Вейвлет
Вейвле́т (англ. wavelet — всплеск), иногда, гораздо реже[1], вэйвле́т — математическая функция, позволяющая анализировать различные частотные компоненты данных. График функции выглядит как волнообразные колебания с амплитудой, уменьшающейся до нуля вдали от начала координат. Однако это частное определение — в общем случае анализ сигналов производится в плоскости вейвлет-коэффициентов (масштаб — время — уровень) (Scale-Time-Amplitude). Вейвлет-коэффициенты определяются интегральным преобразованием сигнала. Полученные вейвлет-спектрограммы принципиально отличаются от обычных спектров Фурье тем, что дают четкую привязку спектра различных особенностей сигналов ко времени.
История
В начале развития области употреблялся термин «волночка» — калька с английского. Английское слово «wavelet» означает в переводе «маленькая волна», или «волны, идущие друг за другом». И тот и другой перевод подходит к определению вейвлетов. Вейвлеты — это семейство функций, которые локальны во времени и по частоте («маленькие»), и в которых все функции получаются из одной посредством её сдвигов и растяжений по оси времени (так что они «идут друг за другом»).
Разработка вейвлетов связана с несколькими отдельными нитями рассуждений, начавшимися с работ Хаара в начале двадцатого века. Весомый вклад в теорию вейвлетов внесли Гуппилауд, Гроссман и Морле, сформулировавшие то, что сейчас известно как непрерывное вейвлет-преобразование (НВП) (1982), Жан Олаф-Стромберг с ранними работами по дискретным вейвлетам (1983), Добеши, разработавшая ортогональные вейвлеты с компактным носителем (1988), Малла, предложивший кратномасштабный метод (1989), Натали Делпрат, создавшая временно-частотную интерпретацию CWT (1991), Ньюланд, разработавший гармоническое вейвлет-преобразование и многие другие.
В конце 20-го века появляются инструментальные средства по вейвлетам в системах компьютерной математики Mathcad, MATLAB и Mathematica (см. их описание в книге Дьяконова В. П.). Вейвлеты стали широко применяться в технике обработки сигналов и изображений, в частности для компрессии их и очистки от шума. Были созданы интегральные микросхемы для вейвлет-обработки сигналов и изображений.
Определения, свойства, виды
Существует несколько подходов к определению вейвлета: через масштабный фильтр, масштабную функцию, вейвлет-функцию. Вейвлеты могут быть ортогональными, полуортогональными, биортогональными. Вейвлетные функции могут быть симметричными, асимметричными и несимметричными, с компактной областью определения и не имеющие таковой, а также иметь различную степень гладкости.
Примеры вейвлетов
- вейвлет Хаара
- вейвлеты Добеши
- вейвлеты Гаусса
- вейвлет Мейера
- вейвлеты Морле
- вейвлет Пауля
- вейвлет MHat («Мексиканская шляпа»)
- вейвлеты Р. Койфмана — койфлеты
- вейвлет Шеннона
Вейвлет-преобразования
- Все могут рассматриваться как разновидность временно-частотного представления и, следовательно[источник не указан 4422 дня], относятся к предмету гармонического анализа
- Все рассматривают функцию (взятую будучи функцией от времени) в терминах колебаний, локализованных по времени и частоте.
- В настоящее время приняты на вооружение для огромного числа разнообразных применений, нередко заменяя обычное преобразование Фурье во многих применениях. Эта смена парадигмы наблюдается во многих областях физики, включая молекулярную динамику, вычисления ab initio, астрофизику, локализацию матрицы плотности, сейсмическую геофизику, оптику, турбулентность, квантовую механику, обработку изображений, анализы кровяного давления, пульса и ЭКГ, анализ ДНК, исследования белков, исследования климата, общую обработку сигналов, распознавание речи, компьютерную графику и мультифрактальный анализ и другие.
Вейвлет-анализ применяется для анализа нестационарных медицинских сигналов, в том числе в электрогастроэнтерографии.
Вейвлет-преобразования обычно делят на дискретное вейвлет-преобразование (ДВП) и непрерывное вейвлет-преобразование (НВП).
Дискретное
Вейвлеты, образующие ДВП, могут рассматриваться как разновидность фильтра конечного импульсного отклика.
Применение: обычно используется для кодирования сигналов (инженерное дело, компьютерные науки)
Непрерывное
Вейвлеты, образующие НВП, подчиняются принципу неопредёленности Гейзенберга и соответственно базис дискретного вейвлета также может рассматриваться в контексте других форм принципа неопределённости
Применение: для анализа сигналов (научные исследования)
Теория вейвлетов
Связана с несколькими другими методиками.
Все вейвлет-преобразования могут рассматриваться как разновидность временно-частотного представления и, следовательно относятся к предмету гармонического анализа.
Дискретное вейвлет-преобразование может рассматриваться как разновидность фильтра конечного импульсного отклика.
Примечания
См. также
- Преобразование Фурье
- Дискретное вейвлет-преобразование
- Непрерывное вейвлет-преобразование
- Сжатие с использованием вейвлет
Литература
- Добеши И. Десять лекций по вейвлетам. — Ижевск: РХД, 2001. — 464 с.
- Дьяконов В. П. Вейвлеты. От теории к практике. — М.: СОЛОН-Пресс, 2004. — 440 с.
- Малла С. Вэйвлеты в обработке сигналов. — М.: Мир, 2005. — 672 с.
- Смоленцев Н. К. Введение в теорию вейвлетов. — Ижевск: РХД, 2010. — 292 с.
- Чуи К. Введение в вэйвлеты. — М.: Мир, 2001. — 412 с.
Ссылки
- Систематизация вейвлет-преобразований
- Wavelet Digest (англ.)
- The Wavelet Tutorial by Polikar (англ.)
- Роби Поликар Введение в Вейвлет-преообразование - 59 с. - Для тех, кто хорошо понял ДПФ
- J. Lewalle - Введение в анализ данных с применением непрерывного вейвлет-преобразования - 29 с. - Для тех кто хорошо понял работу Роби Поликара Введение в Вейвлет-преообразование
- A Really Friendly Guide To Wavelets (англ.)
- An Introductions to Wavelets (англ.)
- Два курса: «Введение в вейвлет-анализ» и «Вейвлет-анализ и приложения».
- Основы теории вейвлетов с пакетом Mathematica.