Фундаментальная последовательность

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Фундаментальная последовательность, или сходящаяся в себе последовательность, или последовательность Коши — последовательность точек метрического пространства такая, что для любого ненулевого заданного расстояния существует элемент последовательности, начиная с которого все элементы последовательности находятся друг от друга на расстоянии меньшем, чем заданное.

Определение

[править | править код]

Последовательность точек метрического пространства называется фундаментальной, если она удовлетворяет условию Коши:

Для всякого найдётся такое натуральное , что для всех .

Связанные определения

[править | править код]
  • Метрическое пространство, в котором каждая фундаментальная последовательность сходится к элементу этого же пространства, называется полным.
  • Каждая сходящаяся последовательность является фундаментальной, но не каждая фундаментальная последовательность сходится к элементу из своего пространства.
  • Метрическое пространство является полным тогда и только тогда, когда всякая система вложенных замкнутых шаров с неограниченно убывающим радиусом имеет непустое пересечение, состоящее из одной точки.
  • Если последовательность фундаментальна и содержит сходящуюся подпоследовательность, то сама последовательность сходится.
  • Если последовательность фундаментальна, то она ограничена.

Литература

[править | править код]
  • Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа, — М.: Наука, 2004. — 7-е изд.
  • Шилов Г. Е. Математический анализ. Функции одного переменного. Ч. 3, — М.: Наука, 1970.