¢c N of M and N is
the equalizer

M@\
MOcN—->MQN —= MQICQ®N,
p®N

which is computed in M. Since this construction is clearly natural in M and in N,
there is in fact a bifunctor

—O¢ —: Comodc X ¢ Comod — M.
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Remark 1.9 Let C be a coaugmented comonoid, with coaugmentation n: I — C. If
N =1, endowed with the left C —coaction

1
I~I0l 2501,

M®n
then M O¢ I = equal (M — M®C).
o
In other words M O¢ I can be seen as the object of coinvariants of the coaction p,
justifying the notation
M€ .=MOc I

that we use henceforth. A similar observation applies to N°°€ := I O¢ N for all
(N,1) € cComod.

Example 1.10 An easy computation shows that if C is coaugmented and X ® C is a
cofree C —comodule, then
(X ® C)°¢ ~ x.

Combining multiplicative and comodule structure, we obtain the theory of comodule
algebras.

Definition 1.11 Suppose that M is symmetric monoidal, and let (H, A, i, &, 1) be a
bimonoid in M. There is a natural monoidal structure on Comody which is given by
M,p)Q@(M',p)y=(M QM’, px*p'), where px p’ is equal to the composite

MM'®

®p =
MM ZL MeHOM @HS MM @ HRH —— 5 M@ M'® H.

I®
The unit object is I, endowed with the coaction 1 = I ® [ g QR H.

Let Algy be the category of monoids in Comodg , also known as H—comodule
algebras. Note that Algy isomorphic to the category of H—comodules in the category
Alg of monoids in M.

Remark 1.12 Observe that Comod; = M, while Alg; = Alg.

1.2 Model categories of comodules

Let M be a model category and a monoidal category. In this section we provide
conditions under which the category of comodules over a fixed comonoid in M admits
a model category structure inherited from M.
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We recall the definition of a model category, its homotopy category and derived functors
and prove a useful existence theorem for model category structure in the appendix,
Section 5. We encourage the reader with questions about the terminology and notation
used throughout this paper to consult the appendix, Section 5. In particular, we make
frequent use of the notions of right- and left-induced model structures (Definition 5.7).

Given a model category M that is cofibrantly generated (see Hovey [7]), there is a
standard procedure for transferring a model category structure from M to another
category D, across an adjunction

F-M2D G,

where F is the left member of the adjoint pair, under certain conditions on F' and G
and their relationship to the cofibrations and weak equivalences in M (cf, eg, Schwede
and Shipley [14, Lemma 2.3]). We cannot apply this technique, however, to transferring
model category structure from M to the category of comodules over a fixed comonoid C
in M, since the adjoint pair at our disposal is

Uc: Comodec 2 M :(—QC,

where Uc is the forgetful functor. The model category M is on the wrong side of the
adjunction for the usual transfer arguments to apply.

In certain special cases it is nonetheless possible to define a model category structure
on Comodc that is “inherited” from that of M. We now explore two such special
cases.

1.2.1 Cartesian categories Let M be a category admitting all finite products and a
terminal object e. The triple (M, X, ¢) is then a monoidal category, of the special type
called a Cartesian category.

Any object C in a Cartesian category M is naturally a comonoid, where the comul-
tiplication is just the usual diagonal morphism A¢: C — C x C. Moreover, given
objects B and C in M, the right (or left) C —coactions on B, with respect to diagonal
comultiplication on C, are in natural, bijective correspondence with the morphisms in
M from B to C.

Indeed, if f € M(B, C), then the composites

Ap Bxf
B— BxB—— Bx(C

Ap fxB
and B— BxB——CxB
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are right and left C —coactions on B. Inversely, if p: B — B xC is aright C—coaction,
then the composite

BLBxc ™2 ¢

is an element of M(B, C). A similar construction works in the case of left C —coactions.

Using the universal property of the product, one can easily show that for any right
C —coaction p: B —> BxC,

p = (B xpr p)A.

It is also immediately obvious that

pra(Bx f)A = f
forall /€ M(B,C).

Henceforth, let C' denote an object of the Cartesian category M, endowed with its
natural diagonal comonoid structure. The argument above shows that Comodc is
equivalent to M/ C, the slice category of objects in M over C. Recall that the objects
of M/C are the morphisms in M with target C, while a morphism from f: 4 — C
to g: B — C is a morphism a: A — B in M such that ga = f

It is well known (cf, eg, Hirschhorn [6, Theorem 7.6.5]) that a model category structure
on M gives rise to a model category structure on M/C, in which a morphism

a:(f:4A—-C)—(g: B—C)

is a weak equivalence, fibration or cofibration if a: A — B is a morphism of the same
type in M. Thus, in this case, the category of comodules over C' does inherit a model
structure from M, that is right-induced by the forgetful functor.

Important examples of Cartesian model categories include the categories of topological
spaces, of simplicial sets and of small categories.

1.2.2 Postnikov presentations We now apply Corollary 5.15 from the appendix to
obtaining model category structure on Comod¢ in the non-Cartesian case. All the
notation and terminology used below is explained in the appendix, Section 5.

The model structure described here is inspired both by the semifree models of differential
modules over differential graded algebras (see Félix, Halperin and Thomas [4]) and by
the desire for fibrant replacements of comodules to be “injective resolutions”.
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Theorem 1.13 Let M be endowed with both a model category structure with Postnikov
presentation (X, Z) and a monoidal structure (®, I). Let C be a comonoid in M such
that Comod is finitely bicomplete, and let Uc: Comodc — M denote the forgetful
functor. Let

W =Uz"(WEm) and C=Ug"'(Cofwm).

If Postzgc C W and for all f € Mor Comodc there exist

(a) i e€Cand p e Postzgc such that [ = pi;

(b)y je€CNW and q € Postxgc such that f =gqj,
then W, C and Is@ are the weak equivalences, cofibrations and fibrations in a
model category structure on Comodc , with respect to which

Uc: Comodc 2M (—®C

is a Quillen pair.
This theorem follows immediately from applying Corollary 5.15 to the adjunction

Uc: Comodec &M :—® C. We call the factorizations required in hypotheses (a)
and (b) Postnikov factorizations.

Remark 1.14 In the model category structure developed in Theorem 1.13, every
C —comodule M admits a fibrant replacement

M>‘;M/He®c9

built inductively as follows. There is a ordinal A such that the limit of a A—tower

Pp+1
---—>M[;+1—>M}§—>---

exists and is isomorphic to M’, where for all 8 < A, there exist xg41: Xg41 — Xp
in X and fg: UCM[; — Xg in M such that

M;é-l—l 4>X13+1®C

\LP{H—I l/XB_H@C
#

/,
My, " xpeC

is a pullback diagram in Comodc, where f, Bﬁ is the transpose of fg. This is what we
think of as an “injective” or “semicofree” resolution of M .
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There are reasonable conditions under which one of the required types of Postnikov
factorization exists. We see in Section 2.2 examples of categories and comonoids for
which these conditions are satisfied.

Lemma 1.15 Let M be endowed with both a model category structure and a monoidal
structure (®, I). Let C be a comonoid in M such that Comod¢ admits pullbacks,
and let Uc: Comodc — M denote the forgetful functor. Let C = UC_1 (Cofm), and Iet
Z be a subset of Fibyy N WEp such that for all f € Mor M, there exist j € Cofy and
q € Postz with [ =¢qj.

If

(1) the C —coaction morphism p: M — M & C is a cofibration in M for every
(M, p) € Ob Comod,

(2) —® C: M — M preserves weak equivalences and cofibrations,

(3) foralli: M — N in C and all morphisms g: M — N’ in Comod, the induced
map (i,g): M — N x N isin C, and

(4) Postz ® C C Postzgc,
then for all f € Mor Comodc, there exist i € C and p € Postzgc such that [ = pi.
Note that hypothesis (4) holds if, for example, Z = Fiby N WEp, since then Postz = Z.

Proof Let f: M — N be any morphism of right C —comodules. Let e denote the
terminal object in M, and consider the factorization in M

where j is a cofibration and g € Postz. Taking adjoints, we obtain a commuting
triangle in Comod¢

M e®C,
j\ a®C
ZRC

where e ®C is the terminal object in Comod, since —®C preserves limits. Moreover,
j¥=(j ®C)p, where p: M — M ® C is the C—coaction on M . It follows from
hypotheses (1) and (2) that ch‘i is a cofibration in M, ie, that jﬁ eC.
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Hypothesis (3) now implies that i = (j*, f): M — (Z® C)x N is also in C. Finally,
consider the pullback
(ZRC)xN —=272®C

i" lmc

N e® C.
Since ¢ ® C € Postz; ® C C Postzgc , the induced map p: (Z® C)x N — N is an
element of Postzgc as well and f = pi is the desired factorization. a

It is generally more difficult to prove the existence of the second sort of Postnikov
factorization in Comod¢ . Rather than establishing a general result, we show that such
factorizations exist in the examples we treat in Section 2.2. We suspect that the methods
of proof we apply in these specific cases can be generalized in a relatively straightfor-
ward manner, whenever it is possible to construct Postnikov-type decompositions of
objects in M inductively.

1.3 Model categories of comodule algebras

Let (M, ®, I) be a monoidal category that is endowed with a model category structure
as well, and let (H, A, u, e,1) be a bimonoid in M. We now analyze possible model
category structures on Algg , the category of H—comodule algebras in M. As above,
we separate the analysis into two parts: the Cartesian case and the Postnikov case.

1.3.1 Cartesian categories Let (M, %, ¢) be a Cartesian category and a model cat-
egory. If A is a monoid in M, then the diagonal map 4 — A x 4 is a morphism of
monoids, as can be seen by a straightforward application of the universal property of
the product.

The argument in Section 1.2.1 implies that if H is a bimonoid in M, with comultipli-
cation equal to the diagonal map, then the category of H—comodule algebras in M
is isomorphic to the slice category Alg/H of monoid maps with target H. A model
structure on Alg therefore naturally gives rise to a right-induced model structure on
the category of H—comodule algebras, given by Calg,, = (U }1)_1 (Calg) for each of
the distinguished classes C = WE, Fib, Cof, where U ;1: Algg — Alg is the forgetful
functor [6]. It remains for us to specify the model structures on Alg that interest us.

