
(Modern) Event
(Data) Platform

Starting off with an old
slide...

In 2018 I gave a tech talk titled

Event Stream Infrastructure

That talk contained the
following slide.

EventLogging + EventBus
Quote from EventBus wikitech doc:

Ideally, these services would not be
as different as they are. In the
(probably distant) future, we'd like
to modify EventLogging Analytics
so that it looks a little more like
EventBus

Annnnnd
today we

have...

Event Platform

Motivation

Event Platform

WMF’s Event Platform
enables building

event driven software.

Wait, first, what is an event?

What is an event?

Events are just way of modeling data:

something happens at a specific time.

- edit saved at 9am
- user clicked button at 3pm
- luca made coffee at 2pm, etc.

Events are facts
Modeling data as

events is closer to
reality* than modeling data

as state.

Things happen, then
state changes.

Events are history
One of MediaWiki’s strengths is that the
revision table is essentially an event

history store. However:

Not all of
MediaWiki data

has history
(link changes, user renames,
etc, user preferences, etc.)

Revision

events are
locked inside of
MediaWiki MySQL

Events decouple

If events are consumable
by anyone, they allow for
building decoupled services.

Want to update your Elasticsearch index
with the current state of a page? Just

consume events as they happen and
update; don’t reach out to a centralized
database.

Events+Kafka liberate data

If we emit events to a
pub/sub message bus (like
Kafka), unforseen use cases
and services can access
source data without altering
the source data’s code or
datastore.

This empowers teams to make

incremental architectural
changes. Data is no longer
siloed in a datastore behind an
app or a service. It is

exported by default.

Events liberate data

This contract is enforced

by event schemas.

However, doing this requires a data contract.
Producers of data should not change its format in a
way that might break consumers.

Events are complex

Events are simpler data, but
the systems needed to
process those events into

useful data can be
complicated.

Schemas

Event Platform

Why do we need
schemas?

If you own both
the producer
and consumer
of event data,
then perhaps
you don’t.

But if you want data to

be shared between
many uses, you must
ensure that data

format changes don’t
break consumers!

Solving data
integration problems
(AKA ETL)

Schemas are useful for

Ensuring event
data satisfies a
contract

JSONSchema, ok!

Distributed schema lookup
(for validation and/or data
integration)

WMF uses JSONSchema. Great!

But JSONSchema on its own is
missing features we need:

Schema evolution
AKA versioning

Schema lookup
We should always be able to

know the schema of an

event.

With so many
producers and
consumers, we need to
be able to do this from
anywhere.

How does Event Platform solve this?

Schema lookup
JSONSchema already has a convention for locating ‘meta’ schemas
(these are schemas of schemas, like a JSONSchema spec schema).

$schema is a URI pointing at the JSONSchema of the

current JSON document. We can use this!

$schema

Schema lookup

But we want to be
decentralized!

Decentralized Schemas

We set $schema to
a versioned path URI.

e.g.

/mediawiki/revision/create/1.0.0

Decentralized Schemas
Software then prefixes this with a base
URI, either as a path in the local
filesystem, or a remote HTTP location.

e.g.

https://schema.wikimedia.org/repositories/
primary/jsonschema/mediawiki/revision/crea
te/1.0.0

How to enforce?

Event data is

anywhere and

everywhere!

All versions of all
schemas must be
look-up-able

for-ev-uh.

Each new version of a schema must be 100%

backwards compatible with the old one.

jsonschema-tools

jsonschema-tools
is a schema repository manager.

Edit a single file and ‘materialize’ static
versioned schema files.

/mediawiki/revision/create/current.yaml ->
/mediawiki/revision/create/1.0.0

jsonschema-tools

Certain rules and conventions, including

backwards compatibility are enforced via tests.

Static version files give us consistent file path based
URIs, from which we can lookup the schema.

Versioning + rules enforcement
satisfies our 2nd requirement:

Schema
Evolution!

jsonschema-tools
demo

We’ve got schemas!

Now that we’ve got a good
system for versioned schemas,

how do we produce events?

EventGate

Event Platform

EventGate
is a HTTP event intake service.

By default, it knows how to use $schema

URIs to lookup event schemas, validate

incoming event data, and produce it to
Kafka.

EventGate

These WMF specific functions are in the

eventgate-wikimedia

repository.

EventGate is non-WMF
specific. WMF provides

custom functions that
do what we need:

- validate using our schema
repositories

- produce events to kafka

The implementations of validate and

produce are pluggable.

Event Stream
Config

Event Platform

Event Stream Config

Original motivation:

modifying analytics event
producer sampling rates.

Event Stream Config

Usage today:

- By EventGate to ensure only events of a single schema are
allowed in a stream

- Determining which EventGate instance is allowed to produce
which streams.

- Identifying which streams to produce canary events into for
monitoring purposes

- Mapping from a stream (topic) name to a schema for structured

stream processing.

EventStreamConfig

Stream configs are stored in MW
global $wgEventStreams.

is a MediaWiki extension.

PHP and HTTP API to get
arbitrary settings for a

specific stream

[
'stream' => 'mediawiki.revision-score',
'schema_title' => 'mediawiki/revision/score',
'destination_event_service' => 'eventgate-main',

],

Future work

Event Platform

What’s next?
Thus far we’ve been
focusing on the

production of valid

and consistent event
data.

But what about actually
consuming and using
that data?

Two components still to do:

Event Stream
Connectors

Event Stream
Processing

Event Stream Connectors

We’d like to use Kafka Connect, but our first use
case is a connector implementation from Confluent
(Kafka Connect HDFS) which does not have a FOSS
license.

abstract getting data out of (and into) streams.

We want connectors to get data into

other datastores e.g. MySQL,
ElasticSearch, Hadoop, Cassandra, etc.

Not yet sure
where to go from
here...

Event Stream Processing

We are likely to use Flink for this at WMF.

is an abstraction for working with streams.

Allows you to think of streams

as continuous datasets,
and query them as such,
possibly with SQL.

Stateful stream
processing lets you build
applications that keep and
redundant distributed state
updated by streams, a great

way to do reliable event
sourcing.

Check out upcoming tech talk

from Ben Stopford for more
about this! Wed Oct. 7 @ 15:00 UTC

Event Platform
Q

u
es

ti
on

s?

