Integração de Monte Carlo
Este artigo ou secção contém uma lista de referências no fim do texto, mas as suas fontes não são claras porque não são citadas no corpo do artigo, o que compromete a confiabilidade das informações. (Agosto de 2021) |
Em matemática, integração de Monte Carlo é uma integração numérica usando números aleatórios. Isto é, os métodos da integração de Monte Carlo são algoritmos para a avaliação aproximada de integrais definidas, normalmente os multidimensionais. Os algoritmos usuais avaliam o integrando em uma grade regular. Métodos de Monte Carlo, entretanto, escolher aleatoriamente os pontos em que o integrando é avaliado.
Informalmente, para estimar-se a área do domínio D, primeiro escolhe-se um domínio simples E cuja área é facilmente calculada e que contém D. Agora escolhe-se uma sequência de pontos aleatórios que caem dentro de E. Alguma fração destes pontos também cairá dentro de D. A área de D é então estimada como esta fração multiplicada pela área de E.
Referências
Bibliografia
[editar | editar código-fonte]- R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numerica vol. 7, Cambridge University Press, 1998, pp. 1-49.