Remark 1.16 Theorem 4.1 in [14] implies that if (M, X, e) is a cofibrantly generated,
monoidal model category satisfying the monoid axiom and if every object in M is
small relative to M, then Alg admits a cofibrantly generated model structure that is
right-induced by the forgetful functor Upj: Alg — M. For example, as mentioned in
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Section 5 of [14], the Cartesian category (sSet, x, x) of simplicial sets satisfies these
criteria.

1.3.2 Postnikov presentations Let (M, ®, /) be a cofibrantly generated, monoidal
model category that satisfies the monoid axiom and such that all objects are small
relative to M. Let Z denote the generating cofibrations of M. Let F: M — Alg denote
the free monoid functor, ie, F(X) = [[,>o X®", endowed with the multiplication
induced by the isomorphism X ®" @ X ®" ~ X ®"+" There is an adjoint pair

F: M2 Alg Uy,

where Uy, is the forgetful functor. Theorem 4.1 in [14] implies that there is a cofibrantly
generated, right-induced model category structure on Alg where Cofyg is generated

by F(Z).
Let H be a bimonoid in M. There is a free/forgetful adjoint pair
Fg: Comody 2 Algy :Uae H.

similar to the pair (F, Upjg) above, where Fpg is defined in terms of the monoidal
structure on Comodyg given in Definition 1.11. Unfortunately, the model category
structure on Comod g obtained in Theorem 1.13 is not generally cofibrantly generated,
so that we cannot directly apply the results of [14] to defining a model structure on
Algg . It would interesting to determine conditions under which Uy, g does right-
induce a model structure on Algg . For example one could specify conditions under
which the model category structure on Comodg is cofibrantly generated, perhaps by
Ug(Z) and Ug(J), where Z and J are the generating cofibrations and generating
acyclic cofibrations in M.

The forgetful/cofree adjoint pair
Uy: Algy 2 Alg :—Q H

can also give rise to an interesting model category structure on Algg . We cannot
apply standard transfer techniques, since the cofibrantly generated model category is
on the right side of this adjunction, so we again appeal to Corollary 5.15, obtaining the
following result.

Theorem 1.17 Let (M, ®, I) be a cofibrantly generated, monoidal model category
that satisfies the monoid axiom and such that all objects are small relative to M. Let H
be a bimonoid in M such that Algg is finitely bicomplete, and let

Uy: Algg 2 Alg .-—Q H
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denote the forgetful/cofree adjoint functor pair. Let
W= (Up) ' (WEa) and  C= (Up)™" (Cofarg).
X = Fibajg and Z= Fibalg N WEA|g,

where Alg is endowed with the model structure right induced by the forgetful functor
U, Alg- Alg — M.

If Postzg g C W and for all f € Mor Algy there exist
(a) i €eCand p € Postzgyg such that [ = pi;
(b) jeCNW and g € Postxg g such that f =qj,

then W, C and Postxg g are the weak equivalences, cofibrations and fibrations in a
model category structure on Algg , with respect to which

Uy: Algy 2 Alg :—Q H
is a Quillen pair.

In Section 2.2 we examine examples of categories and bimonoids that satisfy the
hypotheses of this theorem.

2 Homotopy coinvariants

Let C be a comonoid in a monoidal model category M. In this section we define
and provide several examples of a homotopy invariant replacement of the coinvariants
functor

Coinv: Comodc — M: M — M O¢ 1.

Our strategy is to determine conditions under which the coinvariants functor is the right
member of a Quillen pair, then to define the homotopy coinvariants functor to be the
total derived right functor of Coinv under those conditions.

2.1 Deriving the coinvariants functor

Definition 2.1 Let (M, ®, /) be a monoidal category, and let C be a comonoid
in M endowed with a coaugmentation n: I — C. The trivial comodule functor
Triv: M — Comodc is specified by Triv(X) = (X, X ® n) for all objects X in M
and Triv(f) = f for all morphisms f.

Note that M could itself be the category of a monoids in an underlying monoidal
category, ie, the case of comodule algebras is englobed by this definition.
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Remark 2.2 It is easy to check that Triv: M — Comodc is left adjoint to the coin-
variants functor

Coinv: Comod¢c — M: (M, p) — M€ = M Oc¢ I
Definition 2.3 Let C be a coaugmented comonoid in a monoidal category M. If
Triv: M 2 Comod¢ :Coinv is a Quillen pair, then the total right derived functor
R Coinv: Ho Comod¢c — HoM
is the homotopy coinvariants functor. If M is aright C —comodule, then a representative

of R Coinv(M) is called a model of the homotopy coinvariants of M .

Notation 2.4 In a slight abuse of notation, any model of the homotopy coinvariants
of a right C —comodule M is denoted M"°C  Thus, if M ~—>RM —se ® C is
any fibrant replacement of M in Comodc, where e is the terminal object in M, then
(RM)COC — thoC )

In the following propositions, we specify conditions under which (Triv, Coinv) is a
Quillen pair and which therefore guarantee the existence of a homotopy coinvariants
functor. We first consider the Cartesian case.

Proposition 2.5 Let (M, X, e¢) be a Cartesian category and a model category. If C
is any object in M, seen as a comonoid via the diagonal map A: C — C x C and
endowed with a coaugmentation n: ¢ — C, then the adjoint pair

Triv: M & Comod¢ :Coinv

is a Quillen pair, where Comod¢ is endowed with the model structure described in
Section 1.2.1.

Proof Since Comod¢ is isomorphic to M/C, this proposition follows immediately
from the definition of the model category structure on M/C (cf Section 1.2.1). |

As a special case of the proposition above, we can treat coinvariants of comodule
algebras.

Corollary 2.6 Let (M, x, e) be a Cartesian category and a model category such that
the forgetful functor Alg — M right-induces a model structure on Alg. If H is a
bimonoid in M, with comultiplication equal to the diagonal map, then the adjoint pair

Triv: Alg 2 Algy :Coinv

is a Quillen pair.
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We now consider the case of model categories of comodules with left-induced model
structures, as in Theorem 1.13.

Proposition 2.7 Let M be endowed with both a model category structure and a
monoidal structure (Q, I). If Comod¢ admits a model category structure left-induced
by Uc: Comodc — M, then

Triv: M & Comod¢ :Coinv

is a Quillen pair as well.

Proof Since U¢ left-induces the model structure on Comodc, it is clear that Triv
preserves both cofibrations and weak equivalences. O

We obtain a result for left-induced model structures on Alggy (cf Theorem 1.17) as a
special case of the proposition above.

Corollary 2.8 Let (M, ®, I) be a monoidal category endowed with a model category
structure. Let H be a bimonoid in M. If Alg admits a model structure right-induced by
the forgetful functor Upjg: Alg — M and Algy admits a model structure left-induced
by the forgetful functor Uy, : Algy — Alg, then

Triv: Alg 2 Algy :Coinv

is a Quillen pair as well.
When the model structure on Algy is right-induced, we have the following result.

Proposition 2.9 Let (M, ®, I) be a cofibrantly generated, monoidal model category
that satisfies the monoid axiom and such that all objects are small relative to M. Let H
be a bimonoid in M.

If Comody admits a model category structure left-induced by Ug: Comodg — M
and Algy admits a model structure right-induced by Upjg, i : Algy — Comody , then

Triv: Alg 2 Algy :Coinv
is a Quillen pair as well, where Alg is endowed with its usual right-induced model

structure.
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Proof It is easy to check that the following diagram of functors commutes.

F

M Alg

Triv i \L Triv

F
Comody —— Alg H
Here, F and Fpg are the free monoid functors.

Let Z be the set of generating cofibrations in M, and let i € Z. Proposition 2.7
implies that Triv(i) is a cofibration in Comodg . Moreover, a simple adjunction
argument shows that Fy preserves cofibrations, since its right adjoint, the forgetful
functor Upjg, gr: Algy — Comody , right-induces the model structure on Algg . Thus,
Fp oTriv(i) is a cofibration in Algy forall i € Z, ie,

Triv(FI) C Cofalg,, -
Since FZ generates the cofibrations in Alg and Triv is a left adjoint, it follows that
TriV(CofAlg) C COfA]gH.

A similar argument applied to the set of generating acyclic cofibrations in M implies
that Triv: Alg — Algy preserves acyclic cofibrations as well. We conclude that
(Triv, Coinv) is indeed a Quillen pair. a

2.2 Examples

We present in this section four examples of categories of comodules in which there is a
good definition of homotopy coinvariants.

2.2.1 Spaces Let M = Top or sSet, with their Cartesian monoidal structure. We
refer to the objects of either category as spaces.

Let Y be a space, seen as a comonoid via the diagonal map. A coaugmentation
n: * — Y consists of a choice of basepoint yy = n(x) for the space Y. Let X be
another space, and let ' € M(X, Y), giving rise to a right ¥ —coaction on X as in
Section 1.2.1.

To compute the homotopy coinvariants of X with respect to the coaction induced by f,
we first find a fibrant replacement of f: X — Y in the category M/Y . Since the
identity map on Y is the terminal object in M/ Y, a fibrant replacement of f consists
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of a commutative diagram in M

Nk

Y
A model of the homotopy coinvariants of X is then

(X'xp)A
xheo¥ — (x")°Y = equal (X’ T X' x Y) = p~' (%0)-
xn

In other words, the space of homotopy coinvariants of the coaction induced by f is
exactly the homotopy fiber of f.

2.2.2 Simplicial monoids As mentioned in Remark 1.16, the category sMon of
simplicial monoids admits a cofibrantly generated model structure that is right-induced
by the forgetful functor Upje: sSMon — sSet. Let H be a simplicial monoid, seen
as a bimonoid via the diagonal map. Let A be another simplicial monoid, and let
f esMon(A4, H), giving rise to a right H—coaction on 4.

Since the identity map on H is the terminal object in sMon/H , a fibrant replacement
of f consists of a commutative diagram in sMon

NA

H

ie, p is a simplicial homomorphism and the underlying map of simplicial sets is a
Kan fibration, since the model structure of sMon is right-induced. A model of the
homotopy coinvariants of A4 is then

(A’xp)A
Ao — gy = equal (4 S A H) = p~ (n(e)).
xn

Note that the equalizer is computed in sMon, but that the forgetful functor to simplicial
sets preserves products and equalizers, since it is a right adjoint. In other words, the
simplicial monoid of homotopy coinvariants of the coaction induced by f is exactly
the homotopy fiber of /', which is a simplicial submonoid of A’.
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2.2.3 Chain complexes For the sake of simplicity, we work here over a field k,
though our results probably hold over a principal ideal domain R, as long as the
comonoid we consider is R—flat.

