Naar inhoud springen

Stelling van Skolem-Noether

Uit Wikipedia, de vrije encyclopedie

In de ringtheorie, een deelgebied van de wiskunde, geeft de stelling van Skolem-Noether een karakterisering van de automorfismen van enkelvoudige ringen. De stelling is genoemd naar Thoralf Skolem en Emmy Noether.

De stelling werd in 1927 eerst door Skolem gepubliceerd in zijn artikel Zur Theorie der assoziativen Zahlensysteme (Over de theorie van de associatieve getalsystemen) en korte tijd later onafhankelijk herontdekt door Noether.

Stelling van Skolem-Noether

[bewerken | brontekst bewerken]

Laat en in een algemene formulering enkelvoudige ringen zijn, en laat het centrum van zijn. Stel dat de dimensie van over het lichaam/veld eindig is, dat een centrale enkelvoudige algebra is ( is een lichaam/veld, aangezien voor elke niet-nulzijnde , een niet-nulzijnde, twee-zijdig ideaal van is. Enkelvoudigheid van impliceert dus dat en dat dus inverteerbaar is).

Dan als

-algebra homomorfismen zijn, bestaat er een eenheid zodanig dat

voor alle .

  • (de) Thoralf Skolem, Zur Theorie der assoziativen Zahlensysteme (Over de theorie van de associatieve getalsystemen), 1927
  • Een bewijs zie hier