Hopp til innhald

Fundamentalteoremet i algebra

Frå Wikipedia – det frie oppslagsverket

Fundamentalteoremet i algebra seier at kvart og eit polynom i éin variabel med komplekse koeffisientar har minst éit komplekst nullpunkt.

Rekursivt kan ein vise at ein n-te-grads polynomlikning med komplekse koeffisientar har eksakt n røter, når ein tek omsyn til multiplisiteten til rota.

Ei andregradslikning

har alltid to røter. Desse er

Dersom uttrykket under rotteiknet er

  • større enn null, er røtene ulike og reelle,
  • mindre enn null, er røtene komplekskonjugerte,
  • lik null, er røtene samanfallande (like) og reelle.