Let M = Chy, the category of nonnegatively graded chain complexes of finite dimen-
sional k—vector spaces, also known as finite-type chain complexes. There is a model
structure on this category for which WEyy is the set of quasi-isomorphisms (chain maps
inducing isomorphisms in homology), Fiby is the set of chain maps that are surjective
in positive degrees and cofibrations are degreewise injections [7]. Endowed with the
usual tensor product of chain complexes, M is a monoidal model category, satisfying
the monoid axiom. The unit of the tensor product is just k itself, considered as a chain
complex concentrated in degree 0.

For any chain complex X, finite products of chain complexes commute with — ® X,
since a finite product of chain complexes is isomorphic to the finite coproduct of the
same chain complexes, and —® X commutes with colimits. Furthermore, since we are
working over a field and therefore — ® X is left and right exact, equalizers commute
with —® X as well. We conclude that all finite limits commute with —® X .

Let C be a comonoid in M, ie, a chain (or dg) coalgebra. Since all finite limits
commute with — ® C, the category Comod¢c of C—comodules is finitely complete.
Furthermore, Uc creates colimits in Comod, since —® C commutes with colimits,
so Comodc is cocomplete as well.

A slightly more general existence result holds for limits in Comodc . Given a family
M ={M,|ae A} of C—comodules such that

> dim(Mg), < 00
acA

for all n, the product of chain complexes [[,c 4 Mqa is a degreewise direct sum.
Therefore, ([[,e 4 Ma) ® C = [[,ea(Ma ® C). It follows that [[,c 4 M, admits a
natural comultiplication with respect to which it is the product of the family M in
Comod .

For all n > 1, let D" denote the chain complex that is k—free on a generator x,_
in degree n — 1 and on a generator y, in degree n, with differential d satisfying
dyn = xy—1. For all n > 0, let S” denote the chain complex that is k—free on one
generator y, of degree n, and let p,: D" — S™ denote the obvious projection map.
It is not difficult to check that M admits a Postnikov presentation (Definition 5.12),
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where

X={pn: D" = S"|n>1}U{po: 0— S° U {p, :S" —0|n>0}
and Z={g,: D" —>0|n>1}.

The goal of this section is to prove the following existence result.

Theorem 2.10 Let C be a chain coalgebra that is 1—connected (ie, Cy = k and
C1 = 0) and coaugmented. The forgettul functor Uc: Comodc — M left-induces a
model structure on Comod¢ with Postnikov presentation (X® C,Z® C).

Our strategy for proving this theorem is to show that the hypotheses of Theorem 1.13
are satisfied. In this proof we use freely the terminology and results of Section 5.2.

Note that since W = U 1(WEw), a morphism of C—comodules is in W if and only if
it is a quasi-isomorphism. Similarly, a morphism of C—comodules is an element of
C=U; I(Cofy) if and only if it is degreewise injective.

In proving that the hypotheses of Theorem 1.13 are satisfied, we need to compute the
homology of certain inverse limits of towers of chain complexes. Since the homology
of an inverse limit is in general not isomorphic to the inverse limit of the homology
groups, we call upon the following useful, classical result, which is an immediate
consequence of Proposition 3.5.7 and Theorem 3.5.8 in [15].

Let C denote either the category of chain complexes or the category Ab of abelian
groups. Recall that a tower

X: AP - C,
thatis, —)Xﬂ+lﬁ+—l>Xlg—>ﬂ>XO

satisfies the Mirtag-Leffler condition if for all § < A, there exists y > 8 such that the
image of the composite X;,» — Xp is equal to the image of X, — Xp forall y’ > y.
For example, if pg is a surjection for all B, then the tower satisfies the Mittag-Leffler
condition.

Theorem 2.11 Let X: A°? — M be a tower of chain complexes satistying the Mittag-
Leffler condition. If the induced tower H, X: A°? — Ab also satisfies the Mittag-Leffler
condition, for all n > 0, then the natural homomorphism

H(l' X) lim H, (X
g lim X' ) — lim Hy (X)

is an isomorphism for all q .
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In particular, if X is a tower of surjective quasi-isomorphisms, then limyo Xg — Xo
is a quasi-isomorphism.

To prove that Postzgc C W, observe first that every element g,: D" — 0 of Z is a
surjective quasi-isomorphism, and therefore ¢, ® C is a surjective quasi-isomorphism as
well. It follows that for all C —comodules M , the projection map M x (D" Q@C) — M ,
which comes from pulling back M — 0 and ¢, ® C, is also a surjective quasi-
isomorphism. Thus, in any Z ® C —Postnikov tower
qp+1

each gg4 is a surjective quasi-isomorphism, and therefore the composition of the
tower limyop Mg — My, if it exists, is also a quasi-isomorphism.

We now establish the existence of the required Postnikov factorizations, ie, hypotheses
(a) and (b) of Theorem 1.13. Hypothesis (a) is proved by showing that the hypotheses
of Lemma 1.15 are satisfied. We begin by noting that since (X, Z) is a Postnikov
presentation of M, for all f* € MorM, there exist j € Cofyy and ¢ € Postz with
S =qj.

Hypothesis (1) of Lemma 1.15 is satisfied, since, for every C —comodule (M, p), the
composite (M ® €)p must be the identity on M , and therefore p must be injective.
Hypothesis (2) holds since we are working over a field, while hypothesis (3) follows
from the observation that if 7 is a degreewise injective map of comodules and g is any
map of comodules, then (i, g) is necessarily degreewise injective. Finally, observe that
Postz consists of projection maps X x [ B<h D"8 — X for various ordinals A and
various objects X in M. Note that since we are working with finite-type complexes,
for any n the set {f < A | ng = n} is finite. On the other hand, by our finite-type
assumption,

(Xx HD”B)@C;(X@C)x]‘[(D”ﬂ@C),

B<A B<A

which is obviously an element in Postzgc . Thus, hypothesis (4) is also satisfied, and
therefore Lemma 1.15 holds.

We prove the existence of the second sort of Postnikov factorization (hypothesis (b) of
Theorem 1.13) by an inductive argument, which is essentially dual to the usual argument
for the existence of semifree models for modules over a chain algebra [4], though
one has to be careful. The argument is formulated in terms of a certain successive
approximations to the weak equivalences in M and Comodc, defined as follows.
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Definition 2.12 Let n € N. An n—equivalence in M is a morphism of chain complexes
f: X — Y such that H, f is degreewise injective and Hj, f is an isomorphism for
all kK <n. A morphism g: M — N of C—comodules is a n—equivalence if Uc g is.

It is obvious that a weak equivalence is an n—equivalence for all 7.

The next lemma is the base step of the inductive proof of hypothesis (b) of Theorem
1.13.

Lemma 2.13 Let C be a 1—connected chain coalgebra. If f: M — N is any
morphism of C —comodules, then there exists a degreewise-injective 0—equivalence
i: M — M’ andamap p: M' — N in Postxgc such that f = pi.

Proof Observe first that f: M — N factors as

L recyxn Low,

where p’ is the projection map. Since Uc M — 0 is necessarily the composition of an
X—Postnikov tower, and —® C commutes with degreewise-finite limits, p’ € Postxgc .

Let NN = (M ® C)x N, and let i’ = (p, f), Which is degreewise injective and
induces a degreewise injection in homology, since HxN' = (H:M ® H+xC) ® H«N
Let K denote the cokernel of i’. Note that since Uc is a left adjoint and therefore
preserves colimits, the chain complex underlying K is the cokernel of the chain map
underlying f.

Viewing Ky and HyK as chain complexes concentrated in degree 0, consider the
sequence of quotient maps

N —- K - Ky — HyK,
the composite of which is a chain map, denoted k: N’ — HyK . Let
K N' > HyK®C

denote the corresponding comodule map. Note that HyK ® C is isomorphic to
[Taca SO where A is a basis of HyK.

Consider the pullback diagram

M ——0

]

N - HK®C
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in Comodc . The fact that 0 — Hy K ® C is a product of maps in X ® C implies that
p// € PostxgC -

To conclude, we let i: M — M’ be the morphism induced by the pair i’: M — N’
and 0: M — 0, and we let p = p’p”. Itis easy to check that i is degreewise injective
and a O—equivalence. Moreover, p € Postxgc , since it is the composite of two X ® C —
Postnikov towers. Finally, f = pi, as desired. O

The inductive step of the argument proceeds as follows.

Lemma 2.14 Let C be a 1 —connected chain coalgebra, andletn e N. If f: M — N
is a degreewise-injective n —equivalence of C —comodules, then there exists a degreewise
injective (n + 1)—equivalence i: M — M’ and amap p: M’ — N in Postxgc such

that f = pi.

Proof Let K denote the cokernel of /', computed in Comodc . As in the previous
proof, the chain complex underlying K is the cokernel of the chain map underlying f'.
Considering the long exact sequence in homology induced by the short exact sequence
of complexes

0—>Mi>N—>K—>O,
we see that H, K =0 forall k <n.

Let Z,+1 K denote the subspace of cycles in K of degree n+ 1. Since we are working
over a field, we can choose a section 0,4 1: K41 — Zp+1 K.

Viewing K41, Z,+1K and H,4+1K as chain complexes concentrated in degree
n + 1, consider the sequence of linear maps

N =K = K1 =5 Zy 1 K — Hypi K,
where maps other than 0,41 are the obvious quotient maps. Let k: N — H,41 K
denote the composite of this sequence, which is a chain map, and let k*: N —
H, 1K ® C be the corresponding morphism of C—comodules.

Let (X,d) be a chain complex such that Hy(X,d) = 0. Recall that there is a
“based path object” construction on (X, d), which is an acyclic chain complex de-
noted P(X,d), together with a fibration ¢q: P(X,d) — (X,d). More precisely,
P(X.d)=(X®s ' (X>2® (kerd);), D), where X denotes the positive-degree part
of X, s~! denotes desuspension, and ¢ is the obvious quotient map. The differential D
is specified by D(x) =dx —s~!x and D(s~'x) = —s~ldx.
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Note that the projection ¢: P(H,+1K,0) - H,41 K is an element of Posty, since it

is isomorphic to
1—[ prntl l—[ Nazs
acA acA
where A is a basis of H,11 K. Consequently, in the pullback diagram of morphisms
in Comod¢
M — P(Hn+1K,O)®C

lp \Lq@C
kb

N Hn+1K®C»

the morphism p is an element of Postxgc , since —® C commutes with finite products
and pullbacks commute with products.

Let d denote the differential on N. Unfolding the definition of the path object
construction and of the pullback, we see that

M =(N& (s 'Hy41K®C), D),

where Dy = dy —s~'k#(y) forall ye N and Ds™'z®c =0 forall z € Hyy 1 K
and ¢ € C. For degree reasons, if y € N<,, then Dy = dy, and if y € N,4+1, then
Dy = dy — s~ 'k(y). Furthermore, Df(x) = df (x) for all x € M, since K is the
cokernel of f. Finally, since C is 1-connected, M,; +1=Nnt1.

Let i: M — M’ be the morphism of C —comodules induced by the pair of morphisms
fiM — N and 0: M — P(H,+1K,0). It is clear that i is degreewise injective,
since f is. Furthermore, the analysis above of the structure of M’ shows that Hyi
is degreewise injective and Hji is an isomorphism for all k <n + 1, ie, i is an
(n + 1)—equivalence. Since pi = f, we can conclude. |

The proof of Theorem 2.10 is now complete.

To study homotopy coinvariants of chain coalgebra coactions, we need to understand
fibrant replacements in Comodc . We now show that the cobar construction actually
gives rise to a fibrant replacement functor on Comodc .

Let C be a 1—connected chain coalgebra. Let M and N denote connected chain
complexes, endowed with a right C —coaction p: M — M & C and left C —coaction
AN —>CQN.Let Q(M;C; N) denote the conormalization of the usual cosimpicial
chain complex built from p, A and the comultiplication on C, ie,

QM;C:N)=(MQTs 'Cy ®N, D),
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where 7' denotes the tensor algebra functor and (modulo signs, which are given by the
Koszul rule)

Dx@s e lsTlen ® y)
=dx@s ley| - s len @y £xi @s W s ey ST e ®
+x®da(s o] s i) @y
+xQs ey s lea@dy £x @5 ey s enlsT DY ® yj.

Here, d denotes the differentials on both M and N, and dg denotes the usual
differential on the reduced cobar construction, while p(x) =x;®a’ and A(y) =b’/ ®y;.
Note that Q(k; C; k) is the usual reduced cobar construction, QC.

Ift N =C, then Q(M;C;C) is naturally a right C —comodule, via a “cofree” (ie,
cofree when forgetting differentials) coaction

PQM;C;C) > QM;C;CO)RC: xQWRCcH XQWR ¢ ®c,
where A(c) =¢; ® ¢t

Let j: M - Q(M;C;C):x —x; ® 1 ®c!, where p(x) = x; ® ¢’ . One can show
easily that j is a quasi-isomorphism and a map of C —comodules. It is an amusing
exercise to show that

M =1>Q(M:C:C)—>0

is a fibrant replacement of M in Comodc, ie, that Q(M;C;C) - 0 isan XQ C—
Postnikov tower (Definition 5.12). It follows that

M =Q(M:;C:C)*°¢ = Q(M;C:k),
and therefore, from the classical definition of Cotor, that
Hy M€ = Cotor® (M, k),
as expected.
2.2.4 Chain algebras Let k be a field, and let M again be the category of finite-type

chain complexes of k—vector spaces. Let Alg denote the category of monoids in M.
ie, the category of finite-type chain k—algebras.

There is a model category structure on Alg in which a morphism is a fibration if it is
surjective in positive degrees, while a weak equivalence is a quasi-isomorphism. A
cofibration in Alg is a retract of the inclusion of a chain algebra (A4, d) as a subobject
of an algebra formed by free adjunction (4[| TV, D), where T denotes the tensor
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algebra functor. The usual tensor product of chain complexes induces a monoidal
structure on Alg, which therefore becomes a monoidal model category.

The forgetful functor from Alg to M is a right adjoint and therefore creates limits
in Alg. In particular, the chain complex underlying a finite limit of chain algebras is
isomorphic to the limit of the underlying complexes. Consequently, — ® 4 commutes
with finite limits in Alg, for all chain algebras 4.

Let H be a 1—connected comonoid in Alg. Since all finite limits commute with
—® H, the category Algy of H—comodule algebras is finitely complete. Furthermore,
Uy, creates colimits in Algy, since —® H commutes with colimits, so Algy is
cocomplete as well.

By a proof very similar to that of Theorem 2.10, we can show that the category of
H —comodule algebras admits a left-induced model structure.

Theorem 2.15 Let H be a 1—connected comonoid in Alg. The forgetful functor
Uy : Algg — M left-induces a model structure on Algy with Postnikov presentation
(Fibalg ® H, (Fibalg N WEL)) ® H).

The only significant difference between the proof of this theorem and that of Theorem
2.10 resides in the description of the “based path object” construction (cf Proof of
Lemma 2.14), which we must apply to the H,{ K, where K is the cokernel of an
injective morphism M — N of H-comodule algebras. Viewing k & H, 1 K as a
algebra with trivial multiplication, let P(H,+1K,0) be the chain algebra with trivial
multiplication (k @ H,11K ® s~ 'H,, 1K, D), where D is defined on generators
as in the chain complex case. Since the multiplication in this algebra is trivial, the
differential is a derivation, as required. Furthermore, the projection map

P(Hy+1K,0) > k& Hy1 K

is an algebra map, since the multiplication is trivial in both the source and the target.
The “degree reason” arguments in the proof of Lemma 2.14 still go through, in slightly
modified form, for this algebraic “based path fibration.”

As in the chain complex case, we can show that the cobar construction actually gives
rise to a fibrant replacement functor on Algg . Corollary 3.6 of [5] states that if
A is a connected right H—comodule algebra, then the two-sided cobar construction
Q(A; H; k) admits a chain algebra structure that extends the obvious right 2 H —-module
structure. Furthermore, the quotient map ¢: Q(A4; H;k) — A is a map of algebras.
Dually, if B is a connected left H—comodule algebra, then Q(k; H; B) admits a
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chain algebra structure that extends the obvious left €2 H —module structure. A simple
computation shows that

Q(A: H: B) = Q(A; H:k) ®qu Q(k: H: B),

and therefore Q2(A; H; B) is also naturally a chain algebra, for any right H—comodule
algebra A and left H—comodule algebra B.

It follows from the characterization of the model structure above that if H isa 1—
connected chain bialgebra and A is any connected right H —comodule algebra, then

A=—">QA;H;H) —0

is a fibrant replacement of A in Algy, since Q(A4; H; H) — 0 is a (Fibag ® H)—
Postnikov tower. As in the chain complex case, we now have

AhcoH — (Q(A,H, H))COH

~ Q(A4; H; R).

Remark 2.16 It is likely that the methods of proof applied to showing that the forgetful
functor left-induces model structure on the category of comodules when the underlying
category M is the category of chain complexes or of chain algebras can be generalized to
any category M in which Postnikov decompositions of objects can be built inductively
and in which there is a natural, decreasing sequence of successive approximations to
the set of weak equivalences in M. Thus, for example, based on work of Mandell and
Shipley [8] and of Dugger and Shipley [3], it is reasonable to expect that we can define
homotopy coinvariants when the underlying category is the category of symmetric
spectra or of symmetric ring spectra.

3 Homotopic Hopf—Galois extensions

Having established a rigorous theory of homotopy coinvariants, we are ready to gener-
alize the notion of Hopf—Galois extensions to monoidal model categories. Once we
have stated the definition of homotopic Hopf—Galois extensions, we present examples
of such extensions, including trivial extensions and extensions in two topologically
interesting model categories.

Convention 3.1 Throughout this section let (M, ®, I) be a monoidal model category,
and let A be a bimonoid in M. We suppose furthermore that the category Algg of
H —comodule algebras admits a model structure with respect to which the coinvariants
functor Coinv: Algg — Alg is a right Quillen functor, where Alg is endowed with a
model structure right-induced by the forgetful functor Uajg: Alg — M. Finally, any
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category of modules over a monoid in M is considered to be endowed with the model
structure right-induced by the forgetful functor.

Let B be any monoid in M. Recall that the tensor product of a right B—module M
with right action map r and a left B—module with left action map £ is the coequalizer

RN
M@B®N —= M®N — M ®p N,
ML

which is computed in M. Recall furthermore the definition of the trivial comodule
functor Triv: M — Comod¢ (Definition 2.1).
Definition 3.2 Let A be an H-comodule algebra, with right H—coaction p: 4 —

A ® H and multiplication map p: A® A — A. Let B be a monoid in M.

Let ¢: Triv(B) — A be a morphism in Algg . The Galois map associated to ¢ is a
morphism By: A ®p A — A® H in M that is equal to the composite

A® nw®H
A@p A 222 4opde HEES A0 H,

where (t: A ®p A — A is the unique morphism from the coequalizer induced by the
multiplication map of 4.

The map ¢: Triv(B) — A of H—comodule algebras is a homotopic H—-Hopf-Galois
extension if

(1) the Galois map B, is a weak equivalence in M, and
(2) there is a choice of fibrant replacement j: 4 == A’ in Algy such that

- Q3B Aheo H . Mod g 2 Mod 4nco :i;‘

is a pair of Quillen equivalences, where i,: B — AM°H is the morphism of
monoids given by the composite

~ . coH ¢°H coH jer necoH __. qhcoH
B~ (Ter(B)) A 4" =4 .

Remark 3.3 The Galois map is in general not a morphism of monoids, unless p is
a morphism of monoids, ie, unless 4 is a commutative monoid. In Section 4.1 we
provide a categorical perspective on B, in terms of co-rings over 4.
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Remark 3.4 Condition (2) in the definition above replaces the object-level condi-
tion (2) of the classical definition of Hopf—Galois extensions (Definition 0.1) with
a Morita-type category-level condition in the homotopic case. Note, however, that
condition (2) implies that if M is a cofibrant B—module such that M ®p Ahco H g
fibrant, then i, induces a weak equivalence

iv =M ®pipg: M =i} (M ®p A" H),
which is the unit of the adjunction. In particular, if B is cofibrant as a B-module
(eg, if the unit I of the monoidal structure is cofibrant in M) and AP H g fibrant in
M, then i, itself is a weak equivalence, and we recover an object-level generalization

of condition (2) in Definition 0.1. In Remark 4.22 we discuss the possibility of
“categorifying” condition (1) as well.

In our study of homotopic Hopf—Galois extensions, we occasionally have need of the
following notion.

Definition 3.5 An object X in M is homotopically flat if the functor X ® —: M — M
preserves weak equivalences.

For example, all topological spaces and all simplicial sets are homotopically flat in
their respective Cartesian model categories. Moreover, the Kiinneth theorem implies
that any chain complex over a field is homotopically flat.

3.1 Trivial extensions

Let R be a commutative ring. As explained, eg, by Schauenburg [12, Example 2.1.2],
an R-bialgebra H (in the classical sense of the word) is a Hopf algebra (ie, admits an
antipode) if and only if H is an H-Hopf-Galois extension of R, which is true if and
only if the Galois map

HQ®A QH
HoHX®  HeneoHY2 He H

is an isomorphism. More generally, a trivial extension B®n: B - B® H is H-
Hopf-Galois if and only if H is a Hopf algebra.

Motivated by this observation, we formulate the following definition.
Definition 3.6 A bimonoid H in a monoidal model category (M, ®, [) is a Hopf

monoid if the Galois map B,: H ® H — H ® H associated to the H—comodule
algebra map n: Triv(/) — H is a weak equivalence in M.
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Examples 3.7 If M = Top and H is the monoid of Moore loops on a based space X,
then H is a Hopf monoid in M. Similarly, the chain bialgebra Cy H of singular chains
on H is a Hopf monoid in Chg.

We now show that if H is a Hopf monoid and B is a monoid satisfying certain
technical conditions, then the trivial extension B ® n: B — B ® H is a homotopic
H—Hopf-Galois extension.

Remark 3.8 Observe that the following diagram commutes.

(BQH)®pB(B®A)
(B® H)®p (B® H) z (B H)®p(B® H)® H

BBan

IR

upH®H

BRHRA BQu®®H
BHSA B H@ H® H —~

e

B®B,

BRH®H

BRH®H

It follows that Bpgy is a weak equivalence if B, is a weak equivalence and B is
homotopically flat.

We again separate our analysis into two parts: the Cartesian case and the case of model
structure on Algy left-induced by the forgetful functor Uy, : Algy — Alg.

Proposition 3.9 Let (M, X, ¢) be a monoidal model category, where the monoidal
structure is Cartesian, such that the forgetful functor right-induces a model structure
on Alg. Let H be a Hopf monoid M, where the comultiplication is the diagonal map
A: H— H x H. If B is a monoid that is fibrant and homotopically flat in M, then
the trivial extension B x1n: B — B x H is a homotopic H —Hopf—Galois extension.

Proof Since H is a Hopf monoid and B is homotopically flat, the Galois map Bpxy
is a weak equivalence.

For any object X of M, the cofree comodule structure on X x H arises from the
projection map X x H — H, which is a fibration in M if and only if X is fibrant
in M. In other words, X x H is a fibrant H—comodule if and only if X is a fibrant
object in M. Consequently, if X is fibrant, then

(X x H)"H = (x x H)*H ~ X.
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Note that B is fibrant in Alg, since the model structure on Alg is right-induced by the
model structure on M, and B is supposed to be fibrant in M. It follows that B x H is
a fibrant H —comodule algebra and therefore that

iBxn: B— (Bx HH = p

is an isomorphism. Consequently, for any B—module M , the induced map ips: M —
M xg (B x H)"H is also an isomorphism. |

In the case of left-induced model structure, we have the following result.

Proposition 3.10 Let (M, ®, I) be a monoidal category endowed with a model cate-
gory structure. Let H be a bimonoid in M. Suppose that Alg admits a model structure
right-induced by the forgetful functor Upjy: Alg — M and that Algy admits a model
structure left-induced by the forgetful functor U 1’1: Algy — Alg. If B is a monoid that
is fibrant in Alg and homotopically flat in M, then the trivial extension B — B ® H is
a homotopic H —Hopf—Galois extension.

Proof As in the previous proof, we can conclude immediately that the Galois map
BBen is a weak equivalence.

Let e denote the terminal object in M, which is also the terminal object in Alg, since
Uajg is a right adjoint. Note that e ® H is the terminal object in Algg, since —® H
is also a right adjoint.

Since U}, left-induces the model structure on Algy, the cofree functor —® H preserves
fibrations. Thus, since B — e is a fibration of algebras, B® H — e ® H is a fibration
of H—comodule algebras, ie, B ® H is fibrant in Algg . It follows that

(B®H)hCOH:(B®H)COHgB

and therefore that
M ®piy: M - M Qp (B® H)"H

is an isomorphism for all B—modules M . ad

3.2 Examples

We present in this section characterizations and explicit examples of homotopic Hopf—
Galois extensions in two model categories of topological interest.
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3.2.1 Simplicial monoids Let H be a simplicial monoid, seen as a simplicial bi-
monoid, with comultiplication equal to the diagonal map. Let A be a fibrant H—
comodule algebra, ie, a simplicial monoid endowed with a simplicial homomor-
phism p: A — H that is a Kan fibration. Let B be a simplicial monoid, and let
@ € Algg (Triv(B), A).

The computations in Section 2.2.2 imply that if ¢ is homotopically H -Hopf-Galois,
then B is weakly equivalent to the fiber of p, ie, ¢ is homotopy equivalent to a
principal fibration. Furthermore, the Galois map B,

A A A H
Asxgd B8P ax g g

is a weak equivalence.

For example, suppose that H is a simplicial group, B is a simplicial monoid that is
a Kan complex, and 4 is a twisted Cartesian product [9] of H and B via a twisting
function 7: He — Ge—1, Where G is a simplicial group acting on B via a map of
simplicial monoids «: Bx G — G . We require furthermore that T be a homomorphism
in each level, so that the componentwise multiplication in A4 is a simplicial map.

The projection map
A=BxH—H

is then a simplicial homomorphism and Kan fibration, ie, A4 is fibrant in Algg . More-
over, the inclusion ¢: B — A is a homotopic H —Hopf—Galois extension, since the
Galois map

AXpAx=BXixt (HxH)—> AXH=(BxH)xH:(b,x,y)r> (b,xy,y)
admits an inverse
(Bxy Hyx H— BXexe (HxH)— Ax H =:(b,x,y)+ (b,xy"1,y),

ie, By is actually an isomorphism. Moreover, since B itself is one model for Abeo H
we can take iy to be the identity morphism of B, thereby fulfilling condition (2) of
Definition 3.2 trivially.

3.2.2 Chain algebras Let k be a field. Let H be a 1—connected bimonoid in the
category Chy of finite-type chain complexes of k—vector spaces. It is well known
that any connected bimonoid in Chy is a Hopf monoid. Indeed, the map B, ie, the
composite

HQA QH
HoH A neHeoH ]S He H.

is actually an isomorphism.
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Let A be a connected H—comodule algebra, and let B be a connected chain algebra.
Let ¢ € Algy (Triv(B), A).

Recall the computations done in Section 2.2.4. The map ¢ is a homotopic H —-Hopf-
Galois extension only if

ip: B— AMH = Q(A; H k)
and Bo: AQpA— A®H
are weak equivalences of chain algebras.

As a specific example of a homotopic H—Hopf—Galois extension, we can therefore
take the inclusion

t: Q(A; H; k) — Q(A; H, H).
Since Q(A; H: H) ®@qa:H:k) QLA H H) = Q(A; H H) @ H

as H—comodule algebras, the Galois map B, can be identified with Q(A4; H; H) @ By .
It follows that both B, and the induced map i, are actually isomorphisms in this case.

4 Homotopically faithful flatness and descent

In this section we initiate a program to prove a homotopic version of an important
structure theorem for Hopf—Galois extensions, due to Schneider [13], which relates
faithful flatness and descent. We begin by a general discussion of categories of modules
endowed with coactions of co-rings, of which the category of descent data is one
example.

Throughout this section, we impose the following convention.

Convention 4.1 Henceforth, (M, ®, /) denotes a cofibrantly generated monoidal
category satisfying the monoid axiom and such that all objects are small relative to M.
All monoidal model categories are supposed to be symmetric and closed.

It follows from Theorem 4.1 in [14] that for any monoid A in M, the category Mod 4
admits a cofibrantly generated model structure that is right-induced by the forgetful
functor Uy4: Mody — M. In what follows we always assume that this is the model
structure on Mod 4.
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4.1 Homotopy theory of comodules over co-rings

Let (A4, u, n) be amonoid in M, and let 4 Mod,4 denote the category of A-bimodules.
It is easy to check that 4Mod,4 is a monoidal category, with monoidal product — ® 4 —
and unit 4, as monoidal model categories are closed monoidal and therefore the tensor
product commutes with colimits on both sides.

Definition 4.2 An A-co-ring is a comonoid in (4Mod4, — ® 4 —). In other words,
an A—co-ring is an A-bimodule W that is endowed with a coassociative, counital
comultiplication ¥: W — W ® 4 W that is a morphism of 4-bimodules.

Examples 4.3 (0) The monoid A is always trivially an A—co-ring, where the comul-
tiplication is the isomorphism A — 4 ® 4 A and the counit is the identity.

(1) Let (C, A, &) be any comonoid in M. The tensor product 4 ® C is then naturally
an A—co-ring, called the trivial co-ring on C. Its left A—module action is given by

®C
AA®C 5 4w,

and its right A—action by

x~ u®C
ARCRA—-ARARC — ARQC,

where we have used the symmetry isomorphism C ® 4 =~ A ® C in the second
composite. Its comultiplication ¥y is equal to

AQA
AQRC — ARCRC =2(ARC)R4 (AR (),

while the counit €y iS
ARe
ARC —> AR I = A.
It is easy to check that both are morphisms of A—bimodules.
(2) This example resembles example (1) superficially, but does in fact differ signifi-
cantly. Let (H, ug,n, A, e) be any bimonoid in M, and let 4 be an H—comodule

algebra with multiplication map 4 and right H —coaction p: A — A® H . The tensor
product A ® H is then naturally an A—co-ring. Its left A—module action is given by

H
Ao Ao H Ao H.

and its right 4—action by

RH®p

A
AR H® A 2% HARUH

ASHRASH > AQ AQ H® H XM, 4o H,
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where we have used the symmetry isomorphism H ® A =~ A ® H in the second
composite. Its comultiplication v/, is equal to

AQA
AQH — AQH®H=(A® H)®4(A® H),

while the counit €, is

A
AQH 28 A9~ 4.

It is easy to check that both are morphisms of 4-bimodules. Henceforth, we denote
this co-ring W* and call it the co-ring associated to p.

(3) Let ¢: B — A be any morphism of monoids in M. The canonical co-ring on ¢
has as underlying 4-bimodule A ® g A, endowed with a comultiplication ¥,,, which
is equal to the composite
A®py®pA
ARpA~AQpBRpA—"0 ARp AR A= (AQpA)R4(ARp A).
As is clear from the universal property of coequalizers, the morphism u: A ®p A — A
induced by the multiplication map of A is the counit of ¥¢ay.

To describe the relationship between Hopf—Galois extensions and faithful flatness, we
need to work with categories of the following sort.

Definition 4.4 Let (W, 1, €) be an A—co-ring. The category MLV is the category
of W —comodules in the category of right A—modules. In other words, an object of
M{I;V is a right A-module M together with a morphism 6: M — M ® 4 W of right
A-modules such that the diagrams

0 7]
M MW M—— MW

le J/@@AW \ lM@Ae
M@ 4¢

MW MSIUW QW M

commute. Morphisms in MLV are morphisms of 4—modules that respect the W —
coactions.

Remark 4.5 The co-ring W is itself an object in M"Y, since ¥: W — W ® 4 W can
be viewed as a morphism of right A—modules.

For the specific co-rings described in the examples above, we obtain particularly
interesting categories of comodules.
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Examples 4.6 (1) Let C be a comonoid, and let (W, ¥, ¢) = (A ® C, Vyiv, €uiv) -
Then MZV is isomorphic to the category of A—modules endowed with a C —coaction
that is a morphism of A—modules, since

MRIUW=MeuAQC=MC

for any right A-module M . Under this isomorphism M ® C is endowed with the
right A—action given by the composite

C
MeCRAxMeAC 2SS MecC,

where r is the right A—action on M .

(2) Let H be a bimonoid and A an H—comodule algebra with right H—coaction p.
Let (W,¢,€) = (A® H,{p,€p). Then M};V is isomorphic to the category of A-
modules endowed with an H —coaction that is a morphism of 4-modules, since

MIUW=MSUAQH=MQH

for any right A—-module M . Under this isomorphism M ® H is endowed with the
right A—action given by the composite

MQ®H®R®p r@ug
MIHRIA— M OQHRQIAQH=2MOQARQHQH——M Q H,

where r is the right A—action on M . Note that (4, p) itself is an object in MZV.
(3) Let ¢: B — A be any morphism of monoids in M, and let
th = (A®pB A, Yean, €can),

the canonical co-ring associated to ¢. The category MZV‘” is isomorphic to D(¢), the
descent category associated to ¢. An object of D(¢) is a right A-module M endowed
with a morphism 6: M — M ®p A such that the diagrams

M o M®BA M*H>M®BA
io \L9®BA \ ir
M®poQpA
M®BA$>M®BA®BA M

commute, where 7 is induced by the right A—action on M . We refer to (M, 0) as
a descent datum. The morphisms in D(¢) are 4-module morphisms respecting the
structure maps.

The key to showing that M;V“’ and D(¢) are isomorphic is the observation that
MIUW=Me 4 AQpA=M Qp A
for all right A—-modules M .
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Remark 4.7 Any morphism y: W — W’ of A—co-rings induces a functor
V. MZV — MEIV/,

which is defined on objects by y«(M,0) = (M, (M ®4y) o 8). If equalizers exist in
M;V, then yy admits a right adjoint

— O e (W): MY > MY
where for any object (M, 0’) in M{I;V/,

QW

(M/,Q/)DW/)/*(W)iequal(M’@AW M’®AW'®AW),

M® 4 (y®aW)Y¥

the equalizer being computed in MEIV.

To prove that — Oy y« (W) truly is the right adjoint to vy, note that a morphism in
M};V from (M, 0) to (M',0") Oy y«(W) is equivalent to a morphism

fr (M, 0)— (M @4 W, M' ®4)
in MII:IV such that
O ®aW)f = (M ®@4(y @4W)Y) [.
Straightforward diagram chases then show that the composite
f / M®.4 / /
M>MUW ——eM' @qA=M
is a morphism in MZ//.

Example 4.8 Let H be a bimonoid in M, and let A be an H —comodule algebra with
H —coaction map p. Let B be a monoid in M. Let ¢: Triv(B) — A be a morphism
in Algg . The Galois map

Bo: ARpA—> AQH

underlies a morphism of A—co-rings, from the canonical co-ring W,, associated to ¢
to the co-ring W* associated to p. When checking that

(:B(p X4 :B(p) o wcan = vfp o ,Bgoa

it is very important to remember that the right 4—action on 4 ® H is defined using
the coaction p.

The Galois map therefore induces a functor

(Bo)x: D(g) > M7,

which we call the Galois functor associated to ¢ .
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To discuss descent theory in a homotopical context, we need a model category structure
on M};V, for certain co-rings W . The next lemma, which is easy to prove, is the first
step towards obtaining the desired structure.

Lemma 4.9 Let (W,y,€) be an A—co-ring. The forgetful functor Uy : MZV —
Mod, admits a left adjoint — ® 4 W: Mody — Mﬂ/’ where the W —coaction on
M ®4 W is defined to be

MSIUp MW - MQUuW @4 W.

We can now apply the machinery of Section 5.2, in particular Corollary 5.15, to
deducing the existence of model category structure on MZV.

Theorem 4.10 Assuming Convention 4.1, let A be a monoid in M. Let W be an
A—co-ring such that MZIV is finitely bicomplete, and let Uy : M}:IV — Mody denote
the forgetful functor. Let

W = Ug "' (WEmoa,) and C=Ug"(Cofmoay).
X = FibModA ®®q4W and Z= (FibModA mWEModA) QRQq W.
If Postz C W and for all f € Mor M[ZV there exist

(a) i eCand p € Postz such that f = pi;

(b) j€CNW and g € Postx such that f =gqj,
then W, C and @ are the weak equivalences, cofibrations and fibrations in a model
category structure on M"Y, with respect to which

Up: MY 2Mody :—®@4 W

is a Quillen pair.
Remark 4.11 If y: W — W' is a morphism of A—co-rings such that both MLV and
MLV/ admit model structures left-induced by forgetting comodule structure, then it is

easy to see that the induced functor yx: MZV — MZV/ preserves both cofibrations and
weak equivalences. It follows that

ye: MYy 2 MY = Oy (W)

is a Quillen pair, which is a Quillen equivalence if for all cofibrant objects (M, 0) in
M"”" and all fibrant objects (M’,6’) in M%", a morphism in M?’

f1 (M, 0) — (M".0") Opr y«(W)
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is a weak equivalence if and only if its transpose
1P v (M, 0) — (M, 6

is a weak equivalence. In particular, if (M, 6) is cofibrant in MZV and yx (M, 0) is
fibrant in MZV/, then the unit of the adjunction

s (M, 0) = v (M, 0) Oy ys (W)
must be a weak equivalence in MY | if v, is a Quillen equivalence.

Recall that, because of our choice of model structure on MZ/, an object (M, 0) is
cofibrant in MZV if and only if the underlying 4—module M is cofibrant in Mod, and
that a morphism in MII;V is a weak equivalence if and only if the underlying morphism
in M is a weak equivalence.

4.2 The structure theorem

Schneider’s structure theorem relates H —Hopf—Galois extensions of rings ¢: B — A
and the category MLVD . Before stating the theorem, we need to introduce yet another
pair of adjoint functors. Recall that, if H is a bimonoid and A4 is an H—comodule
algebra, we can view the objects in MZVP as A-modules M equipped with an H -
coaction 6: M — M ® H that is a morphism of A-modules. This is the point of view
adopted in the definition below.

Definition 4.12 Let H be a bimonoid in M, and let A be an H—comodule algebra
with H—coaction map p. Let B be a monoid in M. Let ¢: Triv(B) — 4 be a
morphism in Alg;, and let W), denote the co-ring (4 ® H, Yy, €p).

The p—induction functor
Ind,: Mod g0t — M}?

is defined on objects by
Indy(M) = (M Qgeorr A, M Q yeorr p),
while the p—coinvariants functor
(—)°°P: MZV" — Mod 4o 1,

is defined on objects so that for all (M, 6),
=~ 0
(M, 0)°P — equal(M —= M ® H),
M®n

where the equalizer is computed in Mod 4co & .
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Remark 4.13 It is not difficult to show that (Ind,, (—)“°#) is an adjoint pair.
We can now state Schneider’s structure theorem.

Theorem 4.14 [13] Letk be a commutative ring, and let H be a k —flat Hopf algebra.

The following are equivalent for any H —comodule algebra A, with coinvariant algebra
B =A°H,

(1) The inclusion B — A is an H—-Hopf-Galois extension, and A is a faithfully
flat B—module.

(2) The functor Ind,: Modpg — MZ/’) is an equivalence, where p denotes the H —
coactionon A.

In [12] Schauenburg provides an elegant proof of Schneider’s theorem, based on the
characterization of faithfully flat ring extensions in terms of descent. Our goal is
to construct a homotopic version of Schauenburg’s argument, in order to prove an
analogue of Schneider’s theorem.

Constructing an argument like Schauenburg’s requires that we specify what we mean
by faithful flatness of monoid extensions in model categories. We begin by recalling
how faithfully flat descent works for rings.

Definition 4.15 The canonical descent datum functor

Can: Modp — D(p),

is defined on objects by Can(M) = (M ®p A, Opr), with Oy = M Qg ®p A. The
functor Can admits a right adjoint

Coinv: D(¢) — Modp,

0
where Coinv(N, 0) = equal(N —= N ®p A).
N®py

We can now formulate faithfully flat descent for rings, for which one reference is [1].
The formulation we choose is based on Theorem 4.5.2 in [12].

Theorem 4.16 Let ¢: B — A be an inclusion of rings. The functor Can: Modp —
D(¢p) is an equivalence of categories, with inverse Coinv: D(¢) — Modp, if and only
if A is faithfully flat as a B-module.

Geometry & Topology Monographs, Volume 16 (2009)



Homotopic Hopf-Galois extensions 119

The definition of homotopic faithful flatness proposed here is inspired by this theorem.
We begin by showing that the adjoint pairs introduced in this section are Quillen pairs,
under appropriate hypotheses.

Convention 4.17 Henceforth we suppose that the canonical co-ring W,, associated
to ¢ and the co-ring W, associated to p are such that the forgetful functors to Mod 4
left-induce model category structure on M AW for W = W, W, and therefore on D(gp).
For example, if the hypotheses of Theorem 4.10 are satisfied, then this convention
holds.

Lemma 4.18 Assuming Conventions 4.1 and 4.17, let H be a bimonoid in M, and
let A be an H—comodule algebra with H —coaction map p. Let B be a monoid in
M. Let ¢: Triv(B) — A be a morphism in Algy , and let W), denote the co-ring
(A® H,Yp,€p).

The adjoint pairs
Inde MOdAc()H —> MII;VD . (_)COP
and Can: Modp 2 D(¢) :Coinv

are Quillen pairs.

Proof We do the proof for the pair (Can, Coinv); the case of the other pair is essentially
identical. Let Z and J denote the sets of generating cofibrations and of generating
acyclic cofibrations of M, respectively. The sets of generating cofibrations and the
generating acyclic cofibrations of Modp are then Z® B and J ® B, while those of
Mody are Z® A and J ® A. Recall that in a cofibrantly generated model category,
any (acyclic) cofibration is a retract of the composition of a directed system

My—> My —---— Mg—> Mg — -

where Mg is obtained from Mg by pushing out along a generating (acyclic) cofi-
bration.

Since the model structure on D(¢) is left-induced by the forgetful functor to Mod 4, if
i ® B is an (acyclic) generating cofibration in Modp, then

Can(i ® B)=(i® B)QpA=i®A4

is an (acyclic) cofibration in D(¢). Recall that the set of cofibrations in a model
category is closed under pushouts, direct limits and retracts. Consequently, the image
of any (acyclic) cofibration under the functor Can is an (acyclic) cofibration, as Can
preserves both colimits and retracts. m|
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We can now formulate a homotopic version of faithful flatness, motivated by Theorem
4.16.

Definition 4.19 Let ¢: B — A be a morphism of monoids in M. The monoid A4 is
homotopically faithfully flat over B if

Can: Modp 2 D(¢) :Coinv
is a Quillen equivalence.

In other words, A is homotopically faithfully flat over B if for any cofibrant B—
module M and fibrant descent datum (N, 8), a morphism of B-modules

0
f: M — Coinv(N, ) = equal (N —= N Q®p A)
N®pe

is a weak equivalence if and only if its transpose
S (M ®p A, M ®p¢p®pA)—> (N, 0)

is a weak equivalence of descent data. In particular, if M is a cofibrant B-module and
(M ®pA, M Q®p¢ Q@p A) is a fibrant descent datum, then the unit of the adjunction

Ny M — Coinv(M Qg A, M Qpp @p A)
must be a weak equivalence if 4 is homotopically faithfully flat over B.
We conjecture that the following analogue of Lemma 2.3.5 in [12] should hold, at least

under strong enough conditions on ¢.

Conjecture 4.20 Assuming Conventions 4.1 and 4.17, let H be a bimonoid in M.
Suppose that the category Algy of H—comodule algebras admits a model structure
with respect to which the coinvariants functor Coinv: Algy — Alg is a right Quillen
functor.

Let A be an H —comodule algebra, and let ¢: Triv(B) — A be a morphism in Algy ,
with associated Galois map By: AQpA— AR H.

If ¢ is a homotopic H—Hopf—Galois extension, then

(Bo)x: D(9) 2M)” :—Oagpm (o)« (A®p A)

is a pair of Quillen equivalences.
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Remark 4.21 If 8,: A®p A — A® H is actually an isomorphism, then it follows
from the proof of Lemma 2.3.5 in [12] that (B, )« is an equivalence of categories. The
conjecture therefore holds for those homotopic Hopf—Galois extensions, like both of
those treated in Section 3.2, such that B, is an isomorphism.

Remark 4.22 It might be appropriate to render this conjecture a tautology, by replacing
condition (1) in the definition of homotopic Hopf—Galois extensions (Definition 3.2)
by the following condition.

(1) The Galois functor
W,
(By)x: D(p) — MAD

is a Quillen equivalence.

This modification would certainly be in the spirit of condition (2) in Definition 3.2,
which is also a category-level, rather than object-level, description. Further experience
with explicit Hopf—-Galois extensions should make it clear which is actually the “correct”
definition of homotopic Hopf—Galois extensions.

Remark 4.23 To prove this conjecture for arbitrary ¢, if we choose not to render it a
tautology, it may be necessary to weaken slightly the definition of a descent datum and
to work with “homotopic descent data,” rather than strict descent data.

We can now formulate and prove a homotopic version of Schneider’s theorem, at least
under the hypothesis that the conjecture above is true.

Recall the adjunction

—Q®pB Ahco H . Modp 2 Mod 4neo 31'(;:

from Definition 3.2, which is a pair of Quillen equivalences if ¢ is a homotopic
Hopf-Galois extension.

Theorem 4.24 Assume Conventions 4.1 and 4.17. Let H be a bimonoid in M such
that the category Algy of H —comodule algebras admits a model structure with respect
to which the coinvariants functor Coinv: Algg — Alg is a right Quillen functor.

Let A be a H-comodule algebra with fibrant underlying object in M. Let B be a
monoid such that the functor M ® p —: pMod — M commutes with equalizers up to
weak equivalence. Let ¢: Triv(B) — A be a morphism in Alg g such that A is cofibrant
as a B—-module and M ® g A is fibrant in MLVD for all cofibrant B—-modules M .
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If Conjecture 4.20 holds, then the following conditions are equivalent.

(1) The monoid map ¢ is a homotopic H—Hopt-Galois extension, and A is homo-
topically faithfully flat over B.

(2) The functor Ind, o(— ®p A*° H ): Modg — MZ/" is a Quillen equivalence.

Proof Our proof is inspired by the proof of Corollary 2.3.6 in [12]. We begin by
observing that the following diagram of functors clearly commutes.

(Bo)
D(p) - M’
(4-1)
Coinv igo(—)«r
Mod B

(1) = (2) Conjecture 4.20 implies that (B, )« is a Quillen equivalence. On the other
hand, by definition of homotopic faithful flatness, Coinv is a Quillen equivalence. We
conclude from diagram (4-1) that iz o (—)®# is a Quillen equivalence, which implies
that its left adjoint, Ind, o(— ®p A*° H) 'is also a Quillen equivalence.

(2) = (1) The hypothesis that — ® g A is a Quillen equivalence implies that the unit
of the adjunction
M — i, (M ®p A, M ®p p)*°°
is a weak equivalence in Modp for all cofibrant B—modules M , since M ®p A is
fibrant in MZVO by hypothesis. In particular, since A is supposed to be cofibrant as a
B-module,
na: A= ig(A®p A, A®p )’

is a weak equivalence.

Observe that since B, is a morphism of co-rings, it can also be viewed as a morphism
in Mz/ﬂ . Moreover, the following diagram commutes, thanks to the universal property
of the equalizer.

A" i (A®p A A®p p)°F
~ liﬁz(ﬂw)“”
iy(A®H,A® A)*P = 4

Thus, i ;’,‘ (Bp)°” is a weak equivalence. Moreover, the fibrancy hypothesis on 4 implies
that R(i; o (—)°P)(By) = i; (Bp)°”, whence B, must also be a weak equivalence,
since R(i; o (—)°?) is an equivalence of categories.
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To conclude that ¢ is a homotopic Hopf—Galois extension, observe that for any cofibrant
B-module M , the unit map nps is equal to the composite

i igu
ML (M @p A°H) L5 5 (M ®p A, M ®p p)*°°,

where upr: M ®p A°H — (M ®p A, M ®p p)*°” is the morphism of A% H —
modules induced by the natural map u: A°H — A. Since M ® g — commutes with

equalizers up to weak equivalence, s and therefore also i ;’,‘ ups are weak equivalences.
*

Consequently, ips is a weak equivalence for all cofibrant M and therefore ij is a

Quillen equivalence.

Since ¢ is a homotopic Hopf—Galois extension, it follows from Conjecture 4.20 that
(By)« is a Quillen equivalence. The commuting diagram (4-1) then implies that Coinv
is a Quillen equivalence, ie, that ¢ is homotopically faithfully flat. a

Remark 4.25 Note that it follows from the proof above that, under the various cofi-
brancy and fibrancy conditions, ¢ is a homotopic Hopf—Galois extension whenever
—®p A is a Quillen equivalence, without any need of Conjecture 4.20, which serves
only to make the connection with homotopical faithful flatness.

5 Appendix: Model categories and derived functors

5.1 Definitions and terminology

We recall here certain elements of the theory of model categories, primarily to fix
notation and terminology.

Definition 5.1 A model category consists of a category M, together with classes of
morphisms WE, Fib, Cof C Mor M that are closed under composition and contain all
identities, such that the following axioms are satisfied.

(M1) All finite limits and colimits in M exist.

(M2) Let f: A——B and g: B——C be morphisms in M. If two of f, g,
and g/ are in WE, then so is the third.

(M3) The classes WE, Fib and Cof are all closed under taking retracts.

(M4) Given a commuting diagram in M

f

_

A E
E
X -8,
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there is a morphism /#: X — E such that ph = g and hi = f if

(a) i€ Cof and p € FibNWE, or
(b) i € Cof NWE and p € Fib.

(M5) If f € MorM, then there exist

(a) i€ Cof and p € Fib NWE such that f = pi, and
(b) j € Cof NWE and ¢ € Fib such that f =gj.

The homotopy category of a model category M, denoted Ho M, is the localization
of M with respect to WE.

By analogy with the homotopy structure in the category of topological spaces, the
morphisms belonging to the classes WE, Fib and Cof are called weak equivalences,
fibrations, and cofibrations and are denoted by decorated arrows = — > and

>—— . The elements of the classes Fib N WE and Cof N WE are called, respectively,
acyclic fibrations and acyclic cofibrations. Since WE, Fib and Cof are all closed under
composition and contain all isomorphisms, we can and sometimes do view them as
subcategories of M, rather than simply as classes of morphisms.

Axiom (M1) implies that any model category has an initial object ¢ and a terminal
object e. An object A in a model category is cofibrant if the unique morphism
¢——A is a cofibration. Similarly, 4 is fibrant if the unique morphism A——e¢
is a fibration.

When defining homotopy coinvariants, we need the following notion.

Definition 5.2 Let M and M’ be model categories. A pair of adjoint functors
F-M2M G

is a Quillen pair if F preserves cofibrations and G preserves fibrations.

Remark 5.3 As is well known [7], (F, G) is a Quillen pair if and only if F preserves
both cofibrations and acyclic cofibrations, which is true if and only if G preserves
fibrations and acyclic fibrations.

Proposition 5.4 A Quillen pair F: M2 M’ :G induces a pair of adjoint functors

LF: HoMZ HoM' :RG.
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Remark 5.5 For any objects X of M and X’ of M’, LF(X) is represented by
F(QX) and RG(X') by G(RX'), where @ == QX —>X is a cofibrant replace-
ment of X and X’ >—> RX’'——>e is a fibrant replacement of X’.

Definition 5.6 Let M and M’ be model categories. A Quillen pair
F-M2M G

is a Quillen equivalence if for every cofibrant object X in M and every fibrant object
X’ in M/, a morphism f: X — GX' is a weak equivalence in M if and only if its
transpose f”: FX — X’ is a weak equivalence in M’. It follows that (L F,RG) is
an equivalence of categories.

5.2 Induced model structures

A common way of creating model structures is by transfer across adjunctions. We
need in this article to use both right-to-left and left-to-right transfer, as specified in the
following definition.

Definition 5.7 Let G: C — M be a functor, where M is a model category. A model
structure on C is right-induced from M if WEc = G~ (WEy) and Fibc = G~ (Fiby).
Let F: C — M be a functor, where M is a model category. A model structure on C is

left-induced from M if WEc = F~1(WEy) and Cofc = F~!(Cofy).

Remark 5.8 In general, functors to model categories do not induce model structures
on their sources. If, however, M is cofibrantly generated, and G: C — M admits a left
adjoint F, then there are well-known conditions on F and G and their relation to the
generating (acyclic) cofibrations in M that ensure the existence of a right-induced model
structure on C (cf, eg, [6, Theorem 11.3.2]). Left induction is less well understood,
probably because fibrantly generated model categories are rare.

The next theorem is key to determining conditions under which left-induced model
structures exist. Before stating the theorem, we introduce a bit of useful notation.

Notation 5.9 Let X be any subset of morphisms in a category C.

(1) The closure of X under formation of retracts is denoted 5(\, ie,

feS(\ <= dgeXsuchthat f isaretract of g.
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(2) The set of morphisms with the right lifting property with respect to X is denoted
RLP(X). In other words, a morphism p: E — B is in RLP(X) if for any
commuting diagram in C

f

A——E
ii »
x <= B,
where i € X, there is a morphism /: X — E such that ph =g and hi = f.

Remark 5.10 Note that if Y C RLP(X), then Yc RLP(X). Furthermore, RLP(X) is
clearly closed under pullbacks and inverse limits. Finally, recall that in any model
category Fib = RLP(Cof N WE) and Fib N WE = RLP(Cof).

Theorem 5.11 Let C be a finitely bicomplete category, and let W, C, P, Q be subsets
of morphisms in C that are closed under composition, contain all identities and satisty
the following conditions.

(1) Let f: A——= B and g: B—— C be morphisms in M. If two of f, g, and
gf arein W, then so is the third.

(2) W=W andC=C.

(3) (a) P CRLP(C).
(b) Q CRLP(CNW).

(4) If f € Mor C, then there exist
(@) ieCand peP suchthat f = pi;
(b) jeCNW andg € Q suchthat f =gqj.

(5) PCw.

Then W, C and Q are the weak equivalences, cofibrations and fibrations in a model
category structure on C.

Proof Axioms (M1), (M2), (M3) and (M5)(b) are satisfied simply by hypothesis if W,
C and Q are the weak equivalences, cofibrations and fibrations we consider. Axiom
(M4)(b) follows easily from hypothesis (3)(b), by Remark 5.10.

To conclude, we show that

QNW =P,
which, together with (3)(a) above, implies (M4)(a) and, together with (4)(a) above,
implies (M5)(a).
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Let (g: E — B) e RLP(CNW). By hypothesis (4)(b), there exist (j : E— E’) e CNW
and (¢: £’ — B) € Q such that g = ¢/ . There is thus a commutative diagram

E—=E

L,k

E'—B

where j € CNW and g € RLP(CNW). It follows that there exists r: E’ — E such
that gr = ¢ and rj = Idg, and therefore the diagram

J , T
— F ———

,i;

—_—

o0
<~—-Iy
U:J(TD'J

=
commutes, ie, g is a retract of ¢.

We have thus established that RLP(CNW) C Q, which, together with hypothesis (3)(b)
and Remark 5.10, implies that

RLP(CNW) = Q.

A similar argument, applying hypotheses (4)(a) and (3)(a) and Remark 5.10, shows that

RLP(C) =P
and therefore that
PcQ

Conditions (2) and (5) then imply that
PcQnw.

Let (¢: E = B) € QNW. By hypothesis (4)(a), there exist (i: E — B’) € C and
(p: B’ — B) € P such that ¢ = pi. By hypotheses (1) and (5), i € W. There is thus a
commutative diagram

I

P
B

, P
e

by

S —
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where i e CNW and g € QNWC RLP(C N'W). It follows that there exists r: B’ — E
such that gr = p and ri = Idg, and therefore the diagram

E—‘~p-'>F

commutes, ie, ¢ is a retract of p. Thus, 6 NW C /P\, and we can conclude. O

We apply Theorem 5.11 to proving the existence of left-induced model structures,
where the set of fibrations is generated by the particular type of morphism described in
the definition below.

Definition 5.12 Let X be a set of morphisms in a category C that is closed under
pullbacks. If A is an ordinal and Y: A°°? — C is a functor such that for all 8 < A, the
morphism Yg — Yp fits into a pullback

Ypi1 —— Xpyi

i k lxw

Yp —2 > Xg

for some xg41: Xgy1 — Xpg in X and kg: Yg — Xg in C, while Y, := limg.,, Yg
for all limit ordinals y < A, then the composition of the tower Y

1}1}:{)1 Yg — Yo,

if it exists, is an X—Postnikov tower. The set of all X—Postnikov towers is denoted
Postx .
A Postnikov presentation of a model category M is a pair of sets of morphisms X and
Z satisfying

Fibm = Postx  and  Fibpy N WEpM = Postyz

and such that for all /" € Mor M, there exist
(a) i€ Cof and p € Postz such that f = pi;
(b) j € Cof NWE and ¢ € Postx such that f =g¢;.
Remark 5.13 For any X, the set Postx is closed under pullbacks, since inverse limits

commute with pullbacks. Furthermore, Postx is clearly closed under composition as
well.
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Remark 5.14 Let X and Y be two classes of morphisms in a category C admitting
pullbacks and inverse limits. It is a straightforward exercise to show that if X C
RLP(Y), then Postx C RLP(Y) as well, and therefore @ C RLP(Y). In particular,
(Fibn, Fibp N WEy) is always a Postnikov presentation of a model category M.

Corollary 5.15 Let M be a model category with Postnikov presentation (X, Z). Let C
be a finitely bicomplete category, and let F: C 2 M :G be an adjoint pair of functors.

Let W = F~1(WEy) and C = F~ ! (Cofy).
If Postg(zy C W and for all f € Mor C there exist

(a) i €Cand p € Postg(z) suchthat [ = pi;
(b) j€CNW and g € Postgx) suchthat [ =qj,

then W, C and P/o% are the weak equivalences, cofibrations and fibrations in a
model category structure on C, with respect to which F: CZM :G is a Quillen pair.

Note that (G(X), G(2)) is a Postnikov presentation of the left-induced model structure
on C.

Proof To obtain a left-induced model structure on C, we need to show that hypotheses
(I)—=(5) of Theorem 5.11 are satisfied, where P = Postg(z) and Q = Postg(x). Note
that hypotheses (4)(a) and (b) are exactly the hypotheses (a) and (b) of this corollary,
while hypothesis (5) is a hypothesis of this corollary as well.

Since WEy; satisfies axiom (M2) for model categories, it is clear that W satisfies
hypothesis (1) of Theorem 5.11. Moreover, axiom (M3) for WEp and Cofy can easily
be seen to imply hypothesis (2) of Theorem 5.11, as functors preserve retracts.

To prove (3)(a), consider first a commuting diagram in C

A*f>GE

\L i l Gp
g
X —GB,
where i € C and p € Z, which gives rise, via the adjunction between F and G to a

commuting diagram in M
b

FAf—>E

7y b

FX — B.
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Since Fi € Cofy and p € Fibpy NWEp, axiom (M4)(a) implies that there is a morphism
h: FX — E such that poh = g” and ho Fi = f*. Applying the adjunction between
F and G again, we obtain a commutative diagram

a—1-GE

o

X —=GB
and thus G(Z) C RLP(C),
which implies by Remark 5.14 that
Postg(z) C RLP(C).
Similarly, Postgx) C RLP(CNW),

ie, hypothesis (3)(b) is satisfied as well.

To see that the adjoint pair (F, G) is a Quillen pair with respect to the newly defined
model structure on C, observe first that since G is a right adjoint, it preserves limits.
Thus, the inclusion G(Z) C RLP(C) implies, in conjunction with Remark 5.10, that
G(Postz) C RLP(C). Since RLP(C) is closed under taking retracts and G preserves
retracts, it follows that

G (Fiby N WEn) = G(Postz) C RLP(C) = Fibc N WEc.
Similarly, G (Fiby) C RLP(C N'W) = Fiby. O

Remark 5.16 Let M be a model category with Postnikov presentation (X, Z). Let C
be a bicomplete category, and let F': CZ M : G be an adjoint pair of functors. Let

W = F~Y(WEy) and C = F~!(Cofy).

One can impose additional, reasonable conditions on the adjunction (F, G) that guar-
antee that Postg(z) C W. For example, if
(1) forall p: E— Bin Z andforall g: Y — GB in C,

F(Y xgg GE 2 Y) € WEM,

where p is the induced morphism from the pullback of Gp and g to Y,
(2) F preserves inverse limits, and

(3) the composition of a tower of weak equivalences in M is a weak equivalence,

then it is an easy exercise to show that Postgz) CW.
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